JPH0829020A - Heat pump device - Google Patents

Heat pump device

Info

Publication number
JPH0829020A
JPH0829020A JP16647394A JP16647394A JPH0829020A JP H0829020 A JPH0829020 A JP H0829020A JP 16647394 A JP16647394 A JP 16647394A JP 16647394 A JP16647394 A JP 16647394A JP H0829020 A JPH0829020 A JP H0829020A
Authority
JP
Japan
Prior art keywords
refrigerant
evaporator
accumulator
liquid
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16647394A
Other languages
Japanese (ja)
Inventor
Akira Morikawa
朗 森川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP16647394A priority Critical patent/JPH0829020A/en
Publication of JPH0829020A publication Critical patent/JPH0829020A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/04Refrigerant level

Abstract

PURPOSE:To facilitate a proper heating of refrigerant and cause a liquid-phase refrigerant to be hardly sucked into a compressor in response to an amount of the liquid-phase refrigerant contained in refrigerant fed out of an evaporator. CONSTITUTION:A heat pump device in which refrigerant fed out of an evaporator EV is fed into a compressor CMP through an accumulator ACC is comprised of a heating means 2 for heating refrigerant fed out of the evaporator EV and feeding it to the accumulator ACC, and a changing means 3 for changing a heating amount of refrigerant transferred to the accumulator ACC.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、蒸発器から導出された
冷媒がアキュムレータを介して圧縮機に導入されるヒー
トポンプ装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat pump device in which a refrigerant discharged from an evaporator is introduced into a compressor via an accumulator.

【0002】[0002]

【従来の技術】冒記ヒートポンプ装置は、圧縮機の液圧
縮運転を回避する為に、蒸発器から導出された冷媒をア
キュムレータに送って、アキュムレータから送り出され
る気相冷媒が圧縮機に導入されるようにしたものである
が、蒸発器から導出された冷媒に含まれる液相冷媒が多
すぎると、アキュムレータに流入した液相冷媒が気相冷
媒とともに圧縮機に吸い込まれて、当該圧縮機が液圧縮
状態で運転され易くなり、又、アキュムレーターに多量
の液相冷媒が溜まると、圧縮機に導入されるべき気相冷
媒が不足して、ヒートポンプ装置が所定の能力を発揮で
きなくなり易い欠点があり、従来、蒸発器からアキュム
レータに冷媒を送る冷媒路に当該冷媒を一定又は略一定
の加熱量で加熱する加熱手段を設けて、この加熱手段を
通過することで過熱度が高められた冷媒をアキュムレー
タに送るよう構成している。
2. Description of the Related Art In a heat pump device, in order to avoid a liquid compression operation of a compressor, a refrigerant discharged from an evaporator is sent to an accumulator, and a gas-phase refrigerant sent from the accumulator is introduced into the compressor. However, when the liquid-phase refrigerant contained in the refrigerant derived from the evaporator is too much, the liquid-phase refrigerant flowing into the accumulator is sucked into the compressor together with the gas-phase refrigerant, and the compressor is a liquid. It is easy to operate in a compressed state, and when a large amount of liquid-phase refrigerant accumulates in the accumulator, the gas-phase refrigerant to be introduced into the compressor is insufficient, and the heat pump device tends to be unable to exhibit its predetermined capacity. Therefore, conventionally, a heating means for heating the refrigerant at a constant or substantially constant heating amount is provided in the refrigerant passage for sending the refrigerant from the evaporator to the accumulator, and the heating means is passed to pass the heating means. The degree is enhanced refrigerant are configured to send to the accumulator.

【0003】[0003]

【発明が解決しようとする課題】上記従来技術によれ
ば、蒸発器からアキュムレータに冷媒を送る冷媒路に当
該冷媒を一定又は略一定の加熱量で加熱する加熱手段を
設けているから、寒冷期における運転開始時や、凝縮器
として機能していた熱交換器を蒸発器として機能させる
状態に切り換えた直後の運転開始時等のように、蒸発器
から導出された冷媒に含まれる液相冷媒が多い場合で
も、それらの冷媒に充分な過熱度を急速に与え得るよう
な加熱量の大きい加熱手段を設けておくと、蒸発器から
導出された冷媒に含まれる液相冷媒が比較的少ない通常
の運転状態においては、当該冷媒に過大な過熱度が与え
られて圧縮機が高温で運転され易く、圧縮機の運転効率
が低下する欠点がある。
According to the above-mentioned prior art, since the refrigerant passage for feeding the refrigerant from the evaporator to the accumulator is provided with the heating means for heating the refrigerant at a constant or substantially constant heating amount, the cold season. At the start of operation, or at the start of operation immediately after switching the heat exchanger functioning as a condenser to a state of functioning as an evaporator, the liquid-phase refrigerant contained in the refrigerant derived from the evaporator is Even if there are many, if a heating means with a large heating amount capable of rapidly giving a sufficient degree of superheat to these refrigerants is provided, the liquid-phase refrigerant contained in the refrigerant led out from the evaporator is relatively small in the normal amount. In the operating state, there is a drawback in that the refrigerant is excessively superheated and the compressor is easily operated at a high temperature, so that the operation efficiency of the compressor is reduced.

【0004】そこで、この欠点を解決する為に、例え
ば、アキュムレータに溜まった液相冷媒を加熱する加熱
手段を加熱状態と加熱停止状態とに切り換え可能に設
け、蒸発器から導出された冷媒に含まれる液相冷媒が多
く、これらの冷媒に充分な過熱度を与えることができな
かった結果、当該アキュムレータに液相冷媒が溜まる
と、その溜まった液相冷媒を加熱手段で積極的に加熱す
ることが考えられるが、この場合は、充分な過熱度を与
えることができなかった冷媒に含まれる液相冷媒がアキ
ュムレータに流入し、しかも、アキュムレータに溜まっ
た液相冷媒を加熱するから、アキュムレータに流入した
直後の液相冷媒が、充分加熱されないまま圧縮機に吸い
込まれてしまうおそれがある。
Therefore, in order to solve this drawback, for example, a heating means for heating the liquid-phase refrigerant accumulated in the accumulator is provided so as to be switchable between a heating state and a heating stop state, and included in the refrigerant led out from the evaporator. When the liquid-phase refrigerant accumulates in the accumulator as a result of not being able to give a sufficient degree of superheat to these refrigerants, the accumulated liquid-phase refrigerant is actively heated by the heating means. However, in this case, the liquid-phase refrigerant contained in the refrigerant that could not give a sufficient degree of superheat flows into the accumulator, and moreover, the liquid-phase refrigerant that has accumulated in the accumulator is heated, so it flows into the accumulator. Immediately after the operation, the liquid-phase refrigerant may be sucked into the compressor without being sufficiently heated.

【0005】本発明は上記実情に鑑みてなされたもので
あって、本発明の第1目的は、蒸発器から導出された冷
媒に含まれる液相冷媒の量に応じて、当該冷媒を適度に
加熱し易く、しかも、液相冷媒が圧縮機に吸い込まれに
くいヒートポンプ装置を提供することにある。
The present invention has been made in view of the above circumstances, and a first object of the present invention is to appropriately adjust the amount of the liquid-phase refrigerant contained in the refrigerant discharged from the evaporator. (EN) It is an object to provide a heat pump device that is easy to heat and that is difficult for a liquid-phase refrigerant to be sucked into a compressor.

【0006】又、本発明の第2目的は、蒸発器から導出
された冷媒に含まれる液相冷媒の量に応じて、当該冷媒
を適度に加熱し易く、しかも、液相冷媒が圧縮機に吸い
込まれにくいヒートポンプ装置の構造を簡略化すること
にある。
A second object of the present invention is to easily heat the refrigerant appropriately according to the amount of the liquid refrigerant contained in the refrigerant discharged from the evaporator, and the liquid refrigerant is used in the compressor. It is to simplify the structure of a heat pump device that is difficult to be sucked.

【0007】又、本発明の第3目的は、蒸発器から導出
された冷媒に含まれる液相冷媒の量に応じて、当該冷媒
を一層適度に加熱し易く、しかも、液相冷媒が圧縮機に
吸い込まれにくいヒートポンプ装置を提供することにあ
る。
A third object of the present invention is to more appropriately heat the refrigerant in accordance with the amount of the liquid-phase refrigerant contained in the refrigerant led out from the evaporator, and the liquid-phase refrigerant is a compressor. It is to provide a heat pump device that is hard to be sucked into.

【0008】又、本発明の第4目的は、蒸発器から導出
された冷媒に含まれる液相冷媒の量に応じて、当該冷媒
を適度に加熱し易く、しかも、液相冷媒が圧縮機に吸い
込まれにくいヒートポンプ装置を能率良く運転できるよ
うにすることにある。
A fourth object of the present invention is to easily heat the refrigerant to a suitable degree according to the amount of the liquid refrigerant contained in the refrigerant discharged from the evaporator, and the liquid refrigerant can be used in the compressor. It is to enable efficient operation of a heat pump device that is difficult to be sucked.

【0009】又、本発明の第5目的は、蒸発器から導出
された冷媒に含まれる液相冷媒の量に応じて、当該冷媒
を適度に加熱し易く、しかも、液相冷媒が圧縮機に吸い
込まれにくいヒートポンプ装置を、ヒートポンプ装置全
体としてのエネルギーの無駄が少ない状態で効率良く運
転できるようにすることにある。
A fifth object of the present invention is to easily heat the refrigerant to a proper degree according to the amount of the liquid-phase refrigerant contained in the refrigerant led out from the evaporator. The object is to enable a heat pump device that is difficult to be sucked in to be efficiently operated in a state where the heat pump device as a whole consumes little energy.

【0010】[0010]

【課題を解決するための手段】上記第1目的を達成する
為の本発明の特徴構成は、蒸発器から導出された冷媒が
アキュムレータを介して圧縮機に導入されるヒートポン
プ装置であって、前記蒸発器から導出された冷媒を加熱
してから前記アキュムレータに送る加熱手段と、前記ア
キュムレータに送られる冷媒の加熱量を変更する変更手
段とが設けられている点にある。
A characteristic configuration of the present invention for achieving the above first object is a heat pump device in which a refrigerant drawn from an evaporator is introduced into a compressor via an accumulator, A heating means for heating the refrigerant led out from the evaporator and then sending it to the accumulator, and a changing means for changing the heating amount of the refrigerant sent to the accumulator are provided.

【0011】前記変更手段が、前記蒸発器から導出され
た冷媒を前記アキュムレータに送る冷媒路を前記加熱手
段が設けられている第1冷媒路と前記加熱手段が設けら
れていない第2冷媒路とに分岐するとともに、前記蒸発
器と前記アキュムレータとを前記第1冷媒路又は前記第
2冷媒路を介して択一的に接続可能な接続手段を設けて
構成されている場合は、上記第2目的を達成できる。
The changing means has a refrigerant passage for sending the refrigerant discharged from the evaporator to the accumulator, a first refrigerant passage provided with the heating means and a second refrigerant passage not provided with the heating means. In the case where the connecting means is provided so as to branch to the evaporator and the accumulator can be selectively connected via the first refrigerant passage or the second refrigerant passage, the second purpose Can be achieved.

【0012】前記変更手段が、前記蒸発器から導出され
た冷媒をアキュムレータに送る冷媒路を前記加熱手段が
設けられている第1冷媒路と前記加熱手段が設けられて
いない第2冷媒路とに分岐し、前記第1冷媒路と前記第
2冷媒路とをその下流側で合流接続するとともに、前記
蒸発器から導出された冷媒を前記第1冷媒路と前記第2
冷媒路とに分流する分流比を調節可能な調節手段を設け
て構成されている場合は、上記第3目的を達成できる。
The changing means sets the refrigerant passage for sending the refrigerant drawn out from the evaporator to the accumulator to the first refrigerant passage provided with the heating means and the second refrigerant passage not provided with the heating means. The first refrigerant passage and the second refrigerant passage are branched to join the first refrigerant passage and the second refrigerant passage at the downstream side thereof, and the refrigerant discharged from the evaporator is connected to the first refrigerant passage and the second refrigerant passage.
The third object can be achieved by providing the adjusting means capable of adjusting the diversion ratio of the diversion to the refrigerant passage.

【0013】前記アキュムレータに溜まった液相冷媒を
検出する液相冷媒検出手段と、前記液相冷媒検出手段に
よる検出結果に基づいて、前記変更手段を操作する制御
手段とが設けられている場合は、上記第4目的を達成で
きる。
In the case where the liquid phase refrigerant detecting means for detecting the liquid phase refrigerant accumulated in the accumulator and the control means for operating the changing means based on the detection result by the liquid phase refrigerant detecting means are provided. The fourth object can be achieved.

【0014】前記加熱手段が、前記蒸発器から導出され
た冷媒を凝縮器から導出された冷媒と熱交換させる熱交
換手段を設けて構成されている場合は、上記第5目的を
達成できる。
When the heating means is provided with heat exchange means for exchanging heat between the refrigerant drawn out from the evaporator and the refrigerant drawn out from the condenser, the fifth object can be achieved.

【0015】[0015]

【作用】蒸発器から導出された冷媒を加熱することで、
過熱度が高められた冷媒をアキュムレータに送ることが
できるのであるが、蒸発器から導出された冷媒に含まれ
る液相冷媒の量に応じてその加熱量を変更できるから、
それらの冷媒を適度に加熱でき、蒸発器から導出された
冷媒に含まれる液相冷媒が多い場合でも、それらの冷媒
に充分な過熱度を与えてからアキュムレータに送ること
ができる。
[Operation] By heating the refrigerant drawn from the evaporator,
Although it is possible to send the refrigerant with the superheat degree increased to the accumulator, since the heating amount can be changed according to the amount of the liquid-phase refrigerant contained in the refrigerant derived from the evaporator,
These refrigerants can be appropriately heated, and even if the refrigerant discharged from the evaporator contains a large amount of liquid-phase refrigerant, the refrigerant can be sent to the accumulator after being given a sufficient degree of superheat.

【0016】前記変更手段が、前記蒸発器から導出され
た冷媒を前記アキュムレータに送る冷媒路を前記加熱手
段が設けられている第1冷媒路と前記加熱手段が設けら
れていない第2冷媒路とに分岐するとともに、前記蒸発
器と前記アキュムレータとを前記第1冷媒路又は前記第
2冷媒路を介して択一的に接続可能な接続手段を設けて
構成されている場合は、蒸発器とアキュムレータとを第
1冷媒路を介して接続すると蒸発器から導出された冷媒
が加熱手段で加熱され、蒸発器とアキュムレータとを第
2冷媒路を介して接続すると蒸発器から導出された冷媒
が加熱されないから、おおまかではあるが、蒸発器から
導出された冷媒に含まれる液相冷媒の量に応じてアキュ
ムレータに送られる冷媒の加熱量を変更できる。
[0016] The changing means sends, to the accumulator, the refrigerant drawn out from the evaporator by a first refrigerant path provided with the heating means and a second refrigerant path not provided with the heating means. In the case where the connecting means is provided to connect the evaporator and the accumulator selectively to each other via the first refrigerant passage or the second refrigerant passage, the evaporator and the accumulator are branched. Is connected via the first refrigerant path, the refrigerant drawn from the evaporator is heated by the heating means, and when the evaporator and the accumulator are connected via the second refrigerant path, the refrigerant drawn from the evaporator is not heated. Therefore, although roughly, the heating amount of the refrigerant sent to the accumulator can be changed according to the amount of the liquid-phase refrigerant contained in the refrigerant led out from the evaporator.

【0017】前記変更手段が、前記蒸発器から導出され
た冷媒をアキュムレータに送る冷媒路を前記加熱手段が
設けられている第1冷媒路と前記加熱手段が設けられて
いない第2冷媒路とに分岐し、前記第1冷媒路と前記第
2冷媒路とをその下流側で合流接続するとともに、前記
蒸発器から導出された冷媒を前記第1冷媒路と前記第2
冷媒路とに分流する分流比を調節可能な調節手段を設け
て構成されている場合は、第1冷媒路を通過して加熱さ
れた冷媒と、第2冷媒路を通過して加熱されなかった冷
媒とをそれらの冷媒路の下流側で合流させて、全体とし
て過熱度が高められた冷媒をアキュムレータに送ること
ができるのであるが、第1冷媒路に送って加熱手段で加
熱する冷媒の量を調節することで、アキュムレータに送
られる冷媒全体に対する加熱量を細かく変更できる。
The changing means provides a refrigerant passage for sending the refrigerant discharged from the evaporator to an accumulator to a first refrigerant passage provided with the heating means and a second refrigerant passage not provided with the heating means. The first refrigerant passage and the second refrigerant passage are branched to join the first refrigerant passage and the second refrigerant passage at the downstream side thereof, and the refrigerant discharged from the evaporator is connected to the first refrigerant passage and the second refrigerant passage.
In the case where it is constituted by providing the adjusting means capable of adjusting the diversion ratio for dividing into the refrigerant passage, the refrigerant which has passed through the first refrigerant passage and has been heated and the second refrigerant passage which has not been heated. It is possible to combine the refrigerant with the refrigerant on the downstream side of the refrigerant passages and to send the refrigerant with the superheat degree increased as a whole to the accumulator, but the amount of the refrigerant sent to the first refrigerant passage and heated by the heating means. By adjusting, the heating amount for the entire refrigerant sent to the accumulator can be finely changed.

【0018】前記アキュムレータに溜まった液相冷媒を
検出する液相冷媒検出手段と、前記液相冷媒検出手段に
よる検出結果に基づいて、前記変更手段を操作する制御
手段とが設けられている場合は、手間をかけずに能率良
く運転できる。
In the case where the liquid phase refrigerant detecting means for detecting the liquid phase refrigerant accumulated in the accumulator and the control means for operating the changing means based on the detection result by the liquid phase refrigerant detecting means are provided. , You can drive efficiently without any trouble.

【0019】前記加熱手段が、前記蒸発器から導出され
た冷媒を凝縮器から導出された冷媒と熱交換させる熱交
換手段を設けて構成されている場合は、蒸発器から導出
された冷媒に凝縮器から導出された冷媒の温熱を与える
ことで加熱して当該冷媒の加熱度を高め、かつ、凝縮器
から導出された冷媒に蒸発器から導出された冷媒の冷熱
を与えることで冷却して、当該冷媒の過冷却度を高める
ことができる。
If the heating means is provided with heat exchange means for exchanging heat between the refrigerant drawn out from the evaporator and the refrigerant drawn out from the condenser, the heating means is condensed to the refrigerant taken out from the evaporator. To increase the degree of heating of the refrigerant by heating by giving the heat of the refrigerant drawn from the condenser, and cooling by giving the cold heat of the refrigerant drawn from the evaporator to the refrigerant drawn from the condenser, The degree of supercooling of the refrigerant can be increased.

【0020】[0020]

【発明の効果】請求項1記載のヒートポンプ装置は、蒸
発器から導出された冷媒に含まれる液相冷媒の量に応じ
て、当該冷媒を適度に加熱し易く、しかも、液相冷媒が
圧縮機に吸い込まれにくい。
According to the heat pump device of the first aspect of the present invention, it is easy to heat the refrigerant appropriately according to the amount of the liquid phase refrigerant contained in the refrigerant led out from the evaporator, and the liquid phase refrigerant is a compressor. Is hard to be sucked into.

【0021】請求項2記載のヒートポンプ装置は、蒸発
器から導出された冷媒に含まれる液相冷媒の量に応じ
て、当該冷媒を適度に加熱し易く、しかも、液相冷媒が
圧縮機に吸い込まれにくいヒートポンプ装置の構造を、
例えば、加熱手段自体の加熱量を調節する手段を設けて
冷媒の加熱量を変更する場合に比べて、簡略化できる。
In the heat pump device according to the second aspect of the present invention, it is easy to heat the refrigerant appropriately according to the amount of the liquid phase refrigerant contained in the refrigerant led out from the evaporator, and the liquid phase refrigerant is sucked into the compressor. The structure of the heat pump device
For example, this can be simplified as compared with the case where the heating amount of the refrigerant is changed by providing a unit for adjusting the heating amount of the heating unit itself.

【0022】請求項3記載のヒートポンプ装置は、蒸発
器から導出された冷媒に含まれる液相冷媒の量に応じ
て、当該冷媒を一層適度に加熱し易く、しかも、液相冷
媒が圧縮機に吸い込まれにくい。特に、第1冷媒路と第
2冷媒路とに分流する分流比を調節することで、加熱量
を細かく調節することができるから、圧縮機の回転数や
膨張弁の開度等を変更して冷媒の循環量を調節すること
なく、圧縮機に導入される冷媒の過熱度を簡便に調節で
きる効果もある。
In the heat pump device according to the third aspect of the present invention, the refrigerant can be heated more appropriately according to the amount of the liquid-phase refrigerant contained in the refrigerant led out from the evaporator, and the liquid-phase refrigerant can be transferred to the compressor. Hard to be inhaled. In particular, since the heating amount can be finely adjusted by adjusting the diversion ratio for dividing the flow into the first refrigerant passage and the second refrigerant passage, it is possible to change the rotational speed of the compressor, the opening degree of the expansion valve, and the like. There is also an effect that the superheat degree of the refrigerant introduced into the compressor can be easily adjusted without adjusting the circulation amount of the refrigerant.

【0023】請求項4記載のヒートポンプ装置は、蒸発
器から導出された冷媒に含まれる液相冷媒の量に応じ
て、当該冷媒を適度に加熱し易く、しかも、液相冷媒が
圧縮機に吸い込まれにくいヒートポンプ装置を能率良く
運転できる。
In the heat pump device according to the fourth aspect of the present invention, the refrigerant is easily heated appropriately according to the amount of the liquid-phase refrigerant contained in the refrigerant led out from the evaporator, and the liquid-phase refrigerant is sucked into the compressor. The heat pump device, which is hard to be damaged, can be operated efficiently.

【0024】請求項5記載のヒートポンプ装置は、蒸発
器から導出された冷媒に含まれる液相冷媒の量に応じ
て、当該冷媒を適度に加熱し易く、しかも、液相冷媒が
圧縮機に吸い込まれにくいヒートポンプ装置を、ヒート
ポンプ装置全体としてのエネルギーの無駄が少ない状態
で効率良く運転できる。
In the heat pump device according to the fifth aspect of the present invention, the refrigerant is easily heated appropriately according to the amount of the liquid refrigerant contained in the refrigerant drawn out from the evaporator, and the liquid refrigerant is sucked into the compressor. The heat pump device, which is hard to be damaged, can be efficiently operated in a state where the waste of energy as the whole heat pump device is small.

【0025】[0025]

【実施例】【Example】

〔第1実施例〕図1,図2は空調用ヒートポンプ装置の
冷房運転モードにおけるヒートポンプ回路を示し、室外
熱交換器NO と室外膨張弁VEXO と受液器RCVと室内膨
張弁VEXI と室内熱交換器NI とを順に接続している冷
媒路の両端部と、アキュムレータACCと圧縮機CMPとオ
イルセパレータOSPとを順に接続している冷媒路の両端
部とが四方弁1を介して接続され、四方弁1の操作で、
冷房運転モードと暖房運転モードとに切り換えられるよ
う構成してある。
[First Embodiment] FIGS. 1 and 2 show a heat pump circuit in a cooling operation mode of a heat pump device for air conditioning, which includes an outdoor heat exchanger NO, an outdoor expansion valve VEXO, a receiver RCV, an indoor expansion valve VEXI and an indoor heat exchange. Both ends of the refrigerant passage connecting the vessel NI in order and the ends of the refrigerant passage connecting the accumulator ACC, the compressor CMP and the oil separator OSP in order are connected via the four-way valve 1. By operating valve 1,
It is configured to switch between a cooling operation mode and a heating operation mode.

【0026】尚、前記ヒートポンプ回路において、黒塗
りの太線はその部分の冷媒が高圧気相状態であることを
示し、ハッチングを施した太線はその部分の冷媒が液相
状態であることを示し、点ハッチングを施した太線はそ
の部分の冷媒が気液二相状態(湿り蒸気状態)であるこ
とを示し、白抜きの太線はその部分の冷媒が低圧気相状
態であることを示している。又、前記ヒートポンプ回路
において、白抜きの弁記号はその弁が開いている状態を
示し、黒塗りの弁記号はその弁が閉じている状態を示し
ている。
In the heat pump circuit, a thick black line indicates that the refrigerant in that portion is in a high-pressure vapor phase state, and a thick line hatched indicates that the refrigerant in that portion is in a liquid phase state. The thick line with dot hatching indicates that the refrigerant in that portion is in the gas-liquid two-phase state (wet vapor state), and the thick white line indicates that the refrigerant in that portion is in the low-pressure vapor phase state. Further, in the heat pump circuit, a white valve symbol indicates a state where the valve is open, and a black valve symbol indicates a state where the valve is closed.

【0027】図1,図2で示す冷房運転モードでは、室
外熱交換器NO が四方弁1を介してオイルセパレータO
SPの下流側冷媒路に接続され、かつ、室内熱交換器NI
が四方弁1を介してアキュムレータACCの上流側冷媒路
に接続されて、室外熱交換器NO が凝縮器CD として、
室内熱交換器NI が蒸発器EV として各々機能し、室外
膨張弁VEXO は流量調整手段VFRとして作動する状態に
切り換えられているとともに、室内膨張弁VEXI は膨張
手段EX として作動する状態に切り換えられている。
In the cooling operation mode shown in FIG. 1 and FIG. 2, the outdoor heat exchanger NO is connected to the oil separator O via the four-way valve 1.
The indoor heat exchanger NI is connected to the refrigerant passage on the downstream side of the SP
Is connected to the upstream refrigerant passage of the accumulator ACC via the four-way valve 1, and the outdoor heat exchanger NO serves as the condenser CD.
The indoor heat exchanger NI functions as an evaporator EV, the outdoor expansion valve VEXO is switched to a state of operating as a flow rate adjusting means VFR, and the indoor expansion valve VEXI is switched to a state of operating as an expanding means EX. There is.

【0028】又、図示しないが、暖房運転モードでは、
室外熱交換器NO が四方弁1を介してアキュムレータA
CCの上流側冷媒路に接続され、かつ、室内熱交換器NI
が四方弁1を介してオイルセパレータOSPの下流側冷媒
路に接続されて、室外熱交換器NO が蒸発器EV とし
て、室内熱交換器NI が凝縮器CD として各々機能し、
室外膨張弁VEXO は膨張手段EX として作動する状態に
切り換えられるとともに、室内膨張弁VEXI は流量調整
手段VFRとして作動する状態に切り換えられる。
Although not shown, in the heating operation mode,
The outdoor heat exchanger NO is connected to the accumulator A via the four-way valve 1.
The indoor heat exchanger NI is connected to the refrigerant passage on the upstream side of CC
Is connected to the downstream refrigerant passage of the oil separator OSP via the four-way valve 1, the outdoor heat exchanger NO functions as an evaporator EV, and the indoor heat exchanger NI functions as a condenser CD.
The outdoor expansion valve VEXO is switched to a state of operating as the expansion means EX, and the indoor expansion valve VEXI is switched to a state of operating as the flow rate adjusting means VFR.

【0029】そして、いずれの運転モードにおいても、
蒸発器EV として機能する熱交換器から導出された冷媒
がアキュムレータACCを介して圧縮機CMPに導入される
とともに、凝縮器CD として機能する熱交換器から導出
された冷媒が受液器RCVを介して膨張手段EX として作
動する膨張弁に導入される。
In any operation mode,
The refrigerant derived from the heat exchanger functioning as the evaporator EV is introduced into the compressor CMP via the accumulator ACC, and the refrigerant derived from the heat exchanger functioning as the condenser CD is passed through the receiver RCV. And is introduced into an expansion valve which acts as expansion means EX.

【0030】前記四方弁1からアキュムレータACCに至
る冷媒路は、蒸発器EV から導出された冷媒を加熱して
からアキュムレータACCに送る加熱手段2が設けられて
いる第1冷媒路R1 と、加熱手段2が設けられていない
第2冷媒路R2 とに分岐され、第1冷媒路R1 の下流側
と第2冷媒路R2 の下流側とがアキュムレータACCの手
前で合流接続されているとともに、アキュムレータACC
に送られる冷媒の加熱量を変更する変更手段3が設けら
れている。
The refrigerant passage from the four-way valve 1 to the accumulator ACC has a first refrigerant passage R1 provided with a heating means 2 for heating the refrigerant derived from the evaporator EV and then sending it to the accumulator ACC, and a heating means. No. 2 is not provided in the second refrigerant path R2, and the downstream side of the first refrigerant path R1 and the downstream side of the second refrigerant path R2 are connected together before the accumulator ACC and the accumulator ACC.
Change means 3 for changing the heating amount of the refrigerant sent to is provided.

【0031】前記加熱手段2は、第1冷媒路R1 の途中
を受液器RCV内に通過させて、蒸発器EV から導出され
た冷媒を凝縮器CD から導出された冷媒と熱交換させる
熱交換手段を設けて構成され、変更手段3は、蒸発器E
V とアキュムレータACCとを第1冷媒路R1 又は第2冷
媒路R2 を介して択一的に接続可能な接続手段として
の、互いに背反的に開閉される第1電磁弁V1 と第2電
磁弁V2 を第1冷媒路R1 と第2冷媒路R2 に設けて構
成されている。
The heating means 2 is a heat exchange device that allows the refrigerant discharged from the evaporator EV to exchange heat with the refrigerant discharged from the condenser CD by passing the middle of the first refrigerant passage R1 into the receiver RCV. Means are provided, and the changing means 3 is an evaporator E.
V and the accumulator ACC are first solenoid valves V1 and second solenoid valves V1 which are opened and closed in an antithetical manner as connecting means which can be selectively connected via the first refrigerant passage R1 or the second refrigerant passage R2. Are provided in the first refrigerant passage R1 and the second refrigerant passage R2.

【0032】前記アキュムレータACCには、当該アキュ
ムレータACC内に溜まった液相冷媒RLqを検出する液相
冷媒検出手段4としての二個の発熱型温度センサーSU,
SLが設けられ、これらの温度センサーSU,SL による
液相冷媒RLqの検出結果に基づいて、第1電磁弁V1 と
第2電磁弁V2 を背反的に開閉操作する制御手段として
の制御器CNTが設けられている。
The accumulator ACC has two exothermic temperature sensors SU, which serve as liquid-phase refrigerant detecting means 4 for detecting the liquid-phase refrigerant RLq accumulated in the accumulator ACC.
SL is provided, and based on the detection results of the liquid-phase refrigerant RLq by these temperature sensors SU, SL, a controller CNT as a control means for opening and closing the first solenoid valve V1 and the second solenoid valve V2 in a contradictory manner. It is provided.

【0033】前記二個の温度センサーSU,SL は、その
感知部をアキュムレータACCの器壁内面に臨ませる状態
で上下に間隔を隔てて配置され、各々の温度センサーS
U,SL は、液相冷媒RLqの液面レベルが所定の感知レベ
ルに達してその感知部が液相冷媒RLqで冷却された状態
では低温検出信号を制御器CNTに出力し、液相冷媒RLq
の液面レベルが所定の感知レベルに達しなくてその感知
部が冷却されない状態では高温検出信号を制御器CNTに
出力するよう接続されている。
The two temperature sensors SU and SL are vertically spaced from each other with their sensing parts facing the inner wall of the accumulator ACC.
U and SL output a low temperature detection signal to the controller CNT when the liquid level of the liquid-phase refrigerant RLq reaches a predetermined sensing level and the sensing part is cooled by the liquid-phase refrigerant RLq, and the liquid-phase refrigerant RLq
Is connected to output a high temperature detection signal to the controller CNT when the liquid level does not reach a predetermined sensing level and the sensing unit is not cooled.

【0034】そして、蒸発器EV から導出された冷媒に
含まれる液相冷媒の量が多くて、アキュムレータACC内
の液相冷媒RLqの液面レベルが上側に配置した上部温度
センサーSU の感知レベルに達すると、上部温度センサ
ーSU から低温検出信号が制御器CNTに入力され、制御
器CNTは蒸発器EV から導出された冷媒の過熱度が不足
していると判断して、図1に示すように、第1電磁弁V
1 を開くとともに第2電磁弁V2 を閉じ、蒸発器EV か
ら導出された冷媒は第1冷媒路R1 を流れて受液器RCV
内の液相冷媒RLqとの熱交換で加熱され、過熱度を高め
られた冷媒がアキュムレータACCに送られるとともに、
受液器RCV内の液相冷媒RLqは過冷却される。
Since the amount of the liquid-phase refrigerant contained in the refrigerant discharged from the evaporator EV is large, the liquid level of the liquid-phase refrigerant RLq in the accumulator ACC becomes the sensing level of the upper temperature sensor SU arranged on the upper side. When it reaches, the low temperature detection signal is input from the upper temperature sensor SU to the controller CNT, and the controller CNT judges that the superheat degree of the refrigerant derived from the evaporator EV is insufficient, and as shown in FIG. , First solenoid valve V
1 is opened and the second solenoid valve V2 is closed, and the refrigerant derived from the evaporator EV flows through the first refrigerant path R1 and the receiver RCV.
The refrigerant that has been heated by heat exchange with the liquid-phase refrigerant RLq in the inside and has a superheated degree is sent to the accumulator ACC, and
The liquid-phase refrigerant RLq in the receiver RCV is supercooled.

【0035】又、過熱度の高い冷媒がアキュムレータA
CCに送られた結果、アキュムレータACC内の液相冷媒R
Lqの液面レベルが下側に配置した下部温度センサーSL
の感知レベルを下回ると、下部温度センサーSL から高
温検出信号が制御器CNTに入力され、制御器CNTは蒸発
器EV から導出された冷媒の過熱度が許容範囲内である
と判断して、図2に示すように、第1電磁弁V1 を閉じ
るとともに第2電磁弁V2 を開き、蒸発器EV から導出
された冷媒は第2冷媒路R2 を流れてアキュムレータA
CCに送られる。
The refrigerant having a high degree of superheat is accumulator A.
As a result of being sent to CC, liquid-phase refrigerant R in accumulator ACC
Lower temperature sensor SL with the liquid level of Lq located below
When the temperature falls below the detection level of, the high temperature detection signal is input from the lower temperature sensor SL to the controller CNT, and the controller CNT judges that the superheat degree of the refrigerant derived from the evaporator EV is within the allowable range. As shown in FIG. 2, the first solenoid valve V1 is closed and the second solenoid valve V2 is opened, and the refrigerant derived from the evaporator EV flows through the second refrigerant passage R2 and accumulator A.
Sent to CC.

【0036】〔第2実施例〕図3はアキュムレータACC
に送られる冷媒の加熱量を変更する変更手段3の別実施
例を示し、この変更手段3は、蒸発器EV から導出され
た冷媒を第1冷媒路R1 と第2冷媒路R2 とに分流する
分流比を調節可能な調節手段としての分流弁V3 を設け
て構成されている。
[Second Embodiment] FIG. 3 shows an accumulator ACC.
Another embodiment of the changing means 3 for changing the heating amount of the refrigerant sent to is shown. This changing means 3 divides the refrigerant led from the evaporator EV into the first refrigerant passage R1 and the second refrigerant passage R2. A flow dividing valve V3 is provided as an adjusting means capable of adjusting the flow dividing ratio.

【0037】前記アキュムレータACCには、当該アキュ
ムレータACC内に溜まった液相冷媒RLqを検出する液相
冷媒検出手段4としての、液相冷媒RLqの液面レベルの
変化を検出する静電容量型のレベルセンサーS3 が設け
られ、このレベルセンサーS3 による液面レベルの検出
結果に基づいて、蒸発器EV から導出された冷媒を第1
冷媒路R1 と第2冷媒路R2 とに分流する分流比を演算
して分流弁V3 を操作する制御手段としての制御器CNT
が設けられている。
The accumulator ACC is of a capacitance type for detecting a change in the liquid level of the liquid phase refrigerant RLq as the liquid phase refrigerant detecting means 4 for detecting the liquid phase refrigerant RLq accumulated in the accumulator ACC. A level sensor S3 is provided, and based on the detection result of the liquid level by the level sensor S3, the refrigerant drawn from the evaporator EV is first
A controller CNT as a control means for operating a diversion valve V3 by calculating a diversion ratio of diversion to the refrigerant passage R1 and the second refrigerant passage R2.
Is provided.

【0038】そして、制御器CNTは、アキュムレータA
CC内の液相冷媒RLqの液面レベルに応じて、液面レベル
が高いほど第1冷媒路R1 に分流する量が多くなるよう
に分流比を演算して分流弁V3 を操作し、第1冷媒路R
1 を流れて過熱度を高められた冷媒と、第2冷媒路R2
を流れて加熱されなかった冷媒とがアキュムレータACC
の手前で合流して、全体として適度な過熱度になるよう
混合された状態でアキュムレータACCに送られる。その
他の構成は第1実施例と同様である。
The controller CNT is the accumulator A.
Depending on the liquid level of the liquid-phase refrigerant RLq in the CC, the flow dividing valve V3 is operated by operating the flow dividing valve V3 by calculating the flow dividing ratio such that the higher the liquid level is, the larger the amount of flow is divided into the first refrigerant passage R1. Refrigerant path R
The refrigerant that has flowed through 1 to have an increased degree of superheat and the second refrigerant passage R2
The refrigerant that flowed through the tank and was not heated is the accumulator ACC
Before joining, they are mixed and sent to the accumulator ACC in a mixed state so as to have an appropriate superheat degree as a whole. Other configurations are the same as in the first embodiment.

【0039】〔その他の実施例〕 1.蒸発器から導出された冷媒を加熱してからアキュム
レータに送る加熱手段は、室外空気或いは室内空気との
熱交換で冷媒を加熱するものであっても良い。 2.アキュムレータに送られる冷媒の加熱量を変更する
変更手段は、蒸発器から導出された冷媒をアキュムレー
タに送る冷媒路を複数の分岐冷媒路に分岐するととも
に、これらの分岐冷媒路の各々又は二つ以上に加熱量の
異なる加熱手段を設け、これらの分岐冷媒路のいずれか
一つ或いは複数を選択して、その選択した分岐冷媒路で
蒸発器とアキュムレータとを接続することで加熱量を変
更する手段であっても良く、又、これらの分岐冷媒路に
分流する分流比を調節することで加熱量を変更する手段
であっても良い。 3.アキュムレータに送られる冷媒の加熱量を変更する
変更手段は、加熱手段を手動操作で加熱状態と加熱停止
状態とに切り換えるものであっても良い。 4.本発明によるヒートポンプ装置は、冷房や暖房の空
調用途に限定されるものではなく、冷熱や温熱を扱う各
種分野の種々の用途に適用できる。
Other Embodiments 1. The heating means that heats the refrigerant drawn from the evaporator and then sends it to the accumulator may be one that heats the refrigerant by heat exchange with outdoor air or indoor air. 2. The changing means for changing the heating amount of the refrigerant sent to the accumulator branches the refrigerant path for sending the refrigerant derived from the evaporator to the accumulator into a plurality of branch refrigerant paths, and each of these branch refrigerant paths or two or more of them. Means for changing the heating amount by providing heating means having different heating amounts, selecting one or more of these branch refrigerant passages, and connecting the evaporator and the accumulator with the selected branch refrigerant passages. Alternatively, it may be a means for changing the heating amount by adjusting the diversion ratio of diversion to these branched refrigerant passages. 3. The changing means for changing the heating amount of the refrigerant sent to the accumulator may be one that switches the heating means between the heating state and the heating stopped state by a manual operation. 4. The heat pump device according to the present invention is not limited to air conditioning applications such as cooling and heating, but can be applied to various applications in various fields dealing with cold heat and hot heat.

【0040】尚、特許請求の範囲の項に図面との対照を
便利にするために符号を記すが、該記入により本発明は
添付図面の構成に限定されるものではない。
It should be noted that reference numerals are given in the claims for convenience of comparison with the drawings, but the present invention is not limited to the structures of the accompanying drawings by the entry.

【図面の簡単な説明】[Brief description of drawings]

【図1】ヒートポンプ回路図[Figure 1] Heat pump circuit diagram

【図2】ヒートポンプ回路図[Figure 2] Heat pump circuit diagram

【図3】第2実施例を示すヒートポンプ回路図FIG. 3 is a heat pump circuit diagram showing a second embodiment.

【符号の説明】[Explanation of symbols]

2 加熱手段 3 変更手段 4 液相冷媒検出手段 ACC アキュムレータ CD 凝縮器 CMP 圧縮機 CNT 制御手段 EV 蒸発器 R1 第1冷媒路 R2 第2冷媒路 V1 接続手段 V2 接続手段 V3 調節手段 2 heating means 3 changing means 4 liquid phase refrigerant detecting means ACC accumulator CD condenser CMP compressor CNT control means EV evaporator R1 first refrigerant passage R2 second refrigerant passage V1 connecting means V2 connecting means V3 adjusting means

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 蒸発器(EV )から導出された冷媒がア
キュムレータ(ACC)を介して圧縮機(CMP)に導入さ
れるヒートポンプ装置であって、 前記蒸発器(EV )から導出された冷媒を加熱してから
前記アキュムレータ(ACC)に送る加熱手段(2)と、
前記アキュムレータ(ACC)に送られる冷媒の加熱量を
変更する変更手段(3)とが設けられているヒートポン
プ装置。
1. A heat pump device in which a refrigerant derived from an evaporator (EV) is introduced into a compressor (CMP) via an accumulator (ACC), wherein the refrigerant derived from the evaporator (EV) is Heating means (2) for heating and then sending it to the accumulator (ACC);
A heat pump device provided with a changing means (3) for changing the heating amount of the refrigerant sent to the accumulator (ACC).
【請求項2】 前記変更手段(3)が、前記蒸発器(E
V )から導出された冷媒を前記アキュムレータ(ACC)
に送る冷媒路を前記加熱手段(2)が設けられている第
1冷媒路(R1 )と前記加熱手段(2)が設けられてい
ない第2冷媒路(R2 )とに分岐するとともに、前記蒸
発器(EV )と前記アキュムレータ(ACC)とを前記第
1冷媒路(R1 )又は前記第2冷媒路(R2 )を介して
択一的に接続可能な接続手段(V1,V2 )を設けて構成
されている請求項1記載のヒートポンプ装置。
2. The evaporator (E) is provided with the changing means (3).
V) the refrigerant derived from the accumulator (ACC)
The refrigerant passage sent to the first refrigerant passage (R1) provided with the heating means (2) and the second refrigerant passage (R2) not provided with the heating means (2), and the evaporation is performed. A connecting means (V1, V2) for selectively connecting the container (EV) and the accumulator (ACC) via the first refrigerant passage (R1) or the second refrigerant passage (R2). The heat pump device according to claim 1.
【請求項3】 前記変更手段(3)が、前記蒸発器(E
V )から導出された冷媒をアキュムレータ(ACC)に送
る冷媒路を前記加熱手段(2)が設けられている第1冷
媒路(R1 )と前記加熱手段(2)が設けられていない
第2冷媒路(R2 )とに分岐し、前記第1冷媒路(R1
)と前記第2冷媒路(R2 )とをその下流側で合流接
続するとともに、前記蒸発器(EV )から導出された冷
媒を前記第1冷媒路(R1 )と前記第2冷媒路(R2 )
とに分流する分流比を調節可能な調節手段(V3 )を設
けて構成されている請求項1記載のヒートポンプ装置。
3. The changing means (3) comprises the evaporator (E).
The refrigerant passage for sending the refrigerant derived from V) to the accumulator (ACC) is the first refrigerant passage (R1) provided with the heating means (2) and the second refrigerant passage not provided with the heating means (2). To the first refrigerant passage (R1).
) And the second refrigerant passage (R2) are joined together at the downstream side thereof, and the refrigerant derived from the evaporator (EV) is connected to the first refrigerant passage (R1) and the second refrigerant passage (R2).
2. The heat pump device according to claim 1, further comprising adjusting means (V3) capable of adjusting a diversion ratio of the diversion.
【請求項4】 前記アキュムレータ(ACC)に溜まった
液相冷媒を検出する液相冷媒検出手段(4)と、前記液
相冷媒検出手段(4)による検出結果に基づいて、前記
変更手段(3)を操作する制御手段(CNT)とが設けら
れている請求項2又は3記載のヒートポンプ装置。
4. A liquid-phase refrigerant detecting means (4) for detecting a liquid-phase refrigerant accumulated in the accumulator (ACC), and the changing means (3) based on a detection result by the liquid-phase refrigerant detecting means (4). 4. The heat pump device according to claim 2, further comprising a control means (CNT) for operating the heat pump.
【請求項5】 前記加熱手段(2)が、前記蒸発器(E
V )から導出された冷媒を凝縮器(CD )から導出され
た冷媒と熱交換させる熱交換手段を設けて構成されてい
る請求項1,2,3又は4記載のヒートポンプ装置。
5. The evaporator (E) is provided by the heating means (2).
5. The heat pump apparatus according to claim 1, wherein the heat pump device is provided with heat exchange means for exchanging heat between the refrigerant led out of V) and the refrigerant led out of the condenser (CD).
JP16647394A 1994-07-19 1994-07-19 Heat pump device Pending JPH0829020A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16647394A JPH0829020A (en) 1994-07-19 1994-07-19 Heat pump device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16647394A JPH0829020A (en) 1994-07-19 1994-07-19 Heat pump device

Publications (1)

Publication Number Publication Date
JPH0829020A true JPH0829020A (en) 1996-02-02

Family

ID=15832054

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16647394A Pending JPH0829020A (en) 1994-07-19 1994-07-19 Heat pump device

Country Status (1)

Country Link
JP (1) JPH0829020A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150129464A (en) * 2014-05-12 2015-11-20 엘지전자 주식회사 Air conditoiner and control method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150129464A (en) * 2014-05-12 2015-11-20 엘지전자 주식회사 Air conditoiner and control method thereof

Similar Documents

Publication Publication Date Title
US11320170B2 (en) Heat pump cycle
CN104520653B (en) Air-conditioning equipment including the unit for increasing heating efficiency
EP0855562B1 (en) Air conditioner
US8250874B2 (en) Refrigerant cycle device
US20230184471A1 (en) Air conditioning system with capacity control and controlled hot water generation
AU2005268121A1 (en) Refrigerating apparatus
JP2003202162A (en) Refrigerating device
WO2000019157A1 (en) Two-refrigerant refrigerating device
JP2019158308A (en) Refrigeration cycle device
JP4898025B2 (en) Multi-type gas heat pump type air conditioner
JP2008267653A (en) Refrigerating device
JP2006170541A (en) Air conditioner
JP2522361B2 (en) Air conditioner
JP2001355924A (en) Air conditioner
JP2000002494A (en) Plate type heat exchanger and refrigeration cycle system
JPH0829020A (en) Heat pump device
JP2008261512A (en) Ejector type refrigerating cycle
JP2010190537A (en) Air conditioner
JP2005201500A (en) Refrigerating cycle device
JP4023002B2 (en) Aircraft cooling system
JPH05133635A (en) Cold accumulation type air conditioning apparatus
JPS592832B2 (en) Heat recovery air conditioner
JP2005042980A (en) Heat accumulating type air conditioner
JP2003343895A (en) Air conditioner
JP2804618B2 (en) Air conditioner