JPH08292175A - Method and device of ultrasonic inspection - Google Patents

Method and device of ultrasonic inspection

Info

Publication number
JPH08292175A
JPH08292175A JP7095605A JP9560595A JPH08292175A JP H08292175 A JPH08292175 A JP H08292175A JP 7095605 A JP7095605 A JP 7095605A JP 9560595 A JP9560595 A JP 9560595A JP H08292175 A JPH08292175 A JP H08292175A
Authority
JP
Japan
Prior art keywords
wave
transmission
frequency
chirp
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7095605A
Other languages
Japanese (ja)
Inventor
Ryuichi Okuno
隆一 奥野
Akio Nagamune
章生 長棟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP7095605A priority Critical patent/JPH08292175A/en
Publication of JPH08292175A publication Critical patent/JPH08292175A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/044Internal reflections (echoes), e.g. on walls or defects

Abstract

PURPOSE: To provide a method and a device for inspecting with an ultrasonic wave capable of enhancing both of inspection accuracy and inspection efficiency. CONSTITUTION: The method and device comprises transmission wave generating means 42, 49 that alternately generate, as transmission waves, chirp waves each of which frequency shifts in a prescribed range and in which increasing directions of shifting frequencies are opposite to each other for every constant cycle, reference wave generating means 47, 50 that continuously generate, as reference waves, chirp waves of which increasing directions of shifting frequencies are identical to the transmission waves during the cycles, a transmitting means 43 that transmits the transmission waves to an ultrasonic wave probe and a relative operation means 46 that executes the relative operation of received waves of the ultrasonic wave probe and reference waves and utilizes a signal that is pulse-pressed after the relative operation for inspection of a specimen.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は超音波を用いて材料の内
外部に存在する欠陥を非破壊で検査したり、材料の厚さ
を測定する超音波検査方法及びその装置に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ultrasonic inspection method and apparatus for non-destructively inspecting defects existing inside and outside a material using ultrasonic waves and for measuring the thickness of the material.

【0002】[0002]

【従来の技術】図7は従来の一般的な超音波探傷装置の
機能構成図である。図7において、1は各回路に必要な
同期信号を発生し出力する同期部、2は同期部1からの
出力信号をもとに送信電気信号を発生する送信部、3は
送信部2からの送信信号をもとに超音波を発生し被検体
4の内部に超音波を入射させると共に、被検体内部から
のエコーを受信し電気信号に変換する探触子、5は探触
子3からの電気信号を増幅させる受信部、6は受信部5
からの出力信号を表示する表示部である。
2. Description of the Related Art FIG. 7 is a functional block diagram of a conventional general ultrasonic flaw detector. In FIG. 7, reference numeral 1 is a synchronization unit that generates and outputs a synchronization signal necessary for each circuit, 2 is a transmission unit that generates a transmission electric signal based on the output signal from the synchronization unit 1, and 3 is a transmission unit 2 from the transmission unit 2. A probe 5 that generates an ultrasonic wave based on a transmission signal and causes the ultrasonic wave to enter the inside of the subject 4 and receives an echo from the inside of the subject and converts the echo into an electric signal is a probe 5 from the probe 3. A receiving unit for amplifying the electric signal, 6 is a receiving unit 5
It is a display unit for displaying an output signal from the.

【0003】超音波を用いて材料内外部の検査を行う場
合には、一般に、図7に示すような装置が使用されてお
り、送信信号波形としてはパルス波が一般に用いられて
いる。図8の(a)にそのパルス波の形状を示す。ま
た、パルス波の振幅スペクトルを図8の(b)のb1に
示す。このb1の特性により、パルス波の振幅スペクト
ルの形状を見ると、周波数fが高くなるほど振幅が低下
する傾向を持っていることが分かる。しかしながら、実
際に使用する一般的な探触子の周波数特性( 送信時の電
気信号の超音波信号への変換効率及び受信時の超音波信
号の電気信号への変換効率の積の周波数上での特性) を
見ると、それは図8の(b)のb2に示すようになって
おり、最も変換効率の高い周波数( 中心周波数) をピー
クとする丘状の分布状態を持っている。
When inspecting the inside and outside of a material using ultrasonic waves, an apparatus as shown in FIG. 7 is generally used, and a pulse wave is generally used as a transmission signal waveform. The shape of the pulse wave is shown in FIG. Further, the amplitude spectrum of the pulse wave is shown by b1 in FIG. From the characteristic of b1, the shape of the amplitude spectrum of the pulse wave shows that the amplitude tends to decrease as the frequency f increases. However, the frequency characteristics of a typical probe actually used (the product of the conversion efficiency of an electric signal during transmission into an ultrasonic signal and the conversion efficiency of an ultrasonic signal during reception into an electrical signal Looking at the characteristics, it is as shown in b2 of FIG. 8B, and has a hill-shaped distribution state having a peak at the frequency (center frequency) with the highest conversion efficiency.

【0004】ここで問題となるのは、図8の(b)のb
1とb2の形状の差である。つまり、この形状の差は、
送信パルスのエネルギーが探触子の超音波の送受信の過
程でかなり失われていることを意味しており、十分なエ
ネルギーを持った受信信号が得られないことを示してい
る。その結果、小さな欠陥を探傷する場合には、図7の
受信部5の増幅感度を上げることになり、電気ノイズや
材料中の結晶粒による材料ノイズの影響を受け易くな
る。
The problem here is that b in FIG.
This is the difference in shape between 1 and b2. So this difference in shape is
This means that the energy of the transmission pulse is considerably lost in the process of transmitting and receiving the ultrasonic waves of the probe, which means that a reception signal with sufficient energy cannot be obtained. As a result, in the case of detecting a small defect, the amplification sensitivity of the receiver 5 in FIG. 7 is increased, and it is easily affected by electrical noise and material noise due to crystal grains in the material.

【0005】このような問題点を解決するための手段と
して図9に示すような超音波探傷装置が提唱されている
( 特公平3−43586号公報) 。この図9の超音波探
傷装置において、7は同期部1からの出力信号に同期し
て送信部2へのパルス幅を可変する周波数可変回路、8
は周波数可変回路7への制御信号を出力する周波数設定
手段、9は周波数可変回路7の出力信号の波数を可変す
る波数可変回路、10は波数可変回路9への制御信号を
出力する波数設定手段である。上記のような構成を有す
る超音波探傷装置では送信周波数及び送信波数をそれぞ
れ可変できるため、送信波(図10の(a))が探触子
の周波数特性のピーク付近で送信できるため(図10の
(b))、強い送信波を得ることができ、ノイズの影響
を受けにくくなる。しかし、図9により作られる送信波
は、図10の(a)のようにパルス波(図10の
(c))よりも送信波の時間軸方向の幅が長く、時間軸
分解能が悪くなるといった問題点があった。
As a means for solving such a problem, an ultrasonic flaw detector as shown in FIG. 9 has been proposed.
(Japanese Patent Publication No. 3-43586). In the ultrasonic flaw detector of FIG. 9, 7 is a frequency variable circuit for varying the pulse width to the transmission unit 2 in synchronization with the output signal from the synchronization unit 1, 8
Is a frequency setting means for outputting a control signal to the frequency changing circuit 7, 9 is a wave number changing circuit for changing the wave number of the output signal of the frequency changing circuit 7, and 10 is a wave number setting means for outputting a control signal to the wave number changing circuit 9. Is. Since the transmission frequency and the transmission wave number can be varied in the ultrasonic flaw detector having the above-described configuration, the transmission wave ((a) in FIG. 10) can be transmitted near the peak of the frequency characteristic of the probe (FIG. 10). (B)), a strong transmission wave can be obtained, and it is less susceptible to noise. However, the transmission wave generated in FIG. 9 has a longer width in the time axis direction than the pulse wave ((c) in FIG. 10) as shown in FIG. 10 (a), resulting in poor time axis resolution. There was a problem.

【0006】更に、上記の問題点を解決する技術として
レーダーの分野で良く知られているパルス圧縮という技
術がある(Radar handbook, Skolnik et.al.,McGraw-Hi
ll Inc,.1970)。この技術は、周知のように、位相を符
号化した波形または周波数を変調させた波形(FM波と
呼ぶ)を送信波として送信し、その受信波形と送信に用
いた波形との相互相関演算処理(パルス圧縮)を行うこ
とにより、受信波の時間軸方向の幅を短くすると同時
に、振幅の鋭い波形を得て、更に途中のノイズを低減す
る技術である。図11を用いて一般的なFM信号波形の
特徴を説明する。前記FM信号(図11の(c))にお
いては、パルス幅T内において、周波数Bと振幅形状
(図11の(b))とが互いに独立して任意に設定され
る。図11の(d)に相関処理後の波形を示す。この技
術を超音波探傷に適用した適用した装置としては、特開
昭63−233369号公報において提案されている装
置が知られている。
Further, as a technique for solving the above problems, there is a technique called pulse compression which is well known in the field of radar (Radar handbook, Skolnik et.al., McGraw-Hi.
ll Inc ,. 1970). As is well known, this technique transmits a waveform in which a phase is encoded or a waveform in which a frequency is modulated (referred to as an FM wave) as a transmission wave, and cross-correlation calculation processing between the reception waveform and the waveform used for transmission. By performing (pulse compression), the width of the received wave in the time axis direction is shortened, and at the same time, a waveform with a sharp amplitude is obtained to further reduce noise on the way. The features of a general FM signal waveform will be described with reference to FIG. In the FM signal ((c) of FIG. 11), within the pulse width T, the frequency B and the amplitude shape ((b) of FIG. 11) are arbitrarily set independently of each other. FIG. 11D shows the waveform after the correlation processing. As an apparatus to which this technique is applied to ultrasonic flaw detection, an apparatus proposed in Japanese Patent Application Laid-Open No. 63-233369 is known.

【0007】上記公報において提案されている装置にお
いては、図12に示すように、FM信号設定部21で作
成された送信パルス信号d1,d2はFM信号送信部2
2より超音波探触子3へ送信される。超音波探触子3は
送信パルス信号d1,d2に応答して超音波パルスを被
検体4へ送波し、反射波を受波する。受波された反射波
はエコー信号に変換されて直交検波部25へ入力され
る。エコー信号は直交検波部25により複素信号に変換
され、周波数帯域の低域変換を行い、次の相関部26へ
入力される。一方、参照波設定部27は、FM信号設定
部21で作成された送信パルス信号d1,d2を用いて
参照信号r1,r2を作成して、参照波発信部28を介
して相関部26へ送出する。相関部26は、エコー信号
と参照信号r1,r2との相関演算を行うことによっ
て、エコー信号をパルス圧縮する。パルス圧縮されたエ
コー信号d1,d2は直交変調部29でもって時差時間
信号に変換されて表示部30に表示される。
In the apparatus proposed in the above publication, as shown in FIG. 12, the transmission pulse signals d1 and d2 generated by the FM signal setting section 21 are generated by the FM signal transmitting section 2 as shown in FIG.
2 to the ultrasonic probe 3. The ultrasonic probe 3 transmits ultrasonic pulses to the subject 4 and receives reflected waves in response to the transmission pulse signals d1 and d2. The received reflected wave is converted into an echo signal and input to the quadrature detection unit 25. The echo signal is converted into a complex signal by the quadrature detection unit 25, low-frequency conversion is performed on the frequency band, and the result is input to the next correlation unit 26. On the other hand, the reference wave setting unit 27 creates reference signals r1 and r2 using the transmission pulse signals d1 and d2 created by the FM signal setting unit 21, and sends them to the correlation unit 26 via the reference wave sending unit 28. To do. The correlating unit 26 pulse-compresses the echo signal by performing a correlation calculation between the echo signal and the reference signals r1 and r2. The pulse-compressed echo signals d1 and d2 are converted into time difference time signals by the quadrature modulator 29 and displayed on the display unit 30.

【0008】[0008]

【発明が解決しようとする課題】一般に鍛鋼品に代表さ
れる超音波の減衰の少ない材料の検査を行う場合には、
送信パルスの繰返し周波数を高くすると、図13の
(a)のような残留エコーと呼ばれる擬似エコーが発生
する((社)日本非破壊検査協会発行:非破壊検査シリ
ーズ、超音波探傷試験II、1990、p31〜3
2)。これは、図13の(b)のように同期信号c1 に
より送信された超音波パルスu1 は、探傷面と底面との
間を往復し、探傷面に戻るごとに受信され、表示部に表
示される。材料中の減衰の少ない超音波パルスu1 は、
同期信号c1 が終了し次の同期信号c2 が発生しても探
傷面と底面の間を往復し続け、探傷面に戻る毎に受信信
号Bn が表示部30に送られる。もし、次の同期信号
c2 に基づく表示が開始された時点においても、超音波
パルスu1 が減衰消滅しないで材料中を往復し続けてい
ると、c2 の表示中に超音波パルスu1 の受信信号Bn
が、疑似エコーとして表示されてしまう。これを解決
する方法として、同期信号c1 、c2 の間隔を長くす
る、つまりパルス繰返し周波数を低くすることにより解
決できるが、従来同様に探傷密度を確保しようとする場
合には、探触子の走査速度を低くする以外なく、探傷時
間が長くなり探傷効率が低下する。これは、従来技術に
共通の問題点であった。
Generally, in the case of inspecting a material represented by a forged steel having a small attenuation of ultrasonic waves,
When the repetition frequency of the transmission pulse is increased, a pseudo echo called a residual echo as shown in FIG. 13A is generated (issued by the Japan Nondestructive Inspection Society: Nondestructive Inspection Series, Ultrasonic Testing II, 1990). , P31-3
2). This is because the ultrasonic pulse u1 transmitted by the synchronizing signal c1 as shown in FIG. 13 (b) reciprocates between the flaw detection surface and the bottom surface and is received each time it returns to the flaw detection surface, and is displayed on the display unit. It The ultrasonic pulse u1 with less attenuation in the material is
Even if the synchronization signal c1 is terminated and the next synchronization signal c2 is generated, it continues to reciprocate between the flaw detection surface and the bottom surface, and the received signal Bn is sent to the display unit 30 every time it returns to the flaw detection surface. If the ultrasonic pulse u1 continues to reciprocate in the material without being attenuated and extinguished even at the time when the display based on the next synchronizing signal c2 is started, the received signal Bn of the ultrasonic pulse u1 is displayed during the display of c2.
Is displayed as a pseudo echo. As a method for solving this, the problem can be solved by lengthening the interval between the synchronizing signals c1 and c2, that is, lowering the pulse repetition frequency. However, in order to secure the flaw detection density as in the conventional case, the scanning of the probe is performed. Besides lowering the speed, the flaw detection time becomes longer and the flaw detection efficiency decreases. This was a problem common to the prior art.

【0009】本発明は、このような問題点を解決するた
めになされたものであり、検査精度及び検査効率の双方
を向上させることを可能にした超音波検査方法及びその
装置を提供することを目的とする。
The present invention has been made to solve the above problems, and provides an ultrasonic inspection method and an apparatus therefor capable of improving both inspection accuracy and inspection efficiency. To aim.

【0010】[0010]

【課題を解決するための手段】本発明に係る超音波検査
方法は、所定パルス幅内で周波数が遷移するチャープ波
を送信波として送信し、その受信波と、予め設定された
チャープ波からなる参照波との相関処理を行い、この相
関処理後のパルス圧縮された信号によって被検体を検査
する超音波検査方法に於いて、送信波として、低周波側
から高周波側に周波数が遷移するチャープ波と高周波側
から低周波側に周波数が遷移するチャープ波とを用い
て、交互に送信を繰り返し、そして、参照波として、周
波数遷移方向が送信波と同じチャープ波を用いる。本発
明に係る超音波検査装置は、所定パルス幅内で周波数が
遷移し、遷移する周波数増加の方向が互いに逆方向のチ
ャープ波を、一定の周期で交互に送信波として発生する
送信波発生手段と、遷移する周波数増加の方向が送信波
と同一のチャープ波を前記の周期の間連続的に参照波と
して発生する参照波発生手段と、超音波探触子からの受
信波と参照波との相関処理を行い、この相関処理後のパ
ルス圧縮された信号を被検体の検査に利用する相関処理
手段とを備えている。
An ultrasonic inspection method according to the present invention transmits a chirp wave whose frequency transits within a predetermined pulse width as a transmission wave, and comprises the received wave and a preset chirp wave. In the ultrasonic inspection method that performs the correlation processing with the reference wave and inspects the subject with the pulse-compressed signal after this correlation processing, the chirp wave whose frequency shifts from the low frequency side to the high frequency side as the transmission wave And the chirp wave in which the frequency transitions from the high frequency side to the low frequency side are alternately used, and the chirp wave whose frequency transition direction is the same as that of the transmission wave is used as the reference wave. The ultrasonic inspection apparatus according to the present invention is a transmission wave generation unit that alternately generates chirp waves whose frequencies change within a predetermined pulse width and whose transition frequency increasing directions are opposite to each other in a constant cycle as transmission waves. A reference wave generating means for continuously generating a chirp wave having the same direction as the transmitted wave as the reference wave in the direction of the transition frequency increase, and a received wave from the ultrasonic probe and a reference wave. Correlation processing means for performing the correlation processing and utilizing the pulse-compressed signal after the correlation processing for the examination of the subject.

【0011】[0011]

【作用】上記のパルス圧縮技術による超音波検査方法に
おいては、例えば図14の(a)のような形状のチャー
プ波形を送信し、その受信波(図14の(b))と予め
設定した同様の形状を有する参照波(図14の(c))
との相関処理を施す方法で、参照波をx(t)、受信波
をy(t)とおくと、ある時間τにおける相関関数S
(τ)は、次の(1)式のように定義される演算を行う
ことによって、図14の(d)の様な波形を得る。
In the ultrasonic inspection method based on the pulse compression technique described above, a chirp waveform having, for example, the shape shown in FIG. 14 (a) is transmitted, and the received wave (FIG. 14 (b)) is set in the same manner as previously set. Reference wave having the shape of ((c) of FIG. 14)
When the reference wave is x (t) and the received wave is y (t), the correlation function S at a certain time τ is obtained.
(Τ) obtains a waveform as shown in (d) of FIG. 14 by performing an operation defined by the following equation (1).

【0012】[0012]

【数1】 [Equation 1]

【0013】このとき(1)式に関しては、Nはデータ
数であり、計算機等の演算を慮して離散化データの式と
して示している。一般に相関演算は二つの波形の類似度
を定量的に表す手法である。これを図15を用いて説明
する。(1)式により、或時間τにおける、相関値S
(τ)は、時間τから(τ+N)の区間で切り出された
データ数Nの受信波x(n):(x(τ)〜x(τ+
N))と同データ数Nを持つ参照波y(n):(y
(0)〜y(0+N))の類似性を求めている。ここで
時間τ1では、受信波(x(τ1)〜x(τ1+N))
と参照波(y(0)〜y(N))は相関がなく、受信波
の切り出し窓の開始点位置τをチャープ波形の形状を持
つ反射波の発生位置開始点τ2に近づくにつれて、相関
性が急激に増し、切り出し窓の開始点位置がτ2を越し
てしまうと、急激に相関性を失っていく。その結果、受
信波の切り出し窓の開始点位置τを順次移動させた結果
得られるS(τ)は、急峻なピーク(以後メインローブ
という。)を持った波形となる。
At this time, in the equation (1), N is the number of data, which is shown as an equation of the discretized data in consideration of the operation of a computer or the like. In general, the correlation calculation is a method of quantitatively expressing the similarity between two waveforms. This will be described with reference to FIG. According to equation (1), the correlation value S at a certain time τ
(Τ) is the received wave x (n) of the number of data N cut out in the interval of (τ + N) from the time τ: (x (τ) to x (τ +)
N)) and the reference wave y (n) :( y
The similarity of (0) to y (0 + N)) is sought. Here, at time τ1, the received wave (x (τ1) to x (τ1 + N))
And the reference waves (y (0) to y (N)) have no correlation, and the correlation between the starting point position τ of the cutout window of the received wave and the generation position starting point τ2 of the reflected wave having the shape of the chirp waveform is correlated. Suddenly increases, and the starting point position of the cutout window exceeds τ2, the correlation rapidly disappears. As a result, S (τ) obtained as a result of sequentially moving the starting point position τ of the cutout window of the received wave becomes a waveform having a steep peak (hereinafter referred to as a main lobe).

【0014】そこで、図16に示すように、参照波y
(n)の周波数遷移方向を逆にした参照波z(n)を用
意する。このときの相関演算を図17を用いて説明す
る。図17より、受信波x(n)の切り出し窓開始位置
τ1においては、図18と同じように相関は全くない
が、切り出し窓終点位置が受信波の反射エコーの開始位
置と重なりはじめると(図17のx(n)のτ2付
近)、受信波と参照波は部分的に相関性を有するように
なってくる(図17のA、A’の範囲)。しかしなが
ら、切り出し窓開始位置が反射エコーの終点(図17の
x(n)のτ4付近)までの区間は、図15のような完
全な相関を有する位置はなく、絶えず部分的な相関を有
するのみに留まる(図17のB、B’及びC、C’)。
その結果得られる相関関数S(τ)は急峻なメインロー
ブを持たない関数の形状となる。
Therefore, as shown in FIG. 16, the reference wave y
A reference wave z (n) in which the frequency transition direction of (n) is reversed is prepared. The correlation calculation at this time will be described with reference to FIG. From FIG. 17, at the clipping window start position τ1 of the reception wave x (n), there is no correlation as in FIG. 18, but when the clipping window end position begins to overlap with the start position of the reflection echo of the reception wave (FIG. 17) (in the vicinity of τ2 of x (n)), the received wave and the reference wave are partially correlated (range A, A ′ in FIG. 17). However, in the section from the start position of the clipping window to the end point of reflection echo (near τ4 of x (n) in FIG. 17), there is no position having perfect correlation as in FIG. 15, and only partial correlation is constantly present. 17 (B, B ′ and C, C ′ in FIG. 17).
The resulting correlation function S (τ) has the shape of a function that does not have a steep main lobe.

【0015】ここで、超音波減衰の少ない材料を探傷す
る時に、送信波と参照波とを図16(a)(b)に示す
チャープ波形を交互に用いた場合について、図18を用
いて説明する。まず、2種類の送信波形を用意する。図
16の(a)を送信波A、図16の(b)を送信波Bと
する。図18に示されるように、同期信号C1 、C2、
C3 の順に送信波A、送信波Bが交互に送信される(図
18の(a))。各々の送信波に対する受信信号は図1
8の(b)のように得られる。ここで、A1、A2、A
3のような材料底面からの多重反射エコーは、次の同期
信号に基づく受信波形B1、B2、B3が受信されても
減衰しないため、残留エコーとして表示される(図18
の(c))。しかしながらここで、送信波と同等の参照
波による相関処理は図18の(d)のような処理後の波
形を得る。ここで、受信波B4,A1及びB5,A2の
参照波Aとの相関、同じく受信波A4,B1及びA5,
B2の参照波Bとの相関は、前述の図15及び図17に
相当する処理が行われる。具体的には、同種類の波形
(Aと欠陥エコーであるA1,A2及びBと欠陥エコー
であるB1,B2)の相関は、図15に行うような急峻
なメインローブが得られるが、異種類の波形(Aと残留
エコーであるB4,B5及びBと残留エコーであるA
4,A5)の相関は、図17で行われたようなメインロ
ーブを持たない波形を得る。これにより、残留エコーが
低減される。
Here, a case in which the transmitted wave and the reference wave alternately use the chirp waveforms shown in FIGS. 16 (a) and 16 (b) when flaw detection is performed on a material having a small ultrasonic attenuation will be described with reference to FIG. To do. First, two types of transmission waveforms are prepared. 16A is a transmission wave A, and FIG. 16B is a transmission wave B. As shown in FIG. 18, the synchronization signals C1, C2,
The transmission wave A and the transmission wave B are alternately transmitted in the order of C3 ((a) of FIG. 18). The received signal for each transmitted wave is shown in Fig. 1.
8 (b). Where A1, A2, A
The multiple reflection echoes from the bottom surface of the material such as 3 are not attenuated even when the reception waveforms B1, B2, B3 based on the next synchronization signal are received, and thus are displayed as residual echoes (FIG. 18).
(C)). However, here, the correlation processing using the reference wave equivalent to the transmitted wave obtains the processed waveform as shown in (d) of FIG. Here, the correlation of the received waves B4, A1 and B5, A2 with the reference wave A, as well as the received waves A4, B1 and A5.
For the correlation of B2 with the reference wave B, the processes corresponding to the above-described FIGS. 15 and 17 are performed. Specifically, the correlation between the same type of waveforms (A and defect echoes A1 and A2 and B and defect echoes B1 and B2) gives a steep main lobe as shown in FIG. Types of waveforms (A and residual echo B4, B5 and B and residual echo A
4, A5) correlation obtains a waveform without the main lobe as done in FIG. This reduces residual echo.

【0016】[0016]

【実施例】図1は本発明の一実施例に係る超音波検査装
置の機能説明図である。図1において、41は各回路に
必要な同期信号を発生し出力する同期部、42は所定波
形の2種類の互いに変調方向の異なる周波数変調信号(
この例ではチャープ信号波) を設定するFM信号設定
部、43はFM信号設定部で設定されたFM信号に基づ
き同期信号に準拠し、どちらか一方のFM信号を読み出
す信号読出部49により読み出されたFM信号を送信す
るFM信号送信部、44は超音波を被検体45に励振
し、その受信エコーを受信する探触子、46は相関処理
を行うパルス圧縮部、47はFM信号設定部により設定
されたFM信号を基に同じく変調方向の異なる2種類の
チャープ波を設定する参照波設定部、50は信号読出部
49と同様に、送信波形と同じ変調方向を有する参照波
を読み出す信号読出部である。48はパルス圧縮部で相
関された結果を表示する表示部である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a functional explanatory diagram of an ultrasonic inspection apparatus according to an embodiment of the present invention. In FIG. 1, reference numeral 41 denotes a synchronizing section for generating and outputting a synchronizing signal required for each circuit, and 42 denotes two types of frequency-modulated signals of a predetermined waveform and having different modulation directions
In this example, the FM signal setting unit for setting the chirp signal wave), and 43 is a signal reading unit 49 that reads either one of the FM signals according to the synchronization signal based on the FM signal set by the FM signal setting unit. FM signal transmitting section for transmitting the generated FM signal, 44 a probe for exciting ultrasonic waves to the subject 45 and receiving the received echo, 46 a pulse compression section for performing correlation processing, 47 an FM signal setting section A reference wave setting unit that sets two types of chirp waves that also have different modulation directions based on the FM signal that has been set by, and, like the signal reading unit 49, a signal that reads a reference wave that has the same modulation direction as the transmission waveform. It is a reading unit. Reference numeral 48 is a display unit for displaying the result of correlation in the pulse compression unit.

【0017】図2は図1の装置の具体的なハードウェア
構成の一例を示す図である。図2において、51はパー
ソナルコンピュータであり、図1の同期部41、FM信
号設定部42、FM信号送信部43、信号読出部49,
50、及び参照波設定部47の各機能動作を全て行うも
のである。52はD/A変換部、53は送信用アンプ、
55は受信用アンプであり、56はA/D変換部であ
る。57はFIRフィルタであり、図1のパルス圧縮部
46の具体的なハードウェアである。FIRフィルタ5
7としては、例えば図3の構成によるものでよい。58
はオッシロスコープである。
FIG. 2 is a diagram showing an example of a concrete hardware configuration of the apparatus shown in FIG. In FIG. 2, reference numeral 51 denotes a personal computer, which includes the synchronizing unit 41, the FM signal setting unit 42, the FM signal transmitting unit 43, the signal reading unit 49, and the signal reading unit 49 of FIG.
50, and all the functional operations of the reference wave setting unit 47 are performed. 52 is a D / A converter, 53 is a transmission amplifier,
Reference numeral 55 is a receiving amplifier, and 56 is an A / D converter. Reference numeral 57 is an FIR filter, which is specific hardware of the pulse compression unit 46 in FIG. FIR filter 5
For example, 7 may have the configuration shown in FIG. 58
Is an oscilloscope.

【0018】図2においては、パーソナルコンピュータ
51で作成された周波数変調方向の互いに異なる2種類
のFM波形は、それぞれD/A変換器52によりアナロ
グ信号に変換され、送信用アンプ53により所要の送信
電力まで増幅され、探触子44から超音波として被検体
45内に送信される。探触子44で受信された信号は受
信用アンプ55で信号増幅され、A/D変換器56で逐
次デジタル信号に変換される。そして、この受信デジタ
ル信号は、FIRフィルタ57によりパーソナルコンピ
ュータ51が作成する参照波と相関演算され、パルス圧
縮処理が行われる。ここで、パーソナルコンピュータ5
1を使用した理由は、プログラムの変更により、送信・
参照波の形状を任意に設定できるからである。
In FIG. 2, two types of FM waveforms created by the personal computer 51 and having different frequency modulation directions are converted into analog signals by the D / A converter 52, and the required transmission is performed by the transmission amplifier 53. The power is amplified and transmitted from the probe 44 as ultrasonic waves into the subject 45. The signal received by the probe 44 is amplified by the reception amplifier 55 and is sequentially converted into a digital signal by the A / D converter 56. Then, the received digital signal is subjected to correlation calculation with the reference wave created by the personal computer 51 by the FIR filter 57, and pulse compression processing is performed. Here, the personal computer 5
The reason for using 1 is that due to changes in the program,
This is because the shape of the reference wave can be set arbitrarily.

【0019】また、図3に示すデジタルフィルタは、A
/D変換器56により離散化された2つの関数x(n)
とy(n)に関して次の(2)式に示すような畳み込み
演算を行うことができる。
Further, the digital filter shown in FIG.
Two functions x (n) discretized by the / D converter 56
With respect to y (n) and y (n), a convolution operation as shown in the following expression (2) can be performed.

【0020】[0020]

【数2】 [Equation 2]

【0021】図3のFIRフィルタの構成において、+
印は加算器、×印は乗算器、Z-1は遅延器であり、各遅
延器は入力信号に対して送信の繰返し周期に相当する時
間の遅延を行い出力する。図3のデジタルフィルタにお
いては、デジタル信号に離散化された受信波形x(τ)
と相関演算を行うための参照波形は、或る一定のサンプ
リング周波数でサンプリングされ(離散化され)、この
例では各離散化データ値は、(2)式のy(n)に代わ
って128個のC0 〜C127 して、それぞれ×印の乗算
器の一方に入力される。一方、入力端から各送信周期毎
に入力される離散化受信データx(τ)は、各乗算器の
他方の入力に直接供給され、参照データC0 〜C127
それぞれ個別に乗算され、C127 との乗算結果を除く各
乗算結果はそれぞれ127個の遅延器と加算器とが交互
に直列接続された該当加算器の入力の一方に供給され
る。そして、C127 との乗算結果のみが交互に直列接続
された先頭の遅延器に直接供給され、この遅延器の後段
に直列接続される加算器の入力の他方にはC126 との乗
算結果が供給される。そして、直列結合の最後の加算器
の出力が演算出力となる。以上の演算結果を次の(3)
式に示す。
In the configuration of the FIR filter of FIG. 3, +
The mark is an adder, the mark x is a multiplier, and Z -1 is a delay device, and each delay device delays the input signal by a time corresponding to the repetition cycle of transmission and outputs the delayed signal. In the digital filter of FIG. 3, the received waveform x (τ) discretized into a digital signal
The reference waveform for performing the correlation calculation with is sampled (discretized) at a certain sampling frequency, and in this example, each discretized data value is 128 instead of y (n) in the equation (2). C 0 to C 127 , and are input to one of the multipliers indicated by x. On the other hand, the discretized reception data x (τ) input from the input end in each transmission cycle is directly supplied to the other input of each multiplier and individually multiplied with the reference data C 0 to C 127 to obtain C each multiplication result except the multiplication result between 127 respectively 127 delayer and the adder is supplied to one input of the series-connected corresponding adder alternately. Then, only the multiplication result with C 127 is directly supplied to the leading delay device connected in series alternately, and the multiplication result with C 126 is supplied to the other input of the adder connected in series after this delay device. Supplied. Then, the output of the last adder in the series combination becomes the operation output. The above calculation results are shown in (3) below.
It is shown in the formula.

【0022】[0022]

【数3】 (Equation 3)

【0023】しかしながら、実際の処理は(1)式に示
す相関演算を行うが、このフィルタを用いた相関処理は
次の(4)式に示す演算を行うことで可能となる。実際
には(3)式で用いた参照波形の離散データの配列C0
〜C127 を逆方向に並べ変えることで式(1)と等価な
処理を行える。
However, although the actual processing is performed by the correlation calculation shown in the equation (1), the correlation processing using this filter can be performed by performing the calculation shown in the following equation (4). Actually, the array C 0 of the discrete data of the reference waveform used in the equation (3)
By rearranging ~ C 127 in the opposite direction, processing equivalent to that of Expression (1) can be performed.

【0024】[0024]

【数4】 [Equation 4]

【0025】図4は図3のデジタルフィルタによる同一
周波数変調時の波形間の相関演算時の動作を示す波形図
である。或瞬間τ1 において、相関演算の対象となる受
信波形の各離散データ配列は(a)のようになってい
る。ここで、図15に示すチャープ波形と時間的に逆で
あるが、これは遅延器による遅延時間が受信離散データ
の隣り合う配列の時間的な差となり、図3よりC0 に乗
算後の加算器に入力されるデータが時間τ1 における演
算結果C(0) *X(τ1 )である。つまり、C12 7 に向
かって、時間的に過去の受信離散データとの演算となっ
ていくため、従来の受信波形の時間軸と逆向きになるた
めである(チャープ波形では低周波数の波の受信は高周
波数の波に比べて受信するタイミング的に過去のものと
なる。)。このとき、2つの離散データC(i) 及びX
(i) 間の相関性は無く、一方時間τ2においては相関性
が大となるため、S(τ)の如きメインローブを持った
相関関数を得る。
FIG. 4 is a waveform diagram showing the operation during correlation calculation between waveforms at the same frequency modulation by the digital filter of FIG. At a certain instant τ 1, each discrete data array of the received waveform subjected to the correlation calculation is as shown in (a). Here, although it is temporally opposite to the chirp waveform shown in FIG. 15, this is the time difference between the adjacent arrays of the received discrete data due to the delay time by the delay device, and from FIG. 3, C 0 is added after multiplication. The data input to the container is the calculation result C (0) * X (τ1) at time τ1. In other words, toward the C 12 7, since going a calculation of the temporally past reception discrete data it is because time is the axis in the opposite direction from conventional reception waveform (chirp waveform of the wave in the low frequency Reception is past in terms of timing of reception compared to high frequency waves.) At this time, two discrete data C (i) and X
Since there is no correlation between (i) and the correlation is large at time τ2, a correlation function having a main lobe such as S (τ) is obtained.

【0026】ここで、1つの具体例として、厚さ25
(mm)の鍛鋼品の板状の被検体を探傷した。使用する
探触子としては、公称周波数5(MHz)の広帯域型直
接接触型探触子である。送信・参照波を図5の(a)、
(b)に示し、同期信号に沿って送信波Aと送信波Bを
交互に送信し、その受信波に対して参照波Aと参照波B
を交互に相関させるものとする。なお、チャープ波の条
件としては、遷移周波数は1〜9(MHz)、パルス幅
5(μs)とする。その結果、相関前の受信波として図
6の(a)のような底面エコー(B1エコー)の直前に
前の送信波による底面多重反射の残響エコーが認められ
た。これを相関処理すると図6の(b)のような波形を
得、残響エコーが12(dB)程度低減された。従っ
て、超音波減衰の少ない材料におけるパルス繰返し周波
数の向上が可能となり、高速走査が可能となる。
Here, as one specific example, the thickness 25
(Mm) Forged steel plate-shaped specimens were inspected. The probe used is a wide band type direct contact type probe having a nominal frequency of 5 (MHz). Transmit and reference waves are shown in FIG.
As shown in (b), the transmission wave A and the transmission wave B are alternately transmitted along the synchronization signal, and the reference wave A and the reference wave B are transmitted with respect to the reception wave.
Shall be alternately correlated. The conditions for the chirp wave are transition frequency of 1 to 9 (MHz) and pulse width of 5 (μs). As a result, a reverberation echo of bottom multiple reflection due to the previous transmission wave was recognized as the reception wave before correlation just before the bottom echo (B1 echo) as shown in FIG. When this is subjected to correlation processing, a waveform as shown in FIG. 6B is obtained, and reverberation echo is reduced by about 12 (dB). Therefore, it is possible to improve the pulse repetition frequency in a material with little ultrasonic attenuation, and high-speed scanning is possible.

【0027】[0027]

【発明の効果】以上のように本発明によれば、送受信に
用いる送信波に、低周波側から高周波側に周波数を遷移
したチャープ波と高周波側から低周波側に周波数を遷移
したチャープ波を用いて、交互に送受信を繰り返し、相
関処理を行う参照波には、周波数遷移方向が送信波と同
じであるチャープ波を用いることにより被検体の検査を
するようにしたので、例えば鍛鋼品などの減衰の少ない
材料の探傷時の残響エコーの低減が可能となり、欠陥の
誤認識が解消するとともに自動探傷による高速化が可能
となる。
As described above, according to the present invention, a chirp wave having a frequency transition from a low frequency side to a high frequency side and a chirp wave having a frequency transition from a high frequency side to a low frequency side are included in a transmission wave used for transmission and reception. By using the chirp wave whose frequency transition direction is the same as that of the transmitted wave, the reference wave for which the transmission and reception are alternately repeated and the correlation process is performed is used to inspect the object. The reverberation echo at the time of flaw detection of a material with little attenuation can be reduced, false recognition of defects can be eliminated, and the speed can be increased by automatic flaw detection.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る超音波探傷装置の一例を示す機能
構成図である。
FIG. 1 is a functional configuration diagram showing an example of an ultrasonic flaw detector according to the present invention.

【図2】図1の装置の具体的なハードウェア構成の一例
を示す図である。
FIG. 2 is a diagram showing an example of a specific hardware configuration of the apparatus of FIG.

【図3】FIRデジタルフィルタの構成例を示す図であ
る。
FIG. 3 is a diagram showing a configuration example of an FIR digital filter.

【図4】図3の動作を説明するための図である。FIG. 4 is a diagram for explaining the operation of FIG.

【図5】実施例における各種波形の説明図である。FIG. 5 is an explanatory diagram of various waveforms in the example.

【図6】実施例における各種波形の説明図である。FIG. 6 is an explanatory diagram of various waveforms in the example.

【図7】従来の一般的な超音波探傷装置の機能構成図
(その1)である。
FIG. 7 is a functional configuration diagram (1) of a conventional general ultrasonic flaw detector.

【図8】図7の超音波探傷装置を用いた探傷により得ら
れる探傷波形の説明図である。
8 is an explanatory diagram of a flaw detection waveform obtained by flaw detection using the ultrasonic flaw detection device of FIG. 7.

【図9】従来の一般的な超音波探傷装置の機能構成図
(その2)である。
FIG. 9 is a functional configuration diagram (2) of a conventional general ultrasonic flaw detector.

【図10】図9の超音波探傷装置を用いた探傷により得
られる探傷波形の説明図である。
10 is an explanatory diagram of a flaw detection waveform obtained by flaw detection using the ultrasonic flaw detection device of FIG. 9.

【図11】従来の他の超音波探傷方法の説明図である。FIG. 11 is an explanatory diagram of another conventional ultrasonic flaw detection method.

【図12】従来の一般的な超音波探傷装置の機能構成図
(その3)である。
FIG. 12 is a functional configuration diagram (3) of a conventional general ultrasonic flaw detector.

【図13】従来の超音波探傷方法の問題点を示した図で
ある。
FIG. 13 is a diagram showing a problem of the conventional ultrasonic flaw detection method.

【図14】相関処理の原理を説明する図である。FIG. 14 is a diagram illustrating the principle of correlation processing.

【図15】同方向周波数変調によるチャープ波の相関を
説明する図である。
FIG. 15 is a diagram for explaining the correlation of chirp waves due to in-direction frequency modulation.

【図16】本発明に係る2種類のチャープ波形を説明す
る図である。
FIG. 16 is a diagram illustrating two types of chirp waveforms according to the present invention.

【図17】異方向周波数変調によるチャープ波の相関を
説明する図である。
FIG. 17 is a diagram for explaining the correlation of chirp waves due to different direction frequency modulation.

【図18】鍛鋼品を探傷した時の相関処理を説明する図
である。
FIG. 18 is a diagram illustrating a correlation process when flaw detection is performed on a forged steel product.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 所定パルス幅内で周波数が遷移するチャ
ープ波を送信波として送信し、その受信波と、予め設定
されたチャープ波からなる参照波との相関処理を行い、
この相関処理後のパルス圧縮された信号によって被検体
を検査する超音波検査方法に於いて、 前記送信波として、低周波側から高周波側に周波数が遷
移するチャープ波と高周波側から低周波側に周波数が遷
移するチャープ波とを用いて、交互に送信を繰り返し、
前記参照波として、周波数遷移方向が前記送信波と同じ
チャープ波を用いることを特徴とする超音波検査方法。
1. A chirp wave having a frequency transition within a predetermined pulse width is transmitted as a transmission wave, and the received wave and a reference wave composed of a preset chirp wave are subjected to correlation processing,
In the ultrasonic inspection method for inspecting a subject with a pulse-compressed signal after this correlation processing, as the transmission wave, a chirp wave whose frequency transits from a low frequency side to a high frequency side and a high frequency side to a low frequency side Using the chirp wave whose frequency shifts, the transmission is repeated alternately,
As the reference wave, a chirp wave having the same frequency transition direction as that of the transmission wave is used.
【請求項2】 所定パルス幅内で周波数が遷移し、遷移
する周波数増加の方向が互いに逆方向のチャープ波を、
一定の周期で交互に送信波として発生する送信波発生手
段と、 遷移する周波数増加の方向が前記送信波と同一のチャー
プ波を前記周期の間連続的に参照波として発生する参照
波発生手段と、 前記送信波を超音波探触子に送信する送信手段と、 前記超音波探触子からの受信波と前記参照波との相関処
理を行い、この相関処理後のパルス圧縮された信号を被
検体の検査に利用する相関処理手段とを備えたことを特
徴とする超音波検査装置。
2. A chirp wave having a frequency transition within a predetermined pulse width, and the transition frequency increasing directions being opposite to each other,
A transmission wave generating means for alternately generating as a transmission wave at a constant cycle, and a reference wave generating means for continuously generating as a reference wave a chirp wave in the same direction as the transmission wave in which the transition frequency increases in the cycle. A transmission means for transmitting the transmission wave to the ultrasonic probe; and a correlation process between the reception wave from the ultrasonic probe and the reference wave, and a pulse-compressed signal after the correlation process is received. An ultrasonic inspection apparatus comprising: a correlation processing unit used for inspection of a sample.
JP7095605A 1995-04-20 1995-04-20 Method and device of ultrasonic inspection Pending JPH08292175A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7095605A JPH08292175A (en) 1995-04-20 1995-04-20 Method and device of ultrasonic inspection

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7095605A JPH08292175A (en) 1995-04-20 1995-04-20 Method and device of ultrasonic inspection

Publications (1)

Publication Number Publication Date
JPH08292175A true JPH08292175A (en) 1996-11-05

Family

ID=14142192

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7095605A Pending JPH08292175A (en) 1995-04-20 1995-04-20 Method and device of ultrasonic inspection

Country Status (1)

Country Link
JP (1) JPH08292175A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003279550A (en) * 2002-03-22 2003-10-02 Kyoji Honma Intelligent ultrasonic flaw detection system by utilizing neural network
DE10318756A1 (en) * 2003-04-25 2004-11-11 Giesecke & Devrient Gmbh Ultrasonic method for determination of the thickness of sheet material, especially banknotes, whereby time of flight sound wave measurements are made on either side of the note with ultrasonic signals having different waveforms
JP2009156694A (en) * 2007-12-26 2009-07-16 Kanazawa Inst Of Technology Measurement method and device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003279550A (en) * 2002-03-22 2003-10-02 Kyoji Honma Intelligent ultrasonic flaw detection system by utilizing neural network
DE10318756A1 (en) * 2003-04-25 2004-11-11 Giesecke & Devrient Gmbh Ultrasonic method for determination of the thickness of sheet material, especially banknotes, whereby time of flight sound wave measurements are made on either side of the note with ultrasonic signals having different waveforms
DE10318756B4 (en) * 2003-04-25 2013-06-06 Giesecke & Devrient Gmbh Method and device for determining the thickness of sheet material
JP2009156694A (en) * 2007-12-26 2009-07-16 Kanazawa Inst Of Technology Measurement method and device

Similar Documents

Publication Publication Date Title
Hutchins et al. Coded waveforms for optimised air-coupled ultrasonic nondestructive evaluation
JPH1073655A (en) Method for measuring distance between vehicle and object
US4844082A (en) Ultrasonic examination apparatus
JP4997636B2 (en) Non-destructive diagnostic method for structures
JP2011047763A (en) Ultrasonic diagnostic device
JPH08292175A (en) Method and device of ultrasonic inspection
US3982426A (en) Random signal flaw detector system
JP3036387B2 (en) Ultrasonic flaw detection method and device
JPH095310A (en) Ultrasonic inspection method
JP2013029396A (en) Ultrasonic inspection device
JP2001264419A (en) Distance detector
JP3360578B2 (en) Ultrasonic testing of steel plates
RU2246724C1 (en) Method of ultrasonic testing of material quality
JPH08122308A (en) Ultrasonic flaw-detection method
JP3022108B2 (en) Ultrasound transceiver
JPH08201349A (en) Ultrasonic flaw detection method
JP2951045B2 (en) Ultrasonic reflection intensity measurement device
JPH0781993B2 (en) Ultrasonic measuring device
JP3129142B2 (en) Pulse compression ultrasonic inspection method
RU2393499C2 (en) Method to determine object and range
JPH09133761A (en) Pulse compression device and ultrasonic diagnostic device
JP2000097918A (en) Ultrasonic flaw detection method for steel pipe, and apparatus therefor
JP2812688B2 (en) Measuring method of thickness of coated object
JPH08211029A (en) Ultrasonic flaw detection method
JPH09304362A (en) Detector and detecting method