JPH08292307A - Polarizing prism and its production - Google Patents

Polarizing prism and its production

Info

Publication number
JPH08292307A
JPH08292307A JP9554795A JP9554795A JPH08292307A JP H08292307 A JPH08292307 A JP H08292307A JP 9554795 A JP9554795 A JP 9554795A JP 9554795 A JP9554795 A JP 9554795A JP H08292307 A JPH08292307 A JP H08292307A
Authority
JP
Japan
Prior art keywords
refractive index
prism
prisms
polarizing prism
adhesive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP9554795A
Other languages
Japanese (ja)
Inventor
Daisuke Matsuo
大介 松尾
Hiroaki Kasai
広明 葛西
Akira Inoue
晃 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP9554795A priority Critical patent/JPH08292307A/en
Publication of JPH08292307A publication Critical patent/JPH08292307A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Optical Elements Other Than Lenses (AREA)

Abstract

PURPOSE: To obviate the total reflection in spite of diagonal light at the joint surfaces of plural prisms consisting of double refractive optical crystals having a high refractive index by interposing an adhesive having a high refractive index consisting of a polyimide resin or bromophenyl compd. between the joint surfaces of the prisms. CONSTITUTION: This polarizing prism is formed by joining the plural prisms 1, 2 consisting of the double refractive optical crystals by the adhesive. The adhesive of the polarizing prism having a relation of n1 sinθ>=1.7 when the max. incident angle to be utilized among the incident angle distributions of rays on the joint surfaces is defined as θ and the refractive index of the prism on the incident side as n1 is composed of the polyimide resin or bromophenyl compd. The polyimide resin of such high-refractive index joint layer 5 is high in refractive index and, therefore, even the light from diagonal is not totally reflected. The total reflection does not arise at the joint surfaces of exit surface of LN, the reflection of several % by the refractive index difference arises and, therefore, the prevention of the loss of energy by providing the polarizing prism with antireflection layers 4, 6 is effective.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、複屈折性光学結晶から
なる複数のプリズムを接合してなる偏光プリズムとその
製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a polarizing prism having a plurality of prisms made of a birefringent optical crystal cemented together and a method for manufacturing the same.

【0002】[0002]

【従来の技術】複屈折性光学結晶からなる複数のプリズ
ムを接合して得られる偏光プリズム、例えばウオラスト
ンプリズムやローションプリズムは、偏光膜や偏光板と
ともに用いて、偏光光学素子として利用されている。一
般的には、特開平5−181016号公報に開示されて
いるように、複屈折性光学結晶として人工水晶が用いら
れ、接着剤により接合されている。この場合、組立性の
良さから低粘度の紫外線硬化型接着剤が用いられること
が多い。また、接合の手段としては、平面度の高い鏡面
同士を真空吸着させるオプティカルコンタクトと呼ばれ
る手法も使われている。一方、複屈折性光学結晶として
は、近年LiNb3 (LN)、LiTaO 3 (LT)ま
たはTiO2 (ルチル)などが、人工水晶よりも屈折率
が高いため有望視されている。
2. Description of the Related Art Plural prisms made of birefringent optical crystals
Polarizing prisms obtained by joining two frames, such as Wollast
The prisms and lotion prisms are
Used together, they are used as polarizing optical elements. one
Generally, it is disclosed in JP-A-5-181016.
As described above, artificial quartz is used as the birefringent optical crystal.
And are joined by an adhesive. In this case,
Use of low-viscosity UV-curable adhesive due to its goodness
There are many. In addition, as a means of joining, a mirror surface with high flatness
It is called an optical contact that vacuum-adheres each other.
The method is also used. On the other hand, as a birefringent optical crystal
In recent years, LiNb3(LN), LiTaO 3(LT)
Or TiO2(Rutile) has a higher refractive index than artificial quartz
Is considered promising because of its high price.

【0003】[0003]

【発明が解決しようとする課題】ところで、人工水晶の
場合は、屈折率が屈折率とほぼ等しい(人工水晶:1.
46、接着剤:1.4〜1.6)ため、界面の反射は殆
どなく、また、接着剤の屈折率が人工水晶の屈折率と多
少異なっていても、人工水晶の接合面に反射防止膜をコ
ーティングすることで、反射を減らすことが可能であ
る。しかし、LN、LTまたはルチルは屈折率が2.0
以上のため、通常用いる接着剤とは屈折率が大きく異な
り、界面の反射を無視することができない。
By the way, in the case of synthetic quartz, the refractive index is almost equal to the refractive index (synthetic quartz: 1.
46, adhesive: 1.4 to 1.6), so there is almost no reflection at the interface, and even if the refractive index of the adhesive is slightly different from that of the synthetic quartz, anti-reflection on the joint surface of the synthetic quartz is prevented. Reflection can be reduced by coating the film. However, LN, LT or rutile has a refractive index of 2.0.
For the above reasons, the refractive index is significantly different from that of the adhesive that is normally used, and the reflection at the interface cannot be ignored.

【0004】また、このような場合、反射防止膜を用い
て垂直の入射光の反射を防げても、斜めに入射する光の
反射は防ぐことができず、全反射してしまうことにな
る。全反射を防ぐためには、スネルの全反射条件から外
れることが必要で、接合面への入射角をθ、入射側のプ
リズムの屈折率をn1 、接着剤の屈折率をn2 とする
と、n1 sinθ≧n2 の関係を満足させないことが必
要である。たとえば、屈折率2.0のプリズムでは、入
射角が58.2°のとき、屈折率が1.7以上の接着剤
が必要となる。しかし、通常の接着剤では、そのような
屈折率を得ることは困難で、高屈折率接着剤と称して販
売されるものでも1.58程度であり、また眼鏡レンズ
として開発が盛んな高屈折率有機光学材料でも1.66
(旭ガラス社製)程度である。つまり、n1 sinθ≧
1.7となるような偏光プリズムの作製は極めて困難で
あるという問題点があった。
In such a case, even if the reflection of the vertically incident light is prevented by using the antireflection film, the reflection of the obliquely incident light cannot be prevented and the light is totally reflected. In order to prevent total reflection, it is necessary to deviate from the Snell total reflection condition. If the incident angle to the cemented surface is θ, the refractive index of the prism on the incident side is n 1 , and the refractive index of the adhesive is n 2 , It is necessary not to satisfy the relationship of n 1 sin θ ≧ n 2 . For example, a prism having a refractive index of 2.0 requires an adhesive having a refractive index of 1.7 or more when the incident angle is 58.2 °. However, it is difficult to obtain such a refractive index with an ordinary adhesive, and even the one sold as a high refractive index adhesive has a refractive index of about 1.58, and a high refractive index that is actively developed as an eyeglass lens. 1.66 even for organic optical materials
(Made by Asahi Glass Co., Ltd.) That is, n 1 sin θ ≧
There is a problem in that it is extremely difficult to manufacture a polarizing prism having a size of 1.7.

【0005】また、オプティカルコンタクトによるプリ
ズムの接合では、接合間隔が極めて小さく、界面での反
射は生じないが、接合強度が低く、温度変化や水分の影
響により容易に剥離するという問題点がある。さらに、
作業環境に極めて高いクリーン度が要求され、また、接
合層による外径寸法の補正が行えず、高精度の偏光プリ
ズムを作製するにはプリズム単体の精度を極限まで高め
る必要があるという問題点があった。
In addition, in the prism bonding by optical contact, the bonding interval is extremely small and no reflection occurs at the interface, but the bonding strength is low, and there is a problem that peeling easily occurs due to temperature change and moisture. further,
The work environment requires extremely high degree of cleanliness, the outer diameter cannot be corrected by the bonding layer, and the precision of the prism itself must be maximized to produce a highly accurate polarizing prism. there were.

【0006】本発明は、上記従来の問題点に鑑みてなさ
れたもので、請求項1に係る発明の目的は、高屈折率の
複屈折光学結晶からなる複数のプリズムの接合面で、斜
めからの光であっても全反射することのない偏光プリズ
ムを提供することである。請求項2または3に係る発明
の目的は、請求項1に係る発明の偏光プリズムを安定し
て製造できる製造方法を提供することである。
The present invention has been made in view of the above-mentioned conventional problems, and an object of the present invention is to provide a joint surface of a plurality of prisms made of a birefringent optical crystal having a high refractive index, which is oblique. It is to provide a polarizing prism that does not totally reflect even the above light. An object of the invention according to claim 2 or 3 is to provide a manufacturing method capable of stably manufacturing the polarizing prism of the invention according to claim 1.

【0007】[0007]

【課題を解決するための手段】上記課題を解決するため
に、請求項1に係る発明は、複屈折性光学結晶からなる
複数のプリズムを接着剤により互いに接合してなり、接
合面への光線の入射角分布のうち利用する最大入射角を
θ、入射側のプリズムの屈折率をn1 としたとき、n1
sinθ≧1.7の関係にある偏光プリズムにおいて、
前記接着剤が、ポリイミド系樹脂またはブロモフェニル
化合物よりなることを特徴とする。
In order to solve the above-mentioned problems, the invention according to claim 1 is such that a plurality of prisms made of a birefringent optical crystal are bonded to each other with an adhesive, and a light beam to a bonding surface is formed. the maximum incident angle for use of the incident angle distribution of theta, when the refractive index of the incident side of the prism and the n 1, n 1
In a polarizing prism having a relationship of sin θ ≧ 1.7,
The adhesive is made of a polyimide resin or a bromophenyl compound.

【0008】請求項2に係る発明は、偏光プリズムの製
造方法において、複屈折性光学結晶からなる複数のプリ
ズムの接合面同士を接触させ、所定の位置関係にプリズ
ムを保持する工程と、前記接触している接合面間にエネ
ルギー硬化型ポリイミドの硬化前溶液を供給する工程
と、前記エネルギー硬化型ポリイミドの硬化前溶液を低
温で溶媒を除去した後、昇温してプレポリマー化し、さ
らに高温でイミド化するポリイミド化工程とを含むこと
を特徴とする。請求項3に係る発明は、偏光プリズムの
製造方法において、複屈折性光学結晶からなる複数のプ
リズムの接合面間に、ポリイミド系樹脂もしくはブロモ
フェニル化合物のフィルムを挟み込むか、またはその溶
媒希釈溶液を塗布して半硬化させる工程と、前記プリズ
ムを所定の位置関係に保持する工程と、前記位置関係を
保持したまま所定の温度まで加熱し徐冷する工程とを含
むことを特徴とする。
According to a second aspect of the present invention, in the method of manufacturing a polarizing prism, a step of bringing the joint surfaces of a plurality of prisms made of a birefringent optical crystal into contact with each other to hold the prisms in a predetermined positional relationship, and the contact. The step of supplying the pre-curing solution of the energy-curable polyimide between the bonding surfaces that are doing, after removing the solvent of the pre-curing solution of the energy-curable polyimide at a low temperature, the temperature is raised to prepolymerize, and at a higher temperature. It is characterized by including the imidation-ized polyimidization process. According to a third aspect of the invention, in the method for manufacturing a polarizing prism, a film of a polyimide resin or a bromophenyl compound is sandwiched between the joint surfaces of a plurality of prisms made of a birefringent optical crystal, or a solvent diluted solution thereof is used. The method is characterized by including a step of applying and semi-curing, a step of holding the prism in a predetermined positional relationship, and a step of gradually heating and heating to a predetermined temperature while maintaining the positional relationship.

【0009】[0009]

【作用】請求項1に係る発明の作用では、プリズムの接
合面間にポリイミド系樹脂またはブロモフェニル化合物
よりなる高屈折率の接着剤を介在させたので、高屈折率
の複屈折光学結晶からなる複数のプリズムの接合面で、
斜めからの光であっても全反射することはない。接合に
用いられる接着剤の屈折率は1.7以上望ましくは1.
8以上である。ポリイミド(PI)は、ベンゼン環、窒
素(N)、酸素(O)および炭素(C)からなり、ベン
ゼン環およびイミド構造により有機物としては極めて高
い上記屈折率を満足している。また、ブロモフェニル化
合物は、ベンゼン環を臭素(Br)化した基本構造を持
ち、ベンゼン環と臭素による屈折率向上作用により、上
記屈折率を満足している。
In the operation of the invention according to claim 1, since a high refractive index adhesive made of a polyimide resin or a bromophenyl compound is interposed between the bonding surfaces of the prism, it is composed of a high refractive index birefringent optical crystal. With the joint surface of multiple prisms,
Even light from an angle does not totally reflect. The refractive index of the adhesive used for joining is 1.7 or more, preferably 1.
8 or more. Polyimide (PI) is composed of a benzene ring, nitrogen (N), oxygen (O) and carbon (C), and has a very high refractive index as an organic substance due to the benzene ring and imide structure. The bromophenyl compound has a basic structure in which the benzene ring is brominated (Br), and satisfies the above refractive index due to the refractive index improving action of the benzene ring and bromine.

【0010】請求項2に係る発明の作用では、プリズム
の接触している接合面間にエネルギー硬化型ポリイミド
の硬化前溶液を供給する工程と、前記エネルギー硬化型
ポリイミドの硬化前溶液を低温で溶媒を除去した後、昇
温してプレポリマー化し、さらに高温でイミド化するポ
リイミド化工程とを含むようにしたので、接合時には、
液体化したエネルギー硬化型ポリイミドの硬化前溶液が
接合面に容易に浸透し、その後3段階に分けて加熱する
ことにより溶媒および反応生成物たる水およびアルコー
ルを完全に除去し、安定した重合が行われる。請求項3
に係る発明の作用では、プリズムの接合面間に、ポリイ
ミド系樹脂もしくはブロモフェニル化合物のフィルムを
挟み込むか、またはその溶媒希釈溶液を塗布して半硬化
させる工程と、前記プリズムを所定の位置関係に保持す
る工程と、前記位置関係を保持したまま所定の温度まで
加熱し徐冷する工程とを含むようにしたので、接合時に
は、粘性体化した接着剤となって接合面に定着し、その
後の加熱により安定した重合が行われる。
According to the second aspect of the present invention, the step of supplying the pre-curing solution of the energy-curable polyimide between the contact surfaces of the prisms in contact with each other, and the pre-curing solution of the energy-curable polyimide as a solvent at a low temperature. After the removal, the temperature was raised to a prepolymer, and a polyimidization step of imidization at a higher temperature was included.
The liquefied energy-curable polyimide pre-curing solution easily penetrates into the joint surface, and then the solvent and the reaction products, water and alcohol, are completely removed by heating in three steps to achieve stable polymerization. Be seen. Claim 3
In the action of the invention according to, the step of sandwiching a film of a polyimide resin or a bromophenyl compound between the bonding surfaces of the prism, or applying a solvent diluting solution thereof to semi-cure, and setting the prism in a predetermined positional relationship. Since it includes the step of holding and the step of heating to a predetermined temperature and gradually cooling while maintaining the positional relationship, at the time of bonding, it becomes a viscous adhesive and is fixed on the bonding surface, Stable polymerization is performed by heating.

【0011】[0011]

【実施例】以下の実施例においては、複屈折性光学結晶
として、LNを用いたプリズムを代表例として説明する
が、LTまたはルチルに置換しても同様な作用効果があ
る。ただし、偏光膜や反射防止膜の構成は若干変更する
必要がある。
EXAMPLES In the following examples, a prism using LN as a birefringent optical crystal will be described as a typical example, but similar effects can be obtained by substituting LT or rutile. However, it is necessary to slightly change the configurations of the polarizing film and the antireflection film.

【0012】[0012]

【実施例1】図1〜図2は実施例1を示し、図1は偏光
プリズムの縦断面図、図2は偏光プリズムの製造方法を
示す説明図である。図1において、1および2はLNか
らなるプリズムで、面1aには偏光膜3、面1bおよび
面2aには反射防止膜4、面2bには反射防止膜6が、
それぞれ下記の表1、表2、表3に示す構成で真空蒸着
により形成されている。
Embodiment 1 FIGS. 1 and 2 show Embodiment 1, FIG. 1 is a longitudinal sectional view of a polarizing prism, and FIG. 2 is an explanatory view showing a method of manufacturing the polarizing prism. In FIG. 1, reference numerals 1 and 2 are prisms made of LN, a polarizing film 3 on the surface 1a, an antireflection film 4 on the surfaces 1b and 2a, and an antireflection film 6 on the surface 2b.
They are formed by vacuum vapor deposition with the configurations shown in Table 1, Table 2 and Table 3 below.

【0013】[0013]

【表1】 [Table 1]

【0014】[0014]

【表2】 [Table 2]

【0015】[0015]

【表3】 [Table 3]

【0016】5は高屈折率接合層で、ポリアミック酸系
ポリイミド樹脂成形材料「ベスペル」(屈折率1.7
8:Dupont社製)の重合物から形成されている。
A high refractive index bonding layer 5 is a polyamic acid-based polyimide resin molding material "Vespel" (refractive index 1.7.
8: manufactured by Dupont).

【0017】図2を用いて、偏光プリズムの製造方法を
説明する。最初に、この製造方法に用いる位置出し治具
10から説明する。位置出し治具10は、偏光プリズム
の厚みを決めるためのスペーサ11とこれを挟んだ2枚
の平板12とで、取付け部10Aを構成する。また、位
置出し治具10の押圧部10Bは、円筒部材13にバネ
15と押圧ピン14とを挿入し、矢印Xの方向に摺動す
る摺動部材16に固着して構成されている。
A method of manufacturing the polarizing prism will be described with reference to FIG. First, the positioning jig 10 used in this manufacturing method will be described. The positioning jig 10 constitutes a mounting portion 10A with a spacer 11 for determining the thickness of the polarizing prism and two flat plates 12 sandwiching the spacer 11 therebetween. Further, the pressing portion 10B of the positioning jig 10 is configured by inserting the spring 15 and the pressing pin 14 into the cylindrical member 13 and fixing it to the sliding member 16 which slides in the direction of arrow X.

【0018】まず、前記表1〜3の膜が形成されたプリ
ズム1、2を位置出し治具10の取付け部10Aに挿入
して、外形のチルト、シフトおよび光学軸方向を所定の
精度に調整する。その後押圧部10Bを前進させ、プリ
ズム1、2を押圧固定する。つぎに、プリズム1、2の
側面の接合部7から上記「ベスペル」を浸透させ、80
℃までゆっくり昇温し、1時間保持して溶媒を除去す
る。さらに、250℃までゆっくり昇温し、1時間保持
してプレポリマー化を行い、ついで、300℃までゆっ
くり昇温し、1時間保持してイミド化した後徐冷する。
これにより高屈折率接合層5が形成され、プリズム1、
2が接合されて、偏光プリズムが得られる。
First, the prisms 1 and 2 on which the films shown in Tables 1 to 3 are formed are inserted into the mounting portion 10A of the positioning jig 10, and the tilt, shift and optical axis direction of the outer shape are adjusted to a predetermined accuracy. To do. After that, the pressing portion 10B is moved forward to press and fix the prisms 1 and 2. Next, the above-mentioned “vespel” is permeated through the joints 7 on the side surfaces of the prisms 1 and 2, and 80
The temperature is slowly raised to 0 ° C. and the temperature is maintained for 1 hour to remove the solvent. Further, the temperature is slowly raised to 250 ° C. and kept for 1 hour for prepolymerization, then the temperature is slowly raised to 300 ° C. and kept for 1 hour to imidize and then gradually cooled.
As a result, the high refractive index bonding layer 5 is formed, and the prism 1,
The two are joined to obtain a polarizing prism.

【0019】本実施例の高屈折率接合層は、ポリイミド
樹脂は屈折率が高いため、斜めからの光であっても全反
射することはない。なお、LNの接合面や出射面では、
全反射は起きないが、屈折率差による数%の反射が発生
するため、反射防止膜を設け、エネルギーのロスを防ぐ
ことは有効である。
In the high-refractive-index bonding layer of this embodiment, since the polyimide resin has a high refractive index, it does not undergo total reflection even when light is oblique. In addition, at the joining surface and the emitting surface of the LN,
Although total reflection does not occur, reflection of several% occurs due to the difference in refractive index, so it is effective to provide an antireflection film to prevent energy loss.

【0020】また、本実施例では、加熱工程を3段階に
分割したため、ポリイミドが硬化する際のボイドの発生
を防ぐことができる。本実施例では、単一のポリイミド
および単一の溶媒であるため、3段階の加熱でよいが、
複数のポリイミドをブレンドしたり、複数の溶媒で希釈
してある場合は、それぞれの硬化温度や沸点に応じて段
階を増やすことが有効である。
Further, in this embodiment, since the heating process is divided into three steps, it is possible to prevent the generation of voids when the polyimide is cured. In the present embodiment, since it is a single polyimide and a single solvent, heating in three stages is sufficient.
When a plurality of polyimides are blended or diluted with a plurality of solvents, it is effective to increase the number of stages according to the respective curing temperatures and boiling points.

【0021】本実施例によれば、高屈折率接合層による
入射光の全反射は発生せず、また、環境変化による劣化
や性能変化を起こさない偏光プリズムを得ることができ
る。また、本実施例の製造方法によれば、高精度の偏光
プリズムを安定して得ることができる。
According to this embodiment, it is possible to obtain a polarizing prism in which total reflection of incident light by the high refractive index bonding layer does not occur, and deterioration or performance change due to environmental changes does not occur. Further, according to the manufacturing method of this embodiment, a highly accurate polarizing prism can be stably obtained.

【0022】[0022]

【実施例2】実施例2の構成は、大部分が実施例1と同
一であり、異なる点は高屈折率接合層5の組成物のみの
ため、図1および図2を用いるが、同一の部材には同一
の符号が付されているので、同一部分の説明は省略す
る。
Second Embodiment The structure of the second embodiment is almost the same as that of the first embodiment except that only the composition of the high refractive index bonding layer 5 is different. Since the same reference numerals are given to the members, the description of the same parts will be omitted.

【0023】図1において、高屈折率接合層5は、ビフ
ェニルテトラカルボン酸系(BPDA)ポリイミド樹脂
(宇部興産(株)製)の重合物からなっている。他の構
成は実施例1と同一である。
In FIG. 1, the high refractive index bonding layer 5 is made of a polymer of biphenyltetracarboxylic acid (BPDA) polyimide resin (manufactured by Ube Industries, Ltd.). Other configurations are the same as those of the first embodiment.

【0024】偏光プリズムの製造方法も、大部分が実施
例1と同様のため、高屈折率接合層5の製造工程を中心
に説明する。図2において、プリズム1、2を位置出し
治具10に装着するまでは、実施例1と同一である。つ
ぎに、プリズム1、2の側面の接合部7からBPDAと
芳香族ジアミン(DADE)との混合物を加熱重合して
得たポリイミド溶液を浸透させ、80℃までゆっくり昇
温し、1時間保持して溶媒を揮発させる。つぎに、+3
℃/分の速度で250℃までゆっくり昇温し、1時間保
持した後徐冷してプレポリマー化を行う。さらに、位置
だし治具10からプリズム1、2を外し、+5℃/分の
速度で450℃まで昇温し、イミド化した後徐冷する。
これにより高屈折率接合層5が形成され、プリズム1、
2が完全に接合され、偏光プリズムが得られる。
Since the manufacturing method of the polarizing prism is almost the same as that of the first embodiment, the manufacturing process of the high refractive index bonding layer 5 will be mainly described. In FIG. 2, the processes until the prisms 1 and 2 are mounted on the positioning jig 10 are the same as those in the first embodiment. Next, a polyimide solution obtained by heat-polymerizing a mixture of BPDA and aromatic diamine (DADE) is allowed to permeate through the joints 7 on the side surfaces of the prisms 1 and 2, and the temperature is slowly raised to 80 ° C. and kept for 1 hour. Volatilize the solvent. Next, +3
The temperature is slowly raised to 250 ° C. at a rate of ° C./min, the temperature is maintained for 1 hour, and then gradually cooled to prepolymerize. Further, the prisms 1 and 2 are removed from the positioning jig 10, the temperature is raised to 450 ° C. at a rate of + 5 ° C./min, imidized, and then gradually cooled.
As a result, the high refractive index bonding layer 5 is formed, and the prism 1,
The two are completely joined to obtain a polarizing prism.

【0025】本実施例によれば、実施例1の効果に加
え、本実施例に用いたポリイミドは、一般的なポリアミ
ック酸系に比べ、重合時に水分の発生がないため、均質
な接合層を得ることができる。さらに、このタイプのポ
リイミドは線膨張率が小さいことも特徴で、耐久性に優
れている。また、最終のイミド化工程は、極めて高温に
する必要があるため、位置出し治具やプリズムの線膨張
率を無視できなくなるが、工程を分けることにより、治
具の影響をなくすことができる。
According to this embodiment, in addition to the effects of the first embodiment, the polyimide used in this embodiment does not generate water during polymerization as compared with a general polyamic acid type, so that a uniform bonding layer is formed. Obtainable. Further, this type of polyimide is also characterized by having a small coefficient of linear expansion, and is excellent in durability. Further, since the final imidization step needs to be performed at an extremely high temperature, the linear expansion coefficient of the positioning jig and the prism cannot be ignored, but the effect of the jig can be eliminated by dividing the steps.

【0026】[0026]

【実施例3】実施例3の構成では、偏光プリズムの構成
は実施例1と大部分同一であり、異なる点は高屈折率接
合層の組成のみのため図1を用いて説明し、同一の部材
には同一の符号が付されているので、同一部分の説明は
省略する。偏光プリズムの製造方法は実施例1とは異な
るため図3を用いて説明する。
Third Embodiment In the structure of the third embodiment, the structure of the polarizing prism is almost the same as that of the first embodiment. The difference is only the composition of the high refractive index bonding layer, which will be described with reference to FIG. Since the same reference numerals are given to the members, the description of the same parts will be omitted. The manufacturing method of the polarizing prism is different from that of the first embodiment, and therefore will be described with reference to FIG.

【0027】図1において、高屈折率接合層5は、熱可
塑性ポリイミド樹脂による接合層であって、具体的に
は、ベンゾフェノンテトラカルボン酸系ポリイミド「P
I−2080」(Upjohn社製)からなっている。
他の構成は、実施例1と同一である。
In FIG. 1, the high refractive index bonding layer 5 is a bonding layer made of a thermoplastic polyimide resin, and more specifically, a benzophenonetetracarboxylic acid type polyimide "P".
I-2080 "(manufactured by Upjohn).
Other configurations are the same as those in the first embodiment.

【0028】図3は本実施例の偏光プリズムの製造方法
を示す。この製造方法に用いる位置出し治具10は、実
施例1と同一のため、同一の部材には同一の符号を付
し、説明を省略する。まず、プリズム1と2との間に、
上記「PI−2080」からなるポリイミドフィルム5
Aを挟み、位置出し治具10に装着し、プリズム1、2
間の外形のチルト、シフトおよび光学軸方向を所定の精
度で組み合わせて加圧保持する。つぎに、ポリイミドフ
イルム5Aのガラス転移点(310℃)以上の温度まで
ゆっくりと昇温したのち徐冷する。加熱温度としては、
LNとポリイミドフィルム5Aとの接着性から350℃
以上がより好ましく、耐熱性から500℃以下が好まし
い。これにより屈折率1.7以上の高屈折率接合層5が
形成され、プリズム1、2が完全に接合され、偏光プリ
ズムが得られる。
FIG. 3 shows a method of manufacturing the polarizing prism of this embodiment. Since the positioning jig 10 used in this manufacturing method is the same as that of the first embodiment, the same members are designated by the same reference numerals and the description thereof is omitted. First, between the prisms 1 and 2,
Polyimide film 5 made of the above "PI-2080"
A is sandwiched and mounted on the positioning jig 10, and the prisms 1, 2 are attached.
The tilt, shift, and optical axis direction of the outer shape between them are combined with a predetermined accuracy and pressure is maintained. Next, the polyimide film 5A is slowly heated to a temperature not lower than the glass transition point (310 ° C.) and then gradually cooled. As the heating temperature,
350 ° C due to the adhesion between LN and polyimide film 5A
The above is more preferable, and 500 ° C. or less is preferable from the viewpoint of heat resistance. As a result, the high refractive index bonding layer 5 having a refractive index of 1.7 or more is formed, the prisms 1 and 2 are completely bonded, and a polarizing prism is obtained.

【0029】本実施例によれば、実施例1の効果に加
え、ポリイミドフィルムは接合時に重合などの反応を伴
わないため、短時間で接合される。また、ガラス転移温
度が高く、加熱しても溶融することはないため、はみ出
しが最小限になるとともに、プリズムとしての耐熱性に
優れている。
According to this example, in addition to the effects of Example 1, the polyimide film does not undergo a reaction such as polymerization at the time of bonding, so that it can be bonded in a short time. In addition, since the glass transition temperature is high and the glass does not melt even when heated, the protrusion is minimized and the prism has excellent heat resistance.

【0030】本実施例では、ポリイミドフイルムとして
「PI−2080」を用いたが、同様な材料として、L
ARC−TPI(三井東圧社製)、カプトン(Dupo
nt社製)、ユーピレックス(宇部興産社製)などがあ
り、これらを用いても同様な作用効果を得ることができ
る。
In this embodiment, "PI-2080" was used as the polyimide film, but a similar material such as L-2020 was used.
ARC-TPI (manufactured by Mitsui Toatsu), Kapton (Dupo
nt company) and Upilex (manufactured by Ube Industries, Ltd.) and the like, and similar effects can be obtained by using these.

【0031】[0031]

【実施例4】実施例4の構成は、大部分が実施例3と同
一であり、異なる点は高屈折率接合層5の組成物のみの
ため、図1および図3を用いるが、同一の部材には同一
の符号が付されているので、同一部分の説明は省略す
る。
Example 4 The structure of Example 4 is almost the same as that of Example 3 except for the composition of the high-refractive-index bonding layer 5, which is the same as that of Example 3. Since the same reference numerals are given to the members, the description of the same parts will be omitted.

【0032】図1において、高屈折率接合層5は、下記
の「化1」の化学式にて示す特殊芳香族ポリアミド樹脂
による接合層である。このポリアミドは、臭素化(ブロ
モ化)されたベンゼン環(フェニル)を基本構造に持つ
ため、屈折率が1.89と極めて高い特徴がある。他の
構成は、実施例1と同一である。
In FIG. 1, the high refractive index bonding layer 5 is a bonding layer made of a special aromatic polyamide resin represented by the chemical formula of "Chemical formula 1" below. Since this polyamide has a brominated (brominated) benzene ring (phenyl) in its basic structure, it has an extremely high refractive index of 1.89. Other configurations are the same as those in the first embodiment.

【0033】[0033]

【化1】 Embedded image

【0034】図3は本実施例の偏光プリズムの製造方法
を示す。この製造方法に用いる位置出し治具10は、実
施例1と同一のため、同一の部材には同一の符号を付
し、説明を省略する。まず、プリズム1と2との間に、
上記「化1」の特殊芳香族ポリアミド樹脂からなるポリ
アミドフィルム5Bを挟み、位置出し治具10に装着
し、プリズム1、2間の外形のチルト、シフトおよび光
学軸方向を所定の精度で組み合わせて加圧保持する。つ
ぎに、ポリアミドフイルム5Bのガラス転移点以上の温
度までゆっくりと昇温したのち徐冷する。これにより屈
折率1.89の高屈折率接合層5が形成され、プリズム
1、2が完全に接合され、偏光プリズムが得られる。
FIG. 3 shows a method of manufacturing the polarizing prism of this embodiment. Since the positioning jig 10 used in this manufacturing method is the same as that of the first embodiment, the same members are designated by the same reference numerals and the description thereof is omitted. First, between the prisms 1 and 2,
The polyamide film 5B made of the special aromatic polyamide resin of the above “Chemical formula 1” is sandwiched and mounted on the positioning jig 10, and the tilt, shift and optical axis direction of the outer shape between the prisms 1 and 2 are combined with predetermined accuracy. Hold under pressure. Next, the temperature is gradually raised to a temperature not lower than the glass transition point of the polyamide film 5B and then gradually cooled. Thereby, the high refractive index bonding layer 5 having a refractive index of 1.89 is formed, the prisms 1 and 2 are completely bonded, and a polarizing prism is obtained.

【0035】本実施例によれば、実施例1の効果に加
え、上記「化1」の特殊芳香族ポリアミド樹脂からなる
ポリアミドフィルムは、屈折率が1.89であり、LN
より高い屈折率の光学結晶を用いる場合や、より大きい
入射角の設計が要求される場合においても、全反射を防
ぐことができる。また、上記ポリアミドフィルムは接合
時に重合などの反応を伴わないため、短時間で接合され
る。さらに、ガラス転移温度が高く、加熱しても溶融す
ることはないため、はみ出しが最小限になるとともに、
プリズムとしての耐熱性にすぐれている。
According to this example, in addition to the effects of Example 1, the polyamide film made of the special aromatic polyamide resin of "Chemical formula 1" has a refractive index of 1.89 and LN
It is possible to prevent total reflection even when an optical crystal having a higher refractive index is used or when a design with a larger incident angle is required. Further, since the above polyamide film does not undergo a reaction such as polymerization upon joining, it is joined in a short time. Furthermore, since the glass transition temperature is high and it does not melt when heated, squeeze-out is minimized,
Excellent heat resistance as a prism.

【0036】[0036]

【実施例5】実施例5の構成では、偏光プリズムの構成
は実施例1と大部分同一であり、異なる点は高屈折率接
合層の組成のみのため図1を用いて説明し、同一の部材
には同一の符号が付されているので、同一部分の説明は
省略する。偏光プリズムの製造方法は実施例1〜4とは
異なるため図3を用いて説明する。
Fifth Embodiment In the structure of the fifth embodiment, the structure of the polarizing prism is almost the same as that of the first embodiment, and the difference is only the composition of the high refractive index bonding layer, which will be described with reference to FIG. Since the same reference numerals are given to the members, the description of the same parts will be omitted. The manufacturing method of the polarizing prism is different from that of the first to fourth embodiments, and therefore will be described with reference to FIG.

【0037】図1において、高屈折率接合層5は、ポリ
アミック酸系ポリイミド樹脂成形材料の溶媒希釈溶液
「パイラリン」(Dupont社製)の重合物(屈折
率:1.78)からなっている。他の構成は、実施例1
と同一である。
In FIG. 1, the high-refractive-index bonding layer 5 is composed of a polymer (refractive index: 1.78) of a solvent-diluted solution of polyamic acid-based polyimide resin molding material "Piraline" (manufactured by Dupont). Other configurations are the same as those of the first embodiment.
Is the same as

【0038】図3は本実施例の偏光プリズムの製造方法
を示す。この製造方法に用いる位置出し治具10は、実
施例1と同一のため、同一の部材には同一の符号を付
し、説明を省略する。まず、プリズム1の接合面1b
に、上記「パイラリン」を塗布し、大気中で200℃ま
で約+5℃/分の速度で昇温し、溶媒の除去および重合
により発生する水を除去しながら半硬化させた後、室温
まで徐冷する。つぎに、プリズム1と2を重ね合わせ、
位置出し治具10に装着し、外形チルト、シフトおよび
光学軸方向を所定の精度で組み合わせて加圧保持する。
このまま、350℃まで約+5℃/分でゆっくり昇温
し、1時間保持してイミド化させる。これにより屈折率
1.78の高屈折率接合層5が形成され、プリズム1、
2が完全に接合され、偏光プリズムが得られる。
FIG. 3 shows a method of manufacturing the polarizing prism of this embodiment. Since the positioning jig 10 used in this manufacturing method is the same as that of the first embodiment, the same members are designated by the same reference numerals and the description thereof is omitted. First, the bonding surface 1b of the prism 1
The above “Pyralin” is applied to the above, and the temperature is raised to 200 ° C. in the air at a rate of about + 5 ° C./min to semi-cure while removing the solvent and water generated by the polymerization, and then gradually rising to room temperature. Cool. Next, overlap prisms 1 and 2,
It is mounted on the positioning jig 10, and the outer shape tilt, the shift, and the optical axis direction are combined with a predetermined accuracy to be held under pressure.
As it is, the temperature is slowly raised to 350 ° C. at about + 5 ° C./min, and the temperature is maintained for 1 hour to imidize. As a result, the high refractive index bonding layer 5 having a refractive index of 1.78 is formed, and the prism 1,
The two are completely joined to obtain a polarizing prism.

【0039】本実施例によれば、実施例1の効果に加
え、本実施例の接合方法では、溶媒の除去や、反応によ
り発生する水を効率よく除去することができるため、接
合層にボイドの発生が起こり難く、均質で良質の接合層
を得ることができる。
According to the present embodiment, in addition to the effects of the first embodiment, in the joining method of the present embodiment, the solvent can be removed and the water generated by the reaction can be efficiently removed. Is less likely to occur, and a uniform and good quality bonding layer can be obtained.

【0040】[0040]

【実施例6】図4〜図6は本実施例を示し、図4はSi
基板上に偏光プリズムを実装した平面図。図5はSi基
板の上面に溝を凹設した斜視図、図6は変形例を示す正
面図である。本実施例の偏光プリズムの部分は、実施例
5の偏光プリズムと同一なので、偏光プリズムの構成の
説明は省略するが、Si基板上に実装されているため、
製造方法から説明する。
[Embodiment 6] FIGS. 4 to 6 show the present embodiment, and FIG.
The top view which mounted the polarization prism on the board | substrate. FIG. 5 is a perspective view in which a groove is provided in the upper surface of the Si substrate, and FIG. 6 is a front view showing a modified example. The polarization prism part of the present embodiment is the same as the polarization prism of the fifth embodiment, so the description of the structure of the polarization prism will be omitted, but since it is mounted on the Si substrate,
The manufacturing method will be described.

【0041】図4および図5に示すように、表面が
(1、1、0)面になっているSi基板9に、結晶異方
性エッチングで(1、1、1)面を側面に持つ溝8を、
所定の寸法で形成する。つぎに、プリズム1、2を溝8
の面8A、8Bに当て付けて保持する。さらに、プリズ
ム1、2の側面の接合部7から、上記「パイラリン」を
浸透させる。このとき、プリズム1、2と溝8の底面と
の間にも「パイラリン」を浸透させてもよい。この状態
で、400℃までゆっくり昇温し、1時間保持し硬化さ
せた後、室温まで徐冷する。これにより、屈折率1.7
8の高屈折率接合層5が形成され、プリズム1、2が完
全に接合され、偏光プリズムが得られるが、プリズム
1、2と溝8の底面との間にも「パイラリン」を浸透さ
せた場合は、Si基板上に偏光プリズムが実装された実
装基板を得ることできる。
As shown in FIGS. 4 and 5, a Si substrate 9 having a (1,1,0) surface is provided with a (1,1,1) surface as a side surface by crystal anisotropic etching. Groove 8
It is formed with a predetermined size. Next, the prisms 1 and 2 are attached to the groove 8
The surfaces 8A and 8B are applied and held. Further, the “pyralin” is permeated from the joint portion 7 on the side surface of the prisms 1 and 2. At this time, "pyralin" may be permeated also between the prisms 1 and 2 and the bottom surface of the groove 8. In this state, the temperature is slowly raised to 400 ° C., held for 1 hour to cure, and then gradually cooled to room temperature. This gives a refractive index of 1.7.
The high-refractive-index bonding layer 5 of No. 8 was formed, the prisms 1 and 2 were completely bonded, and a polarizing prism was obtained. "Pyralin" was also permeated between the prisms 1 and 2 and the bottom surface of the groove 8. In this case, a mounting substrate in which a polarizing prism is mounted on a Si substrate can be obtained.

【0042】本実施例によれば、実施例1の効果に加
え、プリズム1の面1aとプリズム2の面2bとの間隔
および平行度を、Si基板に対する異方性エッチングで
形成した溝8の(1、1、1)面で規制しているため、
高い寸法精度を持つ偏光プリズムを製造することができ
る。また、プリズムと溝の底面にも「パイラリン」を浸
透させた場合は、プリズムの接合と同時にSi基板への
接着を同時に行うことができるため、このSi基板を受
光素子やレーザダイオードの実装基板として用いること
ができる。
According to the present embodiment, in addition to the effect of the first embodiment, the distance between the surface 1a of the prism 1 and the surface 2b of the prism 2 and the parallelism of the groove 8 formed by anisotropic etching with respect to the Si substrate. Since it is regulated on the (1, 1, 1) side,
A polarizing prism with high dimensional accuracy can be manufactured. Also, when "Pyralin" is infiltrated into the bottom surface of the prism and the groove, it is possible to bond the prism and the Si substrate at the same time. Therefore, this Si substrate can be used as a mounting substrate for a light receiving element or a laser diode. Can be used.

【0043】なお、Si基板へのプリズムの置き方は本
実施例の向きに限定されるものではなく、たとえば、図
6に示す配置の仕方でも同様な作用効果が得られる。
The manner of placing the prism on the Si substrate is not limited to the orientation of this embodiment, and the same operational effect can be obtained by the arrangement shown in FIG. 6, for example.

【0044】本発明の各実施例で具体的に示したポリミ
イド系樹脂またはブロモフェニル化合物以外にも、有用
なものがある。ポリミイド系樹脂においては、その出発
原料としてのポリアミド酸プレカーサーを適当な溶媒に
溶解させた液体を用いて接合し、後に環化反応でイミド
化させることでポリイミドの接合層を得ることがでる。
また、BPDA型ポリイミドは、ポリイミド溶液から直
接ポリイミドを得ることができる。この例としては、U
PILEX(宇部興産社製)がある。さらに、ナジック
変性ポリイミドは、現場重合型と呼ばれるように、低温
で高品質のポリイミドが得られる特徴があり、本発明に
おいて有用である。例としては、PMR−15(NAS
Aで開発)やLARC−150(三井東圧社製)があ
る。
In addition to the polyimide resin or the bromophenyl compound specifically shown in the respective examples of the present invention, there are useful ones. In the case of a polymide resin, a polyimide bonding layer can be obtained by bonding with a liquid prepared by dissolving a polyamic acid precursor as a starting material thereof in a suitable solvent and then imidizing it by a cyclization reaction.
Further, the BPDA type polyimide can be obtained directly from a polyimide solution. An example of this is U
There is PILEX (manufactured by Ube Industries). Further, the nadic modified polyimide is characterized in that a high quality polyimide can be obtained at low temperature, which is called in-situ polymerization type, and is useful in the present invention. As an example, PMR-15 (NAS
A) and LARC-150 (manufactured by Mitsui Toatsu).

【0045】ブロモフェニル化合物においては、適当な
出発原料を用いて重合させるか、熱可塑性を示すものを
選ぶことで接合が可能となる。例として、ペンタブロモ
フェニルアクリレート(屈折率:1.71)がある。
The bromophenyl compound can be bonded by polymerizing it using an appropriate starting material or selecting a compound exhibiting thermoplasticity. An example is pentabromophenyl acrylate (refractive index: 1.71).

【0046】[0046]

【発明の効果】請求項1に係る発明によれば、高屈折率
の複屈折性光学結晶を用いたプリズムの接合層に、高屈
折率の物質を用いたため、接合層による入射光の全反射
を起こすことのない偏光プリズムを得ることができる。
請求項2に係る発明によれば、請求項1に係る発明の偏
光プリズムを安定して製造することができる。また、加
熱工程を3段階にしたので、接合層にボイドのない高品
質の偏光プリズムが得られる。請求項3に係る発明によ
れば、請求項1に係る発明の偏光プリズムを安定して製
造することができる。また、工程が単純なため、短時間
で接合することができる。
According to the first aspect of the invention, since the high refractive index substance is used for the bonding layer of the prism using the high refractive index birefringent optical crystal, total reflection of incident light by the bonding layer is performed. It is possible to obtain a polarizing prism that does not cause
According to the invention of claim 2, the polarizing prism of the invention of claim 1 can be stably manufactured. Moreover, since the heating process is performed in three stages, a high-quality polarizing prism without voids in the bonding layer can be obtained. According to the invention of claim 3, the polarizing prism of the invention of claim 1 can be stably manufactured. Also, since the process is simple, it is possible to join in a short time.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例1〜5の偏光プリズムの縦断面図であ
る。
FIG. 1 is a vertical cross-sectional view of a polarizing prism of Examples 1-5.

【図2】実施例1〜2の偏光プリズムの製造方法を示す
説明図である。
FIG. 2 is an explanatory diagram showing a method of manufacturing the polarizing prism of Examples 1 and 2.

【図3】実施例3〜5の偏光プリズムの製造方法を示す
説明図である。
FIG. 3 is an explanatory diagram showing a method of manufacturing a polarizing prism of Examples 3 to 5.

【図4】実施例6のSi基板上に偏光プリズムを実装し
た平面図である。
FIG. 4 is a plan view of a polarization prism mounted on a Si substrate of Example 6.

【図5】実施例6のSi基板の上面に溝を凹設した斜視
図である。
FIG. 5 is a perspective view in which a groove is provided in the upper surface of a Si substrate of Example 6;

【図6】実施例6の変形例を示す正面図である。FIG. 6 is a front view showing a modification of the sixth embodiment.

【符号の説明】[Explanation of symbols]

1 プリズム 2 プリズム 3 偏光膜 4 反射防止膜 5 高屈折率接合層 6 反射防止膜 1 Prism 2 Prism 3 Polarizing Film 4 Antireflection Film 5 High Refractive Index Bonding Layer 6 Antireflection Film

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】複屈折性光学結晶からなる複数のプリズム
を接着剤により互いに接合してなり、接合面への光線の
入射角分布のうち利用する最大入射角をθ、入射側のプ
リズムの屈折率をn1 としたとき、n1 sinθ≧1.
7の関係にある偏光プリズムにおいて、 前記接着剤が、ポリイミド系樹脂またはブロモフェニル
化合物よりなることを特徴とする偏光プリズム。
1. A plurality of prisms made of a birefringent optical crystal are bonded to each other with an adhesive, and the maximum incident angle used in the distribution of incident angles of light rays on the bonding surface is θ, and the refraction of the prism on the incident side is performed. When the ratio is n 1 , n 1 sin θ ≧ 1.
7. The polarizing prism having the relationship of 7, wherein the adhesive is made of a polyimide resin or a bromophenyl compound.
【請求項2】複屈折性光学結晶からなる複数のプリズム
の接合面同士を接触させ、所定の位置関係にプリズムを
保持する工程と、前記接触している接合面間にエネルギ
ー硬化型ポリイミドの硬化前溶液を供給する工程と、前
記エネルギー硬化型ポリイミドの硬化前溶液を低温で溶
媒を除去した後、昇温してプレポリマー化し、さらに高
温でイミド化するポリイミド化工程とを含むことを特徴
とする偏光プリズムの製造方法。
2. A step of bringing the joint surfaces of a plurality of prisms made of a birefringent optical crystal into contact with each other to hold the prisms in a predetermined positional relationship, and curing the energy-curable polyimide between the contact surfaces. A step of supplying a pre-solution and a step of removing the solvent of the pre-curing solution of the energy-curable polyimide at a low temperature, preliminarily heating to prepolymerize, and further imidizing at a high temperature. A method for manufacturing a polarizing prism.
【請求項3】複屈折性光学結晶からなる複数のプリズム
の接合面間に、ポリイミド系樹脂もしくはブロモフェニ
ル化合物のフィルムを挟み込むか、またはその溶媒希釈
溶液を塗布して半硬化させる工程と、前記プリズムを所
定の位置関係に保持する工程と、前記位置関係を保持し
たまま所定の温度まで加熱し徐冷する工程とを含むこと
を特徴とする偏光プリズムの製造方法。
3. A step of sandwiching a film of a polyimide resin or a bromophenyl compound or applying a solvent diluted solution thereof to semi-cure between the bonding surfaces of a plurality of prisms made of a birefringent optical crystal, A method of manufacturing a polarizing prism, comprising: a step of holding the prism in a predetermined positional relationship; and a step of heating to a predetermined temperature and gradually cooling while maintaining the positional relationship.
JP9554795A 1995-04-20 1995-04-20 Polarizing prism and its production Withdrawn JPH08292307A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9554795A JPH08292307A (en) 1995-04-20 1995-04-20 Polarizing prism and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9554795A JPH08292307A (en) 1995-04-20 1995-04-20 Polarizing prism and its production

Publications (1)

Publication Number Publication Date
JPH08292307A true JPH08292307A (en) 1996-11-05

Family

ID=14140605

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9554795A Withdrawn JPH08292307A (en) 1995-04-20 1995-04-20 Polarizing prism and its production

Country Status (1)

Country Link
JP (1) JPH08292307A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008116777A (en) * 2006-11-07 2008-05-22 Konica Minolta Opto Inc Manufacturing method of optical element and joint fixture
US10444525B1 (en) 2017-03-20 2019-10-15 John L. Baker Methods for producing an optical wedge or prism assembly
KR20210090541A (en) * 2020-01-10 2021-07-20 오프로세서 인코퍼레이티드 Optical module and Method of manufacturing the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008116777A (en) * 2006-11-07 2008-05-22 Konica Minolta Opto Inc Manufacturing method of optical element and joint fixture
US10444525B1 (en) 2017-03-20 2019-10-15 John L. Baker Methods for producing an optical wedge or prism assembly
KR20210090541A (en) * 2020-01-10 2021-07-20 오프로세서 인코퍼레이티드 Optical module and Method of manufacturing the same
US11746259B2 (en) 2020-01-10 2023-09-05 Oprocessor Inc Optical module and method for manufacturing the same
US11970642B2 (en) 2020-01-10 2024-04-30 Oprocessor Inc Method for bonding objects using thermoset polyimide layers

Similar Documents

Publication Publication Date Title
KR101275969B1 (en) Phase difference compensation panel phase difference compensator liquid crystal display device and projection type image display device
US20130038933A1 (en) Beam splitter and method for manufacturing the same
US20090263073A1 (en) Optical waveguide film, method for manufacturing thereof, electrical and optical hybrid circuit film including the waveguide film, and electronic device including thereof
JP2010152334A (en) Method for manufacturing glass plate with polarizing plate, glass plate with polarizing plate, and liquid crystal cell with polarizing plate
KR20080092303A (en) Laminated optical film and production method thereof
JP2010276940A (en) Method for joining glass substrate, and glass joined body
JP4070510B2 (en) Birefringent film, optical compensation layer integrated polarizing plate, image display device, and method for producing birefringent film
JPH08292307A (en) Polarizing prism and its production
EP0276617A1 (en) Ultra-light mirror and its manufacturing process
US6584265B2 (en) Optical waveguide element having a single crystalline substrate with a crystal axis angled with respect to a surface of the substrate
US7251076B1 (en) Optical component and method for producing thick polyimide film
TWI408426B (en) Laminated optical film and manufacturing method thereof
US6775061B2 (en) Reflecting light polarizer made of coated non-linear surfaces
JPH10282501A (en) Alignment layer, its formation and liquid crystal display element formed by adopting the aligning layer
KR20210090541A (en) Optical module and Method of manufacturing the same
CN1433006A (en) Optical waveguide circuit device and its making process, relevant coherent light source and optical device
JPH0990111A (en) Polarizing prism
TW202132877A (en) Optical film set and liquid crystal panel
JP2021056306A (en) Optical film
JPH01200328A (en) Manufacture of liquid crystal display device
TW201829202A (en) Method for producing obliquely stretched film, method for producing polarizing plate, and method for producing liquid crystal display device
JP2004109342A (en) Polarized light splitting element and its manufacturing method
KR20050012216A (en) Optical element, light emitting device, and method of manufacturing optical element
JP2001033732A (en) Optical isolator
JPH1016143A (en) Manufacture of optical transparent plastic sheet

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20020702