JPH0829464A - Method for estimating ground resistance corresponding to burial depth of bar-shaped ground electrode - Google Patents

Method for estimating ground resistance corresponding to burial depth of bar-shaped ground electrode

Info

Publication number
JPH0829464A
JPH0829464A JP18518794A JP18518794A JPH0829464A JP H0829464 A JPH0829464 A JP H0829464A JP 18518794 A JP18518794 A JP 18518794A JP 18518794 A JP18518794 A JP 18518794A JP H0829464 A JPH0829464 A JP H0829464A
Authority
JP
Japan
Prior art keywords
electrode
ground
resistance
rod
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18518794A
Other languages
Japanese (ja)
Other versions
JP2588370B2 (en
Inventor
Toshio Wake
敏男 和氣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP18518794A priority Critical patent/JP2588370B2/en
Publication of JPH0829464A publication Critical patent/JPH0829464A/en
Application granted granted Critical
Publication of JP2588370B2 publication Critical patent/JP2588370B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To determine the burial depth of a bar-shaped ground electrode by calculating a potential difference/current ratio at each point using Wenner's our-electrode method while varying in steps the interval between electrodes, and obtaining an estimated resistance value through the multiplication of each value by a constant determined by the diameter of the bar-shaped ground electrode, and estimating this value to be the ground resistance of the ground electrode buried to a depth matching the electrode-to-electrode interval. CONSTITUTION:Four point electrodes C1, P1, P2, C2 are arranged on a straight line on the surface of the ground at intervals a, and a direct current l is passed between the electrodes C1, C2 to measure a potential difference V between the electrodes P1, P2. When the diameter and length of a bar-shaped ground electrode are D and L, respectively, the distance between the upper end of the ground electrode and the surface of the ground is t and the length of the ground electrode corresponding to a hemispherical electrode having a diameter of 1m is L1, then a=l+t so that the ground resistance R of the ground electrode is R = (1/1.41) (L1+t) (V/I)=C(V/I), the constant C determined by the diameter D. Therefore, the interval a is varied in steps to calculate V/I at each point, and the value of V/I is multiplied by the constant C to obtain an estimated resistance value, and this value can be estimated to be ground resistance when the ground electrode is buried to a depth matching the interval a.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、棒状接地電極を地中に
垂直に埋設して接地をとる場合に、棒状接地電極の埋設
深さに対応する接地抵抗の推定方法に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for estimating a grounding resistance corresponding to a buried depth of a rod-shaped ground electrode when a rod-shaped ground electrode is buried vertically in the ground for grounding.

【0002】[0002]

【従来の技術とその課題】接地抵抗は「電気設備の技術
基準」によると、第一種および特別第三種で10Ω以
下、第三種で100Ω以下と規定されている。接地抵抗
はその土地の地質によって大きく異なり、地質の悪い所
では10Ω以下の接地抵抗を得ることが非常に困難な場
合が多い。
2. Description of the Related Art According to "Technical Standards for Electrical Equipment", the ground resistance is defined as 10 Ω or less for the first and special third types and 100 Ω or less for the third type. The ground resistance varies greatly depending on the geology of the land, and it is often very difficult to obtain a ground resistance of 10Ω or less in a poor geological location.

【0003】接地工事は通常、ボーリングにより垂直に
直径数10mmの穴を掘削し、その穴の中にほぼ全長にわた
って直径10〜10数mmの導電性金属棒を挿入し、その金属
棒と穴内周面との間の空隙に導電性硬化樹脂を流し込ん
で硬化させるという方法で行われる。この場合は、金属
棒と硬化した導電性樹脂とが一体となって棒状接地電極
を構成する。またボーリングで掘削した穴に、それと同
径の導電性金属棒を打ち込んで棒状接地電極とする場合
もある。いずれにせよ地質の悪い所で目標とする接地抵
抗を得るためには、棒状接地電極の長さを長くして、棒
状接地電極の埋設深さ(棒状接地電極の先端の深さ)を
深くしなければならない。
In the grounding work, a hole having a diameter of several tens of mm is usually drilled vertically by boring, and a conductive metal rod having a diameter of 10 to several tens mm is inserted into the hole over substantially the entire length, and the metal rod and the inner periphery of the hole are inserted. The method is performed by pouring a conductive curable resin into a gap between the surface and the resin and curing the resin. In this case, the metal rod and the cured conductive resin are integrated to form a rod-shaped ground electrode. In some cases, a conductive metal rod having the same diameter as the hole drilled by boring is driven into a rod-shaped ground electrode. In any case, in order to obtain the target grounding resistance in a poor geological location, the length of the rod-shaped grounding electrode should be increased and the embedding depth of the rod-shaped grounding electrode (depth of the tip of the rod-shaped grounding electrode) should be deepened. There must be.

【0004】接地工事の工事費は一般に、棒状接地電極
の埋設深さ(ボーリングの掘削深さに相当)を基準とし
て定められる。しかし接地抵抗は、その土地の地質によ
って大きく異なるため、目標とする接地抵抗を得るため
に棒状接地電極の埋設深さがどの程度になるかを予測す
ることは極めて困難である。このため接地工事は、とも
かく現地で目標とする接地抵抗が得られるまで工事を行
うということになり、工事費や工事期間の予定がたて難
いという問題があった。
[0004] The construction cost of the grounding work is generally determined based on the burial depth of the rod-shaped ground electrode (corresponding to the excavation depth of boring). However, since the ground resistance varies greatly depending on the geology of the land, it is extremely difficult to predict the burial depth of the bar-shaped ground electrode to obtain a target ground resistance. For this reason, the grounding work is performed until the target grounding resistance is obtained on site at all times, and there is a problem that it is difficult to schedule the construction cost and the construction period.

【0005】本発明の目的は、以上のような問題点に鑑
み、接地工事を行う場合に、目標とする接地抵抗を得る
ために棒状接地電極の埋設深さをどの程度にすべきかを
知る手立てとして、棒状接地電極の埋設深さに対応する
接地抵抗の推定方法を提供することにある。
SUMMARY OF THE INVENTION In view of the above problems, it is an object of the present invention to provide a method of knowing how much the burial depth of a rod-like ground electrode should be laid in order to obtain a target ground resistance when performing grounding work. Another object of the present invention is to provide a method of estimating a ground resistance corresponding to a buried depth of a rod-shaped ground electrode.

【0006】[0006]

【課題を解決するための手段とその作用】棒状接地電極
を地中に垂直に埋設して接地をとる場合の接地抵抗は、
その棒状接地電極が埋設される大地の比抵抗に大きく左
右される。大地の比抵抗を測定する手段としてはWen
nerの4電極法が知られている。この方法は、図1に
示すように地表面の1直線に沿って4つの点電極C1
1 、P2 、C2 を等間隔に並べ、両端の電極C1 、C
2 間に直流電流Iを流し、中間の電極P1 、P2 間の電
位差Vを電位差計で測定するものである。
[Means for Solving the Problem and Its Action] The ground resistance in the case where the rod-shaped ground electrode is vertically buried in the ground for grounding is
The rod-shaped ground electrode largely depends on the specific resistance of the ground in which it is embedded. Wen is a means of measuring the resistivity of the earth
The ner four-electrode method is known. This method uses four point electrodes C 1 along a straight line on the ground surface as shown in FIG.
P 1 , P 2 , C 2 are arranged at equal intervals, and electrodes C 1 , C
A direct current I is passed between the two electrodes, and the potential difference V between the intermediate electrodes P 1 and P 2 is measured with a potentiometer.

【0007】大地の比抵抗が一様であるとすると、その
比抵抗ρX 〔Ω−m〕は、Wennerの4電極法で測
定した(V/I)の値と、そのときの電極間隔aから、
次式で求めることができる。
Assuming that the specific resistance of the ground is uniform, the specific resistance ρ X [Ω-m] is (V / I) measured by Wenner's four-electrode method and the electrode spacing a at that time. From
It can be calculated by the following formula.

【0008】[0008]

【数1】 [Equation 1]

【0009】この式はWennerの公式と呼ばれ、大
地の比抵抗が一様である場合に成り立つものである。
This formula is called Wenner's formula, and is satisfied when the resistivity of the ground is uniform.

【0010】Wennerの4電極法では、電極間隔a
が小さいときは、C1 から地中を通ってC2 に帰る電流
の大部分が地表面に近い上層部に流れるため、地中の下
層部の影響をあまり受けない。しかし電極間隔aが大き
くなると、電流経路が広がり地中の下層部にも電流が流
れるため、上層部と下層部の比抵抗が異なる場合には、
電極間隔aによってρX の測定値が異なってくる。We
nnerの4電極法はこの原理を応用して地層探査など
に用いられているものである。
In Wenner's four-electrode method, the electrode spacing a
When is small, the flow at the top most part close to the ground surface of the current returning to C 2 from C 1 through the ground, less susceptible to ground of the lower layer portion. However, when the electrode interval a becomes large, the current path is widened and the current also flows to the lower part in the ground, so that when the upper part and the lower part have different specific resistances,
The measured value of ρ X differs depending on the electrode interval a. We
Nner's four-electrode method is applied to geological exploration and the like by applying this principle.

【0011】しかし大地の比抵抗が深さ方向に一様でな
い場合でも、Wennerの4電極法では、電極間隔a
が大きくなればなるほど、それに応じて地中の深い所ま
での「平均的な比抵抗」を測定していると考えることが
できる。
However, even when the resistivity of the ground is not uniform in the depth direction, the electrode spacing a
It can be considered that the larger the value is, the correspondingly measured “average resistivity” deep into the ground.

【0012】一方、図2(イ)に示すように棒状接地電
極1を地中に垂直に埋設して接地をとる場合には、棒状
接地電極1の埋設深さL+t(tは電気設備の技術基準
で0.75〔m〕と定められている)が深くなれば、それに
応じて接地抵抗が小さくなるが、ある埋設深さでの棒状
接地電極の接地抵抗は、その埋設深さまでの大地の「平
均的な比抵抗」によってほぼ定まると考えることができ
る。
On the other hand, as shown in FIG. 2 (a), when the rod-shaped ground electrode 1 is buried vertically in the ground for grounding, the burying depth L + t (t is When the depth becomes 0.75 [m], the ground resistance decreases accordingly, but the ground resistance of the rod-shaped ground electrode at a certain burial depth is the "average" of the earth up to the burial depth. It can be considered that it is almost determined by "specific resistivity".

【0013】本発明者は、この点に着目し、Wenne
rの4電極法の電極間隔aと、棒状接地電極の埋設深さ
とを1対1で対応させたときの、(V/I)と接地抵抗
の関係を究明した結果、両者に比例関係のあることを見
いだし、本発明を完成するに至ったものである。
The present inventor pays attention to this point, and
As a result of investigating the relationship between (V / I) and the ground resistance when the electrode spacing a of the four-electrode method of r and the embedding depth of the rod-shaped ground electrode have a one-to-one correspondence, they have a proportional relationship. The present invention has been completed and the present invention has been completed.

【0014】すなわち、本発明は、 Wennerの4電極法により、電極間隔aを段階
的に変化させて、それぞれの電極間隔aにおけるV/I
(電位差/電流)の値を測定し、 それぞれのV/Iの値に棒状接地電極の直径により
定まる定数Cを掛けて推定抵抗値を求め、 それぞれの電極間隔aにおける推定抵抗値を、棒状
接地電極をそれぞれの電極間隔aに相当する深さに埋設
したときの接地抵抗と推定する、 ものである。
That is, according to the present invention, the V / I at each electrode interval a is changed stepwise by the Wenner's four-electrode method.
The value of (potential difference / current) is measured, and each V / I value is multiplied by a constant C determined by the diameter of the rod-shaped ground electrode to obtain an estimated resistance value. It is estimated as the ground resistance when the electrodes are buried at a depth corresponding to each electrode interval a.

【0015】以下、この方法によって棒状接地電極の接
地抵抗が推定できる理由を説明する。
The reason why the ground resistance of the rod-shaped ground electrode can be estimated by this method will be described below.

【0016】接地抵抗は次のように定義されている。図
2(イ)のように一つの接地電極1があって、これに接
地電流I〔A〕が流れ込んでいるとすると、同図(ロ)
のように接地電極1の電位が周囲の大地にくらべてV
〔V〕だけ高くなる。このときV/I〔Ω〕をその接地
電極の接地抵抗という。つまり接地抵抗は、接地電極
と、そこから無限遠(接地電流により電位が変動しない
点)にある補助電極との間の抵抗と定義される。
The ground resistance is defined as follows. Assuming that there is one ground electrode 1 as shown in FIG. 2A and a ground current I [A] flows into this electrode, FIG.
The potential of the ground electrode 1 is higher than the surrounding ground by V
It becomes higher by [V]. At this time, V / I [Ω] is called the ground resistance of the ground electrode. That is, the ground resistance is defined as the resistance between the ground electrode and the auxiliary electrode at an infinite distance (the point where the potential does not change due to the ground current) from the ground electrode.

【0017】いま図3に示すように、地表から深さa
〔m〕までの地層の平均比抵抗がρ1、a〔m〕以深の
無限に続く地層の平均比抵抗がρ2 の2層構造の大地を
仮定した場合、Hummelの電気影像論によると、地
表面の点電流源Cに電流I〔A〕が流れたときの、Cか
らa〔m〕離れた地点Pの電位VP は次のように表すこ
とができる。
Now, as shown in FIG. 3, the depth a from the surface of the earth
Assuming a two-layered earth where the average resistivity of the formation up to [m] is ρ 1 and the average resistivity of the formation that continues infinitely deeper than a [m] is ρ 2 , according to Hummel's electric image theory, When the current I [A] flows through the point current source C on the ground surface, the potential V P at the point P distant by a [m] from C can be expressed as follows.

【0018】[0018]

【数2】 [Equation 2]

【0019】ただし、K:反射係数、n:境界数であ
る。反射係数Kは次式で表される。
Here, K is a reflection coefficient, and n is the number of boundaries. The reflection coefficient K is represented by the following equation.

【0020】[0020]

【数3】 (Equation 3)

【0021】また図4に示すように、地表から深さa
〔m〕までの平均比抵抗がρ1 、それ以深の平均比抵抗
がρ2 の2層構造の大地を仮定し、Wennerの4電
極法により、電極間隔をa〔m〕として、C1 、C2
に電流Iを流したときの、P1、P2 間の電位差Vは次
のように表わすことができる。
Also, as shown in FIG.
Assuming a two-layer structure ground having an average resistivity ρ 1 up to [m] and an average resistivity deeper than ρ 2 , the Wenner four-electrode method sets the electrode interval to a [m], C 1 , The potential difference V between P 1 and P 2 when the current I is passed between C 2 can be expressed as follows.

【0022】[0022]

【数4】 [Equation 4]

【0023】大地の比抵抗が一様であるときのρX 〔Ω
−m〕は数1式で表されるから、数4式を数1式に代入
すると次式が得られる。
Ρ X [Ω when the resistivity of the ground is uniform
−m] is expressed by the following equation (1), and the following equation is obtained by substituting the equation (4) into the equation (1).

【0024】[0024]

【数5】 (Equation 5)

【0025】この式は、ρX /ρ1 が、K、nの関数で
あることを示している。数5式の右辺をSとおくと、数
5式は次のように表せる。
This equation shows that ρ X / ρ 1 is a function of K, n. If the right side of Equation 5 is set to S, Equation 5 can be expressed as follows.

【0026】[0026]

【数6】 (Equation 6)

【0027】この式は、点電流源下で仮定した2層構造
大地の上層部の比抵抗ρ1 と、比抵抗が一様と仮定した
場合の大地の比抵抗ρX との関係を示している。
This equation shows the relationship between the specific resistance ρ 1 of the upper layer of the two-layer structure ground assumed under the point current source and the specific resistance ρ X of the ground when the specific resistance is assumed to be uniform. I have.

【0028】この関係を明らかにするためSの値を求め
ることとする。数2式の反射係数Kはρ1 、ρ2 の値に
よって−1<K<1の範囲で変化する。Kを−1から+
1まで0.2 間隔で分割し、それぞれのKに対してnを変
化させた場合のSの値を計算し、グラフに表すと図5の
ようになる。図5によると、数6式はnを無限大まで計
算することになっているが、n=10以上になれば、Sの
値はほぼ一定と考えてよいことが分かる。
To clarify this relationship, the value of S will be determined. The reflection coefficient K in the equation ( 2 ) changes in the range of -1 <K <1 depending on the values of ρ 1 and ρ 2 . K from -1 to +
The value of S in the case of dividing into 0.2 at intervals of 0.2 and changing n for each K is calculated and shown in a graph as shown in FIG. According to FIG. 5, Equation 6 is supposed to calculate n up to infinity, but if n = 10 or more, it can be considered that the value of S is almost constant.

【0029】これは、Hummelの電気影像論で仮定
した2層構造の大地においては、n=10の範囲で考えれ
ばよいことを示している。また接地抵抗は、接地電極
と、そこから無限遠にある補助電極との間の抵抗と定義
されるが、図5はn=10までの範囲でも、無限遠と同等
の値が得られることを示している。
This shows that in the ground of the two-layer structure assumed by Hummel's electric image theory, it is sufficient to consider n = 10. The ground resistance is defined as the resistance between the ground electrode and the auxiliary electrode at infinity therefrom. FIG. 5 shows that a value equivalent to infinity is obtained even in the range up to n = 10. Is shown.

【0030】数2式の{ }内をS1 、数4式の{ }
内をS(数5式の右辺と同じ)とすると、S1 とSの関
係は、接地抵抗の定義を満足するためには次の条件が必
要となる。
S 1 in {{} of Equation 2, and {{} in Equation 4
When the inner and S (the same as equation (5) on the right side), the relationship of S 1 and S, the following conditions are required in order to satisfy the definition of ground resistance.

【0031】[0031]

【数7】 (Equation 7)

【0032】数7式は次のように変形できる。Equation 7 can be modified as follows.

【0033】[0033]

【数8】 (Equation 8)

【0034】この数8式を満足するKの値を求めるた
め、Kを−1から+1まで0.2 間隔で分割し、それぞれ
のKに対するS1 、S、(S1 −S)の値を計算し、グ
ラフに表すと図6のようになる。図6によれば、Kはρ
1 、ρ2 の関数であるが(数2式)、数7式の条件を満
足させるKは「1点」しか存在しないことが分かる。こ
の時のKとSの値を計算によって求めると、K=0.869
、S=1.41となる。
In order to obtain a value of K that satisfies Equation 8, K is divided from −1 to +1 at intervals of 0.2, and the values of S 1 , S, and (S 1 −S) for each K are calculated. FIG. 6 shows a graph. According to FIG. 6, K is ρ
Although it is a function of 1 and ρ 2 (Equation 2), it can be seen that there is only “one point” K that satisfies the condition of Equation 7. When the values of K and S at this time are calculated, K = 0.869
, S = 1.41.

【0035】このSの値は、接地抵抗に関連する電位V
P (数2式)と、Wennerの4電極法で測定される
電位差V(数4式)とを結び付ける因子となる。すなわ
ち、数6式にS=1.41を代入すると、次式が得られる。
The value of S is determined by the potential V related to the ground resistance.
P (Equation 2) is a factor that links the potential difference V (Equation 4) measured by the Wenner four-electrode method. That is, by substituting S = 1.41 into the formula 6, the following formula is obtained.

【0036】[0036]

【数9】 [Equation 9]

【0037】この式は、Wennerの4電極法でρX
を測定すれば、ρ1 が得られることを示している。すな
わち図3において、点Cより無限遠に点電流を流した際
に生じるP点の電位VP はWennerの4電極法で求
めることができるので、P点の電位VP が分かれば、そ
れを生じさせる大地比抵抗ρ1 が求められることにな
る。ρ1 は深さa〔m〕までの比抵抗であるから、これ
が分かれば、深さa〔m〕に埋設した接地電極の接地抵
抗を推定できる。
This equation is expressed as ρ X by the Wenner's four-electrode method.
It shows that ρ 1 can be obtained by measuring. That is, in FIG. 3, since the potential V P of the point P generated when the flow of infinity two points current from the point C can be obtained by the four-electrode method of Wenner, knowing the potential V P of the point P, it The resulting ground resistivity ρ 1 is determined. Since ρ 1 is the specific resistance up to the depth a [m], if this is known, the ground resistance of the ground electrode embedded at the depth a [m] can be estimated.

【0038】Hummelの電気影像論は、点電流の考
えを基本としているので、数9式の定数(1/1.41)は
点電流条件下でしか用いることができない。棒状接地電
極を使用した場合の接地抵抗を推定するには、棒状接地
電極を半球電極に換算したときの等価半径で考える必要
がある。上記の(1/1.41)は棒状接地電極が等価半径
r=1〔m〕に相当する深さに埋設されたときの定数と
なる。
Since Hummel's electroimaging is based on the concept of point current, the constant (1 / 1.41) in Equation 9 can be used only under point current conditions. In order to estimate the ground resistance when the rod-shaped ground electrode is used, it is necessary to consider the equivalent radius when the rod-shaped ground electrode is converted into a hemispherical electrode. The above (1 / 1.41) is a constant when the rod-shaped ground electrode is embedded at a depth corresponding to the equivalent radius r = 1 [m].

【0039】図2(イ)に示す棒状接地電極1の接地抵
抗Rは、大地比抵抗が一様でρX 〔Ω−m〕であるとす
ると、次式で表すことができる(日本電設工業協会技術
資料JECA「建設電気設備の保安用接地に関する研
究」より)。
The ground resistance R of the rod-shaped ground electrode 1 shown in FIG. 2A can be expressed by the following equation, assuming that the ground resistivity is uniform and ρ X [Ω-m] (Nippon Denki Kogyo Co., Ltd.) JECA "Research on Safety Grounding of Construction Electrical Equipment").

【0040】[0040]

【数10】 [Equation 10]

【0041】ただし L:棒状接地電極の長さ D:棒状接地電極の直径 t:地表面から棒状接地電極の上端までの深さHowever, L: length of the rod-shaped ground electrode D: diameter of the rod-shaped ground electrode t: depth from the ground surface to the upper end of the rod-shaped ground electrode

【0042】一方、半径rの半球電極の接地抵抗Rは次
式で求められる。
On the other hand, the ground resistance R of the hemispherical electrode having the radius r is calculated by the following equation.

【0043】[0043]

【数11】 [Equation 11]

【0044】数10式、数11式より、長さL、直径D
の棒状接地電極の半球電極に相当する等価半径rは次式
で表すことができる。
From equations (10) and (11), length L and diameter D
The equivalent radius r corresponding to the hemispherical electrode of the rod-shaped ground electrode can be expressed by the following equation.

【0045】[0045]

【数12】 (Equation 12)

【0046】棒状接地電極の形状係数fは、数10式に
おいてρX =1として、次式で表される。
The shape factor f of the rod-shaped ground electrode is expressed by the following equation, where ρ x = 1 in equation (10).

【0047】[0047]

【数13】 (Equation 13)

【0048】数12式、数13式より、棒状接地電極の
形状係数fは、等価半径をr〔m〕とすると、次式で表
される。
From Equations (12) and (13), the shape factor f of the rod-shaped ground electrode is expressed by the following equation, where the equivalent radius is r [m].

【0049】[0049]

【数14】 [Equation 14]

【0050】大地の比抵抗がρ1 であるときの棒状接地
電極の接地抵抗Rは、数13式の形状係数の考え方を入
れると、次式で表すことができる。
The ground resistance R of the rod-shaped ground electrode when the specific resistance of the ground is ρ 1 can be expressed by the following expression when the idea of the shape factor of the expression (13) is entered.

【0051】[0051]

【数15】 (Equation 15)

【0052】またρ1 とρX との間には数9式が成立す
るので、比抵抗がρ1 である地層に棒状接地電極を埋設
したときの接地抵抗は、等価半径r〔m〕の考え方を導
入することによって、次式で表すことができる。
Since Equation 9 is established between ρ 1 and ρ X , the ground resistance when the rod-shaped ground electrode is buried in the formation having the specific resistance ρ 1 is equivalent to the equivalent radius r [m]. By introducing the concept, it can be expressed by the following equation.

【0053】[0053]

【数16】 [Equation 16]

【0054】ただし、A、Bは次のとおりである。 A=r/(L+t):任意の長さLを有する棒状接地電
極の埋設深さL+t〔m〕と、その棒状接地電極の等価
半径r〔m〕との比 B=1/(L1 +t):等価半径1〔m〕に相当する長
さL1 を有する棒状接地電極の埋設深さL1 +t〔m〕
と、等価半径1〔m〕との比
However, A and B are as follows. A = r / (L + t): Ratio of the embedded depth L + t [m] of the rod-shaped ground electrode having an arbitrary length L to the equivalent radius r [m] of the rod-shaped ground electrode B = 1 / (L 1 + t ): Buried depth L 1 + t [m] of a rod-shaped ground electrode having a length L 1 corresponding to an equivalent radius of 1 [m]
And the equivalent radius 1 [m]

【0055】数16式に数1式、数14式およびA、B
の関係を代入し、a=L+tとして整理すると次式が得
られる。
Equation 16 to Equation 1 and Equation 14 and A and B
Substituting the relationship of and rearranging as a = L + t, the following equation is obtained.

【0056】[0056]

【数17】 [Equation 17]

【0057】ここでL1 は、半径1〔m〕の半球電極に
相当する棒状接地電極の長さであるから、棒状接地電極
の直径が決まれば一義的に定まる。具体的にはL1 は数
12式に、r=1〔m〕と、t=0.75〔m〕(電気設備
の技術基準で定められた値)を代入して得られる次式に
より求めることができる。
Here, L 1 is the length of the rod-shaped ground electrode corresponding to a hemispherical electrode having a radius of 1 [m], and thus is uniquely determined if the diameter of the rod-shaped ground electrode is determined. Specifically, L 1 can be obtained by the following equation obtained by substituting r = 1 [m] and t = 0.75 [m] (values determined by the technical standard of electrical equipment) into the equation 12 it can.

【0058】[0058]

【数18】 (Equation 18)

【0059】数18式によれば、L1 は棒状接地電極の
直径Dにより定まる定数であるので、数17式の(1/
1.41)・(L1 +t)も直径Dにより定まる定数という
ことになる(tは電気設備の技術基準で0.75〔m〕と定
められているため)。
According to the equation (18), L 1 is a constant determined by the diameter D of the rod-shaped ground electrode.
1.41) · (L 1 + t) is also a constant determined by the diameter D (because t is defined as 0.75 [m] in the technical standard of electrical equipment).

【0060】ここで(1/1.41)・(L1 +t)=Cと
おくと、この定数Cは、数17式から明らかなように、
Wennerの4電極法で電極間隔をaとして測定した
V/Iの値と、棒状接地電極を深さaに埋設したときの
接地抵抗Rとを関連付ける比例定数ということになる。
例えば棒状接地電極の直径D=0.056 〔m〕とすると、
数18式よりL1 =6.58〔m〕となるので、C=5.20が
得られる。これより棒状接地電極を電極間隔aに相当す
る深さに埋設したときの接地抵抗はR=5.20(V/I)
と推定できることになる。
If (1 / 1.41)  (L 1 + t) = C is set here, this constant C is as shown in the equation (17).
This is a proportionality constant that associates the value of V / I measured by Wenner's four-electrode method with the electrode interval being a and the ground resistance R when the bar-shaped ground electrode is buried at the depth a.
For example, assuming that the diameter D of the rod-shaped ground electrode is 0.056 [m],
From equation (18), L 1 = 6.58 [m], so C = 5.20 is obtained. Thus, when the rod-shaped ground electrode is buried at a depth corresponding to the electrode interval a, the ground resistance is R = 5.20 (V / I).
It can be estimated that

【0061】したがって、 Wennerの4電極法により、電極間隔aを段階
的に変化させて、それぞれの電極間隔aにおけるV/I
(電位差/電流)の値を測定し、 それぞれのV/Iの値に棒状接地電極の直径により
定まる定数Cを掛けて推定抵抗値を求めれば、 それぞれの電極間隔aにおける推定抵抗値は、棒状
接地電極をそれぞれの電極間隔aに相当する深さに埋設
したときの接地抵抗と推定できるということである。
Therefore, according to Wenner's four-electrode method, the electrode spacing a is changed stepwise to obtain V / I at each electrode spacing a.
(Electric potential difference / current) is measured, and each V / I value is multiplied by a constant C determined by the diameter of the rod-shaped ground electrode to obtain an estimated resistance value. This means that it can be estimated as a ground resistance when the ground electrode is buried at a depth corresponding to the electrode interval a.

【0062】なお棒状接地電極の直径は、ボーリングで
穴を掘削し、その穴の中に導電性金属棒を挿入し、その
穴内の空隙に導電性硬化樹脂を流し込んで硬化させるこ
とにより棒状接地電極を形成する場合は、穴の内径と同
じになる。
The diameter of the rod-shaped grounding electrode is determined by drilling a hole by boring, inserting a conductive metal rod into the hole, pouring a conductive curable resin into a gap in the hole and curing the resin. Is the same as the inner diameter of the hole.

【0063】[0063]

【実施例】本発明の推定方法の精度を確かめるため、本
発明の推定方法により接地抵抗の推定を行い、その後、
実際に棒状接地電極を埋設して接地抵抗を測定する試験
を行った。その結果を実施例1〜4に示す。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In order to confirm the accuracy of the estimation method of the present invention, ground resistance is estimated by the estimation method of the present invention.
A test was conducted in which a rod-like ground electrode was actually buried to measure the ground resistance. The results are shown in Examples 1 to 4.

【0064】〔実施例1〕 測定地:山形県大蔵村 棒状接地電極の直径D=0.056 〔m〕(C=5.20)Example 1 Measurement location: Okura Village, Yamagata Prefecture Diameter of rod-shaped ground electrode D = 0.056 [m] (C = 5.20)

【0065】[0065]

【表1】 [Table 1]

【0066】この結果によれば、10Ω以下の接地抵抗を
得るためには、棒状接地電極の埋設深さをほぼ70mにす
ればよいと予測できることが分かる。
According to this result, it can be predicted that the buried depth of the rod-shaped ground electrode should be approximately 70 m in order to obtain the ground resistance of 10 Ω or less.

【0067】〔実施例2〕 測定地:山形県長井市 棒状接地電極の直径D=0.056 〔m〕(C=5.20)Example 2 Measurement location: Nagai City, Yamagata Prefecture Diameter of rod-shaped ground electrode D = 0.056 [m] (C = 5.20)

【0068】[0068]

【表2】 [Table 2]

【0069】この結果によれば、10Ω以下の接地抵抗を
得るためには、棒状接地電極の埋設深さをほぼ90mにす
ればよいと予測できることが分かる。
According to these results, it can be predicted that the buried depth of the rod-shaped ground electrode should be about 90 m in order to obtain the ground resistance of 10 Ω or less.

【0070】〔実施例3〕 測定地:栃木県那須町 棒状接地電極の直径D=0.0405〔m〕(C=5.50)[Example 3] Measurement location: Nasu Town, Tochigi Prefecture Diameter of rod-shaped ground electrode D = 0.0405 [m] (C = 5.50)

【0071】[0071]

【表3】 [Table 3]

【0072】この結果によれば、10Ω以下の接地抵抗を
得るためには、棒状接地電極の埋設深さをほぼ40mにす
ればよいと予測できることが分かる。
According to the result, it can be understood that it is expected that the ground depth of the rod-shaped ground electrode should be approximately 40 m in order to obtain the ground resistance of 10Ω or less.

【0073】〔実施例4〕 測定地:北海道千歳市 棒状接地電極の直径D=0.0405〔m〕(C=5.50)Example 4 Measurement location: Chitose City, Hokkaido Diameter of rod-shaped ground electrode D = 0.0405 [m] (C = 5.50)

【0074】[0074]

【表4】 [Table 4]

【0075】この結果によれば、10Ω以下の接地抵抗を
得るためには、棒状接地電極の埋設深さをほぼ40mにす
ればよいと予測できることが分かる。
According to the result, it can be understood that it is expected that the ground depth of the rod-shaped ground electrode should be set to approximately 40 m in order to obtain the ground resistance of 10 Ω or less.

【0076】以上の各実施例では、 Wennerの4電極法により、電極間隔aを段階
的に変化させて、それぞれの電極間隔aにおけるV/I
の値を測定し、 それぞれのV/Iの値に棒状接地電極の直径により
定まる定数Cを掛けて推定抵抗値を求め、 それぞれの電極間隔aにおける推定抵抗値を、棒状
接地電極をそれぞれの電極間隔aに相当する深さに埋設
したときの接地抵抗と推定する、 という方法を採用した。
In each of the above embodiments, the electrode spacing a is changed stepwise by the Wenner four-electrode method to obtain V / I at each electrode spacing a.
Value is calculated, and each V / I value is multiplied by a constant C determined by the diameter of the rod-shaped ground electrode to obtain an estimated resistance value. The estimated resistance value at each electrode interval a is calculated by using the rod-shaped ground electrode for each electrode. A method of estimating the ground resistance when buried at a depth corresponding to the distance a was adopted.

【0077】しかし通常の場合は測定に入る前に目標と
する接地抵抗(例えば10Ω以下)が分かっているので、
本発明は、 目標とする接地抵抗を棒状接地電極の直径により定
まる定数Cで割って基準値を求め、 Wennerの4電極法により、電極間隔aを段階
的に変化させて、それぞれの電極間隔aにおけるV/I
の値を測定し、 ある電極間隔aで測定したV/Iの値が前記基準値
と同程度になったときに、棒状接地電極をその電極間隔
aに相当する深さに垂直に埋設すると、目標とする接地
抵抗と同程度の接地抵抗が得られると推定する、 という方法で実施することも可能である。
However, in a normal case, the target ground resistance (for example, 10Ω or less) is known before starting the measurement.
According to the present invention, a target ground resistance is divided by a constant C determined by the diameter of a rod-shaped ground electrode to obtain a reference value, and the electrode spacing a is changed stepwise by the Wenner four-electrode method to obtain each electrode spacing a. V / I
When the value of V / I measured at a certain electrode interval a is substantially equal to the reference value, the rod-shaped ground electrode is buried vertically at a depth corresponding to the electrode interval a. It is also possible to carry out the method of estimating that a ground resistance similar to the target ground resistance can be obtained.

【0078】また前記各実施例に近い方法であるが、本
発明は、 目標とする接地抵抗を定め、 Wennerの4電極法により、電極間隔aを段階
的に変化させて、それぞれの電極間隔aにおけるV/I
の値を測定し、 それぞれのV/Iの値に棒状接地電極の直径により
定まる定数Cを掛けて推定抵抗値を求め、 ある電極間隔aで得られた推定抵抗値が目標とする
接地抵抗と同程度になったときに、棒状接地電極をその
電極間隔aに相当する深さに垂直に埋設すると、目標と
する接地抵抗と同程度の接地抵抗が得られると推定す
る、 という方法で実施することも可能である。
Although the method is similar to that of each of the above-described embodiments, the present invention sets a target ground resistance and changes the electrode spacing a stepwise by the Wenner's four-electrode method to obtain each electrode spacing a. V / I
Value is measured, and the estimated resistance value is obtained by multiplying each V / I value by a constant C determined by the diameter of the rod-shaped ground electrode, and the estimated resistance value obtained at a certain electrode interval a is equal to the target ground resistance. It is presumed that if the rod-shaped ground electrodes are vertically embedded at a depth corresponding to the electrode spacing a when the same level is reached, a ground resistance equivalent to the target ground resistance is obtained. It is also possible.

【0079】[0079]

【発明の効果】以上説明したように本発明によれば、そ
の土地での棒状接地電極の埋設深さに対応する接地抵抗
を推定することができるので、目標とする接地抵抗が決
まれば、その接地抵抗を得るための棒状接地電極の埋設
深さを推定することが可能となる。したがって接地工事
にあたり、工事費や工事期間の予定を立てることが可能
となり、接地工事を計画的に行うことができる利点があ
る。
As described above, according to the present invention, it is possible to estimate the ground resistance corresponding to the burial depth of the rod-shaped ground electrode on the land. It is possible to estimate the burial depth of the bar-shaped ground electrode for obtaining the ground resistance. Therefore, it is possible to plan the construction cost and the construction period for the grounding work, and there is an advantage that the grounding work can be carried out systematically.

【図面の簡単な説明】[Brief description of drawings]

【図1】 大地の比抵抗が一様な場合のWennerの
4電極法を示す説明図。
FIG. 1 is an explanatory diagram showing a Wenner four-electrode method in the case where the resistivity of the ground is uniform.

【図2】 (イ)は棒状接地電極の埋設状態を示す説明
図、(ロ)は接地抵抗の定義を示す説明図。
FIGS. 2A and 2B are explanatory diagrams illustrating a buried state of a rod-shaped ground electrode, and FIG. 2B is an explanatory diagram illustrating a definition of a ground resistance.

【図3】 2層構造の大地で地表面の点電流源Cから電
流を流したときのP点の電位を示す説明図。
FIG. 3 is an explanatory diagram showing a potential at a point P when a current is supplied from a point current source C on the ground surface in a ground having a two-layer structure.

【図4】 2層構造の大地を仮定した場合のWenne
rの4電極法を示す説明図。
FIG. 4 shows Wenne assuming a two-layered ground.
FIG. 4 is an explanatory view showing a four-electrode method of r.

【図5】 各種のK値における、nとSの関係を示すグ
ラフ。
FIG. 5 is a graph showing the relationship between n and S at various K values.

【図6】 KとS1 、S、(S1 −S)との関係を示す
グラフ。
FIG. 6 is a graph showing the relationship between K and S 1 , S, (S 1 −S).

【符号の説明】[Explanation of symbols]

1:棒状接地電極 L:棒状接地電極の長さ D:棒状接地電極の直径 t:地表面から棒状接地電極の上端までの深さ 1: Rod-shaped ground electrode L: Length of rod-shaped ground electrode D: Diameter of rod-shaped ground electrode t: Depth from ground surface to upper end of rod-shaped ground electrode

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 Wennerの4電極法により、電極
間隔aを段階的に変化させて、それぞれの電極間隔aに
おけるV/I(電位差/電流)の値を測定し、 それぞれのV/Iの値に棒状接地電極の直径により
定まる定数Cを掛けて推定抵抗値を求め、 それぞれの電極間隔aにおける推定抵抗値を、棒状
接地電極をそれぞれの電極間隔aに相当する深さに埋設
したときの接地抵抗と推定する、 ことを特徴とする棒状接地電極の埋設深さに対応する接
地抵抗の推定方法。
1. The Wenner four-electrode method is used to measure the value of V / I (potential difference / current) at each electrode interval a by gradually changing the electrode interval a and measuring the respective V / I values. Is multiplied by a constant C determined by the diameter of the rod-shaped ground electrode to obtain an estimated resistance value, and the estimated resistance value at each electrode interval a is grounded when the rod-shaped ground electrode is buried at a depth corresponding to each electrode interval a. A method for estimating the ground resistance corresponding to the burial depth of the rod-shaped ground electrode, characterized in that the resistance is estimated.
【請求項2】 目標とする接地抵抗を棒状接地電極の
直径により定まる定数Cで割って基準値を求め、 Wennerの4電極法により、電極間隔aを段階
的に変化させて、それぞれの電極間隔aにおけるV/I
の値を測定し、 ある電極間隔aで測定したV/Iの値が前記基準値
と同程度になったときに、棒状接地電極をその電極間隔
aに相当する深さに垂直に埋設すると、目標とする接地
抵抗と同程度の接地抵抗が得られると推定する、 ことを特徴とする棒状接地電極の埋設深さに対応する接
地抵抗の推定方法。
2. A reference value is obtained by dividing a target ground resistance by a constant C determined by the diameter of a rod-shaped ground electrode. The electrode distance a is changed stepwise by a Wenner's four-electrode method. V / I at a
Is measured, and when the V / I value measured at a certain electrode spacing a becomes approximately the same as the reference value, if the rod-shaped ground electrode is vertically embedded at a depth corresponding to the electrode spacing a, A method of estimating the ground resistance corresponding to the burial depth of the rod-shaped ground electrode, characterized in that it is estimated that a ground resistance equivalent to the target ground resistance can be obtained.
【請求項3】 目標とする接地抵抗を定め、 Wennerの4電極法により、電極間隔aを段階
的に変化させて、それぞれの電極間隔aにおけるV/I
の値を測定し、 それぞれのV/Iの値に棒状接地電極の直径により
定まる定数Cを掛けて推定抵抗値を求め、 ある電極間隔aで得られた推定抵抗値が目標とする
接地抵抗と同程度になったときに、棒状接地電極をその
電極間隔aに相当する深さに垂直に埋設すると、目標と
する接地抵抗と同程度の接地抵抗が得られると推定す
る、 ことを特徴とする棒状接地電極の埋設深さに対応する接
地抵抗の推定方法。
3. A target grounding resistance is set, and the electrode spacing a is changed stepwise by the Wenner four-electrode method to obtain V / I at each electrode spacing a.
Value is measured, and the estimated resistance value is obtained by multiplying each V / I value by a constant C determined by the diameter of the rod-shaped ground electrode, and the estimated resistance value obtained at a certain electrode interval a is equal to the target ground resistance. It is presumed that if the rod-shaped ground electrodes are vertically embedded at a depth corresponding to the electrode spacing a when the same level is reached, a ground resistance equivalent to the target ground resistance can be obtained. A method for estimating the ground resistance corresponding to the buried depth of the rod-shaped ground electrode.
【請求項4】棒状接地電極の直径により定まる定数Cの
値は、C=(L1 +t)/1.41(ただし、L1 は半径1
〔m〕の半球電極と同じ接地抵抗になる直径Dの棒状接
地電極の長さ、tは地表面から棒状接地電極の上端まで
の深さ)であることを特徴とする請求項1、2または3
記載の接地抵抗の推定方法。
4. The value of a constant C determined by the diameter of the rod-shaped ground electrode is C = (L 1 + t) /1.41 (where L 1 is a radius of 1).
3. The length of a rod-shaped ground electrode having a diameter D which provides the same ground resistance as the [m] hemispherical electrode, and t is the depth from the ground surface to the upper end of the rod-shaped ground electrode. 3
Method of estimating the earth resistance described.
JP18518794A 1994-07-15 1994-07-15 Estimation method of ground resistance corresponding to burial depth of rod-shaped ground electrode Expired - Lifetime JP2588370B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18518794A JP2588370B2 (en) 1994-07-15 1994-07-15 Estimation method of ground resistance corresponding to burial depth of rod-shaped ground electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18518794A JP2588370B2 (en) 1994-07-15 1994-07-15 Estimation method of ground resistance corresponding to burial depth of rod-shaped ground electrode

Publications (2)

Publication Number Publication Date
JPH0829464A true JPH0829464A (en) 1996-02-02
JP2588370B2 JP2588370B2 (en) 1997-03-05

Family

ID=16166378

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18518794A Expired - Lifetime JP2588370B2 (en) 1994-07-15 1994-07-15 Estimation method of ground resistance corresponding to burial depth of rod-shaped ground electrode

Country Status (1)

Country Link
JP (1) JP2588370B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100687098B1 (en) * 2005-02-24 2007-02-27 제주대학교 산학협력단 remote measuring system for earth resistance
CN103941096A (en) * 2014-04-23 2014-07-23 国家电网公司 Earth resistivity measurement method for eliminating mutual inductance effect based on induced polarization effect
JP2014153220A (en) * 2013-02-08 2014-08-25 Hioki Ee Corp Ground resistance meter, ground resistance measuring method, and ground resistance measuring program
JP2014163800A (en) * 2013-02-25 2014-09-08 Hioki Ee Corp Ground resistance measurement support device, ground resistance measurement support method, and ground resistance measurement support program
JP2017006893A (en) * 2015-06-16 2017-01-12 大協株式会社 Global environmental protection electrostatic induction method
CN107748293A (en) * 2017-10-18 2018-03-02 国家电网公司 Ground wire, test system and method
US10476406B2 (en) 2017-09-16 2019-11-12 Daikyo Corporation Electrostatic induction system for global environmental conservation

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112213564B (en) * 2020-09-25 2021-09-03 南方电网科学研究院有限责任公司 Railway soil resistivity measurement method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100687098B1 (en) * 2005-02-24 2007-02-27 제주대학교 산학협력단 remote measuring system for earth resistance
JP2014153220A (en) * 2013-02-08 2014-08-25 Hioki Ee Corp Ground resistance meter, ground resistance measuring method, and ground resistance measuring program
JP2014163800A (en) * 2013-02-25 2014-09-08 Hioki Ee Corp Ground resistance measurement support device, ground resistance measurement support method, and ground resistance measurement support program
CN103941096A (en) * 2014-04-23 2014-07-23 国家电网公司 Earth resistivity measurement method for eliminating mutual inductance effect based on induced polarization effect
JP2017006893A (en) * 2015-06-16 2017-01-12 大協株式会社 Global environmental protection electrostatic induction method
US10476406B2 (en) 2017-09-16 2019-11-12 Daikyo Corporation Electrostatic induction system for global environmental conservation
CN107748293A (en) * 2017-10-18 2018-03-02 国家电网公司 Ground wire, test system and method

Also Published As

Publication number Publication date
JP2588370B2 (en) 1997-03-05

Similar Documents

Publication Publication Date Title
RU2302019C1 (en) Method for electrical logging of cased wells
RU2511072C2 (en) Device for logging measurements of microresistance of anisotropic medium with application of monopolar injecting current electrode
RU2155974C2 (en) Resistivity logging system
JP2588370B2 (en) Estimation method of ground resistance corresponding to burial depth of rod-shaped ground electrode
EA004174B1 (en) A method and apparatus for determining the resistivity of a formation through which a cased well passes
EA003658B1 (en) Method and apparatus for determining the resistivity of a formation surrounding a cased well
WO2011071412A2 (en) Electrical cased-hole logging method
RU2248019C2 (en) Method of measuring column diameter
DE60003308D1 (en) METHOD FOR DETERMINING A RESISTANCE OF A FORMATION THROUGH WHICH A PIPED HOLE DRIVES
US7260478B2 (en) Method and device for determining the resistivity in a geological formation crossed by a cased well
US20010026156A1 (en) Method of determining the resistivity of a formation around a cased well
US6353322B1 (en) Method for automatically calibrating resistivity well logs for effects of change in wellbore diameter and circuit drift
US6894500B2 (en) Method and apparatus for determining the resistivity of a formation surrounding a cased well
EP2317344A1 (en) Method and system to monitor a hydrocarbon reservoir
Carpenter Jr et al. Designing for a low resistance earth interface (grounding)
RU2691920C1 (en) Method and device for electric logging of cased wells
US7064551B2 (en) Process for determining the resistivity of a formation through which a well equipped with a casing passes
RU2402047C1 (en) Measurement procedure at lateral logging of wells
JP2011133301A (en) Method for surveying bottom depth of underground base structure
JP2007285728A (en) Stratum mise-a-la-masse method and its auxiliary equipment
RU2172006C1 (en) Method for electric logging of cased wells
JPH1152062A (en) Method for analyzing underground specific resistance structure by double reciprocal boundary element method
SU1177466A1 (en) Method of detecting faults in fluid-tightness of flushed non-conductive casing strings in well
RU2190243C1 (en) Method of lateral electric sounding
JP2016085048A (en) Water level examination method for underground water