JPH0829358A - Product inspection method by image processing - Google Patents

Product inspection method by image processing

Info

Publication number
JPH0829358A
JPH0829358A JP16656394A JP16656394A JPH0829358A JP H0829358 A JPH0829358 A JP H0829358A JP 16656394 A JP16656394 A JP 16656394A JP 16656394 A JP16656394 A JP 16656394A JP H0829358 A JPH0829358 A JP H0829358A
Authority
JP
Japan
Prior art keywords
product
inspection
inspection product
image
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP16656394A
Other languages
Japanese (ja)
Inventor
Mikio Ikuta
幹雄 生田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP16656394A priority Critical patent/JPH0829358A/en
Publication of JPH0829358A publication Critical patent/JPH0829358A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To detect a three-dimensional defect by processing an image obtained by photographing an inspection product with one single-lens camera and detecting the three-dimensional shape of the inspection product. CONSTITUTION:The image of an inspection product 1 carried by a belt conveyor 2 is shot by one single-lens camera 3. An image processing part 6 obtains the three-dimensional shape of the inspection product 1 by processing an image at a time (t) and that at a time (t+1). Then, the three-dimensional defect of the inspection product is detected by comparing the three-dimensional shape of the inspection product 1 with that of a conforming product.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は画像処理による製品検査
方法に関し、一台の単眼カメラにより得た画像を処理し
て製品検査を行う方法において、三次元の欠陥を検出で
きるように工夫したものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for inspecting a product by image processing, which is a method for inspecting a product by processing an image obtained by a single monocular camera so as to detect a three-dimensional defect. Is.

【0002】[0002]

【従来の技術】ラインに載って流れてくる製品の検査を
行うために、画像処理装置が利用されている。この画像
処理装置では、カメラにより製品を撮影し、撮影して得
た画像信号をA/Dコンバータにより量子化し、量子化
した画像情報(デジタル画像情報)をメモリに記憶す
る。そしてコンピュータは、メモリに記憶されているデ
ジタル画像情報を読み出し、信号処理(後述)をして製
品の欠陥検出をする。
2. Description of the Related Art An image processing apparatus is used to inspect products flowing on a line. In this image processing device, a product is photographed by a camera, an image signal obtained by photographing is quantized by an A / D converter, and the quantized image information (digital image information) is stored in a memory. Then, the computer reads the digital image information stored in the memory and performs signal processing (described later) to detect a defect in the product.

【0003】製品の欠陥検出のためコンピュータで行う
信号処理手順は次のようにして行う。なお、ここでは画
像信号は一台の単眼カメラで撮影して得た画像信号であ
る。
A signal processing procedure performed by a computer for detecting a defect of a product is performed as follows. Here, the image signal is an image signal obtained by shooting with a single monocular camera.

【0004】 まず検査製品を撮影し・デジタル化し
・メモリしたデジタル画像情報から、製品の輪郭(エッ
ジ)を求める。輪郭は、デジタル画像情報に対して、差
分フィルタ処理と閾値処理をすることによって得られ
る。また画像の輪郭を追跡していくことにより、製品に
対応する閉領域が得られる。 予め、正常な製品を撮影し画像処理して得た輪郭
(これを「基準輪郭」と称す)をメモリしておく。この
基準輪郭と、検査製品の輪郭(これを「検査輪郭」と称
す)とのマッチング(比較検査)をとる。 マッチングの結果、基準輪郭と検査輪郭との差が無
ければ合検品と判定し、差があるときには欠陥品と判定
する。
First, an inspection product is photographed, digitized, and the contour of the product is obtained from the digital image information stored in the memory. The contour is obtained by subjecting the digital image information to differential filtering and thresholding. By tracking the contour of the image, a closed region corresponding to the product can be obtained. In advance, a contour obtained by photographing a normal product and performing image processing (this is referred to as a “reference contour”) is stored in a memory. Matching (comparative inspection) is performed between the reference contour and the contour of the inspection product (this is referred to as “inspection contour”). As a result of the matching, if there is no difference between the reference contour and the inspection contour, it is determined as a good inspection product, and if there is a difference, it is determined as a defective product.

【0005】[0005]

【発明が解決しようとする課題】ところで一台の単眼カ
メラで撮影した画像信号を画像処理をすることにより製
品欠陥を検出する従来技術では、基準輪郭と検査輪郭と
のマッチングをとるだけで欠陥検出をしているため、製
品の「へこみ」や「出っぱり」等の三次元の欠陥を検出
することができなかった。
In the prior art of detecting a product defect by performing image processing on an image signal taken by a single monocular camera, the defect is detected only by matching the reference contour and the inspection contour. Therefore, it was not possible to detect a three-dimensional defect such as "dent" or "protrusion" of the product.

【0006】本発明は、上記従来技術に鑑み、一台の単
眼カメラで撮影して得た画像信号を画像処理して製品検
査を行う方法において、三次元の欠陥を検出することの
できる画像処理による製品検査方法を提供することを目
的とする。
In view of the above-mentioned conventional technique, the present invention is a method of performing image processing on an image signal obtained by shooting with a single monocular camera to perform product inspection, and image processing capable of detecting a three-dimensional defect. The purpose is to provide a product inspection method according to.

【0007】[0007]

【課題を解決するための手段】上記課題を解決する本発
明の構成は、一方向に移動している検査製品を、一台の
単眼のカメラで撮影し、撮影して前記カメラの投影面上
に形成された画像を処理することにより検査製品の良否
を判定する画像処理による製品検査方法であって、時刻
(t) における検査製品の投影面上の検査製品画像と、時
刻(t+1) における検査製品の投影面上の検査製品画像と
から求めた動きベクトルと、時刻(t) における検査製品
の三次元座標と、検査製品画像の投影面上での二次元座
標との関係式と、時刻(t) における検査製品の三次元座
標と、時刻(t+1) における検査製品の三次元座標との関
係式と、時刻(t+1) における検査製品の三次元座標と、
検査製品画像の投影面上での二次元座標との関係式とか
ら、検査製品の三次元座標を求め、この求めた三次元座
標の値と、あらかじめ設定した三次元座標値とを比較す
ることにより検査製品の良否を判定することを特徴とす
る。
The structure of the present invention for solving the above-mentioned problems is such that an inspection product moving in one direction is photographed by a single monocular camera, and the photograph is taken on the projection surface of the camera. It is a product inspection method by image processing that judges the quality of the inspection product by processing the image formed on the
The motion vector obtained from the inspection product image on the projection surface of the inspection product at (t) and the inspection product image on the projection surface of the inspection product at time (t + 1), and the cubic of the inspection product at time (t). The relational expression between the original coordinates and the two-dimensional coordinates on the projection plane of the inspection product image, the three-dimensional coordinates of the inspection product at time (t), and the three-dimensional coordinates of the inspection product at time (t + 1) The relational expression and the three-dimensional coordinates of the inspection product at time (t + 1),
Obtain the three-dimensional coordinates of the inspection product from the relational expression with the two-dimensional coordinates on the projection plane of the inspection product image, and compare the obtained three-dimensional coordinate value with the preset three-dimensional coordinate value. The quality of the inspected product is determined by.

【0008】また上記課題を解決する本発明の構成は、
水平面内にx,yを鉛直方向にz軸を規定した三次元座
標内で、x軸方向に速度vで移動している検査製品を、
前記x,y軸に合わせて水平面内にX,Y軸を規定し、
光軸をz軸に投影面をX,Y軸に合わせた一台の単眼カ
メラで撮影し、撮影した画像を処理することにより検査
製品の良否を判定する画像処理による製品検査装置であ
って、時刻(t) における検査製品の投影面上の検査製品
画像と、時刻(t+1) における検査製品の投影面上の検査
製品画像とから求めた動きベクトルVm と、時刻(t) に
おける検査製品の三次元座標と、検査製品画像の投影面
上での二次元座標との関係式(1)と、時刻(t) におけ
る検査製品の三次元座標と、時刻(t+1) における検査製
品の三次元座標との関係式(3)(4)(5)と、時刻
(t+1) における検査製品の三次元座標と、検査製品画像
の投影面上での二次元座標との関係式(8)(9)とか
ら、関係式(10)(11)(12)で示す検査製品の
三次元座標xi (t) ,yi (t) ,zi (t) を求め、この
求めた三次元座標の値と、あらかじめ設定した三次元座
標値とを比較することにより検査製品の良否を判定する
ことを特徴とする。
Further, the structure of the present invention for solving the above problems is as follows.
In a three-dimensional coordinate system in which the x-axis is defined in the vertical direction and the z-axis in the horizontal direction, the inspection product moving at the speed v in the x-axis direction,
The X and Y axes are defined in the horizontal plane according to the x and y axes,
A product inspection apparatus by image processing, wherein a single monocular camera having an optical axis on the z axis and a projection surface on the X and Y axes is imaged, and the quality of the inspected product is determined by processing the imaged image. The motion vector V m obtained from the inspection product image on the projection surface of the inspection product at time (t) and the inspection product image on the projection surface of the inspection product at time (t + 1), and the inspection at time (t) Relational expression (1) between the 3D coordinates of the product and the 2D coordinates on the projection plane of the inspection product image, the 3D coordinates of the inspection product at time (t), and the inspection product at the time (t + 1) Relational expressions (3), (4), and (5) with the three-dimensional coordinates of
From the relational expressions (8) and (9) between the three-dimensional coordinates of the inspection product at (t + 1) and the two-dimensional coordinates of the inspection product image on the projection surface, the relational expressions (10), (11) and (12) are obtained. The three-dimensional coordinates x i (t), y i (t), and z i (t) of the inspection product shown in are obtained, and the obtained three-dimensional coordinate values are compared with preset three-dimensional coordinate values. The quality of the inspected product is determined by.

【数2】 [Equation 2]

【0009】[0009]

【作用】本発明では1台の単眼カメラで撮影して得た、
時刻(t) の検査製品画像と時刻(t+1) の検査製品画像を
画像処理することにより、検査製品の三次元形状を検出
でき、検査製品の三次元形状と良品の三次元形状を比較
することにより、検査製品の三次元欠陥の検出ができ
る。
In the present invention, the image is obtained by photographing with one monocular camera,
By processing the inspection product image at time (t) and the inspection product image at time (t + 1), the 3D shape of the inspection product can be detected, and the 3D shape of the inspection product and the 3D shape of the non-defective product can be compared. By doing so, it is possible to detect a three-dimensional defect in the inspection product.

【0010】[0010]

【実施例】以下に本発明の実施例を図面に基づき詳細に
説明する。
Embodiments of the present invention will be described below in detail with reference to the drawings.

【0011】図1は本発明の実施例のシステム構成を示
す。同図に示すように検査製品1はベルトコンベア2に
載せられて、矢印A方向に搬送される。単眼の一台のカ
メラ3は、一定速度vで動くベルトコンベア2の上方に
配置されており、検査製品1を上方から撮影して画像信
号Eを出力する。画像信号Eは、A/Dコンバータ4に
より量子化されてデジタル画像信号eとなり、このデジ
タル画像信号eはメモリ5に記憶される。画像信号処理
部6は、記憶されたデジタル画像信号eを読み出し、次
に述べる信号処理をして、検査製品1の欠陥(二次元欠
陥のみならず三次元欠陥も含む)を検出する。そして処
理画像はモニタ7に映し出される。
FIG. 1 shows the system configuration of an embodiment of the present invention. As shown in the figure, the inspection product 1 is placed on the belt conveyor 2 and conveyed in the direction of arrow A. The single-lens single camera 3 is arranged above the belt conveyor 2 which moves at a constant speed v, photographs the inspection product 1 from above, and outputs an image signal E. The image signal E is quantized into a digital image signal e by the A / D converter 4, and the digital image signal e is stored in the memory 5. The image signal processing unit 6 reads the stored digital image signal e and performs the signal processing described below to detect defects (including not only two-dimensional defects but also three-dimensional defects) of the inspection product 1. Then, the processed image is displayed on the monitor 7.

【0012】なお三次元の座標軸x,y,zは、図1中
に示す方向にとった。つまり検査製品1の搬送方向Aと
x方向とを同じにし、水平面内でx方向と直交する方向
をy方向とし、カメラ3の光軸方向(鉛直方向)をz方
向とした。
The three-dimensional coordinate axes x, y and z are taken in the directions shown in FIG. That is, the conveyance direction A of the inspection product 1 is the same as the x direction, the direction orthogonal to the x direction in the horizontal plane is the y direction, and the optical axis direction (vertical direction) of the camera 3 is the z direction.

【0013】次に画像信号処理部6による信号処理手順
を、図2〜図3を参照して説明する。図2及び図3は処
理画像を示し、両図の中で示す投影面(Image Plan
e)S I とは図4に示すように、カメラの焦点Fから焦
点距離fだけ離れた位置にあり、xy面に対し平行な面
である。なお、三次元の座標軸は小文字のx,y,zで
示し、投影面SI 上の座標軸を大文字のX,Yで示す。
Next, a signal processing procedure by the image signal processing unit 6
Will be described with reference to FIGS. 2 and 3 are
The projection image (Image Plan) shown in both figures.
e) S IIs the focus from the camera's focus F as shown in FIG.
A plane that is parallel to the xy plane at a position separated by a point distance f
Is. In addition, the three-dimensional coordinate axes are lower case x, y, z
Shown, projection plane SIThe upper coordinate axes are indicated by capital letters X and Y.

【0014】図2及び図3において、1(t) は時刻tに
おける検査製品、1(t+1) は時刻(t+1) における検査製
品、Fはカメラ3の焦点、fは焦点距離を、それぞれ示
す。
2 and 3, 1 (t) is the inspection product at time t, 1 (t + 1) is the inspection product at time (t + 1), F is the focus of the camera 3, and f is the focal length. , Respectively.

【0015】画像信号処理部6では、まず、時刻tにお
ける画像と、時刻t+1における画像から動きベクトル
m を求める。つまり図2に示すように、時刻tにおい
て検査製品1(t) の任意の点qが投影面SI 上に投影さ
れた点をQ(t) 、時刻t+1において検査製品1(t+1)
の任意の点qが投影面SI 上に投影された点をQ(t+1)
とすると、点Q(t) を始点とし点Q(t+1) を終点とする
ベクトルが動きベクトルVm となる。この動きベクトル
m は、時刻tでの画像と、時刻t+1での画像との間
で、対応する多数の各点について求める。
The image signal processing unit 6 first obtains a motion vector V m from the image at time t and the image at time t + 1. That is, as shown in FIG. 2, a point q at which an arbitrary point q of the inspection product 1 (t) is projected on the projection surface S I at time t is Q (t), and at time t + 1, the inspection product 1 (t + 1) is detected.
Q (t + 1) is a point on the projection plane S I
Then, the vector having the point Q (t) as the starting point and the point Q (t + 1) as the ending point becomes the motion vector V m . This motion vector V m is obtained for each of a large number of corresponding points between the image at time t and the image at time t + 1.

【0016】次に時刻tと時刻t+1の画像に対し、差
分フィルタ処理と閾値処理をすることにより、検査製品
1(t) , 1(t+1) に対応する輪郭を得る。そして検査製
品画像を示す輪郭で囲まれた閉領域からスタートする動
きベクトル(検査製品1の特徴点から得た動きベクト
ル)は残し、この閉領域の外側からスタートする動きベ
クトル(ベルトコンベア2の特徴点から得た動きベクト
ル)を消去する。
Next, the difference filter processing and the threshold processing are performed on the images at time t and time t + 1 to obtain contours corresponding to the inspection products 1 (t) and 1 (t + 1). Then, the motion vector starting from the closed area surrounded by the contour showing the inspection product image (the motion vector obtained from the characteristic point of the inspection product 1) is left, and the motion vector starting from the outside of this closed area (the characteristic of the belt conveyor 2). The motion vector obtained from the point) is deleted.

【0017】図3に示すように、検査製品1のx軸方
向、y軸方向、z軸方向の移動量をT x ,Ty ,Tz
し、カメラ3の焦点距離をfとし、時刻tにおける検査
製品1(t) 内の特徴点qi (t) の三次元座標を(x
i (t) ,yi (t) ,zi (t) )とし、点qi (t) の投影
面SI 上の点Qi (t) の座標を(Xi (t) ,Yi (t) )
とすると、点qi (t) と点Qi (t) との間には次式
(1)の関係が成立する。なお特徴点は多数あり、その
1つを代表してqi (t) で示している。
As shown in FIG. 3, the x-axis direction of the inspection product 1
Direction, y-axis direction, z-axis movement amount is T x, Ty, TzWhen
Then, the focal length of the camera 3 is f, and the inspection at time t
Feature point q in product 1 (t)iLet the three-dimensional coordinates of (t) be (x
i(t), yi(t), zi(t)) and the point qiprojection of (t)
Surface SIUpper point QiSet the coordinates of (t) to (Xi(t), Yi(t))
Then, the point qi(t) and point Qibetween (t) and
The relationship of (1) is established. There are many feature points,
Q on behalf of oneiIt is indicated by (t).

【0018】[0018]

【数3】 (Equation 3)

【0019】更に時刻t+1における検査製品1(t+1)
内の特徴点qi (t+1) の三次元座標をxi (t+1) ,yi
(t+1) ,zi (t+1) とすると、点qi (t) と点qi (t+
1) との間には次式(2)の関係が成立する。
Further, the inspection product 1 (t + 1) at time t + 1
The three-dimensional coordinates of the feature point q i (t + 1) in x i (t + 1), y i
If (t + 1) and z i (t + 1), then the point q i (t) and the point q i (t +
The relation of the following equation (2) is established between 1) and.

【0020】[0020]

【数4】 [Equation 4]

【0021】ベルトコンベア1の移動速度はvであり、
また図1に示すようにx軸,y軸,z軸の方向を決めた
のでTx =v,Ty =0,Tz =0となる。したがって
次式(3)〜(5)が成立する。
The moving speed of the belt conveyor 1 is v,
Since the directions of the x-axis, the y-axis, and the z-axis are determined as shown in FIG. 1, T x = v, T y = 0, and T z = 0. Therefore, the following expressions (3) to (5) are established.

【0022】[0022]

【数5】 (Equation 5)

【0023】上述した式(2)〜(5)から次式(6)
〜(9)で示す連立方程式が得られる。
From the above equations (2) to (5), the following equation (6)
The simultaneous equations shown by (9) are obtained.

【0024】[0024]

【数6】 (Equation 6)

【0025】上式(6)〜(9)で示す連立方程式を解
くことによって特徴点qi (t) の三次元座標xi (t) ,
i (t) ,zi (t) を、次式(10)〜(12)で示すよう
に得ることができる。
The above equation (6) to the three-dimensional coordinates x i (t) of the feature point q i by solving the simultaneous equations shown in (9) (t),
y i (t) and z i (t) can be obtained as shown in the following equations (10) to (12).

【0026】[0026]

【数7】 (Equation 7)

【0027】なお式(10)(11)(12)において
i (t+1) −Xi (t) は、前述した動きベクトルVm
ある。
In the equations (10), (11) and (12), X i (t + 1) −X i (t) is the above-mentioned motion vector V m .

【0028】このようにして検査製品1の各特徴点qi
の三次元座標を計算してこれを検査三次元座標とする。
In this way, each feature point q i of the inspection product 1
The three-dimensional coordinate of is calculated and used as the inspection three-dimensional coordinate.

【0029】一方、欠陥のない正常な検査製品に対して
も、上述した処理をして各特徴点の三次元座標を予め求
めておく。この三次元座標を基準三次元座標として記憶
しておく。
On the other hand, even for a normal inspection product having no defect, the above-described processing is performed to obtain the three-dimensional coordinates of each feature point in advance. This three-dimensional coordinate is stored as a reference three-dimensional coordinate.

【0030】そして基準三次元座標と検査三次元座標と
を比較し、両者の差がなければ良品であると判定し、両
者に差があるときには欠陥があると判定する。
Then, the reference three-dimensional coordinates and the inspection three-dimensional coordinates are compared, and if there is no difference between the two, it is determined to be a good product, and if there is a difference between the two, it is determined to be defective.

【0031】[0031]

【発明の効果】以上実施例と共に具体的に説明したよう
に本発明によれば、一台の単眼カメラにより得た異なる
時刻の画像を処理して、検査製品の各点の三次元座標を
求めることができるので、検査製品の各点の三次元座標
と、正常な製品の各点の三次元座標を比較することによ
り、検査製品の三次元欠陥も検出することができる。
According to the present invention as described in detail with reference to the embodiments, the images at different times obtained by one monocular camera are processed to obtain the three-dimensional coordinates of each point of the inspection product. Therefore, by comparing the three-dimensional coordinates of each point of the inspection product with the three-dimensional coordinates of each point of the normal product, the three-dimensional defect of the inspection product can also be detected.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例を示すシステム構成図。FIG. 1 is a system configuration diagram showing an embodiment of the present invention.

【図2】本発明の画像処理状態を示す説明図。FIG. 2 is an explanatory diagram showing an image processing state of the present invention.

【図3】本発明の画像処理状態を示す説明図。FIG. 3 is an explanatory diagram showing an image processing state of the present invention.

【図4】実施例の配置状態を示す構成図。FIG. 4 is a configuration diagram showing an arrangement state of the embodiment.

【符号の説明】[Explanation of symbols]

1 検査製品 2 ベルトコンベア 3 カメラ 4 A/Dコンバータ 5 メモリ 6 画像信号処理部 7 モニタ 1 Inspection Product 2 Belt Conveyor 3 Camera 4 A / D Converter 5 Memory 6 Image Signal Processor 7 Monitor

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 一方向に移動している検査製品を、一台
の単眼のカメラで撮影し、撮影して前記カメラの投影面
上に形成された画像を処理することにより検査製品の良
否を判定する画像処理による製品検査方法であって、 時刻(t) における検査製品の投影面上の検査製品画像
と、時刻(t+1) における検査製品の投影面上の検査製品
画像とから求めた動きベクトルと、 時刻(t) における検査製品の三次元座標と、検査製品画
像の投影面上での二次元座標との関係式と、 時刻(t) における検査製品の三次元座標と、時刻(t+1)
における検査製品の三次元座標との関係式と、 時刻(t+1) における検査製品の三次元座標と、検査製品
画像の投影面上での二次元座標との関係式とから、検査
製品の三次元座標を求め、この求めた三次元座標の値
と、あらかじめ設定した三次元座標値とを比較すること
により検査製品の良否を判定することを特徴とする画像
処理による製品検査方法。
1. An inspection product moving in one direction is photographed by a single monocular camera, and an image formed on the projection surface of the camera is photographed to determine the quality of the inspection product. It is a product inspection method by image processing for determination, which is obtained from the inspection product image on the projection surface of the inspection product at time (t) and the inspection product image on the projection surface of the inspection product at time (t + 1). The relational expression between the motion vector, the three-dimensional coordinates of the inspection product at time (t) and the two-dimensional coordinates of the inspection product image on the projection plane, the three-dimensional coordinates of the inspection product at time (t), and the time ( t + 1)
From the relational expression with the three-dimensional coordinates of the inspection product at, the relational expression between the three-dimensional coordinates of the inspection product at time (t + 1) and the two-dimensional coordinates on the projection plane of the inspection product image, A product inspection method by image processing, characterized in that the quality of an inspection product is determined by obtaining three-dimensional coordinates and comparing the obtained three-dimensional coordinate values with preset three-dimensional coordinate values.
【請求項2】 水平面内にx,yを鉛直方向にz軸を規
定した三次元座標内で、x軸方向に速度vで移動してい
る検査製品を、 前記x,y軸に合わせて水平面内にX,Y軸を規定し、
光軸をz軸に投影面をX,Y軸に合わせた一台の単眼カ
メラで撮影し、 撮影した画像を処理することにより検査製品の良否を判
定する画像処理による製品検査装置であって、 時刻(t) における検査製品の投影面上の検査製品画像
と、時刻(t+1) における検査製品の投影面上の検査製品
画像とから求めた動きベクトルVm と、 時刻(t) における検査製品の三次元座標と、検査製品画
像の投影面上での二次元座標との関係式(1)と、 時刻(t) における検査製品の三次元座標と、時刻(t+1)
における検査製品の三次元座標との関係式(3)(4)
(5)と、 時刻(t+1) における検査製品の三次元座標と、検査製品
画像の投影面上での二次元座標との関係式(8)(9)
とから、関係式(10)(11)(12)で示す検査製
品の三次元座標xi (t) ,yi (t) ,zi (t) を求め、
この求めた三次元座標の値と、あらかじめ設定した三次
元座標値とを比較することにより検査製品の良否を判定
することを特徴とする画像処理による製品検査方法。 【数1】
2. An inspection product which is moving at a speed v in the x-axis direction within a three-dimensional coordinate system in which the x-axis and the z-axis are defined in the vertical direction in the horizontal plane. The X and Y axes are defined in
A product inspection apparatus by image processing, wherein an image is processed by a single monocular camera whose optical axis is z axis and projection plane is aligned with X and Y axes, and the quality of the inspected product is determined by processing the captured image. Motion vector V m obtained from the inspection product image on the projection surface of the inspection product at time (t) and the inspection product image on the projection surface of the inspection product at time (t + 1), and the inspection at time (t) Relational expression (1) between the three-dimensional coordinates of the product and the two-dimensional coordinates of the inspection product image on the projection plane, the three-dimensional coordinates of the inspection product at time (t), and the time (t + 1)
Relations with the three-dimensional coordinates of the inspection product in
(5) and the relational expressions (8) and (9) between the three-dimensional coordinates of the inspection product at the time (t + 1) and the two-dimensional coordinates of the inspection product image on the projection surface.
From, the three-dimensional coordinates x i (t), y i (t) and z i (t) of the inspection product shown by the relational expressions (10), (11) and (12) are obtained,
A product inspection method by image processing, characterized in that the quality of an inspection product is judged by comparing the obtained three-dimensional coordinate value with a preset three-dimensional coordinate value. [Equation 1]
JP16656394A 1994-07-19 1994-07-19 Product inspection method by image processing Withdrawn JPH0829358A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16656394A JPH0829358A (en) 1994-07-19 1994-07-19 Product inspection method by image processing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16656394A JPH0829358A (en) 1994-07-19 1994-07-19 Product inspection method by image processing

Publications (1)

Publication Number Publication Date
JPH0829358A true JPH0829358A (en) 1996-02-02

Family

ID=15833588

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16656394A Withdrawn JPH0829358A (en) 1994-07-19 1994-07-19 Product inspection method by image processing

Country Status (1)

Country Link
JP (1) JPH0829358A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7021107B2 (en) 2002-12-17 2006-04-04 Usui Kokusai Sangyo Kaisha Limited Bending processor of pipe
US7104100B2 (en) 2003-12-15 2006-09-12 Usui Kokusai Sangyo Kaisha Limited Bending device for tube
US9934251B2 (en) 2008-08-08 2018-04-03 Nikon Corporation Search supporting system, search supporting method and search supporting program
CN112014404A (en) * 2020-08-27 2020-12-01 Oppo(重庆)智能科技有限公司 Component detection method, device, system, electronic equipment and storage medium

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7021107B2 (en) 2002-12-17 2006-04-04 Usui Kokusai Sangyo Kaisha Limited Bending processor of pipe
US7104100B2 (en) 2003-12-15 2006-09-12 Usui Kokusai Sangyo Kaisha Limited Bending device for tube
US9934251B2 (en) 2008-08-08 2018-04-03 Nikon Corporation Search supporting system, search supporting method and search supporting program
US10846323B2 (en) 2008-08-08 2020-11-24 Nikon Corporation Search supporting system, search supporting method and search supporting program
US11615135B2 (en) 2008-08-08 2023-03-28 Nikon Corporation Search supporting system, search supporting method and search supporting program
CN112014404A (en) * 2020-08-27 2020-12-01 Oppo(重庆)智能科技有限公司 Component detection method, device, system, electronic equipment and storage medium

Similar Documents

Publication Publication Date Title
JP5480914B2 (en) Point cloud data processing device, point cloud data processing method, and point cloud data processing program
US10745839B1 (en) Unwrinkling systems and methods
JPH1079029A (en) Stereoscopic information detecting method and device therefor
WO2020158726A1 (en) Image processing device, image processing method, and program
JPH0829358A (en) Product inspection method by image processing
JPH0875454A (en) Range finding device
JPS60200141A (en) Detecting method of surface form of specular object
CN108204982A (en) Multi-view image capturing device and multi-view image detecting equipment
JPH05141930A (en) Three-dimensional shape measuring device
CN112710662A (en) Generation method and device, generation system and storage medium
CA2230197C (en) Strand orientation sensing
JP2939577B2 (en) Object recognition method and apparatus
JPH0615236A (en) Evaluating device for visual quality of melon
JPH10208066A (en) Method for extracting edge line of check object and appearance check method using this method
JPS62162175A (en) Stereo visual device
JP2790101B2 (en) Particle aggregation pattern judgment device
WO2022260028A1 (en) Visual inspection device, visual inspection method, image generation device, and image generation method
JP2787149B2 (en) 3D shape recognition device
JP3415868B2 (en) Apparatus for detecting external shape of three-dimensional object
JP2986902B2 (en) Image processing device
CN116724211A (en) Deformation calculation device, deformation measurement device, and deformation calculation method
JPS6228613A (en) Input device for three-dimensional position
JPS62221077A (en) Pattern detector
JPS61193013A (en) Detecting method of fine displacement of surface
CN115507761A (en) Internal thread small diameter measuring method and device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20011002