JPH0829229B2 - Gas separation and concentration method - Google Patents

Gas separation and concentration method

Info

Publication number
JPH0829229B2
JPH0829229B2 JP12727088A JP12727088A JPH0829229B2 JP H0829229 B2 JPH0829229 B2 JP H0829229B2 JP 12727088 A JP12727088 A JP 12727088A JP 12727088 A JP12727088 A JP 12727088A JP H0829229 B2 JPH0829229 B2 JP H0829229B2
Authority
JP
Japan
Prior art keywords
gas
separation
hydrogen
permeation
inorganic porous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP12727088A
Other languages
Japanese (ja)
Other versions
JPH01297123A (en
Inventor
昌之 都田
竜巳 河口
一裕 小網
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIINO DENSHI KK
Original Assignee
NIINO DENSHI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIINO DENSHI KK filed Critical NIINO DENSHI KK
Priority to JP12727088A priority Critical patent/JPH0829229B2/en
Publication of JPH01297123A publication Critical patent/JPH01297123A/en
Publication of JPH0829229B2 publication Critical patent/JPH0829229B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Hydrogen, Water And Hydrids (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は無機多孔質材料である天然ゼオライトを透過
材料として混合気体中の分子量の比較的小さな(分子量
2〜80程度)の水素、ヘリウム、酸素等の気体を分離・
濃縮する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial field of application) The present invention uses a natural zeolite, which is an inorganic porous material, as a permeable material and has a relatively small molecular weight (molecular weight of about 2 to 80) in a mixed gas, such as hydrogen and helium. Separates gases such as oxygen
It relates to a method of concentrating.

(従来の技術) 近年、エレクトロニクス産業における還元性雰囲気や
気相成長のキャリアガスとして、或いはアンモニア、ア
ルコール合成などのC1化学の原料または石油精製におけ
る硫黄化合物の水素による除去など水素の用途は極めて
多くこれからも水素の需要は高まる一方である。更には
燃料電池プロセスにおいても多量の水素が使用されてい
る。そして石油資源の枯渇化が呼ばれている今日、クリ
ーンな代替エネルギーとして水素ガスが注目されてい
る。この様に水素の需要が増大する一方、石油化学プラ
ント等では未だに大量の水素ガスを含む混合ガスを排ガ
スといて放出している。これは水素ガス濃度が単に低い
為であり、これを分離・濃縮し高濃度水素ガスとすれば
様々な用途に利用でき、省資源・経費節減の点から見て
も大変有益であると思われる。そこで低コストで且つ多
量に水素を分離・濃縮できる技術が必要となる。現在、
様々な気体分離法が考案され実行化されており深冷分離
法、吸着分離法が有名である。前者は混合気体を冷却・
液化させた後、沸点の違いを利用して分離する方法であ
り冷却に大きな動力が必要となる。また後者は吸着剤を
用い混合ガスを高圧条件下の基で気体の吸着平衡の違い
を利用し不純ガスを吸着させ、分離する方法である。
(Prior Art) In recent years, hydrogen has been extremely used as a reducing atmosphere in the electronics industry, as a carrier gas for vapor phase growth, or as a raw material for C 1 chemistry such as ammonia and alcohol synthesis, or for removing sulfur compounds by hydrogen in petroleum refining. Many demands for hydrogen will continue to increase. Furthermore, a large amount of hydrogen is also used in the fuel cell process. And now that depletion of petroleum resources is called, hydrogen gas is drawing attention as a clean alternative energy. While the demand for hydrogen has increased in this way, petrochemical plants and the like still emit a large amount of mixed gas containing hydrogen gas as exhaust gas. This is because the hydrogen gas concentration is simply low, and it can be used for various purposes by separating and concentrating it into high-concentration hydrogen gas, and it will be very useful from the viewpoint of resource saving and cost saving. . Therefore, a technology that can separate and concentrate a large amount of hydrogen at low cost is required. Current,
Various gas separation methods have been devised and implemented, and cryogenic separation method and adsorption separation method are famous. The former cools the mixed gas
After liquefying, it is a method of separating by utilizing the difference in boiling point, and a large power is required for cooling. The latter is a method in which an adsorbent is used and a mixed gas is adsorbed and separated using a difference in gas adsorption equilibrium under a high-pressure group.

(発明が解決しようとする課題) 上記従来の方法では冷却や高圧条件下にする為に大き
な動力を必要であったり、気体に合わせた吸着剤が必要
である等、両者共に経済的観点からみても改良の余地が
あるばかりでなく、深冷分離法では冷却・蒸留、吸着分
離法では吸着・脱着と2つの過程を要するために複雑な
装置構造となり、設備・運転、保守等コストの面などを
考え合わせると、省資源・経費節減を前提とした低濃度
水素ガスの分離回収には適さないと言えよう。
(Problems to be Solved by the Invention) In the above-mentioned conventional methods, large power is required for cooling or under high-pressure conditions, or an adsorbent matched to the gas is required. Not only there is room for improvement, but the cryogenic separation method requires cooling / distillation, and the adsorption / separation method requires two processes, adsorption / desorption, which complicates the structure of the device, resulting in costs for equipment, operation, maintenance, etc. Considering the above, it can be said that it is not suitable for the separation and recovery of low-concentration hydrogen gas, which is premised on resource saving and cost reduction.

(課題を解決するための手段) そこで透過材料を用いる分離法に着目した。本発明に
よる方法は、分子量の比較的小さな気体を含有する混合
気体をクヌーセン流れによって無機多孔質内を透過さ
せ、該気体の分離・濃縮を行う方法であって、無機多孔
質材料として円筒状に加工した天然ゼオライトを用い、
円筒の内側あるいは外側に混合気体を流すことにより無
機多孔質材料を透過し、内側あるいは外側より該気体が
濃縮された混合ガスを得る気体の分離・濃縮法である。
(Means for Solving the Problem) Therefore, attention was paid to a separation method using a permeable material. The method according to the present invention is a method in which a mixed gas containing a gas having a relatively small molecular weight is permeated through an inorganic porous material by a Knudsen flow to separate / concentrate the gas. Using processed natural zeolite,
It is a gas separation / concentration method in which a mixed gas is passed through the inside or outside of a cylinder to permeate an inorganic porous material to obtain a mixed gas in which the gas is concentrated from the inside or outside.

透過材料には、その化学的性質を利用する均質なもの
と、その透過材料の有する細孔を利用する多孔質のもの
とがある。前者の分離機構は一般に溶解速度と拡散速度
の差を利用するものであり、一度の透過による濃縮の割
合が高く、超高純度の水素ガスを製造などに用いられる
ものの透過係数が大変小さく、莫大な透過面積が必要と
なる。一方後者はその細孔が気体の平均自由行程より小
さくなると生ずるクヌーセン流れを利用するものであ
る。クヌーセン流れでは気体の細孔中における拡散速度
が気体の分子量の平方根に逆比例する為に気体の分離が
可能となり、分子量の違いが大きい2種以上の混合気体
の分離に適している。即ち、水素、ヘリウムの様に特に
分子量の小さい気体と分子量30程度の以上の気体との分
離には適しているといえよう。一般に操作圧力を大きく
すると、流れがクヌーセン流れから粘性流へと変わり、
圧力差の関数で表される分離は行われなくなる。それ故
特に上記の如き分子量の違いが大きい2種以上の混合気
体におては操作圧力は比較的小さくなり所用動力も少な
く装置も簡単になる。そして同じ厚さの均質透過材料と
比較して、無機多孔質透過材料の気体透過速度は1000〜
10000の値を有するので前述の工業的使用に対しては大
変有利であると考えられる。更には燃料電池プロセスか
ら放出される200〜650℃の排出ガスからの水素回収にも
無機多孔質材料の耐熱性という意味から十分に実用に供
するものと言える。
The permeable material includes a homogeneous material that utilizes its chemical properties and a porous material that utilizes the pores of the permeable material. The former separation mechanism generally utilizes the difference between the dissolution rate and the diffusion rate, and the concentration ratio by one permeation is high, and the permeation coefficient used in the production of ultra-high purity hydrogen gas is very small, which is enormous. A large transparent area is required. On the other hand, the latter utilizes the Knudsen flow that occurs when the pores become smaller than the mean free path of gas. In the Knudsen flow, the diffusion rate of the gas in the pores is inversely proportional to the square root of the molecular weight of the gas, so that the gas can be separated, which is suitable for the separation of a mixed gas of two or more kinds having a large difference in molecular weight. That is, it can be said that it is suitable for separating a gas having a particularly small molecular weight such as hydrogen and helium from a gas having a molecular weight of about 30 or more. Generally, when the operating pressure is increased, the flow changes from Knudsen flow to viscous flow,
The separation, which is a function of the pressure difference, no longer takes place. Therefore, particularly in the case of a mixed gas of two or more kinds having large differences in molecular weight as described above, the operating pressure becomes relatively small, the required power is small, and the apparatus becomes simple. And the gas permeation rate of the inorganic porous permeable material is 1000 ~ compared with the homogeneous permeable material of the same thickness.
Since it has a value of 10000, it is considered to be very advantageous for the aforementioned industrial use. Furthermore, it can be said that it can be sufficiently put into practical use for the recovery of hydrogen from the exhaust gas of 200 to 650 ° C. emitted from the fuel cell process because of the heat resistance of the inorganic porous material.

(実施例) 実施例においては、凝灰岩を用いた。凝灰岩は板谷産
天然ゼオライトであり、リンク(Link)社製Q200J型を
用いてX線分析を行った結果を第1図に示した。板谷産
天然ゼオライトはSiO2,Al2O3を主成分とする凝灰岩であ
る為にSi,Alをかなり含んでおり、その他にNa,Ti,Fe等
で構成されていることが第1図のX線分析結果から認め
られる。第2図は天然ゼオライトの細孔径分布を示した
ものである。細孔径の分布が主に50〜450Åにあること
が図より認められる。この細孔径分布は気体の平均自由
行程、H2=1123Å,He=1798Å,N2=600Å,O2=647Å,CO
2=397Åを考慮した場合、細孔径の方が気体の平均自由
行程より小さい場合に生ずるクヌーセン流れを用いる水
素の分離には適しているといえよう。また水素のみなら
ず、日本では採取しにくい高価なヘリウムの分離にも適
用が可能である。実際に水素および窒素の透過流量を測
定し、気体分離用透過材料として使用可能であることを
示したのが第3図である。図より明らかなように水素お
よび窒素共に良好な直線関係を示していることが分か
る。それぞれの測定点を最小二乗法を用い直線近似し、
それぞれの傾きより流量比を算出したところ分子量の平
方根比に極めて近い値を示した。つまりクヌーセン流れ
で透過材料の細孔中を気体が透過するものと考えられ、
気体分離用透過材料として使用できることが示唆され
た。
(Example) In the example, tuff was used. Tuff is a natural zeolite from Itaya, and the results of X-ray analysis using Q200J type manufactured by Link are shown in FIG. Itaya's natural zeolite contains a large amount of Si and Al because it is a tuff composed mainly of SiO 2 and Al 2 O 3 , and it is also composed of Na, Ti, Fe, etc. Confirmed from the X-ray analysis results. FIG. 2 shows the pore size distribution of natural zeolite. It can be seen from the figure that the distribution of pore size is mainly in the range of 50 to 450Å. This pore size distribution is the mean free path of gas, H 2 = 1123Å, He = 1798 Å, N 2 = 600 Å, O 2 = 647 Å, CO
Considering 2 = 397Å, it can be said that it is more suitable for hydrogen separation using Knudsen flow that occurs when the pore size is smaller than the mean free path of gas. In addition to hydrogen, it can be applied to the separation of expensive helium, which is difficult to collect in Japan. FIG. 3 shows that the permeation flow rates of hydrogen and nitrogen were actually measured and that the permeation material for gas separation can be used. As can be seen from the figure, both hydrogen and nitrogen show a good linear relationship. Linearly approximate each measurement point using the least squares method,
When the flow rate ratio was calculated from each slope, it showed a value extremely close to the square root ratio of the molecular weight. In other words, it is considered that the gas permeates through the pores of the permeable material due to the Knudsen flow,
It was suggested that it could be used as a permeable material for gas separation.

本発明の理解がたやすいように以下に本発明の構成原
理を本発明の具体例により説明するが、本発明はこれに
限定されない。
To facilitate understanding of the present invention, the constitutional principle of the present invention will be described below with reference to specific examples of the present invention, but the present invention is not limited thereto.

第4図は本発明の実験装置の概要である。実線はガス
ライン、破線は測定ラインを示している。各気体はボン
ベよりレギュレータを通して供給され、バルブ1により
流量が調節される。流量の測定は真鍮製のオリフィス流
量計2を用い、差圧を圧力変換素子により電圧に変換
し、アンプ3によって増幅した後、A/Dコンバータ10を
介してコンピュータ11に取り込み、データの処理を行っ
た。2種類のガスはオリフィス流量計を通った後、混合
ガスとなり分離カラム6に送られる。カラム6に供給さ
れた混合ガスは分離透過材7により分離濃縮されるもの
と排ガスとに分れる。供給側の水素組成を測定する場合
には三方コック4によりガスクロマトグラフ9に混合ガ
スは送られ、また透過したガスの水素組成を測定する場
合には、バルブ8を開きガスクロマトグラフ9に混合ガ
スは送られる。カラム内の差圧はバルブ1の開閉および
バルブ2の開閉で調節でき、ゲージ圧はゲージ圧変換素
子により電圧に変換しアンプ5によって増幅した後A/D
コンバータ10を介してコンピュータ11に取り込み測定し
た。第5図は透過材料7およびカラム6の概要であり第
4図の7,6に相当する。透過材料7は内径d=4mm、外径
D1=18mm、長さL1=80mmの円筒状に加工した凝灰岩でな
る透過材料であり、該透過材料7は、カラム6内の両端
に枢着されたホルダ15,16間に保持されている。ホルダ1
5,16内の中心には孔19,20がそれぞれ貫設され、各孔19,
20にはそれぞれ気体の供給管13と第1の排出管14が嵌着
されている。カラム6と透過材料7との間には間隙17が
形成され、カラム6には第2の排出管18が間隙17に連通
するように取付けてある。ホルダ15,16の部分を含めた
カラム6の長さL2は145mmとし、カラム6の外径D2は35m
mとした。
FIG. 4 is an outline of the experimental apparatus of the present invention. The solid line shows the gas line and the broken line shows the measurement line. Each gas is supplied from a cylinder through a regulator, and the flow rate is adjusted by the valve 1. For the measurement of the flow rate, a brass orifice flow meter 2 is used, the differential pressure is converted into a voltage by a pressure conversion element, amplified by an amplifier 3, and then taken into the computer 11 via the A / D converter 10 for data processing. went. After passing through the orifice flow meter, the two kinds of gas become mixed gas and are sent to the separation column 6. The mixed gas supplied to the column 6 is separated into a gas separated and concentrated by the separation / permeable material 7 and an exhaust gas. When measuring the hydrogen composition on the supply side, the mixed gas is sent to the gas chromatograph 9 by the three-way cock 4, and when measuring the hydrogen composition of the permeated gas, the valve 8 is opened and the mixed gas is stored in the gas chromatograph 9. Sent. The differential pressure in the column can be adjusted by opening and closing valve 1 and opening and closing valve 2, and the gauge pressure is converted to a voltage by a gauge pressure conversion element and amplified by amplifier 5 before A / D.
Measurements were taken in the computer 11 via the converter 10. FIG. 5 is an outline of the permeable material 7 and the column 6 and corresponds to 7 and 6 in FIG. The transparent material 7 has an inner diameter d = 4 mm and an outer diameter
The permeable material is a tuff processed into a cylindrical shape having D1 = 18 mm and length L1 = 80 mm, and the permeable material 7 is held between holders 15 and 16 pivotally attached to both ends in the column 6. Holder 1
Holes 19 and 20 are formed at the centers of the holes 5 and 16, respectively.
A gas supply pipe 13 and a first discharge pipe 14 are fitted in the respective 20. A gap 17 is formed between the column 6 and the permeable material 7, and a second discharge pipe 18 is attached to the column 6 so as to communicate with the gap 17. The length L2 of the column 6 including the holders 15 and 16 is 145 mm, and the outer diameter D2 of the column 6 is 35 m.
It was m.

第5図の分離器において、単成分気体を用いて透過材
料7内から外周方向へ間隙17に透過させた場合と、間隙
17から円筒中心へ透過させた場合を比較したところ透過
流量と圧力差との関係は全く等しいものになることが分
かった。
In the separator shown in FIG. 5, the case where the single component gas is used to permeate the inside of the permeation material 7 to the outer periphery 17 and the gap 17
Comparing the case of permeation from 17 to the center of the cylinder, it was found that the relationship between the permeation flow rate and the pressure difference was exactly the same.

次に水素−窒素系混合気体を用いた場合の透過材料の
透過分離特性の具体例の一つを示す。分離特性は分離係
数α(={Y/(1−Y)}/{X/(1−X)})を用
い、透過特性はステージカットθ(=QP/QF)を用いて
示した。供給流量QF=240cc(STP)/minと一定にし、供
給側水素組成X1=21〜71%と変化させその時の圧力差Δ
Pによる透過・分離特性の測定結果を示したのが表−1
−1〜表−1−6である。透過特性を示すステージカッ
トθはどの組成に対しても圧力差の増加に対して正比例
関係にあることが分かる。また供給側水素組成を21%か
ら71%に増加すると、各組成に対する(θ/ΔP)の値
も増加する傾向を示す。つまり透過特性から見れば圧力
差ΔPが大きければ大きい程、供給側水素組成は高くす
ればする程より良い透過特性を示すことが分かる。しか
し分離特性の点から見ると供給側水素組成は高い程優れ
ているが圧力差は大略100KPaをピークとする凸の曲線で
表される様に圧力差の過剰な増加はかえって分離を妨げ
るものである。つまり透過・分離の両特性で分離特性を
第一に考えるならば圧力差ΔP=100KPaが最適と考えら
れる。
Next, one specific example of the permeation separation characteristics of the permeation material when using a hydrogen-nitrogen mixed gas is shown. Separation characteristics are shown using separation coefficient α (= {Y / (1-Y)} / {X / (1-X)}), and transmission characteristics are shown using stage cut θ (= Q P / Q F ). . Supply flow rate Q F = 240 cc (STP) / min, and supply side hydrogen composition X 1 = 21 to 71%, pressure difference Δ
Table 1 shows the measurement results of transmission and separation characteristics with P.
-1 to Table-1-6. It can be seen that the stage cut θ indicating the transmission characteristic is in direct proportion to the increase in the pressure difference for any composition. When the hydrogen composition on the supply side is increased from 21% to 71%, the value of (θ / ΔP) tends to increase for each composition. In other words, it can be seen from the permeation characteristics that the larger the pressure difference ΔP is and the higher the hydrogen content on the supply side is, the better the permeation characteristics are. However, from the standpoint of separation characteristics, the higher the hydrogen composition on the supply side, the better the pressure difference.However, as the pressure difference is represented by a convex curve with a peak of about 100 KPa, an excessive increase in pressure difference rather hinders the separation. is there. In other words, the pressure difference ΔP = 100 KPa is considered to be optimal if the separation characteristics are considered first for both the transmission and separation characteristics.

そこで圧力差ΔP=100KPaと一定にし、供給側水素組
成X1を20〜71%と変化させて透過・分離特性を調べた。
結果を表−2−1〜表−2−5に示した。また透過特性
について述べることにする。圧力差を一定にした場合、
供給側水素組成も一定ならば供給流量QFの大小にかかわ
らず透過流量QPはほぼ一定の値を示す。つまり、供給流
量を小さくすれば透過流量が一定であることよりステー
ジカットθは増大する。また供給側水素組成を高くする
と透過流量は増加しており、供給流量が一定ならば供給
側水素組成を高くすればステージカットθは増加しより
優れた透過特性を示す。分離特性については、供給側水
素組成を変化させても分離係数の著しい変化は見られ
ず、組成による影響は殆ど無いものと言える。一方供給
流量を増加させた場合、分離係数はある程度の値まで比
例して増加する。しかし供給流量QF=150cc(STP)/min
付近で頭打ちとなり、その後は一定の値を示す様にな
る。これは供給流量があまり小さいと操作圧力差によっ
て一義的に決定される透過流量との差が僅かになり、つ
まり供給した気体が殆ど透過してしまうためである。従
ってこの表−2の結果の場合であれば、θ=0.3以上に
なると分離特性への影響が顕著に現われ、分離係数の低
下が生じている。分離特性に重点を置くのであれば、透
過特性の多少の犠牲はやむおえないものと思われる。実
際に工業的に使用する場合には、操作圧力差に対する最
適なステージカットと分離係数の値を求めた供給流量を
決定すべきである。
Therefore, the pressure difference ΔP was kept constant at 100 KPa, and the permeation / separation characteristics were examined by changing the hydrogen composition X 1 on the supply side to 20 to 71%.
The results are shown in Table-2-1 to Table-2-5. Also, the transmission characteristics will be described. When the pressure difference is constant,
If the hydrogen composition on the supply side is also constant, the permeation flow rate Q P shows a substantially constant value regardless of the supply flow rate Q F. That is, when the supply flow rate is reduced, the permeation flow rate is constant, and thus the stage cut θ increases. Further, the permeation flow rate increases as the supply-side hydrogen composition increases, and if the supply flow rate is constant, the stage-cut θ increases as the supply-side hydrogen composition increases, and superior permeation characteristics are exhibited. Regarding the separation characteristics, no significant change was observed in the separation coefficient even if the hydrogen composition on the supply side was changed, and it can be said that there is almost no effect of the composition. On the other hand, when the supply flow rate is increased, the separation coefficient increases proportionally up to a certain value. However, supply flow rate Q F = 150cc (STP) / min
It peaks near and then shows a constant value. This is because if the supply flow rate is too small, the difference from the permeation flow rate that is uniquely determined by the operating pressure difference becomes small, that is, the supplied gas almost permeates. Therefore, in the case of the results shown in Table 2, when θ = 0.3 or more, the separation characteristics are significantly affected, and the separation coefficient is reduced. If the emphasis is on separation characteristics, it seems that some sacrifice in transmission characteristics is unavoidable. In actual industrial use, the supply flow rate should be determined by finding the optimum stage cut and separation coefficient values for the operating pressure difference.

表−3−1〜表−3−5は圧力差ΔP≒100KPa、供給
流量QF≒240cc(STP)/minとした場合の供給側水素組成
に対する透過・分離特性の影響を見たものである。分離
特性に関しては供給側水素組成による著しい影響は見ら
れず大略1.5〜1.6付近となっている。しかし透過特性に
ついては供給側水素組成が高くなるにつれて透過流量は
増大し、またステージカットも増加している。供給側水
素組成がX1≒4%の場合と、X1≒93%の場合では約2.8
倍のステージカットの違いが認められる。供給側水素組
成が高いということは水素濃度が高いと云うことであ
り、水素の方が窒素よりも平均自由行程が長く透過しや
すい為にこの様なことが生じたものと考えられる。
Tables 3-1 to 3-5 show the effects of permeation / separation characteristics on the hydrogen composition on the supply side when the pressure difference ΔP ≈ 100 KPa and the supply flow rate Q F ≈ 240 cc (STP) / min. . Regarding the separation characteristics, there was no significant effect of the hydrogen composition on the supply side, and it was around 1.5 to 1.6. However, regarding the permeation characteristics, the permeation flow rate increases and the stage cut also increases as the hydrogen composition on the supply side increases. About 2.8 when the hydrogen composition on the supply side is X 1 ≈ 4% and when X 1 ≈ 93%
The difference in double stage cutting is recognized. The fact that the hydrogen composition on the supply side is high means that the hydrogen concentration is high, and it is considered that this occurs because hydrogen has a longer mean free path and is easier to permeate than nitrogen.

第6図は多段化した場合の流れ系統図である。1つの
カラムに数本の円筒形の透過材料を組み込み、これを一
段とする。第6図の例では供給流量QF=1000cc/min、供
給ガスの水素組成をX1=30%、分離係数α=1.6、ステ
ージカットθ=0.45とをした場合である。流れが定常状
態になったのちにはcのカラムからはQP=121.096cc/mi
n、透過ガスの水素組成X2=64.46%を得ることが可能で
あり、実に34.46%の濃縮が行われたことになる。また
e,fのカラムから排ガスとして排出されるガスの各々の
流量・水素組成は166.375cc/min、8.53%および77.88cc
/min、13.47%である。
FIG. 6 is a flow system diagram in the case of multiple stages. Several cylindrical permeation materials are installed in one column, and this is made into one. In the example of FIG. 6, the supply flow rate Q F = 1000 cc / min, the hydrogen composition of the supply gas is X 1 = 30%, the separation coefficient α = 1.6, and the stage cut θ = 0.45. After the flow became steady state, Q p = 121.096cc / mi from the column of c.
It is possible to obtain n, the hydrogen composition X 2 of the permeated gas = 64.46%, which means that the concentration of 34.46% has been achieved. Also
The flow rate and hydrogen composition of each gas discharged as exhaust gas from the e and f columns are 166.375cc / min, 8.53% and 77.88cc.
/ min, 13.47%.

第7図(A),(B)は1つのカラム6A内に複数本の
透過材料7を並設したもので、13は気体供給管、14,18
はそれぞれ分子量の大きい気体、小さい気体の含有量が
多い第1,第2の排出管である。
FIGS. 7 (A) and 7 (B) show one column 6A in which a plurality of permeation materials 7 are arranged in parallel, 13 is a gas supply pipe, and 14 and 18
Are the first and second discharge pipes, respectively, which have a large gas content and a small gas content.

本発明を実施する場合、前記円筒状に加工した無機多
孔質材料(透過材料)の内径を2〜130mm、外径を5〜1
50mm、長さを20〜500mmとすれば、実際の加工におい
て、透過材料が得やすいと言う利点がある。
When carrying out the present invention, the inorganic porous material (permeable material) processed into the cylindrical shape has an inner diameter of 2 to 130 mm and an outer diameter of 5 to 1
When the length is 50 mm and the length is 20 to 500 mm, there is an advantage that a transparent material can be easily obtained in actual processing.

(発明の効果) 請求項1によれば、天然ゼオライトを透過材料とし、
透過材料の細孔が気体の平均自由行程より小さくなると
生ずるクヌーセン流れを利用して気体の分離を行なうも
のであり、操作圧力は小さくてすみ、所用動力も少な
く、装置も簡単にある。また、本発明においては、天然
ゼオライトを使用するため、工作機械を用いて加工する
ことにより透過材料を得ることができるので、吸着分離
法による場合に行なう粉砕や焼成等の前処理を必要とせ
ず、透過材料を廉価かつ容易に得ることができる。ま
た、従来より使用されて来た多孔質ガラス等に比較し、
天然ゼオライト原石を用いたものは、透過係数が50倍と
もなるものが容易に得られ、分離効率の高く、高能率に
分離回収作業を行なうことができる。
(Effect of the invention) According to claim 1, natural zeolite is used as the permeable material,
The Knudsen flow that occurs when the pores of the permeable material become smaller than the mean free path of the gas is used to separate the gas. The operating pressure is low, the required power is low, and the device is simple. Further, in the present invention, since a natural zeolite is used, a permeable material can be obtained by processing with a machine tool, so that pretreatment such as pulverization or firing performed by the adsorption separation method is not required. The transparent material can be obtained inexpensively and easily. In addition, compared to porous glass that has been used conventionally,
A material using natural zeolite ore can easily obtain a material having a permeation coefficient of 50 times, high separation efficiency, and highly efficient separation and recovery work.

また、透過材料として円筒形に形成したものを用いた
ので、小型で広い透過面積の透過材料を用いることがで
き、効率のよい分離が可能となる。
Further, since the cylindrical material is used as the transmissive material, a small transmissive material having a wide transmissive area can be used, and efficient separation is possible.

請求項2によれば、実際上透過材料が得やすいという
利点がある。
According to the second aspect, there is an advantage that a transparent material can be practically obtained.

請求項3によれば、透過材料の集合化されたものを用
いることによって、より効率のよい分離がなされる。
According to the third aspect, more efficient separation is achieved by using the aggregated permeable material.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明において用いる天然ゼオライト原石のX
線分析結果を示す出力波形図、第2図は天然ゼオライト
の細孔径分布図、第3図は透過材料の圧力差と透過流量
との関係を水素ガス、窒素ガスについて示す図、第4図
は本発明において用いた実験装置の一例を示す構成図、
第5図(A)(B)(C)はそれぞれ本発明において用
いる分離器の一例を示す平面断面図、平面図、軸方向よ
り見た図、第6図は分離器を多段に組合わせた例を示す
系統図、第7図(A)(B)はそれぞれ1つのカラムに
複数の透過材料を入れた分離器の横断面図および縦断面
図である。
FIG. 1 shows X of natural zeolite rough stone used in the present invention.
Fig. 2 is an output waveform diagram showing the results of the line analysis, Fig. 2 is a pore size distribution diagram of natural zeolite, Fig. 3 is a diagram showing the relationship between the pressure difference of the permeable material and the permeation flow rate for hydrogen gas and nitrogen gas, and Fig. 4 is Configuration diagram showing an example of an experimental apparatus used in the present invention,
5 (A), (B) and (C) are respectively a plan sectional view, a plan view and a view seen from the axial direction showing an example of the separator used in the present invention, and FIG. 6 shows a combination of the separators in multiple stages. An example system diagram and FIGS. 7 (A) and 7 (B) are a horizontal cross-sectional view and a vertical cross-sectional view of a separator in which a plurality of permeation materials are put in one column, respectively.

フロントページの続き (72)発明者 小網 一裕 山形県東置賜郡高畠町大字根岸304番地の 1 新野電子株式会社内 (56)参考文献 特開 昭63−185429(JP,A) 特開 昭61−107902(JP,A) 特開 昭63−291809(JP,A)Front page continued (72) Inventor Kazuhiro Koami 1 No. 304, Negishi, Takahata-cho, Higashiokitama-gun, Yamagata Pref. Shinno Electronics Co., Ltd. (56) Reference JP-A-63-185429 (JP, A) JP-A-61 -107902 (JP, A) JP-A-63-291809 (JP, A)

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】分子量が2〜80の気体を含有する混合気体
をクヌーセン流れによって無機多孔質内を透過させ、該
気体を分離・濃縮する方法であって、無機多孔質材料と
して、円筒状に加工した天然ゼオライトを用い、円筒の
内側あるいは外側に混合気体を流すことにより無機多孔
質材料を透過させ、外側あるいは内側より分子量の小さ
な気体が濃縮された混合ガスを得る気体の分離濃縮法。
1. A method for permeating a mixed gas containing a gas having a molecular weight of 2-80 through an inorganic porous material by a Knudsen flow to separate and concentrate the gas, wherein the inorganic porous material has a cylindrical shape. A method for separating and concentrating a gas using a processed natural zeolite that allows a mixed gas to flow through the inside or outside of a cylinder to permeate an inorganic porous material to obtain a mixed gas in which a gas having a smaller molecular weight is concentrated than the outside or inside.
【請求項2】前記円筒状に加工した無機多孔質材料の内
径が2〜130mm、外径が5〜150mm、長さが20〜500mmで
ある請求項1記載の気体の分離濃縮法。
2. The method for separating and concentrating gas according to claim 1, wherein the inorganic porous material processed into the cylindrical shape has an inner diameter of 2 to 130 mm, an outer diameter of 5 to 150 mm, and a length of 20 to 500 mm.
【請求項3】前記円筒状をなす複数本の無機多孔質材料
を1つのカラムにまとめて分離器とし、該分離器を用い
て気体の分離、濃縮を行なう請求項1または2記載の気
体の分離濃縮法。
3. The gas according to claim 1, wherein the plurality of cylindrical inorganic porous materials are combined into one column to form a separator, and the separator is used for gas separation and concentration. Separation and concentration method.
JP12727088A 1988-05-25 1988-05-25 Gas separation and concentration method Expired - Fee Related JPH0829229B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12727088A JPH0829229B2 (en) 1988-05-25 1988-05-25 Gas separation and concentration method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12727088A JPH0829229B2 (en) 1988-05-25 1988-05-25 Gas separation and concentration method

Publications (2)

Publication Number Publication Date
JPH01297123A JPH01297123A (en) 1989-11-30
JPH0829229B2 true JPH0829229B2 (en) 1996-03-27

Family

ID=14955849

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12727088A Expired - Fee Related JPH0829229B2 (en) 1988-05-25 1988-05-25 Gas separation and concentration method

Country Status (1)

Country Link
JP (1) JPH0829229B2 (en)

Also Published As

Publication number Publication date
JPH01297123A (en) 1989-11-30

Similar Documents

Publication Publication Date Title
US4497640A (en) Process for the dehydration of gases containing hydrocarbons
AU658095B2 (en) Hydrocarbon fractionation by adsorbent membranes
Wang et al. Highly stable bilayer MFI zeolite membranes for high temperature hydrogen separation
US3144313A (en) Difusion purification of gases
US7297184B2 (en) Apparatus and method for separating gases
US4482360A (en) Porous materials for concentration and separation of hydrogen or helium, and process therewith for the separation of the gas
Li et al. Effects of membrane thickness and structural type on the hydrogen separation performance of oxygen-permeable membrane reactors
US5649996A (en) Method for the separation of gases at low temperatures
US6039792A (en) Methods of forming and using porous structures for energy efficient separation of light gases by capillary condensation
EP1647531B1 (en) Method for concentrating methane from sewage sludge and methane storage equipment
CN102398898A (en) Purification and analysis of high-purity phosphine
Wang et al. Mixed oxygen ionic and electronic conducting membrane reactors for pure chemicals production
CA1272140A (en) Separating hydrogen from a mixture of substances
Syakdani et al. Analysis of Cooler Performance in Air Supply Feed for Nitrogen Production Process using Pressure Swing Adsorption (PSA) Method
JPH0829229B2 (en) Gas separation and concentration method
Tanihara et al. Vapor-permeation separation of water-ethanol mixtures by asymmetric polyimide hollow-fiber membrane modules
CN114353434A (en) Device and method for concentrating krypton and xenon through low-temperature rectification
Succi et al. High purity hydrogen: Guidelines to select the most suitable purification technology
US11420152B2 (en) Bandpass filter for separation of a specifically selected gas from a group of gases or an atmosphere
US3267645A (en) Devices for purifying a gas or a gaseous mixture by reversible adsorption
CN115105930A (en) Multifunctional hollow fiber membrane gas separation and purification system and method
KR101275213B1 (en) Boron-doped vanadium based alloy membranes for separation of hydrogen and methods of separating hydrogen using the same
Matson et al. Liquid membranes for the production of oxygen-enriched air: III. process design and economics
JPH0530490B2 (en)
US20140165649A1 (en) Purification of inert gases to remove trace impurities

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees