JPH08292081A - Capacitance type level sensor - Google Patents

Capacitance type level sensor

Info

Publication number
JPH08292081A
JPH08292081A JP7120768A JP12076895A JPH08292081A JP H08292081 A JPH08292081 A JP H08292081A JP 7120768 A JP7120768 A JP 7120768A JP 12076895 A JP12076895 A JP 12076895A JP H08292081 A JPH08292081 A JP H08292081A
Authority
JP
Japan
Prior art keywords
water
output
rectifying
liquid
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7120768A
Other languages
Japanese (ja)
Other versions
JP3258521B2 (en
Inventor
Tamotsu Kobayashi
保 小林
Tokio Sugi
時夫 杉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Keiso Co Ltd
Original Assignee
Tokyo Keiso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Keiso Co Ltd filed Critical Tokyo Keiso Co Ltd
Priority to JP12076895A priority Critical patent/JP3258521B2/en
Publication of JPH08292081A publication Critical patent/JPH08292081A/en
Application granted granted Critical
Publication of JP3258521B2 publication Critical patent/JP3258521B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE: To enable detection of the surface of a storage liquid and an interface between this storage liquid and water with certainty by installing a rectifying-smoothing circuit which converts the output of a buffer circuit into that of a sensor after rectifying and smoothing it, and a high frequency power source. CONSTITUTION: When a detecting element 1 is in a water phase, a dielectric constant of water is very high as 80, and since an interval between electrode plates of this detecting part 1 is approximate to a state of being shorted, voltage in a bridge output terminal 5 is the same phase as the voltage of a high frequency power source 4, therefore its amplitude also becomes electric potential approximate to this phase. Accordingly, a large rectifying output appears in an output terminal 8, and in the case where a synchronous commutation is carried out in a rectifying-smoothing circuit 7, polarity of output voltage in this output terminal 8 becomes negative, by way of example, if voltage from the high frequency power source 4 is negative. Next, when the detecting element 1 is in a gas phase, capacity in this detecting element 1 decreases, and thereby electric potential in the bridge output end 5 comes nearer to that of a high frequency power source 3. In addition, when the circuit 7 is used, whether the detecting element 1 is in the water phase or the gas phase can be judged by a polarity judgement in output potential, so that it is no need to take a dynamic range in a buffer circuit 6 so wide.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は対面する1対の電極板よ
りなる検出部の静電容量値から、液体の表面および界面
を検知する静電容量式レベルセンサに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrostatic capacitance type level sensor for detecting the surface and interface of a liquid from the electrostatic capacitance value of a detecting portion composed of a pair of facing electrode plates.

【0002】[0002]

【従来の技術】従来の静電容量式レベルセンサは、タン
ク内壁に絶縁して設けた検出電極と、タンク内壁に接続
された接地電極との間の静電容量値が、液体の表面ある
いは比誘電率の異なる2液、例えば水と貯蔵液体間の界
面において変化するのを利用して液体の表面や界面を検
知するものである。
2. Description of the Related Art In a conventional capacitance type level sensor, a capacitance value between a detection electrode which is insulated from the inner wall of a tank and a ground electrode which is connected to the inner wall of the tank is the surface or ratio of the liquid. It is used to detect the surface or interface of two liquids having different dielectric constants, for example, the change at the interface between water and a stored liquid.

【0003】[0003]

【発明が解決しようとする課題】例えば、オイルタンカ
から石油製品を陸揚げする場合、タンク底面には航海中
に侵入した海水が溜っているので、まずポンプでこの海
水を排出し、海水の排出が終了してから石油製品の送り
出しを行い、さらに石油製品の送り出しが終了してタン
クが空になるとポンプを停止しなければならない。上述
のポンプ制御に使用するレベルセンサは、1台で水と油
間の界面の検出と油表面の検出が可能でなければなら
ず、しかも石油製品を扱うので、本質安全防爆構造でな
くてはならない。
For example, when a petroleum product is unloaded from an oil tanker, seawater that has entered during voyage is accumulated at the bottom of the tank. The petroleum product must be sent out after the end, and the pump must be stopped when the petroleum product is sent out and the tank is emptied. The level sensor used for pump control described above must be able to detect the interface between water and oil and the oil surface with one unit, and since it handles petroleum products, it must have an intrinsically safe explosion-proof structure. I won't.

【0004】本発明は安全に使用でき、かつ貯蔵液体の
表面および貯蔵液体と水との界面を確実に検知すること
のできるレベルセンサを提供することを目的としてい
る。
It is an object of the present invention to provide a level sensor which can be used safely and can reliably detect the surface of a stored liquid and the interface between the stored liquid and water.

【0005】[0005]

【課題を解決するための手段】上述した目的を達成する
ための手段および実施態様は次のとおりである。
Means and embodiments for achieving the above-mentioned object are as follows.

【0006】<手段1>水に比べて低い比誘電率をもつ
液体を貯蔵するタンクの底板付近にタンク内壁と絶縁し
た1対の電極板よりなる検出部を設け、この静電容量値
から貯蔵液体の表面および貯蔵液体と水の界面を検知す
るレベルセンサにおいて、前記検出部を1辺とし、検出
部の電極板間に貯蔵液体が存在する場合にほぼ平衡する
高周波ハーフブリッジと、このハーフブリッジの出力電
圧をインピーダンス変換するバッファ回路と、このバッ
ファ回路の出力を整流、平滑してセンサ出力とする整流
・平滑回路と、前記ハーフブリッジを構成するための高
周波電源とを備え、前記センサ出力から前記検出部の電
極板間に存在する液体が貯蔵液体と水のどちらである
か、あるいは貯蔵液体および水のどちらも存在しないか
を識別して貯蔵液体の表面および貯蔵液体と水の界面を
検知する構成とする。
<Means 1> A detection unit composed of a pair of electrode plates insulated from the inner wall of the tank is provided near the bottom plate of the tank for storing a liquid having a relative dielectric constant lower than that of water. In a level sensor for detecting a surface of a liquid and an interface between a stored liquid and water, a high-frequency half bridge which has the detection section as one side and is substantially balanced when the stored liquid exists between electrode plates of the detection section, and this half bridge. Of the output voltage of the sensor circuit, a rectifying / smoothing circuit for rectifying and smoothing the output of the buffer circuit to obtain a sensor output, and a high-frequency power source for forming the half bridge. The stored liquid is distinguished by discriminating whether the liquid existing between the electrode plates of the detection part is the stored liquid or water, or neither the stored liquid nor the water. Configured to detecting the interface surface and storage liquid and water.

【0007】<手段2>水に比べて低い比誘電率をもつ
液体を貯蔵するタンクの底板付近にタンク内壁と絶縁し
た1対の電極板よりなる検出部を設け、この静電容量値
から貯蔵液体の表面および貯蔵液体と水の界面を検知す
るレベルセンサにおいて、前記検出部を1辺とし、検出
部の電極板間に貯蔵液体が存在する場合にはほぼ平衡す
る高周波フルブリッジと、このフルブリッジの出力電圧
をインピーダンス変換する1対のバッファ回路と、この
バッファ回路の出力を整流、平滑にしてセンサ出力とす
る整流・平滑回路と、前記フルブリッジを励振するため
の高周波電源とを備え、前記センサ出力から前記検出部
の電極板間に貯蔵液体が存在するかまたは水が存在する
か、あるいは貯蔵液体と水のいずれも存在しないかを識
別して貯蔵液体の表面および貯蔵液体と水との界面を検
知する構成とする。
<Means 2> A detection unit composed of a pair of electrode plates insulated from the inner wall of the tank is provided near the bottom plate of the tank for storing a liquid having a lower relative dielectric constant than water, and stored from this capacitance value. In a level sensor for detecting a surface of a liquid and an interface between a stored liquid and water, a high frequency full bridge which has the detection section as one side and is substantially balanced when the stored liquid exists between electrode plates of the detection section, and A pair of buffer circuits for impedance-converting the output voltage of the bridge; a rectifying / smoothing circuit for rectifying and smoothing the output of the buffer circuit to obtain a sensor output; and a high-frequency power supply for exciting the full bridge, The stored liquid is discriminated from the sensor output whether there is stored liquid or water between the electrode plates of the detection unit, or whether neither stored liquid nor water exists. A structure for detecting the interface between the surface and the storage liquid and water.

【0008】<実施態様1>前記整流・平滑回路を高周
波電源からの電圧を参照電圧とする同期整流・平滑回路
とする。
<Embodiment 1> The rectifying / smoothing circuit is a synchronous rectifying / smoothing circuit using a voltage from a high frequency power supply as a reference voltage.

【0009】<実施態様2>前記整流・平滑回路および
高周波電源をタンク外部に設け、前記高周波ブリッジお
よびバッファ回路を前記検出部付近に設け、ケーブルを
介してこれら整流・平滑回路および高周波電源と高周波
ブリッジおよびバッファ回路とを相互に電気的に接続す
る。
<Embodiment 2> The rectifying / smoothing circuit and the high frequency power source are provided outside the tank, the high frequency bridge and the buffer circuit are provided in the vicinity of the detecting portion, and the rectifying / smoothing circuit, the high frequency power source and the high frequency power are provided via a cable. The bridge and the buffer circuit are electrically connected to each other.

【0010】<実施態様3>前記検出部の電極板をタン
ク内においてほぼ水平となるように設け、かつ上側の電
極板はブリッジ出力側に接続し、下側電極板は高周波電
源側に接続する。
<Embodiment 3> The electrode plate of the detector is provided so as to be substantially horizontal in the tank, the upper electrode plate is connected to the bridge output side, and the lower electrode plate is connected to the high frequency power source side. .

【0011】[0011]

【実施例】以下、本発明の請求項1に係るレベルセンサ
の基本構成を図1に基づいて説明する。図において符号
1は石油タンクの底面付近にタンク内壁と絶縁して設け
られた対面する1対の電極板よりなる検出部、2は固定
容量のコンデンサ、3および4は出力電圧の振幅が安定
でほぼ等しく、互いに逆位相となる高周波電源を示して
いる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The basic construction of a level sensor according to claim 1 of the present invention will be described below with reference to FIG. In the figure, reference numeral 1 is a detection unit composed of a pair of facing electrode plates provided near the bottom surface of the oil tank and insulated from the inner wall of the tank, 2 is a capacitor having a fixed capacitance, and 3 and 4 are stable output voltage amplitudes. The high frequency power supplies are almost equal and have opposite phases.

【0012】これら検出部1、コンデンサ2および高周
波電源3、4でハーフブリッジを構成し、コンデンサ2
には検出部1の電極板間に貯蔵液体たる油が存在すると
き、すなわち検出部1が油相中にあるときにブリッジが
ほぼ平衡するような容量値のものを選び、高周波電源
3、4には周波数が数10kHz乃至数100kHzの
矩形波電源を使用する。
A half bridge is composed of the detector 1, the capacitor 2, and the high frequency power sources 3 and 4, and the capacitor 2
For the high frequency power source 3, 4, the bridge is selected so that the bridge is almost in equilibrium when the stored liquid oil is present between the electrode plates of the detector 1, that is, when the detector 1 is in the oil phase. For this, a rectangular wave power source having a frequency of several tens of kHz to several hundreds of kHz is used.

【0013】ブリッジ出力端5にはインピーダンス変換
のためのバッファ回路6、例えば電界効果トランジスタ
を初段とするソースフォロワを接続して、低い抵抗上に
ブリッジ出力電圧と等しい電圧を発生させる。
A buffer circuit 6 for impedance conversion, for example, a source follower having a field effect transistor as the first stage is connected to the bridge output terminal 5 to generate a voltage equal to the bridge output voltage on a low resistance.

【0014】図中の符号7はブリッジ出力電圧を整流・
平滑して出力端子8に出力する整流・平滑回路部で、こ
の整流・平滑回路7は後述する理由から高周波電源3、
4の電圧をそれぞれ参照電圧P1 、P2 とするものであ
ることが好ましい。
Reference numeral 7 in the figure rectifies the bridge output voltage.
A rectifying / smoothing circuit section that smoothes and outputs to the output terminal 8. The rectifying / smoothing circuit 7 is a high-frequency power source 3 for the reason described below.
It is preferable that the voltage of No. 4 be the reference voltages P 1 and P 2 , respectively.

【0015】次に本実施例の動作について説明する。ま
ず、検出部1が油相中にあるときにはハーフブリッジが
ほぼ平衡しているので、出力端子8からの出力電圧はほ
ぼ0vとなる。
Next, the operation of this embodiment will be described. First, when the detection unit 1 is in the oil phase, the half bridge is almost balanced, so the output voltage from the output terminal 8 is almost 0v.

【0016】検出部1が水相中にあるときには水の比誘
電率が80と極めて高く、検出部1の電極板間は短絡状
態に近いので、ブリッジ出力端5の電圧は高周波電源4
の電圧と同位相で振幅もこれに近い電位となる。したが
って、出力端子8には大きな整流出力が現れ、整流・平
滑回路7において同期整流が行われる場合には出力端子
8における出力電圧の極性は、例えば高周波電源4から
の電圧が負であれば負になる。
When the detector 1 is in the water phase, the relative permittivity of water is as high as 80, and the electrode plates of the detector 1 are close to a short-circuited state.
The voltage has the same phase as the voltage and the amplitude is close to this. Therefore, a large rectified output appears at the output terminal 8, and when synchronous rectification is performed in the rectifying / smoothing circuit 7, the polarity of the output voltage at the output terminal 8 is negative if the voltage from the high frequency power source 4 is negative, for example. become.

【0017】次に、検出部1が気相中にあるときには、
検出部1の容量は減少し、ブリッジ出力端5の電位は高
周波電源3の電位に近づく。
Next, when the detector 1 is in the gas phase,
The capacitance of the detection unit 1 decreases, and the potential of the bridge output terminal 5 approaches the potential of the high frequency power supply 3.

【0018】上述の動作についての具体的な数値例を挙
げると、例えば検出部1の油相中における容量値および
コンデンサ2の容量値をともに40pF、油の比誘電率
を2、高周波電源3および4の電圧振幅をそれぞれ5v
p 、−5vp (vp はピーク電圧値を示す)とすると、
検出部1の容量値は40pFから40/2pFとなり、
したがって整流・平滑回路7の電位は、 (40−20)/(40+20)×5vp =1.7vp となり、その位相は高周波電源3の電圧位相と同相とな
る。この場合、出力端子8から得られる出力は、整流・
平滑回路7において同期整流を行うものとすれば極性が
正となる。
To give specific numerical examples of the above-mentioned operation, for example, both the capacitance value in the oil phase of the detector 1 and the capacitance value of the capacitor 2 are 40 pF, the relative permittivity of oil is 2, the high frequency power source 3 and The voltage amplitude of 4 is 5v
If p and -5v p (v p indicates the peak voltage value),
The capacitance value of the detector 1 is changed from 40 pF to 40/2 pF,
Therefore, the potential of the rectifying / smoothing circuit 7 is (40-20) / (40 + 20) × 5v p = 1.7v p , and its phase is the same as the voltage phase of the high frequency power supply 3. In this case, the output obtained from the output terminal 8 is
If the smoothing circuit 7 performs synchronous rectification, the polarity is positive.

【0019】したがって、検出部1が水相中にあるとき
には5vp 相当、油相中にあるときにはほぼ0v、気相
中にあるときには1.7vp 相当の直流出力が出力端子
8から得られ、その出力値の大小比較により検出部1が
水相、油相あるいは気相中のいずれにあるかが容易に識
別できる。
Therefore, a DC output corresponding to 5 v p is obtained from the output terminal 8 when the detecting section 1 is in the water phase, approximately 0 v when the detecting section 1 is in the oil phase, and 1.7 v p when the detecting section 1 is in the gas phase. It is possible to easily identify whether the detection unit 1 is in the water phase, the oil phase or the gas phase by comparing the magnitudes of the output values.

【0020】さらに、整流・平滑回路7において同期整
流を行えば、Ovの識別の他は出力端子8からの出力電
位の極性を判別すればよく、識別はより容易になる。な
お、上述した数値例の計算においては負荷効果や飽和特
性を考慮していない。
Further, if synchronous rectification is performed in the rectifying / smoothing circuit 7, in addition to identifying Ov, the polarity of the output potential from the output terminal 8 may be identified, which makes identification easier. Note that load effects and saturation characteristics are not taken into consideration in the calculation of the above-described numerical example.

【0021】次に本実施例の構成の特長について説明す
る。ブリッジには一般的にハーフブリッジの他にフルブ
リッジが知られているが、フルブリッジにおいては励振
側、出力検出側の一方を平衡形に、他方は不平衡形にす
る必要があり、通常は励振側または検出側のいずれか一
方に変成器を使用する。
Next, the features of the configuration of this embodiment will be described. In addition to a half bridge, a full bridge is generally known as a bridge, but in the full bridge, it is necessary to make one of the excitation side and the output detection side a balanced type and the other an unbalanced type. Use a transformer on either the excitation side or the detection side.

【0022】本実施例のセンサを石油類のタンクに使用
する場合には、本質安全防爆構造が要求されるが、変成
器を使用すると、変成器のインダクタンスのためにその
実現は困難である。これに対し、本実施例では高周波ブ
リッジにハーフブリッジを採用しているので、変成器を
使用する必要がなく、防爆上有利である。
When the sensor of this embodiment is used in a petroleum tank, an intrinsically safe explosion-proof structure is required. However, if a transformer is used, its realization is difficult due to the inductance of the transformer. On the other hand, in this embodiment, since the half bridge is adopted as the high frequency bridge, there is no need to use a transformer, which is advantageous in terms of explosion protection.

【0023】また、ハーフブリッジでは2つの高周波電
源の振幅が安定で、かつ位相が互いに逆相関係でなくて
はならないが、本実施例のように高周波電源に矩形波の
ものを使用すれば、正弦波の高周波電源に比べて電源回
路の製作が容易である。
Further, in the half bridge, the amplitudes of the two high frequency power supplies must be stable and the phases of them must be in opposite phase to each other. However, if a high frequency power supply with a rectangular wave is used as in this embodiment, A power supply circuit is easier to manufacture than a high frequency power supply of sine wave.

【0024】さらに、整流・平滑回路7に同期整流・平
滑回路を使用すれば、検出部1が水相中あるいは気相中
のいずれにあるかが出力電位の極性判別により識別でき
るので、バッファ回路6のダイナミックレンジを広くと
る必要がない。したがって、整流・平滑回路7を動作さ
せる電源電圧は例えば直流5v程度で充分であり、これ
も本質安全防爆構造の実現を容易にする特長のひとつで
ある。
Further, if a synchronous rectifying / smoothing circuit is used for the rectifying / smoothing circuit 7, it can be discriminated by detecting the polarity of the output potential whether the detecting section 1 is in the water phase or in the gas phase. It is not necessary to have a wide dynamic range of 6. Therefore, a power supply voltage for operating the rectifying / smoothing circuit 7 is, for example, a direct current of about 5 V, which is also one of the features that facilitates the realization of an intrinsically safe explosion-proof structure.

【0025】ブリッジに接続されるバッファ回路6の入
力インピーダンスはブリッジに負荷効果を与える。検出
部1およびコンデンサ2の容量値をそれぞれCX 、Cと
し、バッファ回路6の入力インピーダンスを容量値Ci
で代表すると、ブリッジ出力端5の電位V0 は次式で表
される。 V0 =(C−CX )/(C+CX +Ci )×VS (VS :高周波電源3の電圧) したがって、Ci がCやCX に比べて充分小さくないと
感度が低下することになるが、バッファ回路6の初段に
電界効果トランジスタを用いれば、電界効果トランジス
タは入力容量が数pF以下と極めて小さいので、感度が
低下するおそれがない。
The input impedance of the buffer circuit 6 connected to the bridge exerts a load effect on the bridge. Capacitance values of the detection unit 1 and the capacitor 2 are C X and C, respectively, and an input impedance of the buffer circuit 6 is a capacitance value C i.
The potential V 0 of the bridge output terminal 5 is represented by the following equation. V 0 = (C−C X ) / (C + C X + C i ) × V S (V S : voltage of the high frequency power supply 3) Therefore, if C i is not sufficiently smaller than C or C X , the sensitivity will decrease. However, if a field effect transistor is used in the first stage of the buffer circuit 6, the field effect transistor has an input capacitance of as small as a few pF or less, so there is no risk of sensitivity deterioration.

【0026】また、Ci が小さければCやCX も小さく
することができるので、検出部1の電極板の間隔を充分
大きくとることができ、電極板間に水や油が表面張力に
より残留することが防止され、センサの信頼性が向上す
る。さらに、電界効果トランジスタは入力抵抗が高く、
ブリッジに対する負荷効果を低減する見地からも好適で
ある。
Further, if C i is small, C and C X can also be made small, so that the distance between the electrode plates of the detection unit 1 can be made sufficiently large, and water or oil remains between the electrode plates due to surface tension. Is prevented and the reliability of the sensor is improved. Furthermore, the field effect transistor has a high input resistance,
It is also suitable from the viewpoint of reducing the load effect on the bridge.

【0027】次に本発明に係るレベルセンサの具体例を
図2〜4に基づいて説明する。図2は本発明に係るレベ
ルセンサの具体的な回路図である。なお、図1と同一の
構成部分については同一の符号を付して説明を省略す
る。
Next, a specific example of the level sensor according to the present invention will be described with reference to FIGS. FIG. 2 is a specific circuit diagram of the level sensor according to the present invention. The same components as those in FIG. 1 are designated by the same reference numerals and the description thereof will be omitted.

【0028】同図において、符号11はブリッジ出力端
5の電位を取り出すためのカップリング容量たるコンデ
ンサ、12および13はバイアス抵抗、14はジャンク
ション形電界効果トランジスタ、15は電界効果トラン
ジスタの負荷抵抗、16はPNP形トランジスタ、17
はソース抵抗を示している。
In the figure, reference numeral 11 is a capacitor as a coupling capacitance for taking out the potential of the bridge output terminal 5, 12 and 13 are bias resistors, 14 is a junction type field effect transistor, 15 is a load resistance of the field effect transistor, 16 is a PNP transistor, 17
Indicates the source resistance.

【0029】電界効果トランジスタ14およびトランジ
スタ16等はいわゆるコンプレメンタリ・コンパウンド
構成をとってソース抵抗17上にブリッジ出力端5の電
位変化と同じ電圧を発生させる。ただし、ブリッジ出力
端5に現れるブリッジ不平衡電圧が大きいときには回路
の飽和によりソース抵抗17上の電圧の振幅は制限され
る。
The field effect transistors 14, 16 and the like have a so-called complementary compound structure and generate the same voltage as the potential change of the bridge output terminal 5 on the source resistor 17. However, when the bridge unbalanced voltage appearing at the bridge output terminal 5 is large, the amplitude of the voltage on the source resistor 17 is limited due to the saturation of the circuit.

【0030】上述したコンデンサ11、バイアス抵抗1
2、13、電界効果トランジスタ14、負荷抵抗15、
トランジスタ16およびソース抵抗17で図1における
バッファ回路6を構成する。
The above-mentioned capacitor 11 and bias resistor 1
2, 13, field effect transistor 14, load resistor 15,
The transistor 16 and the source resistance 17 form the buffer circuit 6 in FIG.

【0031】また、同図において符号18および19は
同期整流のためのC−MOS形アナログスイッチICを
示しており、アナログスイッチIC18および19は0
v、5vの互いに逆相の矩形波電圧(参照電圧)により
制御され、この参照電圧が5vのときにスイッチは閉じ
る。符号20および21は受信抵抗、22、23は平滑
容量たるコンデンサを示している。
In the figure, reference numerals 18 and 19 denote C-MOS type analog switch ICs for synchronous rectification, and the analog switch ICs 18 and 19 are 0.
It is controlled by rectangular wave voltages (reference voltages) of v and 5v having opposite phases, and the switch is closed when the reference voltage is 5v. Reference numerals 20 and 21 denote reception resistors, and reference numerals 22 and 23 denote smoothing capacitors.

【0032】上述したアナログスイッチIC18、1
9、受信抵抗20、21、およびコンデンサ22、23
で図1における整流・平滑回路7を構成する。
The analog switch ICs 18 and 1 described above
9, receiving resistors 20 and 21, and capacitors 22 and 23
The rectifying / smoothing circuit 7 in FIG.

【0033】コンデンサ22、23を挟む回路上の点2
4、25間に現れる直流電圧はソース抵抗17に発生す
る矩形波電圧の振幅に比例し、その位相に応じて極性が
変わることになる。
Point 2 on the circuit sandwiching the capacitors 22 and 23
The DC voltage appearing between 4 and 25 is proportional to the amplitude of the rectangular wave voltage generated in the source resistor 17, and the polarity changes depending on the phase.

【0034】回路上の点24、25間に現れる直流電圧
は回路コモン(COM)を基準とする電圧に変換した方
が便利であるから、演算抵抗26、27、28、29お
よび演算増幅器30により演算して出力端子8に出力を
与える。なお、演算抵抗26乃至29の抵抗値を適当に
選べば変換ゲインは容易に変えられる。
Since it is convenient to convert the DC voltage appearing between the points 24 and 25 on the circuit into a voltage with the circuit common (COM) as a reference, the operational resistors 26, 27, 28, 29 and the operational amplifier 30 are used. The calculation is performed and the output is given to the output terminal 8. The conversion gain can be easily changed by appropriately selecting the resistance values of the calculation resistors 26 to 29.

【0035】図中の符号31は汎用タイマICによるマ
ルチバイブレータを示しており、このマルチバイブレー
タ31の発振周波数は数10kHz乃至数100kHz
の範囲の適当な値とする。32は波形整形のためのC−
MOS形インバータIC、33および34は電位シフト
のためのそれぞれ5vゼナダイオードおよびゼナ電流規
制抵抗、35は動作電流がインバータIC32より負側
に5vシフトされたC−MOS形インバータICをそれ
ぞれ示している。インバータIC32および35の出力
はハーフブリッジを構成する静電容量検出器1およびコ
ンデンサ2に与えられるが、その振幅はC−MOS形I
Cの特長として電源電圧にほぼ等しいので、電源電圧が
安定ならばインバータICの出力も極めて安定である。
Reference numeral 31 in the figure indicates a multivibrator using a general-purpose timer IC, and the oscillation frequency of this multivibrator 31 is several tens kHz to several hundreds kHz.
Set to an appropriate value within the range. 32 is C- for waveform shaping
MOS type inverter ICs 33 and 34 are 5v Zener diode and Zener current regulating resistor for potential shift, respectively, and 35 is a C-MOS type inverter IC whose operating current is shifted 5v to the negative side of the inverter IC 32, respectively. . The outputs of the inverter ICs 32 and 35 are given to the electrostatic capacitance detector 1 and the capacitor 2 which form a half bridge, and their amplitudes are C-MOS type I.
Since the characteristic of C is almost equal to the power supply voltage, the output of the inverter IC is extremely stable if the power supply voltage is stable.

【0036】また、これらの位相が互いに逆相関係にあ
ることも明らかであり、本発明における高周波電源に課
せられる特性を簡単な構成で実現している。符号36も
インバータICで、アナログスイッチIC19を制御す
るための電圧を得るためのものである。
It is also clear that these phases are in the opposite phase to each other, and the characteristics imposed on the high frequency power supply in the present invention are realized with a simple structure. Reference numeral 36 is also an inverter IC for obtaining a voltage for controlling the analog switch IC 19.

【0037】上述した汎用タイマIC31、インバータ
IC32、ゼナダイオード33、ゼナ電流規制抵抗3
4、インバータIC35および36で図1における高周
波電源3、4を構成している。
The general-purpose timer IC 31, the inverter IC 32, the Zener diode 33, and the Zener current regulating resistor 3 described above.
4, the inverter ICs 35 and 36 constitute the high frequency power supplies 3 and 4 in FIG.

【0038】図2に示す回路で、検出部1が油相にある
ときの静電容量が40pFとなるような電極板を検出部
に使用した場合、検出部1が油相中にあるとき出力端子
8からの出力が0vであるのに対し、水相中にあるとき
には同出力が約−2v、気相中にあるときは同出力が約
1vであった。
In the circuit shown in FIG. 2, when an electrode plate having a capacitance of 40 pF when the detecting unit 1 is in the oil phase is used as the detecting unit, the output is output when the detecting unit 1 is in the oil phase. While the output from the terminal 8 was 0 v, the output was about −2 v when in the water phase and about 1 v when in the gas phase.

【0039】次に、本発明に係るレベルセンサをオイル
タンカのタンクに取り付ける場合の具体例を図3に基づ
いて説明する。同図において、符号40は石油等の液体
を貯蔵するタンクの外壁、41はタンク底面に設けられ
たウエル、42、43は検出部1の電極板、44は電極
板保持用のタンク内筐体、45は支持用電線管、46は
レベルセンサ取付用フランジ、47は外部配線用端子盤
を納めたタンク外筐体を示している。
Next, a specific example of mounting the level sensor according to the present invention on the tank of the oil tanker will be described with reference to FIG. In the figure, reference numeral 40 is an outer wall of a tank for storing a liquid such as petroleum, 41 is a well provided on the bottom of the tank, 42 and 43 are electrode plates of the detection unit 1, and 44 is an in-tank housing for holding the electrode plates. , 45 is a supporting conduit, 46 is a level sensor mounting flange, and 47 is a tank outer housing that accommodates an external wiring terminal board.

【0040】検出部1の電極板42、43の取付構造は
図4に示す構造のものとしてあり、タンク内筐体44の
下方に接続された電線管45aの下端部の内径を広げて
段部50を設け、この段部内にフッ素樹脂、例えばPF
Aの円柱ブロック51を取り付け、袋ナット52で電線
管45a内部が水密になるように締め付けてある。ブロ
ック51には長さの異なる2種の導電性支柱53、54
を対にして取り付け、短い支柱53には上側電極板42
を、長い支柱54には下側電極板43を取り付けてあ
る。この長い支柱54の下端は上側電極板42にあけら
れた孔42aから上側電極板42の下面側に上側電極板
42と接触しないように突出させられている。この電極
板の間隔はタンクが空になったときに水または油が表面
張力により電極板間に滞留しない程度にする。
The electrode plates 42 and 43 of the detection unit 1 are mounted as shown in FIG. 4, and the inner diameter of the lower end portion of the electric wire tube 45a connected below the in-tank housing 44 is widened to form a stepped portion. 50 is provided, and a fluororesin such as PF is provided in this step.
A cylindrical block 51 of A is attached, and a cap nut 52 is tightened so that the inside of the conduit tube 45a is watertight. The block 51 includes two kinds of conductive columns 53, 54 having different lengths.
Attached in pairs, and the short pole 53 is attached to the upper electrode plate 42.
The lower electrode plate 43 is attached to the long pillar 54. The lower end of the long pillar 54 is projected from the hole 42a formed in the upper electrode plate 42 to the lower surface side of the upper electrode plate 42 so as not to contact the upper electrode plate 42. The distance between the electrode plates is such that water or oil does not stay between the electrode plates due to surface tension when the tank is empty.

【0041】水−油界面および油表面の変動に対する感
度を高めるために両電極板はほぼ水平となるように設け
るのが好ましいが、電極板を水平に設けると電極板上に
水や油が溜り易くなる。このため、上側電極板42にあ
けた孔42aのまわりに立ち上げ枠42bを設けて電極
板42上に残留した水や油がこの孔42aから下側電極
板43上に滴下しないようにしてある。
Both electrode plates are preferably provided so as to be substantially horizontal in order to enhance sensitivity to fluctuations in the water-oil interface and the oil surface. However, when the electrode plates are provided horizontally, water and oil accumulate on the electrode plates. It will be easier. Therefore, a rising frame 42b is provided around the hole 42a formed in the upper electrode plate 42 so that water and oil remaining on the electrode plate 42 do not drip from the hole 42a onto the lower electrode plate 43. .

【0042】また、上側電極板42は下側電極板43よ
りもひとまわり大なる面積のものとしてあって、上側電
極板42の外周から滴下する水や油が下側電極板43上
に滴下しないようになっており、また下側電極板43に
は小孔42aを多数あけてあって、下側電極板43上面
の水や油の落下をこの小孔43aから下方へ落とすよう
になっている。
The upper electrode plate 42 has an area slightly larger than that of the lower electrode plate 43, and water or oil dripping from the outer periphery of the upper electrode plate 42 does not drip on the lower electrode plate 43. In addition, a large number of small holes 42a are formed in the lower electrode plate 43 so that water or oil on the upper surface of the lower electrode plate 43 can be dropped downward from the small holes 43a. .

【0043】上述した検出部1の構造により同検出部に
おける容量の変化が迅速に行われ、水−油間の界面およ
び油面の検出が速やかに行われる。なお、電極板を、ブ
リッジを構成するために接続するにあたってはタンク底
面からの電気的影響を受け難いブリッジ励振側に下側電
極板43を接続し、ブリッジ出力側に上側電極板42を
接続する。
Due to the structure of the detecting section 1 described above, the capacity of the detecting section is rapidly changed, and the water-oil interface and the oil surface are quickly detected. When connecting the electrode plates to form a bridge, the lower electrode plate 43 is connected to the bridge excitation side and the upper electrode plate 42 is connected to the bridge output side, which is less susceptible to electrical influence from the tank bottom surface. .

【0044】タンク内液体の温度が常温の場合には、図
2に示す電気回路の全てをタンク内筐体44内に収容し
て、タンク外筐体47は単なる端子用の筐体としてもよ
いが、液体の温度が高い場合には高温下におかれるタン
ク内筐体44内の電子部品数を最少にして、回路の信頼
性を確保するのが望ましい。
When the temperature of the liquid in the tank is room temperature, all of the electric circuit shown in FIG. 2 may be housed in the housing 44 inside the tank, and the housing 47 outside the tank may be a housing for terminals only. However, when the temperature of the liquid is high, it is desirable to minimize the number of electronic parts in the in-tank housing 44 that are kept at a high temperature to ensure the reliability of the circuit.

【0045】この場合にはタンク内筐体44内にブリッ
ジおよびバッファ回路6を残し、整流・平滑回路7およ
び高周波電源3、4等をタンク外筐体47内に分離して
設ければよく、これらブリッジおよびバッファ回路と整
流・平滑回路および高周波電源を分離して設ける場合の
回路を図5に基づいて説明する。
In this case, the bridge and buffer circuit 6 may be left in the tank inner casing 44, and the rectifying / smoothing circuit 7, high-frequency power sources 3 and 4 may be separately provided in the tank outer casing 47. A circuit for separately providing the bridge and buffer circuits, the rectifying / smoothing circuit, and the high frequency power source will be described with reference to FIG.

【0046】なお、同図においては図2に示した回路と
同一の構成部分は図示を省略した。同図において、符号
60および61は高周波電圧をタンク外筐体46内の電
源からタンク内筐体43内のブリッジに供給するための
同軸ケーブル、62はタンク内筐体43内のバッファ回
路6の出力をタンク外筐体46内の整流・平滑回路7に
導くための同軸ケーブル、63および64はそれぞれ5
v、コモン(COM)用導線、65、66および67は
波形歪を低減するための終端抵抗を示しており、破線A
で囲まれた回路はタンク内筐体44内に、破線Bで囲ま
れた回路はタンク外筐体47内に設けるようにする。
In the figure, the same components as those of the circuit shown in FIG. 2 are not shown. In the figure, reference numerals 60 and 61 denote coaxial cables for supplying high-frequency voltage from a power source in the tank outer casing 46 to a bridge in the tank inner casing 43, and 62 denotes a buffer circuit 6 in the tank inner casing 43. The coaxial cables 63 and 64 for guiding the output to the rectification / smoothing circuit 7 in the tank outer casing 46 are 5
v, common (COM) lead wires, 65, 66, and 67 denote terminating resistors for reducing waveform distortion, and broken line A
The circuit enclosed by is provided in the tank inner casing 44, and the circuit enclosed by the broken line B is provided in the tank outer casing 47.

【0047】タンク内筐体44とタンク外筐体47間の
距離が短い場合および励振周波数が低い場合には、同軸
ケーブル60、61の代わりに通常のシールド線やある
いは一般の絶縁被覆線を使用してもよく、また、同軸ケ
ーブル62もシールド線で代替できる。抵抗65、66
および67も同軸ケーブルの特性インピーダンスに厳密
に合わせる必要はなく、場合によっては省略してもよ
い。
When the distance between the tank inner casing 44 and the tank outer casing 47 is short and the excitation frequency is low, a normal shielded wire or a general insulation covered wire is used instead of the coaxial cables 60 and 61. Alternatively, the coaxial cable 62 may be replaced with a shield wire. Resistance 65, 66
Also, 67 and 67 need not be strictly matched to the characteristic impedance of the coaxial cable, and may be omitted depending on the case.

【0048】次に、本発明の請求項2に係るレベルセン
サの基本構成を図6に基づいて説明する。同図において
符号70は1対の電極板よりなる検出部、71乃至73
はフルブリッジを構成する固定容量のコンデンサを示し
ており、これらコンデンサには検出部が貯蔵液体たる油
相中にあるときにブリッジがほぼ平衡となるような容量
値のものを選ぶ。
Next, the basic structure of the level sensor according to claim 2 of the present invention will be described with reference to FIG. In the figure, reference numeral 70 designates a detection unit composed of a pair of electrode plates, 71 to 73.
Shows fixed-capacity capacitors forming a full bridge, and those capacitors having a capacitance value such that the bridge is almost in equilibrium when the detecting section is in an oil phase as a stored liquid are selected.

【0049】ブリッジ出力端74、75にはそれぞれバ
ッファ回路76、77が接続され、バッファ回路76、
77からの出力はそれぞれ同期整流・平滑回路78、7
9により直流となる。この直流となった電圧は差動増幅
器80によりひき算された後に出力端子81から出力さ
れる。ブリッジを励振するための高周波電源82は同期
整流・平滑回路78、79にも同期整流用の参照電圧P
を与える。本構成を図1に示す構成と比較すると、図1
の場合はバッファ回路がブリッジのガルバ回路に接続さ
れてブリッジ辺要素に対する影響が前述のように比較的
小さい。図6に示す本実施例においては、フルブリッジ
で変成器を使用すれば、図1に示した実施例のものと同
様にガルバ回路にバッファ回路を接続する構成をとるこ
とができるが、本質安全防爆構造をとるためには変成器
を使用することができない。したがって、図6に示す本
実施例の構成ではバッファ回路が辺要素71、73に並
列に接続されるので、ブリッジの精度面では若干不利と
なる。しかし、図1の構成に比べて励振電源が簡潔にな
るという利点があり、簡易なレベルセンサを実現でき
て、警報回路等に使用するのに適している。
Buffer circuits 76 and 77 are connected to the bridge output terminals 74 and 75, respectively.
The outputs from 77 are synchronous rectification / smoothing circuits 78 and 7 respectively.
It becomes direct current by 9. This DC voltage is output by the output terminal 81 after being subtracted by the differential amplifier 80. The high frequency power supply 82 for exciting the bridge is also used for the synchronous rectification / smoothing circuits 78 and 79 and the reference voltage P for the synchronous rectification.
give. Comparing this configuration with the configuration shown in FIG.
In this case, the buffer circuit is connected to the galvanic circuit of the bridge and the influence on the bridge side element is relatively small as described above. In the present embodiment shown in FIG. 6, if a transformer is used in a full bridge, a configuration in which a buffer circuit is connected to a galvanic circuit can be adopted as in the embodiment shown in FIG. 1, but it is intrinsically safe. Transformers cannot be used to provide explosion-proof construction. Therefore, in the configuration of the present embodiment shown in FIG. 6, since the buffer circuit is connected in parallel to the side elements 71 and 73, there is a slight disadvantage in terms of the accuracy of the bridge. However, there is an advantage that the excitation power source is simpler than that of the configuration of FIG. 1, and a simple level sensor can be realized, which is suitable for use in an alarm circuit or the like.

【0050】[0050]

【発明の効果】本発明に係る静電容量式レベルセンサは
上述した構成により次の効果を奏し得る。本発明のレベ
ルセンサの高周波ブリッジにはインダクタンス要素が必
要ないので、本質安全防爆構造の実現が容易になり、特
に石油製品等の荷揚げ作業等に使用する場合、充分な安
全性を確保することができる。
The capacitance level sensor according to the present invention has the following effects due to the above-mentioned configuration. Since the high-frequency bridge of the level sensor of the present invention does not require an inductance element, it is easy to realize an intrinsically safe explosion-proof structure, and sufficient safety can be ensured especially when used for unloading petroleum products and the like. it can.

【0051】また、整流・平滑回路に高周波電源からの
電圧を参照電圧とする同期整流・平滑回路を使用するこ
とにより、検出部が水相中にある場合と気相中にある場
合の識別がセンサ出力の極性判別で済むので識別が容易
で、しかもバッファ回路に広いダイナミックレンジを必
要としないので、同期整流・平滑回路の動作用電圧が低
くて済み、安全性がより向上する。
Further, by using a synchronous rectifying / smoothing circuit in which the voltage from the high frequency power source is used as a reference voltage for the rectifying / smoothing circuit, it is possible to distinguish between the case where the detector is in the water phase and the case where it is in the gas phase. Since the polarity of the sensor output only needs to be discriminated, the discrimination is easy, and since the buffer circuit does not require a wide dynamic range, the operating voltage of the synchronous rectification / smoothing circuit can be low and the safety is further improved.

【0052】さらに、ブリッジおよびバッファ回路以外
の構成部分をタンク外に設けることにより、貯蔵液体の
液温が高い場合であっても電子回路が液体からの熱の影
響を受けにくく、回路の信頼性を向上させることができ
る。また、検出部の電極板をタンク内においてほぼ水平
となるように設け、かつ上側の電極板はブリッジ出力側
に接続し、下側電極板は高周波電源側に接続することに
より、下側電極板はタンク底面からの電気的影響を受け
やすいが、下側電極板に接続される高周波電源側は電気
的影響を受けにくいので、精度の高い検出を行うことが
できる。
Furthermore, by providing the components other than the bridge and the buffer circuit outside the tank, the electronic circuit is not easily affected by the heat from the liquid even when the liquid temperature of the stored liquid is high, and the reliability of the circuit is improved. Can be improved. In addition, the electrode plate of the detection unit is provided so as to be almost horizontal in the tank, the upper electrode plate is connected to the bridge output side, and the lower electrode plate is connected to the high frequency power source side. Is susceptible to electrical influence from the bottom surface of the tank, but the high-frequency power source side connected to the lower electrode plate is less susceptible to electrical influence, and therefore highly accurate detection can be performed.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の請求項1に係るレベルセンサの基本構
成を示す構成図。
FIG. 1 is a configuration diagram showing a basic configuration of a level sensor according to claim 1 of the present invention.

【図2】本発明の請求項1に係るレベルセンサの実施例
を示す回路図。
FIG. 2 is a circuit diagram showing an embodiment of a level sensor according to claim 1 of the present invention.

【図3】本発明に係るレベルセンサの取付構造を示す縦
断面図。
FIG. 3 is a vertical sectional view showing a mounting structure of a level sensor according to the present invention.

【図4】検出部の構造を示す一部縦断正面図。FIG. 4 is a partially longitudinal front view showing the structure of the detection unit.

【図5】本発明に係るレベルセンサの電気回路の一部を
分離して取り付ける場合の具体例を示す回路図。
FIG. 5 is a circuit diagram showing a specific example of a case where a part of an electric circuit of the level sensor according to the present invention is separately attached.

【図6】本発明の請求項2に係るレベルセンサの基本構
成を示す構成図。
FIG. 6 is a configuration diagram showing a basic configuration of a level sensor according to claim 2 of the present invention.

【符号の説明】[Explanation of symbols]

1 検出部 2 コンデンサ 3、4 高周波電源 5 ブリッジ出力端 6 バッファ回路 7 整流・平滑回路 8 出力端子 11 コンデンサ 12、13 バイアス抵抗 14 電界効果トランジスタ 15 負荷抵抗 16 PNP形トランジスタ 17 ソース抵抗 18、19 C−MOS形アナログスイッチIC 20、21 受信抵抗 22、23 コンデンサ 26、・・・、29 演算抵抗 30 演算増幅器 31 マルチバイブレータ 32 C−MOS形インバータIC 33 ゼナダイオード 34 ゼナ電流規制抵抗 35 C−MOS形インバータIC 36 インバータIC 40 タンク外壁 41 ウエル 42、43 電極板 44 タンク内筐体 45 電線管 46 取付フランジ 47 タンク外筐体 50 段部 51 円柱ブロック 52 袋ナット 53、54 電極板用支柱 60、61、62 同軸ケーブル 63、64 コモン用導線 65、66、67 終端抵抗 70 検出部 71、72、73 コンデンサ 74、75 ブリッジ出力端 76、77 バッファ回路 78、79 整流・平滑回路 80 差動増幅器 81 出力端子 82 高周波電源 1 Detector 2 Capacitor 3, 4 High Frequency Power Supply 5 Bridge Output Terminal 6 Buffer Circuit 7 Rectification / Smoothing Circuit 8 Output Terminal 11 Capacitor 12, 13 Bias Resistor 14 Field Effect Transistor 15 Load Resistor 16 PNP Transistor 17 Source Resistor 18, 19 C -MOS type analog switch IC 20,21 Reception resistance 22,23 Capacitor 26, ..., 29 Operational resistance 30 Operational amplifier 31 Multivibrator 32 C-MOS type inverter IC 33 Zener diode 34 Zener current regulation resistance 35 C-MOS type Inverter IC 36 Inverter IC 40 Tank outer wall 41 Well 42, 43 Electrode plate 44 Tank inner casing 45 Conduit 46 Mounting flange 47 Tank outer casing 50 Step 51 Cylindrical block 52 Cap nut 53, 54 Electrode plate support 60 , 61, 62 Coaxial cable 63, 64 Common conductor 65, 66, 67 Termination resistor 70 Detector 71, 72, 73 Capacitor 74, 75 Bridge output terminal 76, 77 Buffer circuit 78, 79 Rectification / smoothing circuit 80 Differential amplifier 81 Output terminal 82 High frequency power supply

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】水に比べて低い比誘電率をもつ液体を貯蔵
するタンクの底板付近にタンク内壁と絶縁した1対の電
極板よりなる検出部を設け、この静電容量値から貯蔵液
体の表面および貯蔵液体と水の界面を検知するレベルセ
ンサにおいて、前記検出部を1辺とし、検出部の電極板
間に貯蔵液体が存在する場合にほぼ平衡する高周波ハー
フブリッジと、このハーフブリッジの出力電圧をインピ
ーダンス変換するバッファ回路と、このバッファ回路の
出力を整流、平滑してセンサ出力とする整流・平滑回路
と、前記ハーフブリッジを構成するための高周波電源と
を備え、前記センサ出力から前記検出部の電極板間に存
在する液体が貯蔵液体と水のどちらであるか、あるいは
貯蔵液体および水のどちらも存在しないかを識別して貯
蔵液体の表面および貯蔵液体と水の界面を検知する静電
容量式レベルセンサ。
1. A detection unit comprising a pair of electrode plates insulated from an inner wall of a tank is provided near a bottom plate of a tank for storing a liquid having a relative dielectric constant lower than that of water. In a level sensor for detecting a surface and an interface between a stored liquid and water, a high frequency half bridge having one side of the detection section and being substantially balanced when the stored liquid exists between electrode plates of the detection section, and an output of the half bridge A buffer circuit for impedance-converting the voltage, a rectifying / smoothing circuit for rectifying and smoothing the output of the buffer circuit to obtain a sensor output, and a high-frequency power source for forming the half bridge are provided, and the detection is performed from the sensor output. The liquid existing between the electrode plates of the parts is either stored liquid or water, or neither stored liquid nor water is present to identify the surface of the stored liquid and the liquid. Capacitive level sensor for detecting the interface of the storage liquid and water.
【請求項2】水に比べて低い比誘電率をもつ液体を貯蔵
するタンクの底板付近にタンク内壁と絶縁した1対の電
極板よりなる検出部を設け、この静電容量値から貯蔵液
体の表面および貯蔵液体と水の界面を検知するレベルセ
ンサにおいて、前記検出部を1辺とし、検出部の電極板
間に貯蔵液体が存在する場合にはほぼ平衡する高周波フ
ルブリッジと、このフルブリッジの出力電圧をインピー
ダンス変換する1対のバッファ回路と、このバッファ回
路の出力を整流、平滑にしてセンサ出力とする整流・平
滑回路と、前記フルブリッジを励振するための高周波電
源とを備え、前記センサ出力から前記検出部の電極板間
に貯蔵液体が存在するかまたは水が存在するか、あるい
は貯蔵液体と水のいずれも存在しないかを識別して貯蔵
液体の表面および貯蔵液体と水との界面を検知する静電
容量式レベルセンサ。
2. A detection unit comprising a pair of electrode plates insulated from the inner wall of the tank is provided near the bottom plate of the tank that stores a liquid having a lower relative dielectric constant than water, and the capacitance of the stored liquid is determined from this capacitance value. In a level sensor for detecting a surface and an interface between a stored liquid and water, a high-frequency full bridge which has the detection section as one side and is substantially balanced when the stored liquid exists between the electrode plates of the detection section, and a full bridge of this full bridge. The sensor includes a pair of buffer circuits for impedance-converting the output voltage, a rectifying / smoothing circuit for rectifying and smoothing the output of the buffer circuit to obtain a sensor output, and a high-frequency power supply for exciting the full bridge. From the output, it is discriminated whether there is a stored liquid or water between the electrode plates of the detection unit, or neither the stored liquid nor the water is present, and the surface of the stored liquid and Capacitive level sensor for detecting the interface between the built liquid and water.
JP12076895A 1995-04-21 1995-04-21 Capacitive level sensor for detecting liquid surface and water interface Expired - Fee Related JP3258521B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12076895A JP3258521B2 (en) 1995-04-21 1995-04-21 Capacitive level sensor for detecting liquid surface and water interface

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12076895A JP3258521B2 (en) 1995-04-21 1995-04-21 Capacitive level sensor for detecting liquid surface and water interface

Publications (2)

Publication Number Publication Date
JPH08292081A true JPH08292081A (en) 1996-11-05
JP3258521B2 JP3258521B2 (en) 2002-02-18

Family

ID=14794529

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12076895A Expired - Fee Related JP3258521B2 (en) 1995-04-21 1995-04-21 Capacitive level sensor for detecting liquid surface and water interface

Country Status (1)

Country Link
JP (1) JP3258521B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016121898A (en) * 2014-12-24 2016-07-07 株式会社鷺宮製作所 Liquid detector, compressor, and air conditioner
JP2019158889A (en) * 2019-04-19 2019-09-19 株式会社鷺宮製作所 Liquid detector, compressor, and air conditioner

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016121898A (en) * 2014-12-24 2016-07-07 株式会社鷺宮製作所 Liquid detector, compressor, and air conditioner
JP2019158889A (en) * 2019-04-19 2019-09-19 株式会社鷺宮製作所 Liquid detector, compressor, and air conditioner

Also Published As

Publication number Publication date
JP3258521B2 (en) 2002-02-18

Similar Documents

Publication Publication Date Title
US4676101A (en) Capacitance-type material level indicator
US5546005A (en) Guarded capacitance probe and related measurement circuit
US3956760A (en) Liquid level gauge
US4757252A (en) Probe system for measuring the condition of materials
CA1069996A (en) Apparatus for generating an electrical signal indicative of liquid level
US5611240A (en) Level detector
US20160047683A1 (en) Capacitive fill level sensor
GB2117910A (en) A level limit switch for electrically conducting filling materials
US10066335B2 (en) Device for sensing the electrical conductivity of a liquid, particularly that of the washing bath in a washing machine
JPS5954928A (en) Capacitance type material level indicator
US5735167A (en) Method and arrangement for measuring liquid level
JP2005519279A (en) Stabilized conductivity detection system
US11326925B2 (en) Probe unit with a securement unit that releasably secures an electrode on the probe body
US4583402A (en) Fluid-gauging systems
JPH08292081A (en) Capacitance type level sensor
IE61520B1 (en) Arrangement for capactive filling level measurement
US5140270A (en) Electrical feed-through bushing cavity insulation detector
US5495130A (en) Point level switch
JPH04158224A (en) Level detecting circuit
JP3420635B2 (en) Liquid detector
JP3665890B2 (en) Capacitance type detector
CN216206811U (en) Circuit device for detecting liquid level
CN218673811U (en) Frequency difference type material level sensor
JP7071733B2 (en) Sensor
JPH09210745A (en) Capacitive electromagnetic flow meter

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D02

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071207

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081207

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081207

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091207

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101207

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101207

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111207

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111207

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121207

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121207

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131207

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees