JPH08295506A - Hollow activated carbon-titanium dioxide composite and its production - Google Patents

Hollow activated carbon-titanium dioxide composite and its production

Info

Publication number
JPH08295506A
JPH08295506A JP7332762A JP33276295A JPH08295506A JP H08295506 A JPH08295506 A JP H08295506A JP 7332762 A JP7332762 A JP 7332762A JP 33276295 A JP33276295 A JP 33276295A JP H08295506 A JPH08295506 A JP H08295506A
Authority
JP
Japan
Prior art keywords
activated carbon
titanium dioxide
powder
hollow
thermoplastic resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7332762A
Other languages
Japanese (ja)
Other versions
JP3840681B2 (en
Inventor
Hitoshi Fujimagari
等 藤曲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pentel Co Ltd
Original Assignee
Pentel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pentel Co Ltd filed Critical Pentel Co Ltd
Priority to JP33276295A priority Critical patent/JP3840681B2/en
Publication of JPH08295506A publication Critical patent/JPH08295506A/en
Application granted granted Critical
Publication of JP3840681B2 publication Critical patent/JP3840681B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE: To obtain a hollow activated carbon-titanium dioxide composite having the adsorptivity for harmful materials particular to activated carbon and the decomposability for harmful materials particular to titanium dioxide by mixing an melting a granular thermoplastic resin with a powdery activated carbon to produce a molding, sticking powdery titanium oxide alone or a composite or mixture with other materials directly or indirectly to the surface of the molding, and after that, carbonizing by heating to make the activated carbon molding hollow and to directly or indirectly fix the powdery titanium dioxide. CONSTITUTION: The powdery activated carbon >=3 times more than the particulate thermoplastic resin in volume ratio is preferably used. Gold, silver, titanium dioxide, zinc oxide, zeolite or the like can be properly used jointly with activated carbon. The granular thermoplastic resin such as polyethylene, polypropylene is used. As the titanium dioxide, the anatase type and rutile type can bee used and the particle diameter is controlled to 0.1-1.0μm. The heating condition for obtaining the molding is 250-350 deg.C. The size of the molding is preferably 100μm to 5mm.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、吸着性、軽量性な
ど優れた性能を有する材料として現在利用が期待されて
いる中空状活性炭成形物の少なくとも外表面に、光の照
射により環境汚染物質等を分解、無害化させる性能を有
することで近年注目を浴びている二酸化チタン粉末を固
着させた、中空状活性炭・二酸化チタン複合体及びその
製造方法に関するものである。
TECHNICAL FIELD The present invention relates to an environmental pollutant or the like by irradiating light onto at least the outer surface of a hollow activated carbon molded article which is currently expected to be used as a material having excellent properties such as adsorptivity and light weight. The present invention relates to a hollow activated carbon / titanium dioxide composite to which titanium dioxide powder, which has been attracting attention in recent years because of its ability to decompose and render harmless, and a method for producing the same.

【0002】[0002]

【従来の技術】中空状炭素成形物の製造方法には、熱可
塑性有機高分子材料、石油ピッチなどの瀝青物原料に低
沸点溶剤などの膨張剤を均一に混合した後、適当な粒径
の粉粒体とし、次いで加熱炭化する方法(例えば、特公
昭49−30253号公報、特公昭61−14110号
公報、特開昭61−83239号公報)や、熱可塑性樹
脂などの芯材を高沸点の物質で被覆して多層構造の球体
とした後、加熱炭化する方法(例えば、特公昭50−2
9837号公報)などが知られている。
2. Description of the Related Art Hollow carbon molded articles are manufactured by uniformly mixing a thermoplastic organic polymer material, a bituminous material such as petroleum pitch with a swelling agent such as a low boiling point solvent, and then preparing an appropriate particle size. A method of forming powders and then carbonizing by heating (for example, JP-B-49-30253, JP-B-61-14110, JP-A-61-83239), or a core material such as a thermoplastic resin having a high boiling point A sphere having a multi-layered structure by coating with the above substance, followed by heating and carbonization (for example, Japanese Patent Publication No. 50-2
No. 9837) is known.

【0003】[0003]

【発明が解決しようとする課題】これら方法にあって、
膨張剤を使用する方法においては、それぞれの原料に適
合した膨張剤の選出、有機溶剤類の取扱い、膨張剤含有
粒子の調整方法、更には、熱処理時の条件設定や取扱い
など難しい点が多く、また、多層構造を経る方法におい
ては、比較的粒径の大きい中空体しか得られないという
欠点がある。加えて、これら何れの方法においても、炭
素体が活性炭であるもの、即ち、中空状活性炭成形物と
するには、更に、活性炭機能を発揮するものとするだけ
の技術を付加しなければならない。中空部から外界への
連通気孔を十分に有するものとするのも、その一つであ
る。
SUMMARY OF THE INVENTION In these methods,
In the method of using the expander, selection of expander suitable for each raw material, handling of organic solvents, adjusting method of expander-containing particles, further, there are many difficult points such as condition setting and handling during heat treatment, In addition, the method using a multilayer structure has a drawback that only hollow bodies having a relatively large particle size can be obtained. In addition, in any of these methods, in order to obtain a product in which the carbon body is activated carbon, that is, a hollow activated carbon molded product, it is necessary to add a technique for merely exhibiting the activated carbon function. One of them is to have sufficient communicating holes from the hollow portion to the outside.

【0004】そこで、本発明者は、種々の粒子径の中空
状活性炭成形物を非常に簡便なプロセスにより製造する
方法について、先に一つの提案をした(特開平5−30
1784号公報)。粒子状熱可塑性樹脂と活性炭粉末と
を使用し、粒子状熱可塑性樹脂を活性炭粉末中に埋設し
た後、この粒子状熱可塑性樹脂を溶融・炭化させる熱処
理を施すことにより中空状活性炭成形物を製造するとい
うものである。この製法によれば、中空部から外界への
連通気孔を十分に有するなど活性炭機能を十分に発揮す
る中空状活性炭成形物を容易に得られる。ここで、単な
る活性炭粉末の集合粒子状物ではなく中空状の成形物に
なるのは、溶融した粒子状熱可塑性樹脂に活性炭粉末が
入り込んでいくのではなく、溶融した粒子状熱可塑性樹
脂が活性炭粉末(集合物)相互の隙間に浸透していくこ
とによると推察される。
Therefore, the present inventor has previously proposed one method for producing hollow activated carbon moldings having various particle diameters by a very simple process (Japanese Patent Laid-Open No. 5-30).
1784). Using a particulate thermoplastic resin and activated carbon powder, embedding the particulate thermoplastic resin in the activated carbon powder, and then subjecting this particulate thermoplastic resin to heat treatment to melt and carbonize, produce a hollow activated carbon molded product Is to do. According to this production method, it is possible to easily obtain a hollow activated carbon molded product having a sufficient activated carbon function such as having a sufficient number of ventilation holes from the hollow portion to the outside. Here, the hollow molded article is not a mere aggregated particle of activated carbon powder, but the activated carbon powder does not enter the molten particulate thermoplastic resin, but the molten particulate thermoplastic resin is activated carbon. It is presumed that this is because the powder (aggregate) permeates into the gaps between the powders (aggregates).

【0005】一方、二酸化チタンは光を照射することに
より活性酸素を発生させ、その活性酸素が環境汚染物質
等を分解、無害化することで近年特に注目されており、
水処理、大気処理、土壌処理など広い分野での応用が期
待されている。本発明は、前述の中空状活性炭成形物の
少なくとも外表面にこの二酸化チタン粉末を固着させる
ことにより、活性炭の有する有害物質吸着能と二酸化チ
タンの有する有害物質分解能とを共有する中空状活性炭
・二酸化チタン複合体及びその製造方法を提供しようと
するものである。
On the other hand, titanium dioxide has been particularly attracting attention in recent years because it generates active oxygen when irradiated with light, and the active oxygen decomposes and detoxifies environmental pollutants.
Applications in a wide range of fields such as water treatment, air treatment, and soil treatment are expected. According to the present invention, by fixing this titanium dioxide powder to at least the outer surface of the above-mentioned hollow activated carbon molded article, a hollow activated carbon / dioxide that shares the ability of the activated carbon to adsorb harmful substances and the ability of titanium dioxide to decompose harmful substances. It is intended to provide a titanium composite and a method for producing the same.

【0006】[0006]

【課題を解決するための手段】本発明は、活性炭粉末と
粒子状熱可塑性樹脂の炭化体よりなる中空状活性炭成形
物の少なくとも外表面に二酸化チタン粉末単独、もしく
は、二酸化チタン粉末と他の物質とを配した中空状活性
炭・二酸化チタン複合体を第1の要旨とし、粒子状熱可
塑性樹脂と活性炭粉末とを使用し、前記粒子状熱可塑性
樹脂と活性炭粉末とを混合した後、粒子状熱可塑性樹脂
を溶融・炭化させることにより中空状活性炭成形物を製
造し、更に、該中空状活性炭成形物の少なくとも外表面
に二酸化チタン粉末の単独、もしくは、二酸化チタン粉
末と他の物質との複合物、もしくは、二酸化チタン粉末
と他の物質との混合物を直接または間接に付着させた
後、熱処理を施して二酸化チタン粉末を直接または間接
に固着させることを特徴をする中空状活性炭・二酸化チ
タン複合体の製造方法を第2の要旨とし、粒子状熱可塑
性樹脂と活性炭粉末とを使用し、前記粒子状熱可塑性樹
脂と活性炭粉末とを混合した後、粒子状熱可塑性樹脂を
溶融させることにより活性炭成形物を製造し、更に、該
活性炭成形物の少なくとも外表面に二酸化チタン粉末の
単独、もしくは、二酸化チタン粉末と他の物質との複合
物、もしくは、二酸化チタン粉末と他の物質との混合物
を直接または間接に付着させた後、炭化熱処理を施すこ
とにより活性炭成形物を中空状にすると共に、二酸化チ
タン粉末を直接または間接に固着させることを特徴をす
る中空状活性炭・二酸化チタン複合体の製造方法を第3
の要旨とする。
DISCLOSURE OF THE INVENTION The present invention is directed to titanium dioxide powder alone or titanium dioxide powder and other substances on at least the outer surface of a hollow activated carbon molded article composed of activated carbon powder and a carbonized material of a particulate thermoplastic resin. The first gist is a hollow activated carbon / titanium dioxide composite in which the particulate thermoplastic resin and the activated carbon powder are used, and the particulate thermoplastic resin and the activated carbon powder are mixed, A hollow activated carbon molded product is produced by melting and carbonizing a plastic resin, and further, at least the outer surface of the hollow activated carbon molded product contains titanium dioxide powder alone or a composite of titanium dioxide powder and another substance. Alternatively, a mixture of titanium dioxide powder and another substance may be directly or indirectly attached and then heat treated to fix the titanium dioxide powder directly or indirectly. The second aspect is a method for producing a hollow activated carbon / titanium dioxide composite, wherein a particulate thermoplastic resin and an activated carbon powder are used, and the particulate thermoplastic resin and the activated carbon powder are mixed, An activated carbon molded product is produced by melting a thermoplastic resin, and at least the outer surface of the activated carbon molded product contains titanium dioxide powder alone, or a composite of titanium dioxide powder and another substance, or dioxide. It is characterized in that a mixture of titanium powder and another substance is directly or indirectly adhered, and then a carbonization heat treatment is applied to make the activated carbon molded product hollow, and the titanium dioxide powder is directly or indirectly fixed. Third method for producing hollow activated carbon / titanium dioxide composites
The summary of the

【0007】以下、本発明について詳述する。本発明で
使用する活性炭粉末としては、原材料や製造方法などに
よらず、中空状活性炭・二酸化チタン複合体の用途を考
慮して、性状や大きさを適宜選択すればよい。また、完
全な不定形であるとか繊維的形状を有するとかの形状面
においても適宜である。使用する活性炭粉末の比表面積
が大きい程得られる中空状活性炭成形物の比表面積も大
きくなる。尚、薬品賦活炭はガス賦活炭に比べて不純物
含有量が多いことがあり、この不純物があまりに多いと
中空状活性炭成形物の形成を阻害することもあるので、
必要に応じて予め塩酸などの無機酸で活性炭を洗浄処理
して不純物を除去しておくのもよい。また、粒子状熱可
塑性樹脂の周りに得ようとする中空状活性炭成形物ある
いは活性炭成形物を構成する活性炭の壁厚以上の厚さに
活性炭粉末が存在するように、粒子状熱可塑性樹脂と活
性炭粉末とを分散混合させるが、この時、粒子状熱可塑
性樹脂の少なくとも体積比で3倍量以上の活性炭粉末を
使用することが好ましい。更に、活性炭とともに、金、
銀、銅、二酸化チタン、酸化亜鉛、ゼオライトなど他の
材料を適宜併用することもできる。
The present invention will be described in detail below. The properties and size of the activated carbon powder used in the present invention may be appropriately selected in consideration of the application of the hollow activated carbon / titanium dioxide composite, regardless of the raw materials and the manufacturing method. Further, it is also appropriate in terms of a shape such as a completely amorphous shape or a fibrous shape. The larger the specific surface area of the activated carbon powder used, the larger the specific surface area of the hollow activated carbon molded product obtained. Incidentally, the chemical activated carbon may have a large amount of impurities as compared with the gas activated carbon, and if this amount of impurities is too large, it may hinder the formation of a hollow activated carbon molded product.
If necessary, the activated carbon may be washed in advance with an inorganic acid such as hydrochloric acid to remove impurities. In addition, the particulate thermoplastic resin and the activated carbon are so arranged that the activated carbon powder exists in a thickness equal to or greater than the wall thickness of the hollow activated carbon molded article to be obtained around the particulate thermoplastic resin or the activated carbon forming the activated carbon molded article. The powder and the powder are dispersed and mixed. At this time, it is preferable to use at least three times the volume of the particulate thermoplastic resin as the activated carbon powder. Furthermore, with activated carbon, gold,
Other materials such as silver, copper, titanium dioxide, zinc oxide, and zeolite can also be appropriately used in combination.

【0008】粒子状熱可塑性樹脂としては、例えば、ポ
リエチレン、ポリプロピレン、ポリスチレン、ナイロ
ン、ポリ塩化ビニル、ポリ酢酸ビニルとかこれらの混合
物など種々のものが挙げられる。比較的小さな中空状活
性炭・二酸化チタン複合体を得ようとするときには熱処
理による炭素収率も比較的小さくし、比較的大きな中空
状活性炭・二酸化チタン複合体を得ようとするときには
熱処理による炭素収率も比較的大きくするのが好まし
い。即ち、粒子状熱可塑性樹脂の大きさは、活性炭粉末
の粒径に対して5倍以上あることが好ましいが、活性炭
粉末自体が非常に小さなものを選択できるので粒子状熱
可塑性樹脂も十分に小さなものを選択でき、得られる中
空状活性炭・二酸化チタン複合体も非常に小さなものと
することができる。しかし、このとき、なるべく空洞状
の中空部を確保するには炭素収率があまり大きくない方
がよい。また、大きな粒子状熱可塑性樹脂を使用するこ
とによって大きな中空状活性炭・二酸化チタン複合体を
得ることができる。しかし、このとき、炭素収率が小さ
過ぎれば得る中空状活性炭・二酸化チタン複合体の形状
を安定させるのがそれだけ難しくなる。尚、概ねにおい
ては炭素収率を1〜10%程度とするとよい。例えば、
ポリエチレン、ポリプロピレン、ポリスチレン、ナイロ
ンなどは、酸化性雰囲気による不融化処理、次いで非酸
化性雰囲気による炭化処理を施すことによって、また、
ポリ塩化ビニルやポリ酢酸ビニルなどは、酸化性雰囲気
による不融化処理を施さずに非酸化性雰囲気による熱処
理を施すことによって、それぞれ容易に炭素収率を1〜
10%程度にできる。また、ポリエチレンは数μm〜1
000μmを超える種々の粒径の真球状物や粒状物が、
あるいは、数mm程度の各種ペレットが市販品として揃
っており、得ようとする中空状活性炭・二酸化チタン複
合体の大きさの設定が簡単である。
Examples of the particulate thermoplastic resin include various materials such as polyethylene, polypropylene, polystyrene, nylon, polyvinyl chloride, polyvinyl acetate, and mixtures thereof. When trying to obtain a relatively small hollow activated carbon / titanium dioxide complex, the carbon yield from the heat treatment is also relatively small, and when trying to obtain a relatively large hollow activated carbon / titanium dioxide complex, the carbon yield from the heat treatment. Is also preferably relatively large. That is, the size of the particulate thermoplastic resin is preferably 5 times or more the particle size of the activated carbon powder, but the activated carbon powder itself can be selected to be very small, so the particulate thermoplastic resin is also sufficiently small. The hollow activated carbon / titanium dioxide composite obtained can be very small. However, at this time, it is preferable that the carbon yield is not so high in order to secure the hollow portion as hollow as possible. Also, a large hollow activated carbon / titanium dioxide composite can be obtained by using a large particulate thermoplastic resin. However, at this time, if the carbon yield is too low, it becomes difficult to stabilize the shape of the obtained hollow activated carbon / titanium dioxide composite. In general, the carbon yield is preferably about 1-10%. For example,
For polyethylene, polypropylene, polystyrene, nylon, etc., by infusibilizing treatment in an oxidizing atmosphere and then carbonizing treatment in a non-oxidizing atmosphere,
For polyvinyl chloride, polyvinyl acetate, etc., the carbon yield can be easily reduced to 1 to 3 by performing heat treatment in a non-oxidizing atmosphere without performing infusibilizing treatment in an oxidizing atmosphere.
It can be about 10%. Also, polyethylene is several μm to 1
True spherical and granular materials with various particle sizes exceeding 000 μm
Alternatively, various pellets of about several mm are available as commercial products, and it is easy to set the size of the hollow activated carbon / titanium dioxide composite to be obtained.

【0009】二酸化チタンとしては、アナタ−ス形、ル
チル形のどちらの結晶形のものも使用でき、更には、近
年開発が進んでいる超微粒子状のものやアモルファス状
のもの、あるいは疎水性の表面状態を有するもの等、使
用する状況に応じて種々選択できる。一般に、二酸化チ
タンの粒径は0.1〜1.0μm程度であるが、超微粒
子状のものは2〜50nm程度となり、光活性度が一般
のものよりも増す。また、PMMAで表面処理した二酸
化チタンの集合体である二酸化チタン・PMMA複合微
粒子(商品としては、積水化成品工業(株)製の「テク
ポリマ−MBTP」や「テクポリマ−MBT」等があ
る)は、中空状活性炭成形物あるいは活性炭成形物の外
表面への固着強度が向上するため特に好ましいものであ
る。
As the titanium dioxide, either anatase type or rutile type crystal form can be used, and further, ultrafine particle form or amorphous form which has been developed in recent years, or hydrophobic form. Various types such as those having a surface state can be selected according to the situation of use. In general, the particle size of titanium dioxide is about 0.1 to 1.0 μm, but the particle size of ultrafine particles is about 2 to 50 nm, and the photoactivity is higher than that of general one. In addition, titanium dioxide / PMMA composite fine particles, which are aggregates of titanium dioxide surface-treated with PMMA (commercial products include "Techpolymer-MBTP" and "Techpolymer-MBT" manufactured by Sekisui Plastics Co., Ltd.) It is particularly preferable because the strength of fixation of the hollow activated carbon molded product or the activated carbon molded product to the outer surface is improved.

【0010】中空状活性炭成形物を得るまでの熱処理
は、前述したように粒子状熱可塑性樹脂の種類に応じて
適宜行なえばよい。例えば、空気、酸素等の酸化性雰囲
気で室温から250〜350℃まで昇温して粒子状熱可
塑性樹脂外表面への活性炭粉末の固着、及び、不融化処
理を施した後、窒素、アルゴン等の不活性ガス中や真空
中などの非酸化性雰囲気で粒子状熱可塑性樹脂が炭化す
る温度まで熱処理を施したり、酸化性雰囲気による熱処
理を施さずに、直接、非酸化性雰囲気により、粒子状熱
可塑性樹脂が炭化する温度まで熱処理を施したりする。
また、活性炭成形物を得るには前述の熱処理のうち、2
50〜350℃までの熱処理でよく、熱処理後、余剰の
活性炭粉末をふるい等で除去して得る。処理温度と処理
時間の条件によっては既にこの段階で中空状活性炭成形
物になる場合もある。これらの熱処理のうち、粒子状熱
可塑性樹脂の溶融温度領域にあっては粒子状熱可塑性樹
脂と活性炭粉末とを回転させながら行うのが好ましい。
簡単には、材料を収容した容器自体が回転し加熱できれ
ばよい。例えば、粒子状熱可塑性樹脂と混合した活性炭
粉末をロ−タリ−キルン等の回転炉に収容し、回転させ
ながら熱処理を行う。回転炉の回転数、処理温度、処理
時間などは適宜設定するが、まず回転数はあまりに小さ
いと材料が回転炉内で平行移動するだけなので、少なく
とも1回転/分以上が好ましく、また、逆に大き過ぎる
と付着した活性炭粉末粒子が離脱する恐れがあるため1
0回転/分以下に抑えた方がよい。処理温度は粒子状熱
可塑性樹脂の溶融温度領域であるが、活性炭の壁厚を厚
くしようとするならば、粒子状熱可塑性樹脂の分解温度
より低い範囲内で、できるだけ高い溶融温度領域を採用
するのがよい。例えば、粒子状熱可塑性樹脂としてポリ
エチレンを使用するならば約250〜350℃程度が好
ましい。処理時間は処理温度との関係で設定するのがよ
く、処理温度が高い場合には短くてもよいが、比較的処
理温度が低い場合には長くする必要がある。粒子状熱可
塑性樹脂は回転炉内での空気との接触で十分に不融化処
理が施されていれば、その後、直ちに非酸化性雰囲気に
よる炭化処理を施すことができるが、回転炉内での空気
との接触が不十分で不融化処理が不完全であるならば、
炭化処理を施す前に改めて酸化性雰囲気による不融化処
理を施す必要がある。この時、材料は回転させる必要は
なく静置のままでよい。不融化処理を施した後、非酸化
性雰囲気による炭化処理を施すが、最高温度は概ね数百
℃程度で十分である。また、必要に応じて賦活処理を施
してもよい。熱処理後、余剰の活性炭粉末をふるい等で
除去して、中空状活性炭成形物を得る。中空状活性炭成
形物の大きさは数μm〜数mmの範囲で自由に得ること
ができるが、あまりに小さいと粉末活性炭と差がなくな
り、逆に、あまりに大きいと単位重量当たりの有効面積
が小さくなってしまい、実用強度も不足するため100
μm〜5mm程度に抑えるのが好ましい。もっとも、強
度の必要性があまりない場合には更に大きくしてもよ
い。中空状活性炭成形物の中空部分は、外界と連通して
いるため、気体等がこの中空部分に入り込み、内外広範
囲の活性炭が機能を発揮する。更に、軽量であるが、粉
末状ではないため、取扱い性も非常に良好となる。
The heat treatment until the hollow activated carbon molded product is obtained may be appropriately performed depending on the kind of the particulate thermoplastic resin as described above. For example, the temperature is raised from room temperature to 250 to 350 ° C. in an oxidizing atmosphere such as air or oxygen, and the activated carbon powder is fixed to the outer surface of the particulate thermoplastic resin, and after infusibilizing treatment, nitrogen, argon, etc. In a non-oxidizing atmosphere such as in an inert gas or in vacuum, heat treatment is performed to the temperature at which the particulate thermoplastic resin is carbonized, or without performing heat treatment in an oxidizing atmosphere Heat treatment is performed to a temperature at which the thermoplastic resin is carbonized.
In order to obtain an activated carbon molded product, 2
The heat treatment may be performed at 50 to 350 ° C., and after the heat treatment, excess activated carbon powder is removed by sieving. Depending on the processing temperature and processing time conditions, a hollow activated carbon molded product may already be formed at this stage. Among these heat treatments, it is preferable to perform the heat treatment while rotating the particulate thermoplastic resin and the activated carbon powder in the melting temperature range of the particulate thermoplastic resin.
Simply, it is sufficient that the container itself containing the material can rotate and be heated. For example, activated carbon powder mixed with a particulate thermoplastic resin is placed in a rotary kiln such as a rotary kiln and heat-treated while rotating. The number of revolutions of the rotary furnace, the treatment temperature, the treatment time, etc. are appropriately set, but first, if the number of revolutions is too small, the material only moves in parallel in the rotary furnace, so at least 1 revolution / minute or more is preferable, and vice versa. If it is too large, the activated carbon powder particles that adhere may come off, so 1
It is better to keep it below 0 rpm. The treatment temperature is in the melting temperature range of the particulate thermoplastic resin, but if the wall thickness of the activated carbon is to be increased, a melting temperature range as high as possible within the range below the decomposition temperature of the particulate thermoplastic resin is adopted. Is good. For example, if polyethylene is used as the particulate thermoplastic resin, the temperature is preferably about 250 to 350 ° C. The treatment time is preferably set in relation to the treatment temperature and may be short when the treatment temperature is high, but needs to be long when the treatment temperature is relatively low. If the particulate thermoplastic resin is sufficiently infusibilized by contact with air in the rotary furnace, then it can be immediately carbonized in a non-oxidizing atmosphere. If the contact with air is insufficient and the infusibilization process is incomplete,
It is necessary to perform the infusibilizing treatment in an oxidizing atmosphere again before performing the carbonization treatment. At this time, the material does not need to be rotated and may remain stationary. After the infusibilizing treatment, a carbonizing treatment in a non-oxidizing atmosphere is performed, but a maximum temperature of about several hundred degrees Celsius is sufficient. Moreover, you may give an activation process as needed. After the heat treatment, the excess activated carbon powder is removed with a sieve or the like to obtain a hollow activated carbon molded product. The size of the hollow activated carbon molded product can be freely obtained in the range of several μm to several mm, but if it is too small, there is no difference from the powdered activated carbon, and conversely, if it is too large, the effective area per unit weight becomes small. 100, because the practical strength is insufficient.
It is preferable to suppress the thickness to about 5 μm to 5 mm. However, if the strength is not so required, it may be increased. Since the hollow portion of the hollow activated carbon molded article communicates with the outside world, gas and the like enter this hollow portion, and the activated carbon in a wide range of inside and outside exerts its function. Furthermore, although it is lightweight, it is not in powder form, so handling is very good.

【0011】次に、得られた中空状活性炭成形物あるい
は活性炭成形物(以後、「基材」という)の少なくとも
外表面に二酸化チタン粉末を固着させる方法としては、
基材の外表面に二酸化チタン粉末をまぶしたり、基材を
二酸化チタン粉末中で攪拌したりして、基材と二酸化チ
タンとを充分に接触付着させた後、熱処理を施して基材
の外表面に二酸化チタン粉末を固着させるのが簡単な方
法である。基材として中実状活性炭成形物を用いた場
合、炭化熱処理によって粒子状熱可塑性樹脂の残存分が
活性炭成形物の外表面に移動し、それにより二酸化チタ
ン粉末の固着が確かなものとなる。一方、基材として中
空状活性炭成形物を用いた場合には、粒子状熱可塑性樹
脂の炭化が既に終了しているため、二酸化チタン粉末の
固着は強固なものとはならない。そのため、必要に応じ
て二酸化チタン粉末に少量のバインダーを混合して使用
したり、基材の外表面にバインダ−の溶液などを塗布し
たりして使用するのがよい。バインダ−としては熱可塑
性樹脂や無水珪酸のコロイド水溶液などを一例として挙
げることができる。熱可塑性樹脂の中でもポリ塩化ビニ
リデン樹脂は、不活性雰囲気中または真空中で加熱する
と、賦活処理なしで活性炭化するため好ましいものであ
る。また、無水珪酸の超微粒子は基材と二酸化チタン粉
末との間に介在させれば、高温熱処理によりシリカ粒子
間で表面融着した後に多孔質構造となり、これにより基
材への二酸化チタン粉末の固着強度を高めるとともに活
性炭機能も確保する。更に、前述したように二酸化チタ
ン・PMMA複合微粒子を使用すると、熱処理で溶融し
たPMMAが接着剤の役目を果たし、バインダ−の使用
なしで基材の外表面への二酸化チタン粉末の固着強度が
向上するため、特に好ましい。ただ、この場合には個々
の成形物が接触固着しないように、二酸化チタン・PM
MA複合微粒子を付着させた基材表面に、改めて未処理
の二酸化チタン粉末を付着させたりしてから熱処理を施
す必要がある。熱処理温度は数百℃程度まででよいが、
基材として中実状活性炭成形物を用いた場合には、中空
状活性炭成形物を得る時と同じく必要に応じて不融化処
理を施した後、非酸化性雰囲気による炭化処理を施す。
尚、不融化処理とその後の炭化処理とは、基材を二酸化
チタン粉末中に埋設した状態で施してもよいし、炭化処
理だけをそのようにして施してもよい。
Next, as a method for fixing the titanium dioxide powder to at least the outer surface of the obtained hollow activated carbon molded product or activated carbon molded product (hereinafter referred to as "base material"),
After the titanium dioxide powder is sprinkled on the outer surface of the base material or the base material is agitated in the titanium dioxide powder, the base material and titanium dioxide are sufficiently contacted and adhered to each other, and then heat treatment is applied to the outside of the base material. A simple method is to fix the titanium dioxide powder on the surface. When a solid activated carbon molded product is used as the base material, the residual portion of the particulate thermoplastic resin is transferred to the outer surface of the activated carbon molded product by the carbonization heat treatment, whereby the titanium dioxide powder is firmly fixed. On the other hand, when the hollow activated carbon molded product is used as the base material, the carbonization of the particulate thermoplastic resin has already been completed, so that the titanium dioxide powder is not firmly fixed. Therefore, it is preferable to use a mixture of titanium dioxide powder with a small amount of a binder as needed, or to coat a solution of a binder on the outer surface of the base material. Examples of the binder include a thermoplastic resin and a colloidal aqueous solution of silicic acid anhydride. Among the thermoplastic resins, polyvinylidene chloride resin is preferable because it is activated carbonized without activation treatment when heated in an inert atmosphere or in a vacuum. Further, if the ultrafine particles of silicic acid anhydride are interposed between the base material and the titanium dioxide powder, a porous structure is formed after the surface fusion between the silica particles by the high temperature heat treatment, whereby the titanium dioxide powder on the base material is dispersed. Increases the bond strength and secures the activated carbon function. Furthermore, as described above, when titanium dioxide / PMMA composite fine particles are used, PMMA melted by heat treatment plays a role of an adhesive, and the adhesion strength of titanium dioxide powder to the outer surface of the base material is improved without using a binder. Therefore, it is particularly preferable. However, in this case, titanium dioxide / PM should be used to prevent individual molded products from sticking to each other.
It is necessary to heat-treat the untreated titanium dioxide powder again on the surface of the base material to which the MA composite particles have been attached. The heat treatment temperature may be up to several hundred degrees Celsius,
When a solid activated carbon molded product is used as the base material, it is subjected to an infusibilizing treatment, if necessary, as in the case of obtaining the hollow activated carbon molded product, and then subjected to a carbonization treatment in a non-oxidizing atmosphere.
The infusibilizing treatment and the subsequent carbonization treatment may be performed with the base material embedded in the titanium dioxide powder, or only the carbonization treatment may be performed in that manner.

【0012】以上の処理により得られる中空状活性炭・
二酸化チタン複合体は、基材外表面への二酸化チタン粉
末とその固着の形態により、次の6つの種類に分けられ
るが、本発明はこれらに制限されるものではない。 (1)基材外表面に二酸化チタン粉末が単独に、直接固
着。(後述の実施例1,4) (2)基材外表面に二酸化チタン粉末と他の物質との複
合物が直接固着。(後述の実施例2,3,5) (3)基材外表面に二酸化チタン粉末と他の物質との混
合物が直接固着。(後述の実施例6,11) (4)基材外表面に二酸化チタン粉末が単独に、他の物
質を介して固着。(後述の実施例7,8) (5)基材外表面に二酸化チタン粉末と他の物質との複
合物が、更に他の物質を介して固着。(後述の実施例
9) (6)基材外表面に二酸化チタン粉末と他の物質との混
合物が、更に他の物質を介して固着。(後述の実施例1
0)
Hollow activated carbon obtained by the above treatment
The titanium dioxide composite is classified into the following six types depending on the form of titanium dioxide powder and its adhesion to the outer surface of the substrate, but the present invention is not limited thereto. (1) Titanium dioxide powder alone and directly adhered to the outer surface of the substrate. (Examples 1 and 4 described below) (2) A composite of titanium dioxide powder and another substance is directly adhered to the outer surface of the base material. (Examples 2, 3 and 5 described later) (3) A mixture of titanium dioxide powder and another substance is directly adhered to the outer surface of the base material. (Examples 6 and 11 described later) (4) Titanium dioxide powder was adhered to the outer surface of the base material independently through another substance. (Examples 7 and 8 described later) (5) A composite of titanium dioxide powder and another substance is fixed to the outer surface of the base material through another substance. (Example 9 described later) (6) A mixture of titanium dioxide powder and another substance is fixed to the outer surface of the base material through another substance. (Example 1 described later
0)

【0013】得られた中空状活性炭・二酸化チタン複合
体は、吸着性、軽量性など優れた性能を有する中空状活
性炭成形物の外表面に、光の照射により環境汚染物質な
どを分解、無害化させる性能を有する二酸化チタン粉末
を固着させたものであり、活性炭の有する有害物質吸着
能と二酸化チタンの有する有害物質分解能とを共有し、
水処理、大気処理、土壌処理などの環境分野での使用、
あるいは、家庭内でのペットやトイレなどの臭いや汚れ
の除去、水槽内の藻の除去など、様々な用途に効果が期
待できるものである。
The hollow activated carbon / titanium dioxide composite thus obtained is used to decompose and detoxify environmental pollutants by irradiating light on the outer surface of a hollow activated carbon molded article having excellent properties such as adsorption and light weight. Titanium dioxide powder with the ability to make it adhere is fixed, and it shares the ability of activated carbon to adsorb harmful substances and the ability of titanium dioxide to decompose harmful substances.
Use in environmental fields such as water treatment, air treatment, soil treatment,
Alternatively, it can be expected to be effective in various applications such as removal of odors and dirt of pets and toilets in the home, removal of algae in the aquarium, etc.

【0014】[0014]

【実施例】以下、実施例により本発明を具体的に説明す
る。 〈実施例1〉フロ−ビ−ズCL−12007(住友精化
(株)製の真球状ポリエチレン:粒度範囲;600〜1
200μm、融点;107℃)と3倍量のダイアソ−ブ
F100(三菱化成工業(株)製の粉末活性炭:粒径;
100メッシュ以下)とを混合し、それを処理温度30
0℃、回転数2回転/分の条件のロ−タリ−キルン内に
入れ10分間の熱処理を施した。次に、ロ−タリ−キル
ンから取り出した材料を容器に移し、空気中で室温から
250℃まで2℃/分程度の速度で昇温させて250℃
で1時間保持する不融化処理を施した。その後、窒素雰
囲気中で600℃、1時間保持の炭化処理を施し、熱処
理終了後、余剰の活性炭粉末をふるいで除去して、中空
状活性炭成形物を得た。次に、この中空状活性炭成形物
をTITONO・R−7E(堺化学工業(株)製の二酸
化チタン粉末:平均粒径;0.2μm)中に埋設した
後、空気中で250℃、1時間保持する熱処理を施し、
熱処理終了後、余剰のTITONO・R−7Eをふるい
で除去して、外径1200〜2000μmの球状の中空
状活性炭・二酸化チタン複合体を得た。
The present invention will be described below in detail with reference to examples. <Example 1> Flow beads CL-12007 (spherical polyethylene made by Sumitomo Seika Chemicals Ltd .: particle size range: 600 to 1)
200 μm, melting point; 107 ° C.) and 3 times the amount of Diasorb F100 (powdered activated carbon manufactured by Mitsubishi Kasei Co., Ltd .: particle size;
100 mesh or less), and mix it with a treatment temperature of 30
It was placed in a rotary kiln under the conditions of 0 ° C. and a rotation speed of 2 rotations / minute, and heat treatment was performed for 10 minutes. Next, the material taken out from the rotary kiln is transferred to a container and heated in air from room temperature to 250 ° C. at a rate of about 2 ° C./minute to 250 ° C.
The infusibilizing treatment of holding for 1 hour was performed. Then, carbonization treatment was carried out at 600 ° C. for 1 hour in a nitrogen atmosphere, and after the heat treatment was completed, excess activated carbon powder was removed by sieving to obtain a hollow activated carbon molded product. Next, this hollow activated carbon molded product was embedded in TITONO.R-7E (titanium dioxide powder manufactured by Sakai Chemical Industry Co., Ltd .: average particle size: 0.2 μm), and then 250 ° C. in air for 1 hour. Heat treatment to hold,
After the heat treatment was completed, excess TITONO.R-7E was removed by sieving to obtain a spherical hollow activated carbon / titanium dioxide composite having an outer diameter of 1200 to 2000 μm.

【0015】〈実施例2〉実施例1で得た中空状活性炭
成形物の外表面に、テクポリマ−MBTP(積水化成品
工業(株)製の二酸化チタン・PMMA複合微粒子:平
均粒径;5μm)を充分にまぶして付着させた後、これ
をTITONO・R−7E中に埋設して熱処理した以
外、すべて実施例1と同様にして、中空状活性炭成形物
外表面への二酸化チタン粉末の固着強度が実施例1より
も高い、外径1200〜2000μmの球状の中空状活
性炭・二酸化チタン複合体を得た。
Example 2 On the outer surface of the hollow activated carbon molded article obtained in Example 1, techpolymer-MBTP (titanium dioxide / PMMA composite fine particles manufactured by Sekisui Plastics Co., Ltd .: average particle size: 5 μm) Was thoroughly sprinkled and adhered, then embedded in TITONO.R-7E and subjected to heat treatment, in the same manner as in Example 1 except that the adhesion strength of the titanium dioxide powder to the outer surface of the hollow activated carbon molded article was fixed. Was obtained, and a spherical hollow activated carbon / titanium dioxide composite having an outer diameter of 1200 to 2000 μm was obtained.

【0016】〈実施例3〉フロ−ビ−ズCL−5007
(住友精化(株)製の真球状ポリエチレン:粒度範囲;
200〜500μm、融点;107℃)と3倍量のダイ
アソ−ブF100とを混合した後、実施例1と同じ条件
でロ−タリ−キルンにて熱処理し、熱処理終了後、余剰
の活性炭粉末をふるいで除去して活性炭成形物を得た。
次に、この活性炭成形物の外表面にテクポリマ−MBT
Pを充分にまぶして付着させた後、これをTITONO
・R−7E中に埋設して、空気中で250℃、1時間保
持する不融化処理を施した。その後、窒素雰囲気中で6
00℃、1時間保持の炭化処理を施し、熱処理終了後、
余剰のTITONO・R−7Eをふるいで除去して、実
施例2と同様に二酸化チタン粉末の固着強度が高い、外
径400〜900μmの球状の中空状活性炭・二酸化チ
タン複合体を得た。
<Embodiment 3> Flow beads CL-5007
(True spherical polyethylene manufactured by Sumitomo Seika Chemicals, Ltd .: particle size range;
200-500 μm, melting point; 107 ° C.) and 3 times the amount of diasorb F100 were mixed, and then heat-treated in a rotary kiln under the same conditions as in Example 1, and after the heat treatment was completed, excess activated carbon powder was removed. It was removed by a sieve to obtain an activated carbon molded product.
Next, techpolymer-MBT was applied to the outer surface of the activated carbon molded product.
Thoroughly sprinkle P on it and attach it
-Embedded in R-7E, infusible treatment was carried out by holding in air at 250 ° C for 1 hour. Then, in a nitrogen atmosphere, 6
After the carbonization treatment of holding at 00 ° C for 1 hour, and after the heat treatment,
Excessive TITONO.R-7E was removed by sieving to obtain a spherical hollow activated carbon / titanium dioxide composite having an outer diameter of 400 to 900 μm and having a high fixing strength of titanium dioxide powder as in Example 2.

【0017】〈実施例4〉フロ−ビ−ズCL−5007
と3倍量のダイアソ−ブF100とを混合し、それを処
理温度250℃、回転数2回転/分の条件のロ−タリ−
キルン内に入れ20分間の熱処理を施し、熱処理終了
後、余剰の活性炭粉末をふるいで除去して活性炭成形物
を得た。次に、この活性炭成形物をチタニアIT−PC
(出光石油化学(株)製の超微粒子状二酸化チタン粉
末:平均粒径;60nm)中に埋設して、窒素雰囲気中
で600℃、1時間保持の炭化処理を施し、熱処理終了
後、余剰のチタニアIT−PCをふるいで除去して、外
径400〜900μmの球状の中空状活性炭・二酸化チ
タン複合体を得た。
<Embodiment 4> Flow beads CL-5007
And a three-fold amount of Diasoab F100 were mixed, and the mixture was rotary-treated under the conditions of a processing temperature of 250 ° C. and a rotation speed of 2 rotations / minute.
After being placed in a kiln and subjected to a heat treatment for 20 minutes, after the heat treatment was completed, excess activated carbon powder was removed by sieving to obtain an activated carbon molded product. Next, this activated carbon molded product was treated with Titania IT-PC.
(Ultrafine particulate titanium dioxide powder manufactured by Idemitsu Petrochemical Co., Ltd .: average particle size; 60 nm), embedded in a nitrogen atmosphere at 600 ° C. for 1 hour for carbonization, and after the heat treatment, excess The titania IT-PC was removed by sieving to obtain a spherical hollow activated carbon / titanium dioxide composite having an outer diameter of 400 to 900 μm.

【0018】〈実施例5〉UBE:L519(宇部興産
(株)製の円柱体状ポリエチレンペレット:直径約3.
5mm、高さ約2mm、融点104℃)と5倍量のダイ
アソ−ブF100とを混合し、それを処理温度300
℃、回転数3回転/分の条件のロ−タリ−キルン内に入
れ15分間の熱処理を施した。次に、ロ−タリ−キルン
から取り出した材料を容器に移し、空気中で室温から2
50℃まで2℃/分程度の速度で昇温させて、250℃
で1時間保持する不融化処理を施した。その後、窒素雰
囲気中で600℃、1時間保持の炭化処理を施し、熱処
理終了後、余剰の活性炭粉末をふるいで除去して、中空
状活性炭成形物を得た。次に、この中空状活性炭成形物
にテクポリマ−MBTPを充分にまぶして付着させた
後、これをTITONO・R−7E中に埋設して、空気
中で250℃、1時間保持する熱処理を施し、熱処理終
了後、余剰のTITONO・R−7Eをふるいで除去し
て、実施例2と同様に二酸化チタン粉末の固着強度が高
い、直径約5mm、高さ約3mmのほぼ円柱体状の中空
状活性炭・二酸化チタン複合体を得た。
<Example 5> UBE: L519 (cylindrical polyethylene pellets manufactured by Ube Industries, Ltd .: diameter of about 3.
5 mm, height about 2 mm, melting point 104 ° C.) and 5 times amount of diasorb F100 are mixed and treated at a processing temperature of 300
It was placed in a rotary kiln under the conditions of a temperature of 3 ° C. and a rotational speed of 3 revolutions / minute, and heat treatment was performed for 15 minutes. Next, the material taken out from the rotary kiln was transferred to a container, and the temperature was raised from room temperature to 2
Increase the temperature to 50 ° C at a rate of 2 ° C / min to 250 ° C.
The infusibilizing treatment of holding for 1 hour was performed. Then, carbonization treatment was carried out at 600 ° C. for 1 hour in a nitrogen atmosphere, and after the heat treatment was completed, excess activated carbon powder was removed by sieving to obtain a hollow activated carbon molded product. Next, techpolymer-MBTP was thoroughly sprinkled and adhered to this hollow activated carbon molded product, which was then embedded in TITONO.R-7E and subjected to a heat treatment of 250 ° C. for 1 hour in air, After completion of the heat treatment, the excess TITONO.R-7E was removed by sieving, and as in Example 2, the titanium dioxide powder had a high fixing strength, and a hollow cylindrical activated carbon having a diameter of about 5 mm and a height of about 3 mm was formed into a substantially columnar shape. -A titanium dioxide composite was obtained.

【0019】〈実施例6〉実施例1で得た中空状活性炭
成形物を、メチルエチルケトン中に浸漬して充分にメチ
ルエチルケトンを含浸させた後、この外表面にポリ塩化
ビニリデン樹脂粉末(ダウケミカル社製)とTITON
O・R−7Eとを1:5(重量比)に分散混合させた粉
末を充分にまぶして付着させ、これをTITONO・R
−7E中に埋設して、窒素雰囲気中で700℃、1時間
保持の熱処理を施し、熱処理終了後、余剰のTITON
O・R−7Eをふるいで除去して、中空状活性炭成形物
外表面への二酸化チタン粉末の固着強度を高めポリ塩化
ビニリデン樹脂粉末を活性炭化させた、外径1200〜
2000μmの球状の中空状活性炭・二酸化チタン複合
体を得た。
Example 6 The hollow activated carbon molding obtained in Example 1 was dipped in methyl ethyl ketone to be sufficiently impregnated with methyl ethyl ketone, and then the polyvinylidene chloride resin powder (manufactured by Dow Chemical Co.) ) And TITON
Powdered by mixing O.R-7E with 1: 5 (weight ratio) was thoroughly sprinkled and adhered.
It is embedded in -7E, heat-treated at 700 ° C for 1 hour in a nitrogen atmosphere, and after the heat-treatment is completed, excess TITON
O.R-7E was removed by sieving to increase the adhesion strength of the titanium dioxide powder to the outer surface of the hollow activated carbon molded product and activated carbonization of the polyvinylidene chloride resin powder.
A 2000 μm spherical hollow activated carbon / titanium dioxide composite was obtained.

【0020】〈実施例7〉M−141(昭和電工(株)
製の円柱体状ポリエチレンペレット:直径約2.5m
m、高さ約3.5mm)と5倍量のダイヤソ−ブF10
0とを混合し、それを処理温度350℃、回転数4回転
/分の条件のロ−タリ−キルン内に入れ、10分間の熱
処理を施した。次に、ロ−タリ−キルンから取り出した
材料を容器に移し、空気中で室温から250℃まで2℃
/分程度の速度で昇温させて、250℃で1時間保持す
る不融化処理を施した。その後、窒素雰囲気中で600
℃、1時間保持の炭化処理を施し、熱処理終了後、余剰
の活性炭粉末をふるいで除去して、中空状活性炭成形物
を得た。次に、この中空状活性炭成形物を、ポリ塩化ビ
ニリデン樹脂10%メチルエチルケトン溶液中に浸漬し
て充分に溶液を含浸させた後、この外表面にチタニアI
T−PCを充分にまぶして付着させてからそのままチタ
ニアIT−PC中に埋設して、窒素雰囲気中で700
℃、1時間保持の熱処理を施し、熱処理終了後、余剰の
チタニアIT−PCをふるいで除去して、中空状活性炭
成形物外表面への二酸化チタン粉末の固着強度を高めポ
リ塩化ビニリデン樹脂粉末を活性炭化させた、外径約5
mmのほぼ球状の中空状活性炭・二酸化チタン複合体を
得た。
<Example 7> M-141 (Showa Denko KK)
Made polyethylene pellets: diameter about 2.5m
m, height about 3.5 mm) and 5 times the amount of diamond solvent F10
0 was mixed, and the mixture was placed in a rotary kiln under the conditions of a treatment temperature of 350 ° C. and a rotation speed of 4 rotations / minute, and heat treatment was performed for 10 minutes. Next, the material taken out from the rotary kiln was transferred to a container, and the temperature was raised from room temperature to 250 ° C at 2 ° C.
The temperature was raised at a rate of about 1 / min, and the infusibilizing treatment was carried out at 250 ° C. for 1 hour. After that, 600 in nitrogen atmosphere
A carbonization treatment was carried out at 1 ° C. for 1 hour, and after the heat treatment was completed, excess activated carbon powder was removed by sieving to obtain a hollow activated carbon molded product. Next, this hollow activated carbon molded product was immersed in a 10% solution of polyvinylidene chloride resin in methyl ethyl ketone to sufficiently impregnate the solution, and then titania I was applied to the outer surface of the molded product.
Thoroughly sprinkle T-PC and attach it, then embed it in Titania IT-PC as it is, and 700 in a nitrogen atmosphere.
Heat treatment is carried out at 1 ° C for 1 hour, and after the heat treatment is completed, excess titania IT-PC is removed by sieving to increase the adhesion strength of the titanium dioxide powder to the outer surface of the hollow activated carbon molded product and to increase the polyvinylidene chloride resin powder. Activated carbonized, outer diameter approx. 5
An approximately spherical hollow activated carbon / titanium dioxide composite of mm was obtained.

【0021】〈実施例8〉実施例1で得た中空状活性炭
成形物を、スノ−テックス20(日産化学工業(株)製
の無水珪酸のコロイド水溶液:無水珪酸含有量約20
%)中に浸漬して充分にスノ−テックス20を含浸させ
た後、この外表面にTITONO・R−7Eを充分にま
ぶして付着させてからそのままTITONO・R−7E
中に埋設して、窒素雰囲気中で800℃、1時間保持す
る熱処理を施し、熱処理終了後、余剰のTITONO・
R−7Eをふるいで除去して、実施例2と同様に二酸化
チタン粉末の固着強度が高い、外径1200〜2000
μmの球状の中空状活性炭・二酸化チタン複合体を得
た。
Example 8 The hollow activated carbon molding obtained in Example 1 was treated with SNO-TEX 20 (a colloidal aqueous solution of silicic acid anhydride manufactured by Nissan Chemical Industries, Ltd .: silicic acid content of about 20).
%) And sufficiently impregnated with SNO-TEX 20. Then, sprinkle TITONO.R-7E on this outer surface sufficiently to make it adhere to it, and then directly use TITONO.R-7E.
It is buried inside and heat-treated at 800 ° C for 1 hour in a nitrogen atmosphere. After the heat-treatment, excess TITONO.
R-7E was removed by sieving to give titanium dioxide powder having a high fixing strength as in Example 2, and an outer diameter of 1200 to 2000.
A spherical hollow activated carbon / titanium dioxide composite having a diameter of μm was obtained.

【0022】〈実施例9〉実施例1で得た中空状活性炭
成形物を、ポリ塩化ビニリデン樹脂10%メチルエチル
ケトン溶液中に浸漬して充分に溶液を含浸させた後、こ
の外表面にテクポリマ−MBTPを充分にまぶして付着
させ、これをTITONO・R−7E中に埋設して、窒
素雰囲気中で700℃、1時間保持する熱処理を施し、
熱処理終了後、余剰のTITONO・R−7Eをふるい
で除去して、実施例2と同様に二酸化チタン粉末の固着
強度が高い、外径1200〜2000μmの球状の中空
状活性炭・二酸化チタン複合体を得た。
Example 9 The hollow activated carbon molded article obtained in Example 1 was dipped in a 10% methyl ethyl ketone solution of polyvinylidene chloride resin to be sufficiently impregnated with the solution, and then techpolymer-MBTP was applied to the outer surface thereof. Is thoroughly sprinkled and adhered, embedded in TITONO.R-7E, and subjected to heat treatment at 700 ° C. for 1 hour in a nitrogen atmosphere,
After completion of the heat treatment, the excess TITONO.R-7E was removed by sieving to obtain a spherical hollow activated carbon / titanium dioxide composite having an outer diameter of 1200 to 2000 [mu] m with a high fixing strength of titanium dioxide powder as in Example 2. Obtained.

【0023】〈実施例10〉実施例1で得た中空状活性
炭成形物を、スノ−テックス20中に浸漬して充分にス
ノ−テックス20を含浸させた後、この外表面にポリ塩
化ビニリデン樹脂粉末とTITONO・R−7Eとを
1:5(重量比)に分散混合させた粉末を充分にまぶし
て付着させ、これをTITONO・R−7E中に埋設し
て、窒素雰囲気中で800℃、1時間保持する熱処理を
施し、熱処理終了後、余剰のTITONO・R−7Eを
ふるいで除去して、中空状活性炭成形物外表面への二酸
化チタン粉末の固着強度を高めポリ塩化ビニリデン樹脂
粉末を活性炭化させた、外径1200〜2000μmの
球状の中空状活性炭・二酸化チタン複合体を得た。
Example 10 The hollow activated carbon molding obtained in Example 1 was dipped in Sno-Tex 20 to sufficiently impregnate it with Sno-Tex 20, and then the polyvinylidene chloride resin was formed on the outer surface of the product. The powder and TITONO.R-7E were dispersed and mixed at a ratio of 1: 5 (weight ratio), and the powder was thoroughly sprinkled and adhered. The powder was embedded in TITONO.R-7E, 800 ° C. in a nitrogen atmosphere, Heat treatment is carried out for 1 hour, and after the heat treatment is completed, excess TITONO.R-7E is removed by sieving to increase the adhesion strength of the titanium dioxide powder to the outer surface of the hollow activated carbon molded product, and to add polyvinylidene chloride resin powder to the activated carbon. A spherical hollow activated carbon / titanium dioxide composite having an outer diameter of 1200 to 2000 μm was obtained.

【0024】〈実施例11〉実施例4で得た活性炭成形
物を、メチルエチルケトン中に浸漬して充分にメチルエ
チルケトンを含浸させた後、この外表面にポリ塩化ビニ
リデン樹脂粉末とTITONO・R−7Eとを1:5
(重量比)に分散混合させた粉末を充分にまぶして付着
させ、これをTITONO・R−7E中に埋設して、窒
素雰囲気中で700℃、1時間保持の熱処理を施し、熱
処理終了後、余剰のTITONO・R−7Eをふるいで
除去して、活性炭成形物外表面への二酸化チタン粉末の
固着強度を高めポリ塩化ビニリデン樹脂粉末を活性炭化
させた、外径400〜900μmの球状の中空状活性炭
・二酸化チタン複合体を得た。
<Example 11> The activated carbon molded product obtained in Example 4 was immersed in methyl ethyl ketone to sufficiently impregnate it with methyl ethyl ketone, and then polyvinylidene chloride resin powder and TITONO.R-7E were formed on the outer surface of the product. To 1: 5
The powder mixed and dispersed in (weight ratio) is thoroughly sprinkled and adhered, embedded in TITONO.R-7E, subjected to heat treatment at 700 ° C. for 1 hour in a nitrogen atmosphere, and after the heat treatment, Excessive TITONO.R-7E was removed by sieving to increase the adhesion strength of titanium dioxide powder to the outer surface of the activated carbon molded product and activated carbonization of polyvinylidene chloride resin powder, spherical hollow with an outer diameter of 400 to 900 μm. An activated carbon / titanium dioxide composite was obtained.

【0025】以上、各例で得られた物について、それぞ
れ一定量を電磁式ふるい振とう器で、振動数毎分300
0、振幅2mm、時間5分間、50メッシュ標準ふるい
使用の条件で振とう試験を実施し、脱落した二酸化チタ
ン粉末量を比較することで、二酸化チタン粉末の中空状
活性炭成形物への固着強度の評価をした。なお、評価は
振とう試験前に中空状活性炭成形物外表面に固着してい
た二酸化チタン粉末量に対する、振とう試験後の二酸化
チタン粉末脱落量の比率とし、◎:脱落率10%未満、
○:脱落率10%以上〜30%未満、△:脱落率30%
以上〜50%未満、×:脱落率50%以上とする。その
結果を表1に示す。
A constant amount of each of the products obtained in the above examples was measured with an electromagnetic sieving shaker at a frequency of 300 per minute.
A shaking test was carried out under conditions of 0, amplitude 2 mm, time 5 minutes, use of 50 mesh standard sieve, and by comparing the amount of titanium dioxide powder that had fallen off, the adhesion strength of the titanium dioxide powder to the hollow activated carbon molded product was determined. Evaluated. The evaluation is the ratio of the amount of titanium dioxide powder dropped after the shaking test to the amount of titanium dioxide powder fixed on the outer surface of the hollow activated carbon molded article before the shaking test, and ◎: the falling rate is less than 10%,
◯: Dropout rate is 10% or more and less than 30%, Δ: Dropout rate is 30%
Or more to less than 50%, x: the drop rate is 50% or more. Table 1 shows the results.

【0026】[0026]

【表1】 [Table 1]

【0027】[0027]

【発明の効果】本発明の中空状活性炭・二酸化チタン複
合体は、吸着性、軽量性など優れた性能を有する中空状
活性炭成形物の外表面に、光の照射により環境汚染物質
等を分解、無害化させる性能を有する二酸化チタン粉末
が固着されたものであり、活性炭の有する有害物質吸着
能と二酸化チタンの有する有害物質分解能とを共有する
機能性複合体たり得る。また、本発明の製造方法によれ
ば、この中空状活性炭・二酸化チタン複合体を複雑な工
程なしに容易に製造することができる。
EFFECT OF THE INVENTION The hollow activated carbon / titanium dioxide composite of the present invention is used to decompose environmental pollutants and the like on the outer surface of a hollow activated carbon molded article having excellent properties such as adsorptivity and lightness by irradiation with light. Titanium dioxide powder having a detoxifying property is fixed, and it may be a functional complex that shares the ability of activated carbon to adsorb harmful substances and the ability of titanium dioxide to decompose harmful substances. Further, according to the production method of the present invention, this hollow activated carbon / titanium dioxide composite can be easily produced without complicated steps.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 活性炭粉末と粒子状熱可塑性樹脂の炭化
体よりなる中空状活性炭成形物の少なくとも外表面に二
酸化チタン粉末単独、もしくは、二酸化チタン粉末と他
の物質とを配した中空状活性炭・二酸化チタン複合体。
1. A hollow activated carbon formed by arranging titanium dioxide powder alone or titanium dioxide powder and another substance on at least the outer surface of a hollow activated carbon molded product comprising activated carbon powder and a carbonized material of a particulate thermoplastic resin. Titanium dioxide complex.
【請求項2】 粒子状熱可塑性樹脂と活性炭粉末とを使
用し、前記粒子状熱可塑性樹脂と活性炭粉末とを混合し
た後、粒子状熱可塑性樹脂を溶融・炭化させることによ
り中空状活性炭成形物を製造し、更に、該中空状活性炭
成形物の少なくとも外表面に二酸化チタン粉末の単独、
もしくは、二酸化チタン粉末と他の物質との複合物、も
しくは、二酸化チタン粉末と他の物質との混合物を直接
または間接に付着させた後、熱処理を施して二酸化チタ
ン粉末を直接または間接に固着させることを特徴をする
中空状活性炭・二酸化チタン複合体の製造方法。
2. A hollow activated carbon molded product obtained by using a particulate thermoplastic resin and an activated carbon powder, mixing the particulate thermoplastic resin and the activated carbon powder, and then melting and carbonizing the particulate thermoplastic resin. Furthermore, a titanium dioxide powder alone is provided on at least the outer surface of the hollow activated carbon molded article,
Alternatively, a composite of titanium dioxide powder and another substance, or a mixture of titanium dioxide powder and another substance is directly or indirectly attached and then heat-treated to fix the titanium dioxide powder directly or indirectly. A method for producing a hollow activated carbon / titanium dioxide composite, which is characterized in that
【請求項3】 粒子状熱可塑性樹脂と活性炭粉末とを使
用し、前記粒子状熱可塑性樹脂と活性炭粉末とを混合し
た後、粒子状熱可塑性樹脂を溶融させることにより活性
炭成形物を製造し、更に、該活性炭成形物の少なくとも
外表面に二酸化チタン粉末の単独、もしくは、二酸化チ
タン粉末と他の物質との複合物、もしくは、二酸化チタ
ン粉末と他の物質との混合物を直接または間接に付着さ
せた後、炭化熱処理を施すことにより活性炭成形物を中
空状にすると共に、二酸化チタン粉末を直接または間接
に固着させることを特徴をする中空状活性炭・二酸化チ
タン複合体の製造方法。
3. A particulate thermoplastic resin and an activated carbon powder are used, the particulate thermoplastic resin and the activated carbon powder are mixed, and then the particulate thermoplastic resin is melted to produce an activated carbon molded article, Further, a titanium dioxide powder alone, or a composite of titanium dioxide powder and another substance, or a mixture of titanium dioxide powder and another substance is directly or indirectly attached to at least the outer surface of the activated carbon molded product. After that, a method for producing a hollow activated carbon / titanium dioxide composite is characterized in that the activated carbon molded product is hollowed by carbonization heat treatment and the titanium dioxide powder is directly or indirectly fixed.
JP33276295A 1994-11-28 1995-11-28 Method for producing hollow activated carbon / titanium dioxide composite Expired - Fee Related JP3840681B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33276295A JP3840681B2 (en) 1994-11-28 1995-11-28 Method for producing hollow activated carbon / titanium dioxide composite

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP31752294 1994-11-28
JP6-317522 1995-02-28
JP6484795 1995-02-28
JP7-64847 1995-02-28
JP33276295A JP3840681B2 (en) 1994-11-28 1995-11-28 Method for producing hollow activated carbon / titanium dioxide composite

Publications (2)

Publication Number Publication Date
JPH08295506A true JPH08295506A (en) 1996-11-12
JP3840681B2 JP3840681B2 (en) 2006-11-01

Family

ID=27298591

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33276295A Expired - Fee Related JP3840681B2 (en) 1994-11-28 1995-11-28 Method for producing hollow activated carbon / titanium dioxide composite

Country Status (1)

Country Link
JP (1) JP3840681B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6989101B2 (en) * 2003-04-04 2006-01-24 The Clorox Company Microorganism-removing filter medium having high isoelectric material and low melt index binder
CN109589917A (en) * 2018-12-07 2019-04-09 南京理工大学 Based on double layer hollow zinc oxide/carbon material solid-phase micro-extraction fibre and preparation method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6989101B2 (en) * 2003-04-04 2006-01-24 The Clorox Company Microorganism-removing filter medium having high isoelectric material and low melt index binder
CN109589917A (en) * 2018-12-07 2019-04-09 南京理工大学 Based on double layer hollow zinc oxide/carbon material solid-phase micro-extraction fibre and preparation method thereof

Also Published As

Publication number Publication date
JP3840681B2 (en) 2006-11-01

Similar Documents

Publication Publication Date Title
US9539149B2 (en) Superhydrophobic, diatomaceous earth comprising bandages and method of making the same
US7740141B2 (en) Method of making a granular media water filter
CN101238166A (en) Process for production of porous reticulated composite materials
US20080241242A1 (en) Porous Polyelectrolyte Materials
JP2008023527A (en) Composite particulate material
JP3840681B2 (en) Method for producing hollow activated carbon / titanium dioxide composite
CA3057830C (en) Porous nanocomposites
JPH07187849A (en) Hollow active carbon formed material and its production
JP2008169275A (en) Polymeric microparticle and method for producing the same
JP3177867B2 (en) Method for producing hollow activated carbon molded product
US5439858A (en) Hydrated granular carrier prepared from polyvinyl alcohol and activated charcoal for biological treatment apparatus
JP3175288B2 (en) Method for producing hollow activated carbon molded product
JPH0761875A (en) Production of molded hollow active carbon
JPH03188203A (en) Manufacture of porous sintered body
JPH03278830A (en) Production of material having core material coated with fine particle shell
JP2841668B2 (en) Method for manufacturing activated carbon moldings
JP2005194176A (en) Spherical carbon particle and its manufacturing method
JP4571723B2 (en) Method for producing charcoal-supported molded body
JP3177865B2 (en) Method for producing hollow graphite molded article
JP2004202329A (en) Functional material and its manufacturing method
JP2010059024A (en) Large pore diameter silica gel having double pore structure and method for manufacturing the same
JPH0383810A (en) Production of formed hollow activated carbon
JPH06165904A (en) Graphite filter and after-treatment thereof
JPS621304B2 (en)
JPH0224130A (en) Molding method of resin body

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041015

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050408

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060418

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060619

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060718

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060731

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050408

LAPS Cancellation because of no payment of annual fees