JPH08290517A - Method for coating packaging material consisting of plastic sheet with silica thin film with excellent gas barrier property - Google Patents

Method for coating packaging material consisting of plastic sheet with silica thin film with excellent gas barrier property

Info

Publication number
JPH08290517A
JPH08290517A JP7130941A JP13094195A JPH08290517A JP H08290517 A JPH08290517 A JP H08290517A JP 7130941 A JP7130941 A JP 7130941A JP 13094195 A JP13094195 A JP 13094195A JP H08290517 A JPH08290517 A JP H08290517A
Authority
JP
Japan
Prior art keywords
silicon oxide
sheet
electrode
thin film
packaging material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7130941A
Other languages
Japanese (ja)
Inventor
Tsunehisa Namiki
恒久 並木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP7130941A priority Critical patent/JPH08290517A/en
Publication of JPH08290517A publication Critical patent/JPH08290517A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To provide a method for preparing a packaging material with excellent gas barrier properties. CONSTITUTION: A high frequency electrode 3 facing to one face of a packaging material consisting of a plastic sheet and with a Tg being higher than the film forming temp. of a silica thin film and with a distance with the coating face of at most 10mm and being approximately const., is arranged and an earth electrode 2 facing to another face of the sheet and with a distance with the coating face being larger than the distance between the high frequency electrode and the coating face and being approximately const. is arranged through the sheet and by facing it to the high frequency electrode 3 and a plasma of silica formed by means of a CVD method is introduced between the sheet and the electrode and it is sticked on the surface of the sheet under a discharging gas pressure of 0.0005-0.050Torr with a uniform film thickness.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はプラスチックスシートか
らなる包装材料にガス遮断性に優れた透明な珪素化合物
の薄膜を被覆する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of coating a packaging material made of a plastic sheet with a thin film of a transparent silicon compound having an excellent gas barrier property.

【0002】[0002]

【従来の技術】包装材は内容物の保護と保存のためガス
の透過を防ぐ必要があり、従来種々の試みがなされてい
る。例えば、珪素酸化物やアルミニウム酸化物等の無機
の被覆層を設けたり、ポリ塩化ビニリデン等のガス遮断
性樹脂層を積層したり、アルミ箔の金属フイルムを積層
することが試みられて来た。この他特開平3−1837
59号公報にはプラスチックスフイルムにそのプラスチ
ックスと同じ合成樹脂を真空蒸着や、スパッタリングに
よって薄膜状で被覆して有機物層を形成し、その上に無
機物を蒸着して有機物と無機物の混合層を形成し、さら
にその上に無機物層を形成した積層フイルムが示されて
いる。このプラスチックスは、被覆層の無機物とは全く
異なる物質であって親和性が乏しいためプラスチックス
に同じ合成樹脂を薄膜状に被覆し、無機被覆の定着性を
良くするために中間に合成樹脂と無機物のブレンド層を
形成したものであるが、ブレンド層の表面は無機物のみ
の面ではなく合成樹脂の面も存在するので無機物層の定
着性は期待した程には向上しない。さらに合成樹脂は蒸
着すると分子量が低下するのでその上に形成した無機薄
膜はガス遮断性に優れた膜を形成しない。本発明者は先
に特開平5−345383号発明と特願平5−2249
03号発明を出願した。これ等の発明は従来の包装材と
は全く異なる画期的な発明であり、従来の包装材の欠点
は解決された。しかしながら、超精密な均一の膜厚のガ
ス透過量を0.1g/mdayの高ガス遮断性被膜を
形成することにはやや不充分な点があった。そして特殊
な用途、例えば特殊な薬品等の包装には超精密な膜厚で
高ガス遮断性が要求される。
2. Description of the Related Art Packaging materials are required to prevent gas permeation in order to protect and preserve their contents, and various attempts have been made so far. For example, attempts have been made to provide an inorganic coating layer such as silicon oxide or aluminum oxide, laminate a gas barrier resin layer such as polyvinylidene chloride, or laminate a metal film of aluminum foil. In addition to this, JP-A-3-1837
In Japanese Patent Publication No. 59, a plastic film is coated with the same synthetic resin as the plastics in a thin film form by vacuum vapor deposition or sputtering to form an organic substance layer, and an inorganic substance is vapor-deposited thereon to form a mixed layer of the organic substance and the inorganic substance. A laminated film is shown which has been formed and on which an inorganic layer has been formed. Since this plastic is a substance that is completely different from the inorganic substance of the coating layer and has a poor affinity, the same synthetic resin is coated on the plastic in a thin film form, and in order to improve the fixing property of the inorganic coating, a synthetic resin is used in the middle. Although the blend layer of the inorganic material is formed, the surface of the blend layer has not only the surface of the inorganic material but also the surface of the synthetic resin, so that the fixing property of the inorganic material layer is not improved as expected. Further, since the synthetic resin has a reduced molecular weight when vapor-deposited, the inorganic thin film formed thereon does not form a film excellent in gas barrier property. The present inventor has previously disclosed the invention of Japanese Patent Application Laid-Open No. 5-345383 and Japanese Patent Application No. 5-2249.
No. 03 Invention filed. These inventions are epoch-making inventions which are completely different from the conventional packaging materials, and the drawbacks of the conventional packaging materials have been solved. However, there were some inadequate points in forming a highly gas barrier coating having an ultra-precise and uniform film thickness of 0.1 g / m 2 day. For special applications, such as packaging of special chemicals, ultra-precise film thickness and high gas barrier property are required.

【0003】[0003]

【発明が解決しようとする課題】本発明はプラスチック
スシート形状の包装材料に、超緻密な無機膜を被覆し、
高いガス遮断性の性能を付与するものである。
SUMMARY OF THE INVENTION According to the present invention, a plastic sheet-shaped packaging material is coated with an ultra-dense inorganic film,
It provides high gas barrier performance.

【0004】[0004]

【課題を解決した手段】本発明は、 「1. 珪素酸化物薄膜の製膜温度よりT.G.が高い
プラスチックスシートからなる包装材料の一面に対向し
て被覆面との距離が10mm以下でほぼ一定である高周
波電極を設置し、またシートの他の面に対向して被覆面
との距離が高周波電極と被覆面の距離より大きくほぼ一
定であるアース電極をシートを介して高周波電極に対向
して配置して、CVD法により生成した珪素酸化物のプ
ラズマをシートと電極の間に導入して放電ガス圧0.0
005〜0.05torrでシート表面に均一の膜厚に
付着させることを特徴とするプラスチックスシートから
なる包装材料にガス遮断性に優れた珪素酸化物薄膜を被
覆する方法。 2. 高周波電極が平滑な平面状の外面を有する1ケの
電極である、1項に記載されたプラスチックスシートか
らなる包装材料にガス遮断性に優れた珪素酸化物薄膜を
被覆する方法。 3. アース電極が平滑な平面状の外面を有する1ケの
電極である、1項または2項に記載されたプラスチック
スシートからなる包装材料にガス遮断性に優れた珪素酸
化物薄膜を被覆する方法。 4. プラスチックスシートからなる包装材料に形成し
た珪素酸化物薄膜が屈折率1.4〜1.5で膜厚が30
0〜2000Åである、1項ないし3項のいずれか1項
に記載されたプラスチックスシートからなる包装材料に
ガス遮断性に優れた珪素酸化物薄膜を被覆する方法。 5. 珪素酸化物薄膜の製膜温度よりT.G.が高いプ
ラスチックスシートからなる包装材料の一面に対向して
被覆面との距離が10mm以下でほぼ一定である高周波
電極を設置し、またシートの他の面に対向して被覆面と
の距離が高周波電極と被覆面の距離より大きくほぼ一定
であるアース電極をシートを介して高周波電極に対向し
て配置して、低温プラズマ法により少くとも珪素、酸
素、炭素からなる有機シリコン化合物をプラズマとな
し、該プラズマをシートと電極の間に供給し、ガス圧3
×10−3〜3×10−2torrで重合してシートの
表面に珪素化合物薄膜を形成し、ついでCVD法により
生成した珪素酸化物のプラズマをシートと電極の間に導
入して放電ガス圧0.0005〜0.05toorで珪
素化合物重合体薄膜上に珪素酸化物の被膜を形成するこ
とを特徴とするプラスチックスシートからなる包装材料
にガス遮断性に優れた珪素酸化物薄膜を被覆する方法。 6. 高周波電極が平滑な平面状の外面を有する1ケの
電極である、5項に記載されたプラスチックスシートか
らなる包装材料にガス遮断性に優れた珪素酸化物薄膜を
被覆する方法。 7. アース電極が平滑な平面状の外面を有する1ケの
電極である、1項または6項に記載されたプラスチック
スシートからなる包装材料にガス遮断性に優れた珪素酸
化物薄膜を被覆する方法。 8. 珪素化合物重合体被膜が、屈折率2.0〜2.3
で膜厚が0.005μm〜0.05μmであり、珪素酸
化物被膜が屈折率1.4〜1.5で膜厚が300〜20
00Åである、5項ないし7項のいずれか1項に記載さ
れたプラスチックスシートからなる包装材料にガス遮断
性に優れた珪素酸化物薄膜を被覆する方法。」に関す
る。
MEANS FOR SOLVING THE PROBLEMS The present invention provides "1. The distance from the covering surface facing one surface of the packaging material made of a plastic sheet having a TG higher than the film forming temperature of the silicon oxide thin film is 10 mm or less. A high-frequency electrode that is almost constant is installed, and a ground electrode that faces the other surface of the sheet and has a substantially constant distance from the covering surface that is larger than the distance between the high-frequency electrode and the covering surface is connected to the high-frequency electrode through the sheet. They are arranged so as to face each other, and a plasma of silicon oxide generated by the CVD method is introduced between the sheet and the electrode so that the discharge gas pressure is 0.0.
A method for coating a packaging material made of a plastic sheet with a silicon oxide thin film having an excellent gas barrier property, which comprises depositing a uniform film thickness on a sheet surface at 005 to 0.05 torr. 2. A method for coating a packaging material made of the plastic sheet according to item 1, wherein the high-frequency electrode is a single electrode having a smooth flat outer surface, with a silicon oxide thin film having an excellent gas barrier property. 3. A method of coating a packaging material made of the plastic sheet according to item 1 or 2 with a silicon oxide thin film having an excellent gas barrier property, wherein the ground electrode is a single electrode having a smooth flat outer surface. 4. A silicon oxide thin film formed on a packaging material made of a plastic sheet has a refractive index of 1.4 to 1.5 and a film thickness of 30.
A method of coating a packaging material comprising a plastic sheet according to any one of items 1 to 3 having a thickness of 0 to 2000Å with a silicon oxide thin film having an excellent gas barrier property. 5. From the film forming temperature of the silicon oxide thin film, the T. G. A high-frequency electrode having a substantially constant distance of 10 mm or less from the covering surface is provided facing one surface of the packaging material made of a high-quality plastic sheet, and the distance from the covering surface is facing the other surface of the sheet. A ground electrode, which is larger than the distance between the high-frequency electrode and the covering surface and is substantially constant, is placed opposite to the high-frequency electrode via a sheet, and an organosilicon compound composed of at least silicon, oxygen, and carbon is formed into plasma by the low-temperature plasma method. , The plasma is supplied between the sheet and the electrode, and the gas pressure is 3
Polymerization at × 10 −3 to 3 × 10 −2 torr forms a silicon compound thin film on the surface of the sheet, and then plasma of silicon oxide generated by the CVD method is introduced between the sheet and the electrode to discharge gas pressure. A method of coating a packaging material made of a plastic sheet with a silicon oxide thin film excellent in gas barrier property, which comprises forming a silicon oxide coating on a silicon compound polymer thin film at 0.0005 to 0.05 toor . 6. A method of coating a packaging material composed of a plastic sheet according to item 5, wherein the high-frequency electrode is a single electrode having a smooth flat outer surface, with a silicon oxide thin film having excellent gas barrier properties. 7. A method for coating a packaging material comprising a plastic sheet according to item 1 or 6 with a silicon oxide thin film having excellent gas barrier properties, wherein the ground electrode is a single electrode having a smooth flat outer surface. 8. The silicon compound polymer coating has a refractive index of 2.0 to 2.3.
And the film thickness is 0.005 μm to 0.05 μm, the silicon oxide film has a refractive index of 1.4 to 1.5, and the film thickness is 300 to 20.
A method for coating a packaging material, which is 00 Å and is made of the plastic sheet according to any one of 5 to 7, with a silicon oxide thin film having an excellent gas barrier property. Regarding

【0005】[0005]

【作用】本発明の特殊の作用を奏する第1の特徴は、シ
ート状包装材料の一面に対向して被覆面との距離が10
mm以下でほぼ一定である高周波電極を設置し、またシ
ートの他の面にはシートの被覆面と電極表面の距離が高
周波電極と被覆面の距離より大きくほぼ一定であるアー
ス電極をシートを介して高周波電極と対向して配置した
ことである。電極とシート表面の距離を一定に保つのは
電界強度分布を一定とするためである。高周波電極とシ
ート被覆面との距離は10mm以下でなければならな
い。10mm以上となると電界強度が弱く、緻密な膜が
形成されないなどの問題が生ずるからである。
The first feature of the present invention, which has a special effect, is that the distance from the one surface of the sheet-like packaging material to the covering surface is 10
A high-frequency electrode that is almost constant at less than mm is installed, and a ground electrode whose distance between the covering surface of the sheet and the electrode surface is larger than the distance between the high-frequency electrode and the covering surface is almost constant is provided on the other surface of the sheet. That is, it is arranged so as to face the high-frequency electrode. The reason why the distance between the electrode and the surface of the sheet is kept constant is to keep the electric field strength distribution constant. The distance between the high frequency electrode and the sheet covering surface should be 10 mm or less. This is because if the thickness is 10 mm or more, the electric field strength is weak, and a problem such as a dense film not being formed occurs.

【0006】本発明の第2の特徴は、一ケの高周波電極
と一ケのアース電極をシートを介して対向して配置する
ことである。このような一対の電極を併用することによ
り電界の強度分布は精密に一定となり形成される被膜の
厚さは均一となり、さらに膜質は緻密で均質となる。
A second feature of the present invention is that one high-frequency electrode and one earth electrode are arranged to face each other with a sheet interposed therebetween. By using such a pair of electrodes together, the intensity distribution of the electric field becomes precisely constant, the thickness of the formed film becomes uniform, and the film quality becomes dense and uniform.

【0007】本発明の第3の特徴は、CVD法を用い珪
素酸化物のプラズマを生成させて放電ガス圧を0.00
05〜0.05torrで容器内表面に被覆を行なうこ
とである。ガス圧がこの範囲内でないと緻密な膜が形成
されないなどの問題が生ずるからである。
A third feature of the present invention is that a plasma of silicon oxide is generated by using the CVD method and the discharge gas pressure is 0.00.
The inner surface of the container is coated at 05 to 0.05 torr. If the gas pressure is not within this range, problems such as the formation of a dense film may occur.

【0008】本発明の第4の特徴は被覆を行うプラスチ
ックスシートとして珪素酸化物薄膜の製膜温度よりT.
G.が高いプラスチックス材料で形成したシートを使用
することである。超精密な薄膜を形成するためには製膜
時にはシートの変形を避けなければならないからであ
る。このような第1の特徴〜第4の特徴が組合されて、
珪素酸化物のプラズマは電極とシートの間に導入され
る。この間の電界強度分布が一定であるのでプラズマ濃
度が一定となり珪素酸化物は緻密な、均一な厚みでシー
ト上に析出し被覆される。
A fourth feature of the present invention is that, as a plastic sheet for coating, the T.S.
G. Is to use a sheet formed of high plastics material. This is because in order to form an ultra-precision thin film, it is necessary to avoid deformation of the sheet during film formation. Such first to fourth characteristics are combined,
The silicon oxide plasma is introduced between the electrode and the sheet. Since the electric field strength distribution during this period is constant, the plasma concentration becomes constant and the silicon oxide is deposited and coated on the sheet with a dense and uniform thickness.

【0009】こうして緻密で一定の厚みの珪素酸化物被
膜が形成されるのである。高周波電極もアース電極も夫
々1ケでなければならず、電極を複数個使用することは
避けなければならない。アース電極の外面が平滑で平面
状であると均一な厚みの被覆が行えるので好ましい。複
数個の電極を用いると、CVD法を用いても緻密で、均
一な被膜は形成できない。何故緻密で、均一な被膜が形
成されないのか本発明者は種々研究した。例えば図3に
示すように複数の電極をシートの表面に配置し、CVD
法により珪素酸化物を被覆したところ被膜の厚さはシー
トを一定速度で、搬送することによって均一になった
が、ガス遮断性に優れた膜は形成されなかった。
Thus, a dense and constant-thickness silicon oxide film is formed. There must be only one high-frequency electrode and one ground electrode, and the use of multiple electrodes must be avoided. It is preferable that the outer surface of the ground electrode is smooth and flat because coating with a uniform thickness can be performed. If a plurality of electrodes are used, a dense and uniform coating cannot be formed even if the CVD method is used. The present inventor has variously studied why a dense and uniform film is not formed. For example, as shown in FIG. 3, a plurality of electrodes are arranged on the surface of the sheet, and CVD is performed.
When the silicon oxide was coated by the method, the thickness of the coating became uniform by transporting the sheet at a constant speed, but a film excellent in gas barrier property was not formed.

【0010】本発明者は複数本の電極を用いたため、夫
々の電極の有する電界強度分布が互いに干渉して影響
し、電界強度及びプラズマの濃度が変化するため、シー
トを固定した場合、膜のガス遮断性が向上せずまた膜厚
も均一にならない。シートを搬送した場合、膜厚は均一
になるが、膜のバリヤー性は向上しないと考えている。
本発明はCVD法を用いるが、高周波、交流そして直流
を用いたCVD法等が使用される。
Since the present inventor uses a plurality of electrodes, the electric field intensity distributions of the respective electrodes interfere with each other and affect each other, and the electric field intensity and plasma concentration change. The gas barrier property is not improved and the film thickness is not uniform. When the sheet is conveyed, the film thickness is uniform, but the barrier property of the film is not improved.
Although the present invention uses the CVD method, the CVD method using high frequency, alternating current, and direct current is used.

【0011】本発明により形成される珪素酸化物被膜は
屈折率が1.4〜1.5で膜厚が300〜2000Åで
ある。膜厚が300Å以下では連続膜が得られず、ガス
遮断性が向上せず、また2000Å以上被覆してもあま
りガス遮断性の向上がみられず、逆に膜が内部応力によ
って破壊するなどの問題が生ずる。本発明でCVD法で
珪素酸化物プラズマを形成するために使用する材料は、
SiHとNOガスや酸素ガスまたTEOS(テトラ
エトキシシラン)及びHDSO(ヘキサメチルジシロキ
サン)等有機珪素化合物とNOや酸素ガスまたプラズ
マ補助ガスとしてHe、Ar等も使用される。このよう
にして形成された珪素酸化物被膜は優れたガス遮断効果
を奏し、通常の用途には非常に優れたシート状包装材料
となる。
The silicon oxide film formed according to the present invention has a refractive index of 1.4 to 1.5 and a film thickness of 300 to 2000Å. If the film thickness is less than 300Å, a continuous film cannot be obtained and the gas barrier property is not improved, and even if the film is coated over 2000Å, the gas barrier property is not significantly improved, and conversely the film is broken by internal stress. A problem arises. The material used for forming the silicon oxide plasma by the CVD method in the present invention is
SiH 4 and NO x gas and oxygen gas, or organosilicon compounds such as TEOS (tetraethoxysilane) and HDSO (hexamethyldisiloxane) and NO x and oxygen gas, and He, Ar and the like as plasma auxiliary gas are also used. The silicon oxide film thus formed has an excellent gas barrier effect and is a very excellent sheet-like packaging material for ordinary applications.

【0012】本発明はまた、珪素酸化物薄膜の製膜温度
よりT.G.が高いプラスチックスシートからなる包装
材料の一面に対向して被覆面との距離が10mm以下で
ほぼ一定である高周波電極を設置し、またシートの他の
面に対向して被覆面との距離が高周波電極と被覆面の距
離より大きくほぼ一定であるアース電極をシートを介し
て高周波電極に対向して配置して、低温プラズマ法によ
り少くとも珪素、酸素、炭素からなる有機シリコン化合
物をプラズマとなし、該プラズマをシートと電極の間に
供給し、ガス圧3×10−3〜3×10−2torrで
重合してシートの表面に珪素化合物重合体薄膜を形成
し、ついでCVD法により生成した珪素酸化物のプラズ
マをシートと電極の間に導入して放電ガス圧0.000
5〜0.05torrで珪素化合物重合体薄膜上に珪素
酸化物の被膜を形成することを特徴とするプラスチック
スシートからなる包装材料にガス遮断性に優れた珪素酸
化物薄膜を被覆する方法も包含する。この二層からなる
被膜はガス遮断性が優れるとともに水蒸気透過量が0.
1g/mday以下の非常に高い水蒸気遮断効果を奏
する。この珪素化合物被膜と珪素酸化物被膜を、シート
を介して対向配置された高周波電極とアース電極を配設
して形成すると両被膜とも均一な被膜が形成されるの
で、ガス遮断性が著しく向上する。
The present invention is also based on the T.V. G. A high-frequency electrode having a substantially constant distance of 10 mm or less from the covering surface is provided facing one surface of the packaging material made of a high-quality plastic sheet, and the distance from the covering surface is facing the other surface of the sheet. A ground electrode, which is larger than the distance between the high-frequency electrode and the covering surface and is substantially constant, is placed opposite to the high-frequency electrode via a sheet, and an organosilicon compound composed of at least silicon, oxygen, and carbon is formed into plasma by the low-temperature plasma method. The plasma was supplied between the sheet and the electrode, and polymerized at a gas pressure of 3 × 10 −3 to 3 × 10 −2 torr to form a silicon compound polymer thin film on the surface of the sheet, and then generated by a CVD method. A plasma of silicon oxide is introduced between the sheet and the electrode to make the discharge gas pressure 0.000.
Also included is a method of coating a packaging material made of a plastic sheet with a silicon oxide thin film having excellent gas barrier properties, which comprises forming a silicon oxide coating on the silicon compound polymer thin film at 5 to 0.05 torr. To do. The coating composed of these two layers has excellent gas barrier properties and a water vapor transmission rate of 0.
It exhibits a very high water vapor barrier effect of 1 g / m 2 day or less. When this silicon compound film and silicon oxide film are formed by disposing a high frequency electrode and a ground electrode which are opposed to each other with a sheet interposed therebetween, a uniform film is formed for both films, and the gas barrier property is significantly improved. .

【0013】何故この二種の層がこの順序で積層される
とこのような特別の効果が奏されるのかその学問的解明
は必ずしも充分ではないが、本発明は反復再現する作用
効果を奏する。本発明者は、珪素酸化物層のガス遮断効
果は、被覆基体上に供給される珪素酸化物微粒子の安定
定着性によるとことろが大きいと考える。即ち供給され
た粒子はプラスチックス基体上を移動し最も安定な場所
で安定化し定着する。この場合プラスチックス基体の上
に珪素、炭素、酸素を含む珪素化合物の重合体被膜が形
成されていると珪素酸化物微粒子は良好に安定化し定着
する。そしてその分布は均一となり、安定化した珪素酸
化物粒子の上にさらに珪素酸化物微粒子が積み重なって
珪素酸化物被覆が形成されるので緊密な被覆となるから
であると考えている。また高周波電極層の珪素化合物重
合体被膜とアース層の珪素酸化物被膜が夫々特定の屈折
率の範囲内にあると0.1g/mday以下の超水蒸
気ガス遮断性を示すことについてはより定着性の高い、
欠陥の少い緊密な被膜となるからであると考えている。
Although it is not necessarily scientifically elucidated as to why these two kinds of layers have such a special effect when laminated in this order, the present invention has the effect of repetitive reproduction. The present inventors consider that the gas blocking effect of the silicon oxide layer is largely due to the stable fixing property of the silicon oxide fine particles supplied onto the coated substrate. That is, the supplied particles move on the plastic substrate and are stabilized and fixed at the most stable place. In this case, when a polymer film of a silicon compound containing silicon, carbon and oxygen is formed on the plastic substrate, the silicon oxide fine particles are well stabilized and fixed. It is considered that the distribution becomes uniform, and the silicon oxide fine particles are further stacked on the stabilized silicon oxide particles to form a silicon oxide coating, resulting in a tight coating. Further, it is more preferable that the silicon compound polymer coating of the high-frequency electrode layer and the silicon oxide coating of the ground layer have a super-water vapor gas barrier property of 0.1 g / m 2 day or less when they are within the respective ranges of specific refractive indexes. High fixability,
It is believed that this is because the film is tight and has few defects.

【0014】第1の有機珪素化合物重合体被覆層は高周
波電極層中の珪素、炭素、酸素の組成において、珪素1
5%以上、炭素20%以上そして残りが酸素を含有し、
0.005μm〜0.05μmの薄い層である。被覆層
の厚みがこれより厚くなるとガス遮断性が悪くなる。
The first organic silicon compound polymer coating layer is silicon 1 in the composition of silicon, carbon and oxygen in the high frequency electrode layer.
More than 5%, more than 20% carbon and the rest oxygen
It is a thin layer of 0.005 μm to 0.05 μm. If the thickness of the coating layer is thicker than this, the gas barrier property deteriorates.

【0015】このような特殊な有機珪素化合物重合体被
覆は例えば、ヘキサメチルジシラン等の有機珪素化合物
モノマーをプラズマ化し、プラスチックス基体上で重合
することによって形成することが出来る。この重合時の
ガス圧を3×10−3から3×10−2torrに調節
することによって形成される被膜の屈折率を2.0〜
2.3にすることが出来る。従来、他の用途ではあるが
知られているプラズマCVD法は放電ガス圧が0.数t
orrから数+torrの範囲であるから本発明で用い
るプラズマCVD法が特殊であることがわかる。
Such a special organosilicon compound polymer coating can be formed, for example, by plasmaizing an organosilicon compound monomer such as hexamethyldisilane and polymerizing it on a plastic substrate. The refractive index of the coating film formed by adjusting the gas pressure during the polymerization from 3 × 10 −3 to 3 × 10 −2 torr is 2.0 to
It can be 2.3. Conventionally, the plasma CVD method, which is known to have other uses, has a discharge gas pressure of 0. Number t
Since it is in the range of orr to several + torr, it can be seen that the plasma CVD method used in the present invention is special.

【0016】本発明で使用する有機シリコン化合物モノ
マーとしてはビニルトリエトキシシラン、ビニルトリメ
トキシシラン、テトラメトキシシラン、テトラエトキシ
シラン、フェニルトリメトキシシラン、オクタメチルシ
クロテトラシロキサン、メチルトリメトキシシラン、メ
チルトリエトキシシラン、1133−テトラメチルジシ
ロキサン、ヘキサンメチルジシロキサン等である。
Examples of the organosilicon compound monomer used in the present invention include vinyltriethoxysilane, vinyltrimethoxysilane, tetramethoxysilane, tetraethoxysilane, phenyltrimethoxysilane, octamethylcyclotetrasiloxane, methyltrimethoxysilane, and methyltrimethoxysilane. Examples include ethoxysilane, 1133-tetramethyldisiloxane, and hexanemethyldisiloxane.

【0017】[0017]

【実施例】本発明をわかり易いように実施例をあげて説
明する。
EXAMPLES The present invention will be described with reference to examples for the sake of easy understanding.

【0018】実施例1 図5は本発明で使用した有機シリコン化合物被膜を形成
する高周波プラズマCVD装置である。この装置はシラ
ンや常温液体モノマーを気体状態で導入する導入口6及
び酸素ガス導入口7を備えた直径60cmのステンレス
製ベルジャー型真空チャンバー1と日本電子株式会社
製、高周波電源5(13.56MH、1.5KW、J
EH−01B)及びマッチングボックス4そして直径1
3cmの円盤状高周波電極3、直径20cm、高さ1.
5cmの円筒状アース電極2、両電極間に設置した試料
用治具8等からなっている。この図5の装置は、有機珪
素化合物被覆とガス遮断層であるシリコン酸化物膜の被
覆の両方を行なうことが出来る。真空ポンプは油回転ポ
ンプと油拡散ポンプを使用し、前処理及び成膜中は常に
ポンプを引き続け、前処理及び薄膜被覆試験を行なっ
た。常温液体モノマーとしては、ヘキサメチルジシロキ
サン(以下HMDSOという)、反応ガスとしては、酸
素ガスを使用した。これ等のガスはそれぞれ別ルートで
チャンバー内に導入され、アース電極内で混合されチャ
ンバー内に放出される。アース電極と高周波電極は平行
(距離7cm)に配置し、100μのポリカーボネート
(以下PCと記す)シートを絶縁性試料治具によって、
高周波電極とアース電極間(高周波電極より5mm)に
設置した。油回転ポンプと油拡散ポンプによりチャンバ
ー内真空度を2〜3×10−5torr(電離真空計)
まで真空に引き、チャンバー内真空度が2×10−3
orrになるまで酸素ガスを導入し、続いてチャンバー
内真空度が4×10−3torrになるまでHMDSO
蒸気を導入した。高周波電源より入射電力200Wをマ
ッチングボックスを経由し、チャンバー内に導入し、酸
素とHMDSOの混合プラズマを発生させ、2分間保持
し、PC試料上に酸化珪素物膜を形成した。この積層体
の水蒸気透過量をMocon社製水蒸気透過量測定器で
測定し、表1に示した。
Example 1 FIG. 5 shows a high frequency plasma CVD apparatus for forming an organic silicon compound film used in the present invention. This device is a stainless steel bell jar type vacuum chamber 1 with a diameter of 60 cm equipped with an inlet 6 and an oxygen gas inlet 7 for introducing silane and room temperature liquid monomer in a gaseous state, and a high frequency power source 5 (13.56 MH manufactured by JEOL Ltd.). z , 1.5KW, J
EH-01B) and matching box 4 and diameter 1
3 cm disk-shaped high frequency electrode 3, diameter 20 cm, height 1.
It consists of a 5 cm cylindrical ground electrode 2, a sample jig 8 placed between both electrodes, and the like. The apparatus of FIG. 5 can perform both the coating of an organic silicon compound and the coating of a silicon oxide film which is a gas barrier layer. As the vacuum pump, an oil rotary pump and an oil diffusion pump were used. During the pretreatment and film formation, the pump was continuously pulled to perform the pretreatment and the thin film coating test. Hexamethyldisiloxane (hereinafter referred to as HMDSO) was used as the room temperature liquid monomer, and oxygen gas was used as the reaction gas. These gases are introduced into the chamber by different routes, mixed in the ground electrode and discharged into the chamber. The ground electrode and the high-frequency electrode are arranged in parallel (distance 7 cm), and a 100 μ polycarbonate (hereinafter referred to as PC) sheet is attached by an insulating sample jig.
It was placed between the high frequency electrode and the ground electrode (5 mm from the high frequency electrode). The degree of vacuum in the chamber is 2 to 3 × 10 -5 torr (ionization vacuum gauge) by an oil rotary pump and an oil diffusion pump.
To a vacuum until the degree of vacuum in the chamber is 2 × 10 −3 t
Oxygen gas is introduced until the pressure reaches orrr, and then HMDSO is applied until the degree of vacuum in the chamber reaches 4 × 10 −3 torr.
Introduced steam. An incident power of 200 W was introduced from a high-frequency power source into the chamber through a matching box to generate a mixed plasma of oxygen and HMDSO, which was held for 2 minutes to form a silicon oxide film on the PC sample. The water vapor transmission rate of this laminate was measured with a water vapor transmission rate measuring device manufactured by Mocon, and is shown in Table 1.

【0019】実施例2及び比較例1 高周波電極及びアース電極間に設置する試料の位置を高
周波電極基板上、3、5、7、9、23そして40mm
に設置したこと以外は実施例1と同じ条件で、PC試料
上に酸化珪素物膜を形成し、水蒸気透過量を測定し、表
1に実施例1と共に示した。
Example 2 and Comparative Example 1 The position of the sample placed between the high frequency electrode and the ground electrode was 3, 5, 7, 9, 23 and 40 mm on the high frequency electrode substrate.
The silicon oxide film was formed on the PC sample under the same conditions as in Example 1 except that it was installed in the above, and the amount of water vapor permeation was measured.

【0020】[0020]

【表1】 [Table 1]

【0021】実施例3及び比較例2 試料に厚みが100μ〜280μでガラス転移温度(以
下Tgと記す)が−15℃から105℃のプラスチック
シートを使用したこと以外は実施例1と同じ条件で、試
料上に酸化珪素物膜を形成し、水蒸気透過量を測定し、
表2に示した。光ファイバー式温度計により試料表面の
温度を測定した結果、この条件では45℃であった。
Example 3 and Comparative Example 2 Under the same conditions as in Example 1 except that a plastic sheet having a thickness of 100 μm to 280 μm and a glass transition temperature (hereinafter referred to as Tg) of −15 ° C. to 105 ° C. was used as the sample. , Forming a silicon oxide film on the sample, measuring the amount of water vapor transmission,
The results are shown in Table 2. As a result of measuring the temperature of the sample surface with an optical fiber type thermometer, it was 45 ° C. under this condition.

【0022】[0022]

【表2】 [Table 2]

【0023】実施例4 図5に示した装置内の高周波電極、アース電極そして試
料基板ホルダーを取り外し、図1に示すような幅が10
cm長さが20cmの角形高周波電極と幅が10cm長
さが20cmの角形アース電極そして高周波電極上2m
mの位置を分速10cmの速度で移動する100μのP
C(ポリカーボネート)シートを配置したこと以外は実
施例1と同じ条件で、PC試料上に酸化珪素膜を形成
し、膜厚、膜の屈折率をエリプソメーターで測定し、表
3に示した。またこの積層体の水蒸気透過量は0.03
g/mday at40℃90%RHであった。膜厚
の単位はオングストロームである。
Example 4 The high frequency electrode, the ground electrode and the sample substrate holder in the apparatus shown in FIG. 5 were removed, and the width as shown in FIG.
cm High-frequency electrode with a length of 20 cm, width 10 cm, rectangular ground electrode with a length of 20 cm, and 2 m above the high-frequency electrode.
P of 100μ that moves the position of m at a speed of 10 cm per minute
A silicon oxide film was formed on a PC sample under the same conditions as in Example 1 except that a C (polycarbonate) sheet was arranged, and the film thickness and the refractive index of the film were measured by an ellipsometer and shown in Table 3. The water vapor transmission rate of this laminate is 0.03.
g / m 2 day at 40 ° C. 90% RH. The unit of film thickness is angstrom.

【0024】[0024]

【表3】 [Table 3]

【0025】比較例3 図3に示すような幅10cm、長さ5cmの高周波電極
4ケを3cmの間隔をもってシート状下2mmに配置
し、またアース電極は幅10cm、長さ30cmで、シ
ート状試料上50mmに配置したこと以外は実施例4と
同じ条件で珪素酸化物膜を被覆した結果、膜厚はどの測
定点でも950Åから1020Åであったが、積層体の
水蒸気透過量は2〜5g/mday at40℃90
%RHであった。
Comparative Example 3 Four high-frequency electrodes having a width of 10 cm and a length of 5 cm as shown in FIG. 3 are arranged at a distance of 3 cm below the sheet 2 mm, and an earth electrode has a width of 10 cm and a length of 30 cm. As a result of coating the silicon oxide film under the same conditions as in Example 4 except that the sample was placed 50 mm, the film thickness was 950 Å to 1020 Å at any measurement point, but the water vapor transmission rate of the laminate was 2 to 5 g. / M 2 day at 40 ° C 90
% RH.

【0026】実施例5 シート状ポリエチレンナフタレート(以下PENと記
す)製試料を使用し、図5に示す装置を使用して、シー
ト表面にHMDSO重合体被膜と珪素酸化物被膜を形成
した。被膜方法はシート材料にPEN、高周波電極と試
料表面間距離が2mmであること及び、以下に記す条件
以外は実施例1と同じ条件で被覆を行った。油回転ポン
プと油拡散ポンプによりチャンバー内真空度を2〜3×
10−5torr(電離真空計)まで真空に引き、チャ
ンバー内真空度が4×10−3torrになるまでHM
DSO蒸気を導入した。高周波電源より入射電力400
Wをマッチングボックスを経由し、チャンバー内に導入
し、HMDSOのプラズマを発生させ、1分間保持し、
シート状PEN試料表面にHMDSO重合体被膜を形成
した。続いて油回転ポンプと油拡散ポンプによりチャン
バー内真空度を2〜3×10−5torrまで真空に引
き、実施例1と同様にして、HMDSO重合膜の上に珪
素酸化物の被膜を形成した。この薄膜を被覆した有底円
筒形状容器の水蒸気透過量を測定した結果、0.02g
/mday(40℃90%RH)であった。
Example 5 A sheet-shaped polyethylene naphthalate (hereinafter referred to as PEN) sample was used, and an HMDSO polymer film and a silicon oxide film were formed on the surface of the sheet by using the apparatus shown in FIG. As the coating method, PEN was used for the sheet material, the distance between the high frequency electrode and the sample surface was 2 mm, and the coating was performed under the same conditions as in Example 1 except for the conditions described below. The degree of vacuum in the chamber is 2 to 3x due to the oil rotary pump and the oil diffusion pump.
A vacuum is drawn up to 10 −5 torr (ionization vacuum gauge), and the HM is adjusted until the degree of vacuum in the chamber reaches 4 × 10 −3 torr.
DSO vapor was introduced. Incident power from high frequency power source 400
W is introduced into the chamber through the matching box, HMDSO plasma is generated and held for 1 minute,
An HMDSO polymer coating was formed on the surface of the sheet PEN sample. Then, the vacuum degree in the chamber was evacuated to 2-3 × 10 −5 torr by an oil rotary pump and an oil diffusion pump, and a silicon oxide film was formed on the HMDSO polymer film in the same manner as in Example 1. . As a result of measuring the amount of water vapor permeation through a bottomed cylindrical container coated with this thin film, 0.02 g
/ M 2 day (40 ° C 90% RH).

【0027】実施例6 図5に示した装置内の高周波電極、アース電極そして試
料基板ホルダーを取り外し、図2に示すような幅が10
cm、直径13cmの円筒形型高周波電極と幅が10c
m、直径が23cmの半円筒形型アース電極そして高周
波電極上を分速10cmの速度で移動する100μのP
ET(ポリエチレンテレフタレート)シートを配置した
こと以外は実施例1と同じ条件で、PET試料上に酸化
珪素膜を形成し、膜厚、膜の屈折率をエリプソメーター
で測定し、表4に示した。またこの積層体の水蒸気透過
量は0.03g/mday at40℃90%RHで
あった。膜厚の単位はオングストロームである。
Example 6 The high frequency electrode, the ground electrode and the sample substrate holder in the apparatus shown in FIG. 5 were removed, and the width was 10 as shown in FIG.
cm, diameter 13 cm, cylindrical high frequency electrode and width 10 c
m, 23 cm in diameter, a semi-cylindrical earth electrode, and 100 μP that moves on the high-frequency electrode at a speed of 10 cm / min.
A silicon oxide film was formed on a PET sample under the same conditions as in Example 1 except that an ET (polyethylene terephthalate) sheet was placed, and the film thickness and the refractive index of the film were measured by an ellipsometer and shown in Table 4. . The water vapor transmission rate of this laminate was 0.03 g / m 2 day at 40 ° C. 90% RH. The unit of film thickness is angstrom.

【0028】[0028]

【表4】 [Table 4]

【0029】比較例4 図4に示した幅10cm、直径13cmの円筒形型高周
波電極と同型のアース電極を5cm離して配置した以外
は実施例6と同じ条件でPET試料上に酸化珪素膜を形
成し、膜厚及び水蒸気透過量を測定した。その結果、膜
厚は920Åから980Åの範囲で均一であったが、膜
の水蒸気透過量は1〜2g/mdayat40℃90
%RHとガス遮断性性能は低かった。
Comparative Example 4 A silicon oxide film was formed on a PET sample under the same conditions as in Example 6 except that a cylindrical high frequency electrode having a width of 10 cm and a diameter of 13 cm shown in FIG. It was formed and the film thickness and water vapor transmission amount were measured. As a result, the film thickness was uniform in the range of 920Å to 980Å, but the amount of water vapor permeation of the film was 1 to 2 g / m 2 dayat 40 ° C 90.
% RH and gas barrier performance were low.

【0030】実施例7 100μのシート状環状オレフィンコポリマー(CO
C)を試料とし、図5に示す装置を使用して、シート状
試料表面にHMDSO重合体被膜と珪素酸化物被膜を形
成した。被膜方法は試料材料と以下に記す条件以外は実
施例5と同じ条件として被覆を行った。油回転ポンプと
油拡散ポンプによりチャンバー内真空度を2〜3×10
−5torr(電離真空計による)まで真空に引き、チ
ャンバー内真空度が3×10 torr〜10×10
−3torrになるまでHMDSO蒸気を導入した。高
周波電源より入射電力400Wをチャンバーに導入し、
HMDSOのプラズマを発生させ、1分間保持し、有底
円筒形状容器の外面にHMDSO重合体被膜を形成し
た。続いて油回転ポンプと油拡散ポンプによりチャンバ
ー内真空度を2〜3×10−5torrまで真空に引
き、実施例6と同様にして、HMDSO重合膜の上に珪
素酸化物の被膜を形成した。これら被膜を被覆した有底
円筒形状容器の膜の屈折率、膜厚をエリプソメーター
で、そして重量法により、水蒸気透過量を測定し、表5
に示した。
Example 7 100 μ of sheet-like cyclic olefin copolymer (CO
Using C) as a sample, an HMDSO polymer film and a silicon oxide film were formed on the surface of the sheet-shaped sample using the apparatus shown in FIG. The coating method was the same as in Example 5 except for the sample material and the following conditions. The degree of vacuum in the chamber is 2 to 3 x 10 by the oil rotary pump and the oil diffusion pump.
Pull a vacuum to -5 torr (by ionization gauge), chamber vacuum of 3 × 10 - 3 torr~10 × 10
HMDSO vapor was introduced until -3 torr. Injecting 400W of incident power from the high frequency power supply into the chamber,
HMDSO plasma was generated and held for 1 minute to form a HMDSO polymer coating on the outer surface of the bottomed cylindrical container. Then, the vacuum degree in the chamber was evacuated to 2-3 × 10 −5 torr by an oil rotary pump and an oil diffusion pump, and a silicon oxide film was formed on the HMDSO polymer film in the same manner as in Example 6. . The amount of water vapor permeation was measured by an ellipsometer for the refractive index and the film thickness of the bottomed cylindrical container coated with these films, and by the gravimetric method.
It was shown to.

【0031】[0031]

【表5】 [Table 5]

【0032】 (註) HMDSO濃度の単位;×10−3torr 膜厚の単位;オングストローム 水蒸気透過量の単位;g/mday,at40℃90
%RH
(Note) HMDSO concentration unit; × 10 −3 torr film thickness unit; Angstrom water vapor transmission amount unit; g / m 2 day, at 40 ° C. 90
% RH

【0033】比較例5 HMDSOの濃度が1.5×10−3torr及び20
×10−3torrそしてHMDSO膜の被覆時間が
0.2及び5分であること以外は実施例7と同じシート
形状COC試料の表面に被覆したHMDSO膜の屈折率
及び膜厚をエリプソメーターで測定し、またHMDSO
膜と珪素酸化積層膜の水蒸気透過量を重量法で測定し、
表6に示した。
Comparative Example 5 The concentration of HMDSO was 1.5 × 10 −3 torr and 20.
The refractive index and the film thickness of the HMDSO film coated on the surface of the same sheet-shaped COC sample as in Example 7 were measured by an ellipsometer at 10 × 3 −3 torr and the coating time of the HMDSO film was 0.2 and 5 minutes. And also HMDSO
The water vapor permeation amount of the film and the silicon oxide laminated film is measured by a gravimetric method,
The results are shown in Table 6.

【0034】[0034]

【表6】 [Table 6]

【0035】 (註) HMDSO濃度の単位;×10−3torr HMDSO膜の膜厚;オングストローム 二層膜の水蒸気透過量の単位;g/mday,at4
0℃90%RH
(Note) HMDSO concentration unit; × 10 −3 torr HMDSO film thickness; Angstrom bilayer film water vapor transmission amount unit; g / m 2 day, at4
0 ° C 90% RH

【0036】実施例8 シート状環状オレフィンコポリマー(COC)を試料と
し、図5に示す装置を使用して、シート状試料表面にH
MDSO重合体被膜と珪素酸化物被膜を形成した。被膜
方法は試料材料と以下に記す条件以外は実施例7と同じ
条件として被覆を行った。油回転ポンプと油拡散ポンプ
によりチャンバー内真空度を2〜3×10−5torr
(電離真空計による)まで真空に引き、チャンバー内真
空度が4×10−3torrになるまでHMDSO蒸気
を導入した。高周波電源より入射電力400Wをチャン
バーに導入し、HMDSOのプラズマを発生させ、1分
間保持し、シート状COC試料表面にHMDSO重合体
被膜を形成した。続いて油回転ポンプと油拡散ポンプに
よりチャンバー内真空度を2〜3×10−5torrま
で真空に引き、HMDSO蒸気と酸素の濃度比(電離真
空計によるチャンバー内真空度の比率;HMDSO/酸
素)を0.5〜2.5の範囲で、かつ酸化珪素膜の被覆
時間を5〜20分以外は実施例6と同様にして、HMD
SO重合膜の上に珪素酸化物の被膜を形成した。これら
被膜を被覆したシート状COC試料上の膜の屈折率、膜
厚をエリプソメーターで、そして重量法により、水蒸気
透過量を測定し、表7に示した。
Example 8 A sheet-shaped cyclic olefin copolymer (COC) was used as a sample, and H was applied to the surface of the sheet-shaped sample using the apparatus shown in FIG.
An MDSO polymer coating and a silicon oxide coating were formed. The coating method was the same as in Example 7 except for the sample material and the following conditions. The degree of vacuum in the chamber is set to 2-3 × 10 −5 torr by an oil rotary pump and an oil diffusion pump.
A vacuum was drawn up (by an ionization vacuum gauge), and HMDSO vapor was introduced until the degree of vacuum in the chamber reached 4 × 10 −3 torr. An incident power of 400 W was introduced into the chamber from a high frequency power source, HMDSO plasma was generated and held for 1 minute, and an HMDSO polymer film was formed on the surface of the sheet-shaped COC sample. Then, the degree of vacuum in the chamber is evacuated to 2-3 × 10 −5 torr by an oil rotary pump and an oil diffusion pump, and the concentration ratio of HMDSO vapor and oxygen (the ratio of the degree of vacuum in the chamber measured by an ionization vacuum gauge; HMDSO / oxygen). ) Is in the range of 0.5 to 2.5 and the coating time of the silicon oxide film is 5 to 20 minutes in the same manner as in Example 6 except that the HMD is used.
A silicon oxide film was formed on the SO polymer film. The water vapor permeation amount was measured by an ellipsometer for the refractive index and the film thickness of the film on the sheet-shaped COC sample coated with these films, and shown in Table 7.

【0037】[0037]

【表7】 [Table 7]

【0038】 (註) 酸化珪素膜の膜厚の単位;オングストローム 二層膜の水蒸気透過量の単位;g/mday,at4
0℃90%RH
(Note) A unit of film thickness of the silicon oxide film; a unit of water vapor transmission amount of the Angstrom two-layer film; g / m 2 day, at4
0 ° C 90% RH

【0039】比較例6 HMDSO蒸気と酸素の濃度比(電離真空計によるチャ
ンバー内真空度の比率;HMDSO/酸素)を0.2〜
5で、かつ酸化珪素の被覆時間を2分及び25分以外は
実施例8と同様にして、HMDSO重合膜の上に珪素酸
化物の被膜を形成した。これら被膜を被覆したシート形
状COC試料表面上の膜の屈折率、膜厚をエリプソメー
ターで、そして重量法により測定し、表8に示した。
Comparative Example 6 The concentration ratio of HMDSO vapor and oxygen (ratio of degree of vacuum in chamber by ionization vacuum gauge; HMDSO / oxygen) is 0.2 to.
A film of silicon oxide was formed on the HMDSO polymerized film in the same manner as in Example 8 except that the coating time was 5, and the coating time of silicon oxide was 2 minutes and 25 minutes. The refractive index and the film thickness of the film on the surface of the sheet-shaped COC sample coated with these films were measured by an ellipsometer and by a gravimetric method, and are shown in Table 8.

【0040】[0040]

【表8】 [Table 8]

【0041】 (註) 酸化珪素膜の膜厚単位;オングストローム 二層膜の水蒸気透過量の単位;g/mday,at4
0℃90%RH
(Note) A unit of film thickness of a silicon oxide film; a unit of water vapor transmission amount of an Angstrom two-layer film; g / m 2 day, at4
0 ° C 90% RH

【0042】[0042]

【発明の効果】本発明は立体形状のプラスチックス包装
材料に均一の膜厚で一定範囲の屈折率の珪素酸化物薄膜
を形成するので、ガスバリヤ性の優れた包装材を提供す
ることが出来る。
According to the present invention, since a silicon oxide thin film having a uniform film thickness and a constant range of refractive index is formed on a three-dimensional plastic packaging material, a packaging material having an excellent gas barrier property can be provided.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例の説明図である。FIG. 1 is an explanatory diagram of an embodiment of the present invention.

【図2】本発明の実施例の高周波電極とアース電極の説
明図である。
FIG. 2 is an explanatory diagram of a high frequency electrode and a ground electrode according to an embodiment of the present invention.

【図3】比較例の説明図である。FIG. 3 is an explanatory diagram of a comparative example.

【図4】比較の高周波電極とアース電極の説明図であ
る。
FIG. 4 is an explanatory diagram of a comparative high frequency electrode and a ground electrode.

【図5】CVD装置の説明図である。FIG. 5 is an explanatory diagram of a CVD apparatus.

【符号の説明】[Explanation of symbols]

1 円筒状容器 2 アース電極 3 高周波電極 4 マッチングボックス 5 高周波電源 6 ガス入口 7 ガス入口 8 試料用治具 1 Cylindrical container 2 Earth electrode 3 High frequency electrode 4 Matching box 5 High frequency power supply 6 Gas inlet 7 Gas inlet 8 Jig for sample

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C08J 7/06 C08J 7/06 Z C23C 16/50 C23C 16/50 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical display location C08J 7/06 C08J 7/06 Z C23C 16/50 C23C 16/50

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 珪素酸化物薄膜の製膜温度よりT.G.
が高いプラスチックスシートからなる包装材料の一面に
対向して被覆面との距離が10mm以下でほぼ一定であ
る高周波電極を設置し、またシートの他の面に対向して
被覆面との距離が高周波電極と被覆面の距離より大きく
ほぼ一定であるアース電極をシートを介して高周波電極
に対向して配置して、CVD法により生成した珪素酸化
物のプラズマをシートと電極の間に導入して放電ガス圧
0.0005〜0.05torrでシート表面に均一の
膜厚に付着させることを特徴とするプラスチックスシー
トからなる包装材料にガス遮断性に優れた珪素酸化物薄
膜を被覆する方法。
1. From the film forming temperature of a silicon oxide thin film, T. G.
A high-frequency electrode having a substantially constant distance of 10 mm or less from the covering surface is provided facing one surface of the packaging material made of a high-quality plastic sheet, and the distance from the covering surface is facing the other surface of the sheet. An earth electrode, which is larger than the distance between the high-frequency electrode and the covering surface and is substantially constant, is arranged to face the high-frequency electrode through the sheet, and plasma of silicon oxide generated by the CVD method is introduced between the sheet and the electrode. A method for coating a packaging material made of a plastic sheet with a silicon oxide thin film having an excellent gas barrier property, which comprises depositing a uniform film thickness on a sheet surface at a discharge gas pressure of 0.0005 to 0.05 torr.
【請求項2】 高周波電極が平滑な平面状の外面を有す
る1ケの電極である、請求項1に記載されたプラスチッ
クスシートからなる包装材料にガス遮断性に優れた珪素
酸化物薄膜を被覆する方法。
2. The packaging material made of the plastic sheet according to claim 1, wherein the high-frequency electrode is a single electrode having a smooth flat outer surface, and is covered with a silicon oxide thin film having excellent gas barrier properties. how to.
【請求項3】 アース電極が平滑な平面状の外面を有す
る1ケの電極である、請求項1または2に記載されたプ
ラスチックスシートからなる包装材料にガス遮断性に優
れた珪素酸化物薄膜を被覆する方法。
3. A silicon oxide thin film having an excellent gas barrier property in a packaging material made of the plastic sheet according to claim 1 or 2, wherein the ground electrode is a single electrode having a smooth flat outer surface. How to coat.
【請求項4】 プラスチックスシートからなる包装材料
に形成した珪素酸化物薄膜が屈折率1.4〜1.5で膜
厚が300〜2000Åである、請求項1ないし3のい
ずれか1項に記載されたプラスチックスシートからなる
包装材料にガス遮断性に優れた珪素酸化物薄膜を被覆す
る方法。
4. The silicon oxide thin film formed on the packaging material made of a plastic sheet has a refractive index of 1.4 to 1.5 and a film thickness of 300 to 2000Å. A method for coating a packaging material comprising the described plastic sheet with a silicon oxide thin film having an excellent gas barrier property.
【請求項5】 珪素酸化物薄膜の製膜温度よりT.G.
が高いプラスチックスシートからなる包装材料の一面に
対向して被覆面との距離が10mm以下でほぼ一定であ
る高周波電極を設置し、またシートの他の面に対向して
被覆面との距離が高周波電極と被覆面の距離より大きく
ほぼ一定であるアース電極をシートを介して高周波電極
に対向して配置して、低温プラズマ法により少くとも珪
素、酸素、炭素からなる有機シリコン化合物をプラズマ
となし、該プラズマをシートと電極の間に供給し、ガス
圧3×10−3〜3×10−2torrで重合してシー
トの表面に珪素化合物薄膜を形成し、ついでCVD法に
より生成した珪素酸化物のプラズマをシートと電極の間
に導入して放電ガス圧0.0005〜0.05toor
で珪素化合物重合体薄膜上に珪素酸化物の被膜を形成す
ることを特徴とするプラスチックスシートからなる包装
材料にガス遮断性に優れた珪素酸化物薄膜を被覆する方
法。
5. From the film forming temperature of the silicon oxide thin film, T. G.
A high-frequency electrode having a substantially constant distance of 10 mm or less from the covering surface is provided facing one surface of the packaging material made of a high-quality plastic sheet, and the distance from the covering surface is facing the other surface of the sheet. A ground electrode, which is larger than the distance between the high-frequency electrode and the covering surface and is substantially constant, is placed opposite to the high-frequency electrode via a sheet, and an organosilicon compound composed of at least silicon, oxygen, and carbon is formed into plasma by the low-temperature plasma method. The plasma is supplied between the sheet and the electrode and polymerized at a gas pressure of 3 × 10 −3 to 3 × 10 −2 torr to form a silicon compound thin film on the surface of the sheet, and then silicon oxide generated by the CVD method. The discharge gas pressure is 0.0005 to 0.05 toor by introducing the plasma of the object between the sheet and the electrode.
A method of coating a packaging material made of a plastic sheet with a silicon oxide thin film having excellent gas barrier properties, which comprises forming a silicon oxide coating on the silicon compound polymer thin film.
【請求項6】 高周波電極が平滑な平面状の外面を有す
る1ケの電極である、請求項5に記載されたプラスチッ
クスシートからなる包装材料にガス遮断性に優れた珪素
酸化物薄膜を被覆する方法。
6. The packaging material made of the plastic sheet according to claim 5, wherein the high-frequency electrode is a single electrode having a smooth flat outer surface, and is covered with a silicon oxide thin film having excellent gas barrier properties. how to.
【請求項7】 アース電極が平滑な平面状の外面を有す
る1ケの電極である、請求項1または6に記載されたプ
ラスチックスシートからなる包装材料にガス遮断性に優
れた珪素酸化物薄膜を被覆する方法。
7. A silicon oxide thin film excellent in gas barrier property for a packaging material comprising a plastic sheet according to claim 1 or 6, wherein the ground electrode is a single electrode having a smooth flat outer surface. How to coat.
【請求項8】 珪素化合物重合体被膜が、屈折率2.0
〜2.3で膜厚が0.005μm〜0.05μmであ
り、珪素酸化物被膜が屈折率1.4〜1.5で膜厚が3
00〜2000Åである、請求項5ないし7のいずれか
1項に記載されたプラスチックスシートからなる包装材
料にガス遮断性に優れた珪素酸化物薄膜を被覆する方
法。
8. The silicon compound polymer coating has a refractive index of 2.0.
To 2.3, the film thickness is 0.005 μm to 0.05 μm, and the silicon oxide film has a refractive index of 1.4 to 1.5 and a film thickness of 3
A method for coating a packaging material comprising a plastics sheet according to any one of claims 5 to 7 having a thickness of 00 to 2000Å with a silicon oxide thin film having an excellent gas barrier property.
JP7130941A 1995-04-20 1995-04-20 Method for coating packaging material consisting of plastic sheet with silica thin film with excellent gas barrier property Pending JPH08290517A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7130941A JPH08290517A (en) 1995-04-20 1995-04-20 Method for coating packaging material consisting of plastic sheet with silica thin film with excellent gas barrier property

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7130941A JPH08290517A (en) 1995-04-20 1995-04-20 Method for coating packaging material consisting of plastic sheet with silica thin film with excellent gas barrier property

Publications (1)

Publication Number Publication Date
JPH08290517A true JPH08290517A (en) 1996-11-05

Family

ID=15046264

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7130941A Pending JPH08290517A (en) 1995-04-20 1995-04-20 Method for coating packaging material consisting of plastic sheet with silica thin film with excellent gas barrier property

Country Status (1)

Country Link
JP (1) JPH08290517A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007204853A (en) * 2007-02-26 2007-08-16 Dainippon Printing Co Ltd Method of manufacturing transparent barrier film
JP2009220482A (en) * 2008-03-18 2009-10-01 Toppan Printing Co Ltd Transparent barrier film and manufacturing method thereof
JP2009274251A (en) * 2008-05-13 2009-11-26 Toppan Printing Co Ltd Transparent barrier film and its manufacturing method
WO2012002150A1 (en) * 2010-07-01 2012-01-05 コニカミノルタホールディングス株式会社 Gas barrier film and gas barrier film formation method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0596688A (en) * 1991-10-07 1993-04-20 Toyobo Co Ltd Barrier packaging bag
JPH05345831A (en) * 1992-06-15 1993-12-27 Toyo Seikan Kaisha Ltd Production of gas barrier plastic material
JPH0732531A (en) * 1993-07-23 1995-02-03 Kuwabara Yasunaga Gas blocking plastic material provided with transparent membrane composed of silicon compound and production thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0596688A (en) * 1991-10-07 1993-04-20 Toyobo Co Ltd Barrier packaging bag
JPH05345831A (en) * 1992-06-15 1993-12-27 Toyo Seikan Kaisha Ltd Production of gas barrier plastic material
JPH0732531A (en) * 1993-07-23 1995-02-03 Kuwabara Yasunaga Gas blocking plastic material provided with transparent membrane composed of silicon compound and production thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007204853A (en) * 2007-02-26 2007-08-16 Dainippon Printing Co Ltd Method of manufacturing transparent barrier film
JP4616849B2 (en) * 2007-02-26 2011-01-19 大日本印刷株式会社 Method for producing transparent barrier film
JP2009220482A (en) * 2008-03-18 2009-10-01 Toppan Printing Co Ltd Transparent barrier film and manufacturing method thereof
JP2009274251A (en) * 2008-05-13 2009-11-26 Toppan Printing Co Ltd Transparent barrier film and its manufacturing method
WO2012002150A1 (en) * 2010-07-01 2012-01-05 コニカミノルタホールディングス株式会社 Gas barrier film and gas barrier film formation method

Similar Documents

Publication Publication Date Title
JP3022229B2 (en) Method for forming silicon oxide film of uniform thickness on three-dimensional container made of plastics material
US5516555A (en) Evaporation method for forming a gas barrier film having an organosilicon dispersed discontinuously in an inorganic matrix
KR100623540B1 (en) Jet Plasma Process And Apparatus For Deposition Of Coatings And Coatings Thus Obtained
US5641559A (en) Gas-tight laminated plastic film containing polymer of organosilicic compound
JP3511325B2 (en) Gas barrier film
US5364665A (en) Method for rapid plasma treatments
JP2002361774A (en) Gas barrier film
JPH07304127A (en) Gas barrier packaging material and production thereof
JP2001514328A5 (en)
JP2003053873A (en) Gas barrier film
JP3118339B2 (en) Gas barrier transparent conductive laminate and method for producing the same
JP4148759B2 (en) Method for producing gas barrier film
JPWO2006075490A1 (en) Transparent gas barrier film
JP2005256061A (en) Laminate
JPH08290517A (en) Method for coating packaging material consisting of plastic sheet with silica thin film with excellent gas barrier property
JP3465311B2 (en) Gas barrier plastics material provided with a transparent silicon compound thin film and method for producing the same
JP4414781B2 (en) Barrier film manufacturing method
JPH05345831A (en) Production of gas barrier plastic material
JP6888455B2 (en) Manufacturing method of gas barrier plastic container
JP3840080B2 (en) Gas barrier film
JP3489267B2 (en) Packaging material with excellent gas barrier properties
EP1074588A2 (en) Barrier coating and process for applying the same to plastic substrates
JP6593347B2 (en) Gas barrier film manufacturing method and manufacturing apparatus
JP4821324B2 (en) Transparent and highly gas-barrier substrate and method for producing the same
JP2000006301A (en) Transparent gas barrier film, its manufacture and packaging body

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20031216