JPH08290052A - Membrane photocatalytic chemical conversion device - Google Patents

Membrane photocatalytic chemical conversion device

Info

Publication number
JPH08290052A
JPH08290052A JP7099292A JP9929295A JPH08290052A JP H08290052 A JPH08290052 A JP H08290052A JP 7099292 A JP7099292 A JP 7099292A JP 9929295 A JP9929295 A JP 9929295A JP H08290052 A JPH08290052 A JP H08290052A
Authority
JP
Japan
Prior art keywords
thin film
photocatalyst
tio
titanium oxide
electrochemical catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7099292A
Other languages
Japanese (ja)
Other versions
JP3697591B2 (en
Inventor
Shinichi Ichikawa
伸一 市川
Ryota Doi
良太 土井
Hiroshi Hida
紘 飛田
Hiroshi Miyadera
博 宮寺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CHIKYU KANKYO SANGYO GIJUTSU
CHIKYU KANKYO SANGYO GIJUTSU KENKYU KIKO
Hitachi Ltd
Original Assignee
CHIKYU KANKYO SANGYO GIJUTSU
CHIKYU KANKYO SANGYO GIJUTSU KENKYU KIKO
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CHIKYU KANKYO SANGYO GIJUTSU, CHIKYU KANKYO SANGYO GIJUTSU KENKYU KIKO, Hitachi Ltd filed Critical CHIKYU KANKYO SANGYO GIJUTSU
Priority to JP09929295A priority Critical patent/JP3697591B2/en
Publication of JPH08290052A publication Critical patent/JPH08290052A/en
Application granted granted Critical
Publication of JP3697591B2 publication Critical patent/JP3697591B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Physical Or Chemical Processes And Apparatus (AREA)
  • Catalysts (AREA)

Abstract

PURPOSE: To form hydrogen at room temp. from water, seawater or an electrolyte aq. soln. by utilizing a light source containing ultraviolet rays or solar rays and to further chemically convert CO2 at room temp. to use the same as resources. CONSTITUTION: In an apparatus having a TiO2 membrane photocatalyst 2, a proton separation membrane 8 and an electrochemical catalyst 9 successively arranged in a soln., a light source 1 irradiating the membrane photocatalyst with light and the circuit connecting the membrane photocatalyst 2 and the electrochemical catalyst 9 as main constitutional elements, the following process is performed at room temp. Electrons and holes are generated by irradiating the membrane photocatalyst 2 with light and the soln. brought into contact with the membrane photocatalyst 2 is reacted with the holes to generate protons and oxygen and the proton separation membrane 8 separates protons from oxygen to permit them to transmit and protons are electrochemically bonded to the surface of the electrochemical catalyst 9 to form hydrogen. When CO2 is supplied, the reduction reaction of CO2 is generated on the surface of the electrochemical catalyst 9 by protons and electrons to form CO and hydrocarbon.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、薄膜光触媒により水、
海水または電解質を含む水溶液からプロトンを発生さ
せ、このプロトンを結合させて水素を生成する、あるい
はこのプロトンと二酸化炭素を反応させて化学合性原料
を生成する薄膜光触媒化学変換装置に関する。
The present invention relates to a thin film photocatalyst for water,
The present invention relates to a thin film photocatalytic chemical conversion device that generates a proton from seawater or an aqueous solution containing an electrolyte and combines the proton to generate hydrogen, or reacts the proton with carbon dioxide to generate a chemically compatible raw material.

【0002】[0002]

【従来の技術】現在、エネルギー確保と共に地球環境保
全の問題解決が望まれている。まず、長期的に見て将来
の化石燃料枯渇の懸念から新しいエネルギー源を追求す
る必要がある。その場合、燃焼によって環境を汚染する
物質(例えば窒素酸化物、硫黄酸化物、炭化水素、一酸
化炭素)や地球温暖化を促進する二酸化炭素等を全く放
出しないクリーン燃料が好ましい。例えば水素は燃焼に
よって水しか生成しないので最もクリーンな燃料として
注目されている。
2. Description of the Related Art At present, it is desired to solve the problem of global environment conservation as well as energy conservation. First of all, it is necessary to pursue new energy sources in the long run in view of future depletion of fossil fuels. In that case, a clean fuel that does not emit any substances polluting the environment by combustion (for example, nitrogen oxides, sulfur oxides, hydrocarbons, carbon monoxide) and carbon dioxide that promotes global warming is preferable. For example, hydrogen attracts attention as the cleanest fuel because it produces only water by combustion.

【0003】次に、現在地球温暖化の主原因と思われる
炭酸ガスの大気放出の削減が急務となっており、一つの
削減方法として炭酸ガスの再資源化が考えられる。これ
は言わばケミカル・リサイクリングという概念に基づく
もので、化石燃料の燃焼や多くの化学反応の結果生成さ
れる化学的に極めて安定な炭酸ガスをリサイクルして再
び燃料として、あるいは化学合成の原料として再利用で
きる物質に変換することを目的としている。
Next, there is an urgent need to reduce atmospheric release of carbon dioxide, which is considered to be the main cause of global warming, and the recycling of carbon dioxide can be considered as one way of reducing it. This is, so to speak, based on the concept of chemical recycling, in which chemically stable carbon dioxide gas generated as a result of combustion of fossil fuels and many chemical reactions is recycled to be used as fuel again or as a raw material for chemical synthesis. It is intended to be converted into a reusable substance.

【0004】水素は、現在工業的には水性ガスの変性、
天然ガスの変性、石炭のガス化等の熱エネルギーの助成
を必要とする方法、あるいは水の電解のように化石燃料
の燃焼によって得られる電気エネルギーを必要とする方
法によって製造されており、いずれもガス生成法の中で
は比較的生成価格が高いと言える。また水素を燃料源と
して幅広く利用するためには、低価格化のほかに設備の
簡略化が必要である。
Hydrogen is currently industrially used to modify water gas,
It is manufactured by a method that requires the assistance of thermal energy such as natural gas modification, coal gasification, or a method that requires electric energy obtained by combustion of fossil fuels such as electrolysis of water. It can be said that the production cost is relatively high among the gas production methods. In order to use hydrogen widely as a fuel source, it is necessary to reduce the price and simplify the equipment.

【0005】一般に物質の化学変換は触媒を利用するも
のが工業的手段としては多く、化学工業の他に例えば脱
硝等の公害対策に普及している。但し、これらに共通し
て特徴的な点は、かなりの外的熱エネルギーの供給を必
要とすること、即ち室温以上の温度において化学反応を
を行なう必要がある。現状の水素製造や炭酸ガスの化学
変換でも室温以上の温度での反応であり熱エネルギ-の
供給が必要である。
Generally, a chemical conversion of a substance uses a catalyst as an industrial means, and it is widely used for pollution control such as denitration in addition to the chemical industry. However, the characteristic point common to these is that a considerable amount of external heat energy needs to be supplied, that is, the chemical reaction must be performed at a temperature of room temperature or higher. Even in the current hydrogen production and chemical conversion of carbon dioxide, it is a reaction at a temperature above room temperature and it is necessary to supply heat energy.

【0006】[0006]

【発明が解決しようとする課題】水素生成や環境保全対
策のプロセスには自然界に豊富なエネルギー源や資源を
利用する方法がコストの面から、またそのプロセスは二
次公害(新たなエネルギー源や資源を造るために発生
し、環境に悪影響を及ぼすこと)を出さないものが好ま
しい。更にシステムの面からみて、広い普及率を考える
ならば、より簡素なものが必要となる。
The method of utilizing abundant energy sources and resources in the natural world is costly in the process of hydrogen generation and environmental conservation measures, and the process is not subject to secondary pollution (new energy source or It is preferable that it does not generate a negative effect on the environment because it is generated to create resources. Further, from a system perspective, a simpler one is needed if a widespread penetration rate is considered.

【0007】一方、究極の地球環境制御法の基本理念と
してケミカルリサイクリング、即ち物質の化学的リサイ
クルが考えられる。従って無用なものあるいは有害なも
のを外部に放出せず、化学変換を利用して再資源化ある
いは有用化することによって小規模または地球規模のグ
ローバルな最適ケミカルバランスを追求することが今後
重要な課題となって来ると考えられる。
On the other hand, chemical recycling, that is, chemical recycling of substances can be considered as a basic principle of the ultimate global environment control method. Therefore, it is an important issue in the future to pursue a global optimum chemical balance on a small scale or a global scale by releasing unnecessary or harmful substances to the outside and recycling or utilizing them by utilizing chemical conversion. It is supposed to come.

【0008】本発明は上記のような事情に鑑みてなされ
たものであって、本発明の一つの目的は、エネルギー源
としての水素を製造する薄膜光触媒化学変換装置を提供
することにある。
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a thin film photocatalytic chemical conversion device for producing hydrogen as an energy source.

【0009】また本発明のもう一つ目的は、炭酸ガスを
還元して再資源化する薄膜光触媒化学変換装置を提供す
ることにある。
Another object of the present invention is to provide a thin film photocatalytic chemical conversion device for reducing carbon dioxide and recycling it.

【0010】[0010]

【課題を解決するための手段】本発明の薄膜光触媒化学
変換装置は、概して、紫外線波長領域を含む光源を光エ
ネルギー源として、水、海水または電解質を含む水溶液
を水素源として、薄膜光触媒と電気化学触媒を付加した
システムとして、外的熱エネルギー供給を必要としない
室温での水素生成および炭酸ガスの化学変換を可能にす
る装置である。
The thin film photocatalytic chemical conversion device of the present invention generally uses a light source including an ultraviolet wavelength region as a light energy source, water, seawater or an aqueous solution containing an electrolyte as a hydrogen source, and a thin film photocatalyst and an electrolyzer. As a system to which a chemical catalyst is added, it is a device that enables hydrogen generation and chemical conversion of carbon dioxide at room temperature without requiring external heat energy supply.

【0011】上記一つの目的を達成するために、本発明
の第1の薄膜光触媒化学変換装置は、室温の水、海水ま
たは電解質を含む水溶液(水、海水または水溶液を溶液
と称する)を満たした容器と、この容器の外から内部に
紫外線波長領域を含む光を照射する光源と、容器内の溶
液中にそれぞれ設置された光触媒体、プロトン分離膜お
よび電気化学触媒体の3要素(すなわち、照射光を受け
る光触媒としてアナタ−ゼ型結晶構造の酸化チタン(TiO
2)薄膜を導電性基板の一つの面に形成してなる光触媒
体、溶液が酸化チタン(TiO2)薄膜に発生するホール(h
+)に接して分解し発生するプロトン(H+)を同時に発生
する酸素から分離するプロトン分離膜、および、分離さ
れたプロトン(H+)を捕捉する白金(Pt)の板からなる電気
化学触媒体)と、電気化学触媒体と光触媒体の基板を接
続するバイアス回路とを備え、電気化学触媒体は酸化チ
タン(TiO2)薄膜から発生しバイアス回路を通じて流れて
きた電子(e~)と、捕捉したプロトン(H+)とを結合させ
て水素を生成する装置としている。
In order to achieve one of the above objects, the first thin film photocatalytic chemical conversion device of the present invention is filled with room temperature water, seawater or an aqueous solution containing an electrolyte (water, seawater or an aqueous solution is referred to as a solution). A container, a light source for irradiating light including an ultraviolet wavelength region from the outside to the inside of the container, and a photocatalyst, a proton separation membrane and an electrochemical catalyst which are respectively installed in a solution in the container. As a photocatalyst for receiving light, titanium oxide (TiO 2) with an anatase type crystal structure
2 ) A photocatalyst formed by forming a thin film on one surface of a conductive substrate, a hole (h) generated by a solution in a titanium oxide (TiO 2 ) thin film.
+) Is decomposed to generate a proton (H +) that is separated from the oxygen that is simultaneously generated, and a platinum (Pt) plate that captures the separated proton (H +) as an electrochemical catalyst) And a bias circuit connecting the substrate of the electrochemical catalyst and the photocatalyst body, the electrochemical catalyst body trapped with the electrons (e ~) generated from the titanium oxide (TiO 2 ) thin film and flowing through the bias circuit. It is a device that combines with protons (H +) to generate hydrogen.

【0012】そして第1の薄膜光触媒化学変換装置にお
いて、光触媒体の導電性基板はチタン板で構成する、ま
たは酸化チタン(TiO2)薄膜との間に酸化第二スズ(Sn
O2)の被膜を介在させたガラス板で構成するのがよい。
またバイアス回路は酸化チタン(TiO2)薄膜にプラスのバ
イアス電圧を印加するか、またはプラスとマイナスの電
圧を交互に周期的に印加することが好ましい。
In the first thin film photocatalytic chemical conversion device, the conductive substrate of the photocatalyst is composed of a titanium plate, or stannic oxide (SnSn) is formed between the titanium oxide (TiO 2 ) thin film and the conductive substrate.
It is preferable to use a glass plate with an O 2 ) coating interposed.
Further, the bias circuit preferably applies a positive bias voltage to the titanium oxide (TiO 2 ) thin film, or alternately applies a positive voltage and a negative voltage periodically.

【0013】また上記一つの目的を達成するために、本
発明の第2の薄膜光触媒化学変換装置は、第1の薄膜光
触媒化学変換装置において一つの光触媒体を第1とし
て、もう一つの光触媒体を第2の光触媒体として加えた
もので、第2の光触媒体は、第1の光触媒体を透過する
光を受ける光触媒としてアナタ−ゼ型結晶構造の酸化チ
タン(TiO2)薄膜を導電性基板の一つの面に形成してな
り、電気化学触媒体は第1、2の光触媒体の酸化チタン
(TiO)薄膜から発生しバイアス回路を通じて流れてきた
電子(e~)と、捕捉したプロトン(H+)とを結合させて水素
を生成する。
In order to achieve the above-mentioned one object, the second thin film photocatalytic chemical conversion device of the present invention is such that in the first thin film photocatalytic chemical conversion device, one photocatalyst is the first photocatalyst Is added as a second photocatalyst, and the second photocatalyst is a titanium oxide (TiO 2 ) thin film having an anatase type crystal structure as a photocatalyst for receiving light transmitted through the first photocatalyst. The electrochemical catalyst is formed on one surface of the first and second photocatalysts are titanium oxide.
The electrons (e) generated from the (TiO) thin film and flowing through the bias circuit are combined with the captured protons (H +) to generate hydrogen.

【0014】そして第2の薄膜光触媒化学変換装置にお
いて、第2の光触媒体の導電性基板はチタンから構成し
てもよい。さらに第2の光触媒体に代えて、光触媒とし
て三酸化第二鉄(Fe2O3)薄膜を鉄の基板に形成してなる
光触媒体を設置してもよい。またバイアス回路は酸化チ
タン(TiO2)薄膜にプラスのバイアス電圧を印加する、あ
るいはプラスとマイナスの電圧を交互に周期的に印加す
るのがよい。
In the second thin film photocatalytic chemical conversion device, the conductive substrate of the second photocatalyst may be made of titanium. Further, instead of the second photocatalyst, a photocatalyst formed by forming a ferric trioxide (Fe 2 O 3 ) thin film on an iron substrate as a photocatalyst may be installed. The bias circuit preferably applies a positive bias voltage to the titanium oxide (TiO 2 ) thin film, or alternately applies a positive voltage and a negative voltage periodically.

【0015】上記第1および第2の薄膜光触媒化学変換
装置において、白金からなる電気化学触媒体の代えて、
パラジウム、金、銀、銅、酸化銅、酸化銀のいずれから
なる電気化学触媒体、または酸化亜鉛あるいは酸化銀を
全面または一部被覆した銅からなる電気化学触媒体を設
置してもよい。さらに酸化チタン(TiO2)薄膜は厚さ50
〜2000nmがよく、また光触媒として三酸化第二鉄
(Fe2O3)薄膜を用いる場合は厚さが5〜200nmとす
るのがよい。
In the above first and second thin film photocatalytic chemical conversion devices, instead of the electrochemical catalyst body made of platinum,
An electrochemical catalyst body made of any one of palladium, gold, silver, copper, copper oxide, and silver oxide, or an electrochemical catalyst body made of copper coated with zinc oxide or silver oxide entirely or partially may be installed. Furthermore, the titanium oxide (TiO 2 ) thin film has a thickness of 50
~ 2000nm is good, and ferric trioxide as a photocatalyst
When using a (Fe 2 O 3 ) thin film, the thickness is preferably 5 to 200 nm.

【0016】上記もう一つの目的を達成するために、本
発明の第3の薄膜光触媒化学変換装置は、第1の薄膜光
触媒化学変換装置を構成する、室温の溶液を満たした容
器、光源、光触媒体、プロトン分離膜、電気化学触媒
体、および、バイアス回路に加えて、電気化学触媒体の
表面に炭酸ガスを供給する炭酸ガス供給手段を設けて、
電気化学触媒体は捕捉したプロトン(H+)により炭酸ガス
を還元させる装置としている。
In order to achieve the above-mentioned another object, a third thin film photocatalytic chemical conversion device of the present invention comprises a container, a light source, a photocatalyst, which constitutes the first thin film photocatalytic chemical conversion device, and which is filled with a solution at room temperature. In addition to the body, the proton separation membrane, the electrochemical catalyst body, and the bias circuit, carbon dioxide gas supply means for supplying carbon dioxide gas to the surface of the electrochemical catalyst body is provided.
The electrochemical catalyst is a device that reduces carbon dioxide by trapped protons (H +).

【0017】また上記もう一つの目的を達成するため
に、本発明の第4の薄膜光触媒化学変換装置は、上記第
2の薄膜光触媒化学変換装置を構成する、室温の溶液を
満たした容器、光源、第1、第2の光触媒体、プロトン
分離膜、電気化学触媒体、および、バイアス回路に加え
て、電気化学触媒体の表面に炭酸ガスを供給する炭酸ガ
ス供給手段を設け、電気化学触媒体は捕捉したプロトン
(H+)により炭酸ガスを還元させる装置としている。
In order to achieve the above-mentioned another object, a fourth thin film photocatalytic chemical conversion device of the present invention comprises a container filled with a solution at room temperature and a light source, which constitutes the second thin film photocatalytic chemical conversion device. In addition to the first and second photocatalyst bodies, the proton separation membrane, the electrochemical catalyst body, and the bias circuit, a carbon dioxide gas supply means for supplying carbon dioxide gas to the surface of the electrochemical catalyst body is provided. Is the captured proton
It is a device that reduces carbon dioxide by (H +).

【0018】再び上記第1の目的を達成するために、本
発明の第5の薄膜光触媒化学変換装置は、室温の溶液を
満たした容器と、この容器外から内部に紫外線波長領域
を含む光を照射する光源と、容器の中間部を遮るように
一体結合して設置された有孔式光触媒体、プロトン分離
膜および有孔式電気化学触媒体(すなわち、照射光を受
ける光触媒としてアナタ−ゼ型結晶構造の酸化チタン(T
iO2)薄膜を導電性基板の一つの面に形成し、この薄膜お
よび基板を貫通する孔を有する有孔式光触媒体、溶液が
酸化チタン(TiO2)薄膜に発生するホール(h+)に接し
て分解し発生し、有孔式光触媒体の孔を通じて移動する
プロトン(H+)を同時に発生する酸素から分離するプロト
ン分離膜、および、分離されたプロトン(H+)を捕捉する
白金の板からなり、板方向に貫通する孔を有する有孔式
電気化学触媒体)と、有孔式電気化学触媒体と有孔式光
触媒体の基板を接続するバイアス回路とを備え、有孔式
電気化学触媒体は酸化チタン(TiO2)薄膜から発生しバイ
アス回路を通じて流れてきた電子(e~)と、自身の孔を移
動したプロトン(H+)とを結合させて水素を生成する装置
としている。
In order to achieve the first object again, the fifth thin-film photocatalytic chemical conversion device of the present invention comprises a container filled with a solution at room temperature, and a light including an ultraviolet wavelength region inside and outside the container. A perforated photocatalyst, a proton separation membrane and a perforated electrochemical catalyzer (that is, anatase type as a photocatalyst for receiving irradiation light) are integrally connected so as to shield the light source for irradiation and the middle part of the container. Crystal structure of titanium oxide (T
iO 2 ) A thin film is formed on one surface of a conductive substrate, and a perforated photocatalyst having holes penetrating this thin film and the substrate is used to form holes (h +) generated in the titanium oxide (TiO 2 ) thin film by the solution. It consists of a proton separation membrane that separates protons (H +) that are generated by contact decomposition and move through the pores of the perforated photocatalyst from oxygen that is simultaneously generated, and a platinum plate that traps the separated protons (H +). , A perforated electrochemical catalyst body having a hole penetrating in the plate direction, and a bias circuit connecting the substrate of the perforated electrochemical catalyst body and the perforated photocatalyst body to the perforated electrochemical catalyst body. Is an apparatus for generating hydrogen by combining electrons (e) generated from a titanium oxide (TiO 2 ) thin film and flowing through a bias circuit with protons (H +) that have moved through their own holes.

【0019】再びもう一つの目的を達成するために、本
発明の第6の薄膜光触媒化学変換装置は、第5の薄膜光
触媒化学変換装置を構成する、溶液を満たした容器、光
源、有孔式光触媒体、プロトン分離膜、有孔式電気化学
触媒体およびバイアス回路に加えて、有孔式電気化学触
媒体で溶液に接する板面に炭酸ガスを供給する炭酸ガス
供給手段を設け、有孔式電気化学触媒体は、自身の孔を
移動したプロトン(H+)により炭酸ガスを還元させる装置
としている。
In order to achieve another object, the sixth thin-film photocatalytic chemical conversion device of the present invention comprises a solution-filled container, a light source, and a perforated type, which constitutes a fifth thin-film photocatalytic chemical conversion device. In addition to the photocatalyst, the proton separation membrane, the perforated electrochemical catalyst and the bias circuit, the perforated electrochemical catalyst is provided with carbon dioxide gas supply means for supplying carbon dioxide to the plate surface in contact with the solution. The electrochemical catalyst is a device that reduces carbon dioxide by protons (H +) that have moved through its own pores.

【0020】また、上記一つの目的を達成するために、
本発明の第7の薄膜光触媒化学変換装置は、溶液を満た
した容器と、この容器の外から内部に紫外線波長領域を
含む光を照射する光源と、容器の後半部に一体結合して
設置された有孔式光触媒体および水素吸蔵合金部材(す
なわち、照射光を受ける光触媒としてアナタ−ゼ型結晶
構造の酸化チタン(TiO2)薄膜を導電性基板の一つの面に
形成し、酸化チタン(TiO2)薄膜および基板を貫通する孔
を有する有孔式光触媒体、および溶液が酸化チタン(TiO
2)薄膜に発生するホール(h+)に接して分解し発生
し、有孔式光触媒体の孔を通じて移動したプロトン(H+)
を捕捉する水素吸蔵合金部材)と、この水素吸蔵合金部
材と有孔式光触媒体の基板を接続するバイアス回路とを
備え、水素吸蔵合金部材は、酸化チタン(TiO2)薄膜から
発生しバイアス回路を通じて流れてきた電子(e~)と捕捉
したプロトンと結合させて水素として吸蔵する装置とし
ている。
In order to achieve the above-mentioned one object,
A seventh thin film photocatalytic chemical conversion device of the present invention is installed integrally with a container filled with a solution, a light source for irradiating the inside of the container with light including an ultraviolet wavelength region, and the latter half of the container. A porous photocatalyst and a hydrogen storage alloy member (that is, a titanium oxide (TiO 2 ) thin film having an anatase type crystal structure as a photocatalyst for receiving irradiation light is formed on one surface of a conductive substrate, and titanium oxide (TiO 2 2 ) A perforated photocatalyst having pores that penetrate the thin film and the substrate, and the solution is titanium oxide (TiO 2).
2 ) Protons (H +) that are generated by being decomposed in contact with the holes (h +) generated in the thin film and moved through the holes of the perforated photocatalyst
And a bias circuit for connecting the hydrogen storage alloy member with the substrate of the perforated photocatalyst. The hydrogen storage alloy member is a bias circuit generated from a titanium oxide (TiO 2 ) thin film. The device is a device that occludes hydrogen as hydrogen by combining with the electrons (e) that have flowed through and the captured protons.

【0021】そして上記第7の薄膜光触媒化学変換装置
において、有孔式光触媒体と水素吸蔵合金部材との間
に、プロトン分離膜を設けてもよい。
In the seventh thin film photocatalytic chemical conversion device, a proton separation membrane may be provided between the perforated photocatalyst and the hydrogen storage alloy member.

【0022】[0022]

【作用】薄膜光触媒は、これに光を照射することによ
り、室温でこの触媒に接する水を分解して水素と酸素を
生成する。この水素を炭酸ガスと化学反応させれば、炭
酸ガスを種々有用物質に化学変換する。
When the thin film photocatalyst is irradiated with light, it decomposes water in contact with the catalyst at room temperature to generate hydrogen and oxygen. By chemically reacting this hydrogen with carbon dioxide, carbon dioxide is chemically converted into various useful substances.

【0023】先ず、光触媒が光照射による光触媒の活性
化の原理を図1により説明する。物質が光を吸収する
と、物質中の電子(e~)は光のエネルギーによって価電子
帯からバンドギャップを越えて伝導帯へと励起され、そ
れと同時に電子の欠陥であるホール(正孔)が発生す
る。バンドギャップのエネルギーは光触媒種類によって
異なり、例えば酸化チタン(TiO2)の場合は3.0〜3.2 e
Vである。これは波長で言えば415〜390 nmである。従っ
てこれ以上のエネルギーを持つ、あるいはこれ以下のよ
り短い波長領域の光が照射されることによって電子の励
起が起こる。
First, the principle of activation of the photocatalyst by light irradiation by the photocatalyst will be described with reference to FIG. When a substance absorbs light, the electrons in the substance (e ~) are excited by the energy of the light from the valence band to the conduction band across the band gap, and at the same time holes (holes) that are electron defects are generated. To do. The band gap energy differs depending on the type of photocatalyst. For example, in the case of titanium oxide (TiO 2 ), it is 3.0 to 3.2 e.
V. This is 415 to 390 nm in terms of wavelength. Therefore, excitation of electrons occurs by irradiation with light having a shorter wavelength region having energy higher than this or lower than this.

【0024】図2は、薄膜光触媒による水(または海水
または電解質を含む水溶液)の分解原理を原理を説明す
る図である。光を照射された光触媒中において、光励起
により発生するホール(h+)は薄膜光触媒の表面に移動
し、その表面に接触する水分子を酸化して、反応式:H2
O + 2h+ → 2H+ + 1/2・O2 にしたがい化学変換を起こ
し、プロトン(H+)を造ると同時に酸素も生成する。こ
のプロトン(H+)を合成することにより水素を得ること
ができ、またこのプロトン(H+)を炭酸ガスと反応させ
ることにより炭化水素化合物を得ることができる。
FIG. 2 is a diagram for explaining the principle of decomposition of water (or seawater or an aqueous solution containing an electrolyte) by a thin film photocatalyst. In the photocatalyst irradiated with light, the holes (h +) generated by photoexcitation move to the surface of the thin-film photocatalyst and oxidize water molecules in contact with the surface to generate the reaction formula: H 2
O + 2h + → 2H + + 1/2 · O 2 causes a chemical conversion to produce protons (H +) and oxygen at the same time. Hydrogen can be obtained by synthesizing this proton (H +), and a hydrocarbon compound can be obtained by reacting this proton (H +) with carbon dioxide gas.

【0025】本発明の第1の薄膜光触媒化学変換装置に
おいて、溶液中で紫外線波長領域を含む光を照射された
光触媒であるアナタ−ゼ型結晶構造の酸化チタン(TiO2)
薄膜はホール(h+)と電子(e~)を発生し、溶液は酸化チ
タン(TiO2)薄膜表面でホール(h+)に接して分解しプ
ロトン(H+)発生する。プロトン分離膜は溶液中を移動し
てきるプロトン(H+)を該プロトンと共に発生する酸素か
ら分離し、電気化学触媒体は、分離されたプロトン(H
+)を捕捉し、このプロトン(H+)と、酸化チタン(TiO2)
薄膜からバイアス回路を通じて流れてきた電子(e~)とを
結合させて水素を生成する。またバイアス回路により酸
化チタン(TiO2)薄膜にプラスのバイアス電圧を印加する
と、酸化チタン(TiO2)薄膜の量子効率ないし光電流の発
生量を向上せることができ、またプラスとマイナスの電
圧を交互に周期的に印加することにより、量子効率ない
し光電流の発生量をより向上させるができる。なお量子
効率、光電流については後述の実施例1,2で詳しく説
明する。
In the first thin film photocatalytic chemical conversion device of the present invention, titanium oxide (TiO 2 ) of anatase type crystal structure which is a photocatalyst irradiated with light including an ultraviolet wavelength region in a solution.
The thin film generates holes (h +) and electrons (e), and the solution decomposes in contact with the holes (h +) on the surface of the titanium oxide (TiO 2 ) thin film to generate protons (H +). The proton separation membrane separates protons (H +) migrating in the solution from oxygen generated together with the protons, and the electrochemical catalyst body separates the separated protons (H +).
+) Is trapped, and this proton (H +) and titanium oxide (TiO 2 )
Hydrogen is generated by combining with the electrons (e) flowing from the thin film through the bias circuit. When a positive bias voltage is applied to the titanium oxide (TiO 2 ) thin film by the bias circuit, the quantum efficiency of the titanium oxide (TiO 2 ) thin film or the amount of photocurrent generated can be improved, and positive and negative voltages can be applied. By alternately and cyclically applying, the quantum efficiency or the amount of photocurrent generated can be further improved. The quantum efficiency and photocurrent will be described in detail in Examples 1 and 2 described later.

【0026】本発明の第2の薄膜光触媒化学変換装置に
おいて、第1、第2の光触媒体の2つの光触媒体を用い
ることにより、第1の光触媒体の酸化チタン(TiO2)薄膜
に接する溶液からプロトン(H+)が生成されると共に、第
1の光触媒体を透過した光を受ける第2の光触媒体の酸
化チタン(TiO2)薄膜に接する溶液からもプロトン(H+)が
生成されるので、一つの光触媒体を用いる場合に比べ
て、より多量のプロトン(H+)を生成することができる。
第2の光触媒体として三酸化第二鉄(Fe2O3)薄膜を鉄(F
e)の基板に形成してものを用いても、同様により多量の
プロトン(H+)を生成することができる。これについては
後に実施例4で説明する。
In the second thin film photocatalytic chemical conversion device of the present invention, by using the two photocatalysts of the first and second photocatalysts, the solution contacting the titanium oxide (TiO 2 ) thin film of the first photocatalyst Protons (H +) are generated from the solution, and protons (H +) are also generated from the solution in contact with the titanium oxide (TiO 2 ) thin film of the second photocatalyst that receives the light transmitted through the first photocatalyst. A larger amount of protons (H +) can be generated as compared with the case of using one photocatalyst.
As a second photocatalyst, a ferric trioxide (Fe 2 O 3 ) thin film was used as iron (F 2
A larger amount of protons (H +) can be similarly generated by using the one formed on the substrate of e). This will be described later in Example 4.

【0027】酸化チタン(TiO2)薄膜の厚さは、50nm
未満では光触媒の活性を表す光電流が小さくなり、20
00nmを超えても同様小さくなるため、50〜200
0nmが適当である。また三酸化第二鉄(Fe2O3)薄膜の
厚さは、5nm未満、または200nmを超えると光電
流が小さくなるため、5〜200nmが適当である。
The thickness of the titanium oxide (TiO 2 ) thin film is 50 nm.
If less than 20, the photocurrent showing the activity of the photocatalyst becomes small,
Even if it exceeds 00 nm, it becomes small as well, so 50 to 200
0 nm is suitable. Further, the thickness of the ferric trioxide (Fe 2 O 3 ) thin film is 5 nm to 200 nm because the photocurrent becomes smaller when the thickness is less than 5 nm or exceeds 200 nm.

【0028】本発明の第3、第4の薄膜光触媒化学変換
装置において、電気化学触媒体の表面で炭酸ガスはプロ
トン(H+)により還元されて、一酸化炭素や炭化水素化合
物に変換される。
In the third and fourth thin film photocatalytic chemical conversion devices of the present invention, carbon dioxide gas is reduced by protons (H +) on the surface of the electrochemical catalyst to be converted into carbon monoxide or a hydrocarbon compound.

【0029】本発明の第5の薄膜光触媒化学変換装置
(一体型)において、酸化チタン(TiO2)薄膜上で溶液から
生成されたプロトン(H+)は、有孔式光触媒体の孔に侵入
した溶液を通じて移動し、プロトン分離膜で酸素と分離
され、有孔式電気化学触媒体の孔に侵入した溶液を通っ
てこの電気化学触媒体の裏面に達する。ここでプロトン
(H+)はバイアス回路を通じて流れてきた電子(e~)と結合
して水素に変換される。
Fifth Thin Film Photocatalytic Chemical Conversion Device of the Present Invention
In (integrated type), the proton (H +) generated from the solution on the titanium oxide (TiO 2 ) thin film moves through the solution that has entered the pores of the perforated photocatalyst, and is separated from oxygen by the proton separation membrane, The solution penetrates the pores of the perforated electrochemical catalyst to reach the back surface of the electrochemical catalyst. Where the proton
(H +) is converted to hydrogen by combining with the electrons (e ~) flowing through the bias circuit.

【0030】本発明の第6の薄膜光触媒化学変換装置
(一体型)においては、第5の薄膜光触媒化学変換装置と
同様に化学触媒体の裏面に達したプロトン(H+)は、ここ
に供給された炭酸ガスを還元し、一酸化炭素や炭化水素
化合物を生成する。
The sixth thin film photocatalytic chemical conversion device of the present invention
In the (integrated type), as in the fifth thin film photocatalytic chemical conversion device, the protons (H +) that reach the back surface of the chemical catalyst reduce the carbon dioxide gas supplied here, and the carbon monoxide and hydrocarbon compounds are reduced. To generate.

【0031】本発明の第7の薄膜光触媒化学変換装置に
おいて、酸化チタン(TiO2)薄膜上で溶液から発生したプ
ロトン(H+)はこの薄膜および基板に設けた孔に侵入した
溶液を通じて水素吸蔵合金部材に達し、ここでバイアス
回路を通じて流れてきた電子(e~)と結合して水素に変換
され、この水素は水素吸蔵合金部材に吸引され貯蔵され
ることになる。
In the seventh thin film photocatalytic chemical conversion device of the present invention, the protons (H +) generated from the solution on the titanium oxide (TiO 2 ) thin film penetrate into the holes provided in the thin film and the substrate, and the hydrogen storage alloy is passed through the solution. It reaches the member and is converted into hydrogen by combining with the electrons (e) flowing through the bias circuit here, and this hydrogen is sucked and stored in the hydrogen storage alloy member.

【0032】以上のように本発明の各装置によれば、水
から水素を製造でき、あるいは炭酸ガスを有用な物質に
化学変換できる。この装置は二次公害を出さない。
As described above, according to each apparatus of the present invention, hydrogen can be produced from water or carbon dioxide can be chemically converted into a useful substance. This device does not cause secondary pollution.

【0033】[0033]

【実施例】【Example】

〔実施例1〕以下に、薄膜光触媒の量子効率を測定した
実験結果について述べる。本実験に用いた薄膜光触媒装
置は、図3に示すように、金属チタンの基板3表面にア
ナターゼ型結晶構造を含む酸化チタン(TiO2)薄膜光触媒
2を形成した光触媒体4と、プロトン分離膜8と、白金
板の電気化学触媒体9とを順に配列し、それらを海水ま
たは重炭酸カリウム(KHCO3)の電解質を含む水溶液で満
たされた容器に設置し、そして光触媒体4と電気化学触
媒体9とをバイアス回路Eで接続し、さらに酸化チタン
(TiO2)薄膜光触媒2に光(エネルギーhν)を照射する光
源1を容器外に設置したものである。この薄膜光触媒装
置においては、薄膜光触媒2の表面で水の分解によって
発生するプロトン(H+)は、溶液内を拡散してプロトン分
離膜8を通過し、電気化学触媒9の表面へと移動する。
プロトン分離膜8によってプロトンと酸素との再結合を
防止できている。一方、光を受けて薄膜光触媒2でホー
ル(h+)と共に発生した電子e~は薄膜光触媒2からバ
イアス回路を通じて電気化学触媒9へと移動する。
[Example 1] The experimental results of measuring the quantum efficiency of the thin film photocatalyst will be described below. As shown in FIG. 3, the thin-film photocatalyst device used in this experiment includes a photocatalyst body 4 in which a titanium oxide (TiO 2 ) thin-film photocatalyst 2 containing anatase type crystal structure is formed on the surface of a substrate 3 made of titanium metal, and a proton separation membrane. 8 and an electrochemical catalyst body 9 of a platinum plate are arranged in order, and they are placed in a container filled with seawater or an aqueous solution containing an electrolyte of potassium bicarbonate (KHCO 3 ), and the photocatalyst body 4 and the electrochemical catalyst body 4 are placed. Bias circuit E is connected to medium 9, and titanium oxide
The light source 1 for irradiating the (TiO 2 ) thin film photocatalyst 2 with light (energy hν) is installed outside the container. In this thin film photocatalyst device, the protons (H +) generated by the decomposition of water on the surface of the thin film photocatalyst 2 diffuse in the solution, pass through the proton separation membrane 8, and move to the surface of the electrochemical catalyst 9.
The proton separation membrane 8 prevents recombination of protons and oxygen. On the other hand, the electrons e ~ generated along with holes (h +) in the thin film photocatalyst 2 upon receiving light move from the thin film photocatalyst 2 to the electrochemical catalyst 9 through the bias circuit.

【0034】実験では、酸化チタン薄膜光触媒2の表面
に光源1からの照射光子量を一定として等間隔で波長を
変化させて光を照射しながら、光触媒体の量子効率を測
定した。なお、この実験ではバイアス電圧Eは印加しな
かった。
In the experiment, the quantum efficiency of the photocatalyst was measured while irradiating the surface of the titanium oxide thin film photocatalyst 2 with light having a constant amount of photons emitted from the light source 1 and changing the wavelength at equal intervals. The bias voltage E was not applied in this experiment.

【0035】図4は、実験の結果を示す図で、曲線(a)
は溶液として海水を用いた場合、曲線(b)は溶液として
重炭酸カリウム(KHCO3)水溶液を用いた場合の量子効率
(%)を示す。酸化チタン(TiO2)薄膜光触媒2からなる光
触媒の量子効率は、いずれの溶液においても、アナター
ゼのバンドギャップである約3.0eVに相当する波
長、即ち約410nmから量子効率が立上り、波長が短
くなるにつれて上昇し、約55〜60%に達する。量子
効率は、照射する光を光子としてとらえた場合、図1の
原理のように、1個の光子によって電子が何個価電子帯
から伝導帯へと励起されるかを示すもの、あるいはその
確立を表すものとして、光触媒の潜在的物性性能を表
す。55〜60%はかなり高い量子効率である。本実験
データは酸化チタン薄膜光触媒の基本物性評価として重
要である。ところで別に実験で確認したところ、プロト
ン分離膜8がなくても同じ結果となり、薄膜光触媒の量
子効率についてはプロトン分離膜の存在に無関係である
ことが判明した。
FIG. 4 is a diagram showing the results of the experiment, which is the curve (a).
Is the quantum efficiency when seawater is used as the solution, and curve (b) is the quantum efficiency when the potassium bicarbonate (KHCO 3 ) solution is used as the solution.
(%) Is shown. Regarding the quantum efficiency of the photocatalyst composed of the titanium oxide (TiO 2 ) thin film photocatalyst 2, in any solution, the quantum efficiency rises from a wavelength corresponding to the band gap of anatase of about 3.0 eV, that is, about 410 nm, and the wavelength is short. It rises and reaches about 55-60%. Quantum efficiency indicates how many valence band electrons are excited by one photon into the conduction band when the emitted light is captured as photons, as shown in the principle of Fig. 1. Represents the potential physical property of the photocatalyst. 55-60% is a fairly high quantum efficiency. This experimental data is important for evaluation of basic physical properties of titanium oxide thin film photocatalyst. By another experiment, the same result was obtained without the proton separation membrane 8, and it was found that the quantum efficiency of the thin film photocatalyst was irrelevant to the existence of the proton separation membrane.

【0036】〔実施例2〕次に実施例1で用いたのと同
じ装置により、バイアス電圧E下における酸化チタン薄
膜光触媒2の光電流特性を調べた。図3に示すように、
酸化チタン薄膜光触媒2を有する光触媒体4と白金板の
電気化学触媒9とを電池を介して結線し、酸化チタン薄
膜光触媒2表面に光源1から光を照射し、かつ酸化チタ
ン薄膜光触媒2にバイアス電圧Eを段階的に変化させて
付加しながら、光電流を測定した。
Example 2 Next, the photocurrent characteristics of the titanium oxide thin film photocatalyst 2 under the bias voltage E were examined by the same apparatus as that used in Example 1. As shown in FIG.
A photocatalyst 4 having a titanium oxide thin film photocatalyst 2 and a platinum plate electrochemical catalyst 9 are connected via a battery, the surface of the titanium oxide thin film photocatalyst 2 is irradiated with light from a light source 1, and the titanium oxide thin film photocatalyst 2 is biased. The photocurrent was measured while the voltage E was changed stepwise and applied.

【0037】酸化チタン薄膜に生じる光電流は、図5に
示すように、海水または重炭酸カリウム水溶液のいずれ
の溶液の場合も、バイアス電圧が−0.5V位から+0.
5Vにかけて上昇し、+0.5V位で一定値に近づき、
約6mA/cm2に落ち着いた。曲線(a)は溶液として
海水を用いた場合、曲線(b)は溶液として重炭酸カリウ
ム水溶液を用いた場合の光電流を示す。このようにバイ
アスは光触媒体で発生する電子をより多く取り出すのに
効力を発し、本結果でもこれによってかなり高い光電流
を得ている。本実験結果は酸化チタン薄膜触媒の基本物
性評価として実施例1と共に重要である。
As shown in FIG. 5, the photocurrent generated in the titanium oxide thin film was +0.5 from the bias voltage of about -0.5V in both cases of seawater and potassium bicarbonate aqueous solution.
It rises over 5V and approaches a certain value at about + 0.5V,
It settled down to about 6 mA / cm 2 . Curve (a) shows the photocurrent when seawater was used as the solution, and curve (b) shows the photocurrent when the aqueous potassium bicarbonate solution was used as the solution. Thus, the bias is effective in extracting more electrons generated in the photocatalyst, and in this result, too, a considerably high photocurrent is obtained. The results of this experiment are important together with Example 1 for evaluating the basic physical properties of the titanium oxide thin film catalyst.

【0038】〔実施例3〕図6は2つの光触媒体を2段
に配置して、図3に示す装置と同じようにプロトン分離
膜、電気化学触媒体等と組み合わせた多段式薄膜光触媒
装置を示す。なおこの実施例ではCO2の供給はない。
[Embodiment 3] FIG. 6 shows a multistage thin film photocatalyst device in which two photocatalysts are arranged in two stages and combined with a proton separation membrane, an electrochemical catalyst, etc. in the same manner as the device shown in FIG. Show. No CO 2 was supplied in this example.

【0039】第1の光触媒体4は、光触媒としてアナタ
ーゼ型結晶構造を含む酸化チタン(TiO2)薄膜光触媒2を
用い、基板3として光透過性の酸化第二スズ(SnO2)で被
膜した光透過性のガラスを用い、酸化第二スズ(SnO2)膜
上に酸化チタン(TiO2)薄膜光触媒2を形成して構成され
ている。また第2の光触媒体7は、第1の光触媒体4と
同じく、酸化チタン(TiO2)薄膜5と光透過性の酸化第二
スズ(SnO2)で被膜した光透過性のガラスの基板6とから
構成されている。第1の光触媒体4、第2の光触媒体
7、プロトン分離膜8及び白金板の電気化学触媒体9
を、KHCO3溶液を満たした容器内に順次に設置し、第1
の光触媒体4を介して第2の光触媒体に光を照射するよ
うに光源1を容器の外に設置して多段式薄膜光触媒装置
を組んだ。
The first photocatalyst body 4 uses a titanium oxide (TiO 2 ) thin film photocatalyst 2 having an anatase type crystal structure as a photocatalyst, and a light-transmitting stannic oxide (SnO 2 ) film as a substrate 3. It is configured by forming a titanium oxide (TiO 2 ) thin film photocatalyst 2 on a stannic oxide (SnO 2 ) film using a transparent glass. The second photocatalyst 7 is, like the first photocatalyst 4, a titanium oxide (TiO 2 ) thin film 5 and a light-transmissive glass substrate 6 coated with light-transmissive stannic oxide (SnO 2 ). It consists of and. First photocatalyst 4, second photocatalyst 7, proton separation membrane 8 and platinum plate electrochemical catalyst 9
Are sequentially installed in a container filled with KHCO 3 solution,
The multistage thin film photocatalyst device was assembled by installing the light source 1 outside the container so that the second photocatalyst body was irradiated with light through the photocatalyst body 4.

【0040】この装置による実験から以下の結果を得
た。まず薄膜触媒2と電気化学触媒9とを電気的に接続
し、光源1としてキセノンランプ又は水銀ランプいずれ
かを用いて薄膜光触媒1に光照射することによって光電
流が得られることを確認した。例えば500W水銀ラン
プで1Vのバイアス電圧下において3mA/cm2の電
流を得た。このことは、この薄膜光触媒1が光透過性を
持っており、また薄膜光触媒1によって吸収されずに透
過してくる光によっても薄膜光触媒2において光による
電子励起が行なわれて光電流が得られたことを示してい
る。
The following results were obtained from the experiment using this apparatus. First, it was confirmed that a photocurrent was obtained by electrically connecting the thin film catalyst 2 and the electrochemical catalyst 9 and irradiating the thin film photocatalyst 1 with light using either a xenon lamp or a mercury lamp as the light source 1. For example, a current of 3 mA / cm 2 was obtained under a bias voltage of 1 V with a 500 W mercury lamp. This means that the thin-film photocatalyst 1 has a light-transmitting property, and the thin-film photocatalyst 2 is electronically excited by light to obtain a photocurrent even by light that is transmitted without being absorbed by the thin-film photocatalyst 1. It shows that.

【0041】次に、薄膜光触媒1と薄膜光触媒2とを電
気的に並列接続し、それらを電気化学触媒9に直列接続
した。この場合の光電流密度は500W水銀ランプで、
1Vのバイアス電圧下では9mA/cm2であった。こ
の値は同じ条件において光触媒体4単独の場合に比べて
3mA/cm2以上大きかった。以上の結果より、バン
ドギャップの同じ薄膜光触媒を多段式に組み合わせるこ
との効果が示された。
Next, the thin film photocatalyst 1 and the thin film photocatalyst 2 were electrically connected in parallel, and they were connected in series to the electrochemical catalyst 9. The photocurrent density in this case is 500 W mercury lamp,
It was 9 mA / cm 2 under a bias voltage of 1V. This value was 3 mA / cm 2 or more under the same conditions as in the case of using the photocatalyst 4 alone. From the above results, the effect of combining the thin film photocatalysts having the same band gap in multiple stages was shown.

【0042】〔実施例4〕この実施例の装置では、図6
に示す多段式薄膜光触媒装置おいて第2の触媒体7を実
施例3のものとは別の材質で構成したものを用いた。す
なわち、第1の光触媒体4は、アナターゼ型結晶構造を
含む酸化チタン(TiO2)薄膜光触媒2とその基板4として
光透過性の酸化第二スズ(SnO2)で被膜した光透過性の
ガラスとから、一方、第2の光触媒体7は光触媒として
三酸化第二鉄(Fe2O3)の薄膜光触媒5とその基板6とし
て金属鉄とから構成したものである。このように光触媒
が異種の2つの光触媒体とプロトン分離膜8と白金板の
電気化学触媒9とを設置して多段式装置を組み、以下の
各実験結果を得た。
[Embodiment 4] In the apparatus of this embodiment, FIG.
In the multi-stage thin film photocatalyst device shown in (1), the second catalyst body 7 made of a material different from that of the third embodiment was used. That is, the first photocatalyst body 4 is a titanium oxide (TiO 2 ) thin film photocatalyst 2 having an anatase type crystal structure and a light-transmitting glass coated with light-transmitting stannic oxide (SnO 2 ) as its substrate 4. On the other hand, the second photocatalyst 7 is composed of a thin film photocatalyst 5 of ferric trioxide (Fe 2 O 3 ) as a photocatalyst and metallic iron as its substrate 6. As described above, two photocatalysts having different photocatalysts, the proton separation membrane 8 and the electrochemical catalyst 9 of a platinum plate were installed to construct a multi-stage apparatus, and the following experimental results were obtained.

【0043】まず第2の光触媒体7と電気化学触媒9と
を直列接続して、キセノンランプまたは水銀ランプいず
れかを光源1として第1の光触媒体4の1に光照射する
ことによって光電流が得られることを確認した。例えば
500W水銀ランプで1Vのバイアス電圧下において2
mA/cm2の光電流を得た。このことは、第1の光触
媒体4が光透過性を持っており、また第1の光触媒体4
によって吸収されずに透過してくる光によっても第2の
光触媒体7において光による電子励起が行なわれ、光電
流が得られたことを示している。
First, the second photocatalyst 7 and the electrochemical catalyst 9 are connected in series, and a photocurrent is generated by irradiating 1 of the first photocatalyst 4 with 1 of the xenon lamp or the mercury lamp as the light source 1. It was confirmed that it was obtained. For example, with a 500 W mercury lamp, under a bias voltage of 1 V, 2
A photocurrent of mA / cm 2 was obtained. This means that the first photocatalyst body 4 has a light-transmitting property, and
It is shown that the second photocatalyst body 7 also electronically excites the light by the light that is transmitted without being absorbed by the second photocatalyst body 7, and a photocurrent is obtained.

【0044】次に、第1、第2の光触媒体4,7を並列
接続し、それらを電気化学触媒9に直列接続した状態
で、500Wのキセノンランプを第1の光触媒体4に照
射した結果、第1の光触媒体4と第2の光触媒体7とが
各々単独の場合と比較して、二つの光触媒を2段に配置
すると大幅な光電流の向上が見られた。特に、第1の光
触媒体4単独に比べて、V=1Vのバイアス電圧におい
て50%〔第1の光触媒体4単独の8mA/cm2に対
して2段配列により12mA/cm2〕、またV=1.
5Vにおいて183%〔第1の光触媒体4単独の9mA
/cm2に対して2段配置により25.5mA/cm2
の各向上率であった。以上のことはバンドギャップの異
なる二つの薄膜光触媒を多段式で組み合わせることの効
果を表している。
Next, the first photocatalyst body 4 was irradiated with a 500 W xenon lamp with the first and second photocatalyst bodies 4 and 7 connected in parallel and connected in series to the electrochemical catalyst 9. In comparison with the case where the first photocatalyst body 4 and the second photocatalyst body 7 are independent of each other, when two photocatalysts are arranged in two stages, a significant improvement in photocurrent was observed. In particular, as compared to the first photocatalyst 4 alone, 50% in the bias voltage of V = 1V [first 12 mA / cm 2 by 2-step sequence to the photocatalyst 4 alone 8 mA / cm 2], also V = 1.
183% at 5 V [9 mA of the first photocatalyst body 4 alone
The two-stage arrangement with respect / cm 2 25.5mA / cm 2]
Of each improvement rate. The above shows the effect of combining two thin film photocatalysts having different band gaps in a multi-stage manner.

【0045】〔実施例5〕図7は光触媒により得たプロ
トンと原料CO2とを用いて炭化水素化合物等を生成する
薄膜光触媒化学変換装置を示す。この装置では、薄膜光
触媒2にはアナターゼ型結晶構造を含む酸化チタン(TiO
2)を、薄膜2を形成する基板3に金属チタンを用い、電
気化学触媒9にZnO/Cu(銅板に適量の酸化亜鉛を付着し
たもの)を起用した。そしてこの装置は、室温で0.1
mol/l濃度のKHCO3の電解質水溶液中に、薄膜光触
媒2及び基板3からなる光触媒体4とプロトン分離膜8
と電気化学触媒9とを順次配列し、光触媒体4と電気化
学触媒9とをバイアス回路Eで接続し、薄膜光触媒2に
光を照射する500Wのキセノンランプ1を設置して、
構成した。この装置においては、薄膜光触媒2の表面で
水の分解によって発生するプロトン(H+)は、溶液内を拡
散してプロトン分離膜8を通過し、電気化学触媒9の表
面へと移動する。プロトン分離膜8によってプロトンと
酸素との再結合を防止できている。そして電気化学触媒
9に接触する反応物はプロトンと電子によって下記式で
示す電気化学反応によって還元され種々生成物を発生す
る。
[Embodiment 5] FIG. 7 shows a thin film photocatalytic chemical conversion device for producing a hydrocarbon compound or the like by using a proton obtained by a photocatalyst and a raw material CO 2 . In this device, the thin-film photocatalyst 2 has a titanium oxide (TiO 2) containing anatase type crystal structure.
In 2 ), metallic titanium was used for the substrate 3 on which the thin film 2 was formed, and ZnO / Cu (a copper plate to which an appropriate amount of zinc oxide was attached) was used as the electrochemical catalyst 9. And this device is 0.1 at room temperature.
A photocatalyst body 4 comprising a thin film photocatalyst 2 and a substrate 3 and a proton separation membrane 8 in a mol / l concentration aqueous solution of KHCO 3 electrolyte.
And the electrochemical catalyst 9 are sequentially arranged, the photocatalyst 4 and the electrochemical catalyst 9 are connected by the bias circuit E, and the 500 W xenon lamp 1 for irradiating the thin film photocatalyst 2 with light is installed.
Configured. In this device, protons (H +) generated by the decomposition of water on the surface of the thin film photocatalyst 2 diffuse in the solution, pass through the proton separation membrane 8, and move to the surface of the electrochemical catalyst 9. The proton separation membrane 8 prevents recombination of protons and oxygen. Then, the reaction product which comes into contact with the electrochemical catalyst 9 is reduced by protons and electrons by an electrochemical reaction represented by the following formula to generate various products.

【0046】 aCO2 + bH+ ce~ → dCxHyOz + eH2O この装置において、バイアス電圧=1Vとし、二酸化炭
素(CO2)を電気化学触媒9側に流入させた結果、次のよ
うな各種生成物の電流効率を得た。メタン15.8%、
エチレン10.4%、一酸化炭素23.4%、水素41.
9%であった。従って薄膜光触媒と電気化学触媒とを組
み合わせた本装置は水素製造および炭酸ガスの化学変換
用として機能することを確認した。この場合の炭酸ガス
変換率は、58.1%であった。
ACO 2 + bH + ce ~ → dCxHyOz + eH 2 O In this device, the bias voltage is set to 1 V, and carbon dioxide (CO 2 ) is caused to flow into the electrochemical catalyst 9 side. The current efficiency of the product was obtained. Methane 15.8%,
Ethylene 10.4%, carbon monoxide 23.4%, hydrogen 41.
It was 9%. Therefore, it was confirmed that this device, which is a combination of a thin film photocatalyst and an electrochemical catalyst, functions for hydrogen production and chemical conversion of carbon dioxide. The carbon dioxide conversion rate in this case was 58.1%.

【0047】〔実施例6〕実施例5と同様の実験におい
て、バイアス電圧をプラスとマイナスの間で交互に一定
時間の周期で変化させることにより、炭酸ガスの化学変
換によって生成する炭化水素の生成向上を見た。即ち、
電流効率でメタン44%、エチレン24%を得た。炭酸
ガスの変換率も86%とかなり高くなった。またこのバ
イアス電圧付加方法によって少なくとも30時間以上、
これらの電流効率が維持され、従って触媒反応が劣化さ
れないこともわかった。
Example 6 In the same experiment as in Example 5, the bias voltage is alternately changed between plus and minus at a constant time period to generate hydrocarbons produced by chemical conversion of carbon dioxide gas. I saw an improvement. That is,
With current efficiency, 44% of methane and 24% of ethylene were obtained. The conversion rate of carbon dioxide was considerably high at 86%. Also, by this bias voltage addition method, at least 30 hours or more,
It was also found that these current efficiencies were maintained and therefore the catalytic reaction was not degraded.

【0048】〔実施例7〕図8は薄膜光触媒、プロトン
分離膜および電気化学触媒を一体化した化学変換装置の
構成を示す図である。この一体型装置は薄膜光触媒層内
および電気化学触媒内を有孔式にし、更にそれらの間に
プロトン分離膜を挟んで一体化し、全体を通じて薄膜光
触媒側で発生するプロトン(H+)が通過できるように
構成されている。また薄膜光触媒層と電気化学触媒との
間にバイアス電圧を付加する場合もある。
[Embodiment 7] FIG. 8 is a diagram showing the structure of a chemical conversion device in which a thin film photocatalyst, a proton separation membrane and an electrochemical catalyst are integrated. In this integrated device, the inside of the thin film photocatalyst layer and the electrochemical catalyst are made porous, and a proton separation membrane is sandwiched between them to integrate them so that protons (H +) generated on the side of the thin film photocatalyst can pass through. Is configured. A bias voltage may be applied between the thin film photocatalyst layer and the electrochemical catalyst.

【0049】図8において、有孔式薄膜光触媒12とし
てアナターゼ型結晶構造を含む酸化チタン(TiO2)とその
有孔式基板13として酸化第二スズ(SnO2)で被覆したガ
ラス、有孔式電気化学触媒19として白金板などをプロ
トン分離膜と8一体化して、室温、0.1 mol/l濃
度のKHCO3の電解質を含む水溶液、光源1として5
00W水銀ランプ等の条件下において、100%の水素
生成電流効率を得た。水素生成速度は1m2の薄膜光触
媒面積当たりで20 l/hrであった。更に有孔式電気
化学触媒19側に炭酸ガスを流入させた時、メタン、エ
チレンなどの炭酸ガス再資源化物の生成を確認した。こ
れらの実験結果は、本装置が水素製造器として、また炭
酸ガスの化学変換器としての機能を持つことを示してい
る。次に、上記と同じ実験を太陽光を光源として行なっ
たところ、水素およびメタンの生成を確認した。従って
本装置は太陽光でも機能する。
In FIG. 8, titanium oxide (TiO 2 ) containing an anatase type crystal structure is used as the perforated thin film photocatalyst 12, and stannic oxide (SnO 2 ) coated glass is used as the perforated substrate 13, and the perforated type is shown. A platinum plate or the like as the electrochemical catalyst 19 is integrated with the proton separation membrane 8 at room temperature, an aqueous solution containing an electrolyte of KHCO 3 at a concentration of 0.1 mol / l, and 5 as the light source 1.
Under conditions such as a 00 W mercury lamp, 100% hydrogen generation current efficiency was obtained. The hydrogen generation rate was 20 1 / hr per 1 m 2 of thin film photocatalyst area. Furthermore, when carbon dioxide gas was made to flow into the porous electrochemical catalyst 19 side, generation of carbon dioxide gas recycle such as methane and ethylene was confirmed. These experimental results show that this device functions as a hydrogen generator and a carbon dioxide chemical converter. Next, when the same experiment as described above was performed using sunlight as a light source, production of hydrogen and methane was confirmed. Therefore, the device works in sunlight.

【0050】〔実施例8〕酸化チタン(TiO2)薄膜光触媒
の製法について説明する。0.5 mol/l濃度のチタ
ンイソプロポキシド〔Ti(i−OC3H7)4〕のエタノール溶
液に適量の塩酸を付加したゾル溶液を作成した。このゾ
ル溶液を酸化第二スズ(SnO2)を被覆したガラスの基板に
塗布して500℃にて空気焼成ゲル化する作業を繰り返
すことにより、透明な酸化チタン(TiO2)膜を得た。この
膜は走査型電子顕微鏡による測定で500nmの厚さを
持ち、またエックス線解析によるバルク構造解析でほぼ
100%のアナターゼ型結晶構造であることが判明し
た。更にレーザーラマン分光分析法によって、表面近傍
でも100%アナターゼになっていることを確認した。
以上の結果は基板を金属チタンにした場合も同じであっ
た。
Example 8 A method for producing a titanium oxide (TiO 2 ) thin film photocatalyst will be described. Created a 0.5 mol / l concentration of titanium isopropoxide [Ti (i-OC 3 H 7 ) 4 ] sol solution obtained by adding an appropriate amount of hydrochloric acid in ethanol solution of. A transparent titanium oxide (TiO 2 ) film was obtained by repeating the operation of applying this sol solution to a glass substrate coated with stannic oxide (SnO 2 ) and air-baking and gelling at 500 ° C. This film had a thickness of 500 nm as measured by a scanning electron microscope, and was found to have almost 100% anatase type crystal structure by bulk structure analysis by X-ray analysis. Furthermore, it was confirmed by laser Raman spectroscopy that 100% anatase was present even near the surface.
The above results were the same when the substrate was made of metallic titanium.

【0051】本実験結果は上記のゾル・ゲル法による酸
化チタン(TiO2)膜の調製方法によってアナターゼ型結晶
構造の薄膜酸化チタンの光触媒ができることを示してい
る。この薄膜酸化チタンは上記全ての実施例で使用され
たものである。
The results of this experiment show that a photocatalyst of thin film titanium oxide having an anatase type crystal structure can be obtained by the above-mentioned method for preparing a titanium oxide (TiO 2 ) film by the sol-gel method. This thin film titanium oxide was used in all the above examples.

【0052】〔実施例9〕次に三酸化第二鉄(Fe2O3)薄
膜光触媒の製法について説明する。硝酸鉄9水和物〔Fe9
(NO3)3・9H2O〕のエチレングリコール溶液に適量の硝酸
を付加してできるゾル溶液に、酸化第二スズ(SnO2)で被
覆したガラス基板に塗布して500℃にて空気酸化して
ゲル化することを繰り返すことにより、アルファ型の三
酸化第二鉄(α−Fe2O3)膜が形成することがエックス線
解析で判明した。また膜厚は約40nmで500Wの水
銀ランプまたはキセノンランプのいずれの場合でも光電
流密度が最大になることがわかった。また、金属チタ
ン、金属鉄の基板でも同様の結果を得た。これらの三酸
化第二鉄(Fe2O3)の薄膜光触媒は上記の実施例4で使用
されたものである。
Example 9 Next, a method for producing a ferric trioxide (Fe 2 O 3 ) thin film photocatalyst will be described. Iron nitrate nonahydrate (Fe 9
(NO 3) 3 · 9H to 2 O] sol solution can be added an appropriate amount of nitric acid in ethylene glycol solution, air oxidized at to 500 ° C. is applied to a glass substrate coated with stannic oxide (SnO 2) It was found by X-ray analysis that an alpha-type ferric trioxide (α-Fe 2 O 3 ) film was formed by repeating the gelling. It was also found that the photocurrent density was maximized in the case of a 500 W mercury lamp or a xenon lamp having a film thickness of about 40 nm. Similar results were also obtained with a substrate made of metallic titanium or metallic iron. These ferric trioxide (Fe 2 O 3 ) thin film photocatalysts were used in Example 4 above.

【0053】〔実施例10〕図9、図10はそれぞれ薄
膜光触媒と水素吸蔵合金とを組み合わせた薄膜光触媒化
学変換装置の構成を示す。図9に示す装置は、有孔式薄
膜光触媒12、有孔式基板13及び水素吸蔵合金20を
順次並べて一体化して水溶液内に設置し、そして有孔式
基板13(導電性)と水素吸蔵合金20をバイアス回路E
で接続して構成したものである。この装置においては水
素吸蔵合金20はプロトンを選択的に吸蔵する。図10
に示す装置は、図9に示す装置にプロトン分離膜6を加
え、そして有孔式薄膜光触媒12、有孔式基板13、プ
ロトン分離膜6及び水素吸蔵合金20を順次に並べて一
体化して水溶液内に設置して構成したものである。図
9,10において、プロトンを貯蔵する場合は、バイア
ス回路Eを遮断する。一方、水素を貯蔵する場合は、バ
イアス回路Eを接続し、薄膜光触媒で光照射の際に発生
する電子を取り入れて、2H+ + 2e~ →H2の反応を生
ぜしめる。
[Embodiment 10] FIGS. 9 and 10 show the structure of a thin film photocatalytic chemical conversion device in which a thin film photocatalyst and a hydrogen storage alloy are combined. In the apparatus shown in FIG. 9, the perforated thin film photocatalyst 12, the perforated substrate 13 and the hydrogen storage alloy 20 are sequentially arranged and integrated into one and placed in an aqueous solution, and then the perforated substrate 13 (conductive) and the hydrogen storage alloy are arranged. 20 is a bias circuit E
It is configured by connecting with. In this device, the hydrogen storage alloy 20 selectively stores protons. Figure 10
In the apparatus shown in FIG. 9, the proton separation membrane 6 is added to the apparatus shown in FIG. 9, and the perforated thin film photocatalyst 12, the perforated substrate 13, the proton separation membrane 6 and the hydrogen storage alloy 20 are sequentially arranged and integrated in an aqueous solution. It was installed and configured. 9 and 10, when storing protons, the bias circuit E is cut off. On the other hand, in the case of storing hydrogen, the bias circuit E is connected to take in the electrons generated at the time of light irradiation by the thin film photocatalyst to cause the reaction of 2H + + 2e ~ → H 2 .

【0054】図10において、有孔式薄膜光触媒12と
してアナターゼ型結晶構造を含む酸化チタン(TiO2)、有
孔式基板13として金属チタン、プロトン分離膜8とラ
ンタン・ニッケル系の水素吸蔵合金20と一体化して重
炭酸カリウム(KHCO3)の電解質を含む水溶液内に設置
し、バイアス電圧1V、500W水銀ランプによって5
×1022個/cm3の水素吸蔵量を得た。
In FIG. 10, titanium oxide (TiO 2 ) containing anatase type crystal structure is used as the perforated thin film photocatalyst 12, metallic titanium is used as the perforated substrate 13, a proton separation membrane 8 and a lanthanum-nickel hydrogen storage alloy 20. Installed in an aqueous solution containing an electrolyte of potassium bicarbonate (KHCO 3 ) and integrated with a bias voltage of 1 V and a 500 W mercury lamp to 5
A hydrogen storage capacity of × 10 22 pieces / cm 3 was obtained.

【0055】以上の実施例では、光源としてキセノンラ
ンプ、水銀ランプを用いたが、そのほか太陽光を用いる
ことができるのは勿論である。またバイアス電圧用電源
としては太陽電池、乾電池、他の直流電源を用いること
ができる。
In the above embodiments, the xenon lamp and the mercury lamp were used as the light source, but it goes without saying that sunlight can be used. As the bias voltage power source, a solar cell, a dry cell, or another DC power source can be used.

【0056】[0056]

【発明の効果】本発明によれば、薄膜光触媒化学変換装
置を、室温の水、海水または電解質を含む水溶液(各液
を一括して溶液という)中に順次設置した酸化チタン薄
膜光触媒、プロトン分離膜、電気化学触媒体と、薄膜光
触媒に光を照射する光源と、薄膜光触媒と電気化学触媒
体を接続する回路とを基本要素として構成したので、室
温で以下のプロセス、すなわち、(1)光源から光を照射
された薄膜光触媒で電子と正孔を発生し、(2)薄膜光触
媒に接触した溶液は正孔と反応して分解し、プロトンと
酸素を発生し、(3)プロトン分離膜はプロトンを酸素か
ら分離し透過させ、(4)電気化学触媒体表面でプロトン
が電気化学的に結合して水素を生成し、また(5)電気化
学触媒体表面に炭酸ガスが供給すれば、プロトンと電子
によって炭酸ガスの還元反応が起き、CO、炭化水素を
生成すること、が可能となり、したがって紫外線領域を
含む光源または太陽光および水または海水または電解質
を含む水溶液を原料として、室温で水を分解して水素を
生成し、また室温で炭酸ガスを有用物質に再資源化する
ことを可能にする。
According to the present invention, a thin film photocatalyst chemical conversion device is sequentially installed in room temperature water, seawater or an aqueous solution containing an electrolyte (each solution is collectively referred to as a solution), and a titanium oxide thin film photocatalyst and proton separation are provided. Since the film, the electrochemical catalyst, the light source that irradiates the thin film photocatalyst with light, and the circuit that connects the thin film photocatalyst and the electrochemical catalyst are configured as basic elements, the following process at room temperature, that is, (1) light source Electrons and holes are generated by the thin film photocatalyst irradiated with light from (2), the solution in contact with the thin film photocatalyst is decomposed by reacting with holes to generate protons and oxygen, and (3) the proton separation membrane is Protons are separated from oxygen and permeated, and (4) protons are electrochemically bound on the surface of the electrochemical catalyst to generate hydrogen, and (5) if carbon dioxide is supplied to the surface of the electrochemical catalyst, the protons Reaction of carbon dioxide gas with electrons and electrons It is possible to wake up and generate CO and hydrocarbons, and thus decompose water to produce hydrogen at room temperature using a light source containing the ultraviolet region or sunlight and water or seawater or an aqueous solution containing an electrolyte as a raw material, and It makes it possible to recycle carbon dioxide into useful substances at room temperature.

【0057】上記基本型装置の変型である、(a)薄膜光
触媒を2段に設置した装置、または(b)薄膜光触媒、該
薄膜の基板および電気化学触媒体に溶液を通す孔を設
け、薄膜光触媒、プロトン分離膜および電気化学触媒体
9を一体結合して小型化した装置、または(c)水素吸蔵
合金を設置した装置によっても、上記同様に再資源化を
可能にする。
As a modification of the above basic type device, (a) a device in which a thin film photocatalyst is installed in two stages, or (b) a thin film photocatalyst, a substrate for the thin film, and a hole for allowing a solution to pass through the electrochemical catalyst, The photocatalyst, the proton separation membrane, and the electrochemical catalyst body 9 are integrally connected to each other to reduce the size, or (c) a device having a hydrogen storage alloy installed therein, which enables recycling in the same manner as described above.

【図面の簡単な説明】[Brief description of drawings]

【図1】光照射による光触媒活性化の原理を説明する図
である。
FIG. 1 is a diagram illustrating the principle of photocatalytic activation by light irradiation.

【図2】光触媒である酸化チタンによる水の分解の原理
を説明する図である。
FIG. 2 is a diagram illustrating the principle of water decomposition by titanium oxide, which is a photocatalyst.

【図3】薄膜光触媒/プロトン分離膜/電気化学触媒の
薄膜光触媒装置の構成を示す図である。
FIG. 3 is a diagram showing a configuration of a thin film photocatalyst / proton separation membrane / electrochemical catalyst thin film photocatalyst device.

【図4】酸化チタン薄膜光触媒の量子効率特性を示す図
である。
FIG. 4 is a diagram showing quantum efficiency characteristics of a titanium oxide thin film photocatalyst.

【図5】酸化チタン薄膜光触媒のバイアス電圧−光電流
特性を示す図である。
FIG. 5 is a diagram showing bias voltage-photocurrent characteristics of a titanium oxide thin film photocatalyst.

【図6】2段配列薄膜光触媒/プロトン分離膜/電気化
学触媒の薄膜光触媒装置の構成を示す図である。
FIG. 6 is a diagram showing a configuration of a thin film photocatalyst device of two-stage array thin film photocatalyst / proton separation membrane / electrochemical catalyst.

【図7】薄膜光触媒/プロトン分離膜/電気化学触媒の
薄膜光触媒化学変換装置の構成を示す図である。
FIG. 7 is a diagram showing the configuration of a thin film photocatalyst / proton separation membrane / electrochemical catalyst thin film photocatalytic chemical conversion device.

【図8】薄膜光触媒/プロトン分離膜/電気化学触媒の
一体型薄膜光触媒化学変換装置の構成を示す図である。
FIG. 8 is a diagram showing the configuration of a thin film photocatalyst / proton separation membrane / electrochemical catalyst integrated thin film photocatalyst chemical conversion device.

【図9】薄膜光触媒/水素吸蔵合金の一体型薄膜光触媒
化学変換装置の構成を示す図である。
FIG. 9 is a diagram showing a configuration of a thin film photocatalyst / hydrogen storage alloy integrated thin film photocatalytic chemical conversion device.

【図10】薄膜光触媒/プロトン分離膜/水素吸蔵合金
の一体型薄膜光触媒化学変換装置の構成を示す図であ
る。
FIG. 10 is a diagram showing the configuration of a thin film photocatalyst / proton separation membrane / hydrogen storage alloy integrated thin film photocatalyst chemical conversion device.

【符号の説明】[Explanation of symbols]

1 光源 2 薄膜光触媒 3 基板 4 光触媒体 5 薄膜光触媒 6 基板 7 光触媒体 8 プロトン分離膜 9 電気化学触媒体 12 有孔式薄膜光触媒 13 有孔式基板 19 有孔式電気化学触媒体 20 水素吸蔵合金 E バイアス電圧 1 Light Source 2 Thin Film Photocatalyst 3 Substrate 4 Photocatalyst 5 Thin Film Photocatalyst 6 Substrate 7 Photocatalyst 8 Proton Separation Membrane 9 Electrochemical Catalyst 12 Porous Thin Film Photocatalyst 13 Porous Substrate 19 Porous Electrochemical Catalyst 20 Hydrogen Storage Alloy E Bias voltage

───────────────────────────────────────────────────── フロントページの続き (72)発明者 飛田 紘 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 (72)発明者 宮寺 博 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Hiroshi Tobita, 7-1, 1-1 Omika-cho, Hitachi-shi, Ibaraki Hitachi, Ltd. Hitachi Research Laboratory (72) Inventor Hiroshi Miyadera 1-chome, Omika-cho, Hitachi-shi, Ibaraki No. 1 Hitachi Ltd. Hitachi Research Laboratory

Claims (18)

【特許請求の範囲】[Claims] 【請求項1】 室温の水、海水または電解質を含む水溶
液を満たした容器と、該容器外から内部に紫外線波長領
域を含む光を照射する光源と、容器内の水、海水または
水溶液中にそれぞれ設置された、照射光を受ける光触媒
としてアナタ−ゼ型結晶構造の酸化チタン(TiO2)薄膜を
導電性基板の一つの面に形成してなる光触媒体、水、海
水または水溶液が酸化チタン(TiO2)薄膜に発生するホー
ル(h+)に接して分解し発生するプロトン(H+)を同時に
発生する酸素から分離するプロトン分離膜、および、分
離されたプロトン(H+)を捕捉する白金板からなる電気化
学触媒体と、電気化学触媒体と光触媒体の基板を接続す
るバイアス回路とを備え、電気化学触媒体は酸化チタン
(TiO2)薄膜から発生しバイアス回路を通じて流れてきた
電子(e~)と、捕捉したプロトン(H+)とを結合させて水素
を生成する薄膜光触媒化学変換装置。
1. A container filled with room temperature water, seawater or an aqueous solution containing an electrolyte, a light source for irradiating the inside of the container with light including an ultraviolet wavelength region, and water, seawater or an aqueous solution in the container, respectively. As a photocatalyst that receives the irradiation light, a photocatalyst body formed by forming an anatase type crystal structure titanium oxide (TiO 2 ) thin film on one surface of a conductive substrate, water, seawater or an aqueous solution is titanium oxide (TiO 2). 2 ) It consists of a proton separation membrane that separates the generated protons (H +) from oxygen that simultaneously decomposes in contact with the holes (h +) generated in the thin film, and a platinum plate that traps the separated protons (H +). An electrochemical catalyst body and a bias circuit connecting the substrate of the electrochemical catalyst body and the photocatalyst body are provided, and the electrochemical catalyst body is titanium oxide.
A thin film photocatalytic chemical conversion device for producing hydrogen by combining an electron (e) generated from a (TiO 2 ) thin film and flowing through a bias circuit with a captured proton (H +).
【請求項2】 前記導電性基板はチタン板で、または酸
化チタン(TiO2)薄膜との間に酸化第二スズの被膜を介在
させたガラス板でなることを特徴とする請求項1記載の
薄膜光触媒化学変換装置。
2. The conductive substrate is a titanium plate or a glass plate in which a stannic oxide film is interposed between a titanium oxide (TiO 2 ) thin film and the conductive plate. Thin film photocatalytic chemical conversion device.
【請求項3】 前記バイアス回路は前記酸化チタン(TiO
2)薄膜にプラスのバイアス電圧を印加することを特徴と
する請求項1または2に記載の薄膜光触媒化学変換装
置。
3. The titanium oxide (TiO 2) is used as the bias circuit.
2 ) A thin film photocatalytic chemical conversion device according to claim 1 or 2, wherein a positive bias voltage is applied to the thin film.
【請求項4】 前記バイアス回路は前記酸化チタン(TiO
2)薄膜にプラスとマイナスの電圧を交互に周期的に印加
することを特徴とする請求項1または2に記載の薄膜光
触媒化学変換装置。
4. The titanium oxide (TiO 2) is used as the bias circuit.
2 ) The thin film photocatalytic chemical conversion device according to claim 1 or 2, wherein positive and negative voltages are alternately and periodically applied to the thin film.
【請求項5】 室温の水、海水または電解質を含む水溶
液を満たした容器と、該容器外から内部に紫外線波長領
域を含む光を照射する光源と、容器内の水、海水または
水溶液中にそれぞれ設置された、照射光を受ける光触媒
としてアナタ−ゼ型結晶構造の酸化チタン(TiO2)薄膜を
導電性かつ光透過性基板の一つの面に形成してなる第1
の光触媒体、第1の光触媒体を透過する光を受ける光触
媒としてアナタ−ゼ型結晶構造の酸化チタン(TiO2)薄膜
を導電性基板の一つの面に形成してなる第2の光触媒
体、水、海水または水溶液が各酸化チタン(TiO2)薄膜に
発生するホール(h+)に接して分解し発生するプロト
ン(H+)を同時に発生する酸素から分離するプロトン分離
膜、および、分離されたプロトン(H+)を捕捉する白金板
からなる電気化学触媒体と、電気化学触媒体に各光触媒
体の基板を並列接続するバイアス回路とを備え、電気化
学触媒体は各酸化チタン(TiO)薄膜から発生しバイアス
回路を通じて流れてきた電子(e~)と、捕捉したプロトン
(H+)とを結合させて水素を生成する薄膜光触媒化学変換
装置。
5. A container filled with room temperature water, seawater or an aqueous solution containing an electrolyte, a light source for irradiating light including an ultraviolet wavelength region from the outside to the inside of the container, and water, seawater or an aqueous solution in the container, respectively. First, a titanium oxide (TiO 2 ) thin film having an anatase type crystal structure is formed as a photocatalyst for receiving irradiation light on one surface of a conductive and light transmissive substrate.
And a second photocatalyst formed by forming a titanium oxide (TiO 2 ) thin film having an anatase type crystal structure as a photocatalyst for receiving light transmitted through the first photocatalyst, on one surface of a conductive substrate, Water, seawater or aqueous solution decomposes in contact with holes (h +) generated in each titanium oxide (TiO 2 ) thin film, and protons (H +) generated are separated from oxygen simultaneously generated proton separation membrane, and separated Equipped with an electrochemical catalyst body consisting of a platinum plate that captures protons (H +), and a bias circuit that connects the substrates of each photocatalyst body in parallel to the electrochemical catalyst body, the electrochemical catalyst body is made from each titanium oxide (TiO) thin film. Electrons (e ~) generated and flowing through the bias circuit and captured protons
A thin film photocatalytic chemical conversion device that combines with (H +) to generate hydrogen.
【請求項6】 前記第2の光触媒体の導電性基板はチタ
ンからなることを特徴とする請求項5記載の薄膜光触媒
化学変換装置。
6. The thin film photocatalytic chemical conversion device according to claim 5, wherein the conductive substrate of the second photocatalyst body is made of titanium.
【請求項7】 前記第2の光触媒体に代えて、光触媒と
して三酸化第二鉄(Fe2O3)薄膜を鉄の基板に形成してな
る光触媒体を設置したことを特徴とする請求項5記載の
薄膜光触媒化学変換装置。
7. A photocatalyst formed by forming a ferric trioxide (Fe 2 O 3 ) thin film as a photocatalyst on an iron substrate instead of the second photocatalyst. 5. The thin film photocatalytic chemical conversion device described in 5.
【請求項8】 前記バイアス回路は前記酸化チタン(TiO
2)薄膜にプラスのバイアス電圧を印加することを特徴と
する請求項5,6または7に記載の薄膜光触媒化学変換
装置。
8. The titanium oxide (TiO 2) is used as the bias circuit.
2 ) A thin film photocatalytic chemical conversion device according to claim 5, 6 or 7, wherein a positive bias voltage is applied to the thin film.
【請求項9】 前記バイアス回路は前記酸化チタン(TiO
2)薄膜にプラスとマイナスの電圧を交互に周期的に印加
することを特徴とする請求項5,6または7に記載の薄
膜光触媒化学変換装置。
9. The titanium oxide (TiO 2) is used as the bias circuit.
2 ) A thin film photocatalytic chemical conversion device according to claim 5, 6 or 7, wherein positive and negative voltages are alternately and periodically applied to the thin film.
【請求項10】 前記白金からなる電気化学触媒体の代
えて、パラジウム、金、銀、銅、酸化銅および酸化銀の
いずれからなる電気化学触媒体、または酸化亜鉛あるい
は酸化銀を全面または一部被覆した銅からなる電気化学
触媒体を設置したことを特徴とする請求項1ないし9い
ずれかに記載の薄膜光触媒化学変換装置。
10. An electrochemical catalyst body made of any of palladium, gold, silver, copper, copper oxide and silver oxide, or zinc oxide or silver oxide in whole or part instead of the electrochemical catalyst body made of platinum. 10. The thin film photocatalytic chemical conversion device according to claim 1, further comprising an electrochemical catalyst body made of coated copper.
【請求項11】 前記酸化チタン(TiO2)薄膜は厚さ50
〜2000nmであることを特徴とする請求項1ないし
10いずれかに記載の薄膜光触媒化学変換装置。
11. The titanium oxide (TiO 2 ) thin film has a thickness of 50.
The thin film photocatalytic chemical conversion device according to claim 1, wherein the thin film photocatalytic conversion device has a thickness of ˜2000 nm.
【請求項12】 前記三酸化第二鉄(Fe2O3)薄膜は厚さ
5〜200nmであることを特徴とする請求項7記載の
薄膜光触媒化学変換装置。
12. The thin film photocatalytic chemical conversion device according to claim 7, wherein the ferric trioxide (Fe 2 O 3 ) thin film has a thickness of 5 to 200 nm.
【請求項13】 室温の水、海水または電解質を含む水
溶液を満たした容器と、該容器外から内部に紫外線波長
領域を含む光を照射する光源と、容器内の水、海水また
は水溶液中にそれぞれ設置された、照射光を受ける光触
媒としてアナタ−ゼ型結晶構造の酸化チタン(TiO2)薄
膜を導電性基板の一つの面に形成してなる光触媒体、
水、海水または水溶液が酸化チタン(TiO2)薄膜に発生す
るホール(h+)に接して分解し発生するプロトン(H+)
を同時に発生する酸素から分離するプロトン分離膜、お
よび、分離されたプロトン(H+)を捕捉する白金板からな
る電気化学触媒体と、電気化学触媒体の表面に炭酸ガス
を供給する炭酸ガス供給手段と、電気化学触媒体と光触
媒体の基板を接続するバイアス回路とを備え、電気化学
触媒体は、捕捉したプロトン(H+)により炭酸ガスを還元
させる薄膜光触媒化学変換装置。
13. A container filled with room temperature water, seawater or an aqueous solution containing an electrolyte, a light source for irradiating light having an ultraviolet wavelength region from the outside to the inside of the container, and water, seawater or an aqueous solution in the container, respectively. A photocatalyst body which is provided with a titanium oxide (TiO 2 ) thin film having an anatase type crystal structure as a photocatalyst for receiving irradiation light, formed on one surface of a conductive substrate,
Protons (H +) generated when water, seawater or aqueous solution decomposes in contact with holes (h +) generated in titanium oxide (TiO 2 ) thin film
A proton separation membrane that separates the oxygen from the oxygen that is simultaneously generated, and an electrochemical catalyst comprising a platinum plate that captures the separated protons (H +), and carbon dioxide supply means for supplying carbon dioxide to the surface of the electrochemical catalyst. And a bias circuit connecting the substrate of the electrochemical catalyst and the substrate of the photocatalyst, and the electrochemical catalyst is a thin film photocatalytic chemical conversion device for reducing carbon dioxide gas by the captured protons (H +).
【請求項14】 室温の水、海水または電解質を含む水
溶液を満たした容器と、該容器外から内部に紫外線波長
領域を含む光を照射する光源と、容器内の水、海水また
は水溶液中にそれぞれ設置された、照射光を受ける光触
媒としてアナタ−ゼ型結晶構造の酸化チタン(TiO2)薄膜
を導電性かつ光透過性基板の一つの面に形成してなる第
1の光触媒体、第1の光触媒体を透過する光を受ける光
触媒としてアナタ−ゼ型結晶構造の酸化チタン(TiO2)薄
膜を導電性基板の一つの面に形成してなる第2の光触媒
体、水、海水または水溶液が各酸化チタン(TiO2)薄膜に
発生するホール(h+)に接して分解し発生するプロトン(H
+)を同時に発生する酸素から分離するプロトン分離膜、
および、分離されたプロトン(H+)を捕捉する白金からな
る電気化学触媒体と、電気化学触媒体の表面に炭酸ガス
を供給する炭酸ガス供給手段と、電気化学触媒体に各光
触媒体の基板を並列接続するバイアス回路とを備え、電
気化学触媒体は捕捉したプロトン(H+)により炭酸ガスを
還元させる薄膜光触媒化学変換装置。
14. A container filled with room temperature water, seawater or an aqueous solution containing an electrolyte, a light source for irradiating the inside of the container with light having an ultraviolet wavelength region, and water, seawater or an aqueous solution in the container, respectively. A first photocatalyst body, which is formed by forming a titanium oxide (TiO 2 ) thin film having an anatase type crystal structure as a photocatalyst for receiving irradiation light on one surface of a conductive and light transmissive substrate, As a photocatalyst for receiving light transmitted through the photocatalyst, a second photocatalyst formed by forming a titanium oxide (TiO 2 ) thin film having an anatase type crystal structure on one surface of a conductive substrate, water, seawater or an aqueous solution is used. Protons (H) generated by decomposition in contact with holes (h +) generated in the titanium oxide (TiO 2 ) thin film
+), A proton separation membrane that separates oxygen generated simultaneously.
Also, an electrochemical catalyst body made of platinum that captures the separated protons (H +), a carbon dioxide gas supply means for supplying carbon dioxide gas to the surface of the electrochemical catalyst body, and a substrate for each photocatalyst body on the electrochemical catalyst body are provided. A thin film photocatalytic chemical conversion device that has a bias circuit connected in parallel, and whose electrochemical catalyst body reduces carbon dioxide by the captured protons (H +).
【請求項15】 室温の水、海水または電解質を含む水
溶液を満たした容器と、該容器外から内部に紫外線波長
領域を含む光を照射する光源と、容器の中間部を遮るよ
うに一体結合して設置された、照射光を受ける光触媒と
してアナタ−ゼ型結晶構造の酸化チタン(TiO2)薄膜を導
電性基板の一つの面に形成し、酸化チタン(TiO2)薄膜お
よび基板を貫通する孔を有する有孔式光触媒体、水、海
水または水溶液が酸化チタン(TiO2)薄膜に発生するホー
ル(h+)に接して分解し発生し、有孔式光触媒体の孔
を通じて移動するプロトン(H+)を同時に発生する酸素か
ら分離するプロトン分離膜、および、分離されたプロト
ン(H+)を捕捉する白金板からなり、板方向に貫通する孔
を有する有孔式電気化学触媒体と、有孔式電気化学触媒
体と有孔式光触媒体の基板を接続するバイアス回路とを
備え、有孔式電気化学触媒体は酸化チタン(TiO2)薄膜か
ら発生しバイアス回路を通じて流れてきた電子(e~)と、
自身の孔を移動したプロトン(H+)とを結合させて水素を
生成する薄膜光触媒化学変換装置。
15. A container filled with room temperature water, seawater, or an aqueous solution containing an electrolyte, a light source for irradiating the inside of the container with light including an ultraviolet wavelength region, and a container integrally coupled so as to block the middle part of the container. A titanium oxide (TiO 2 ) thin film with an anatase type crystal structure is formed on one surface of the conductive substrate as a photocatalyst that receives irradiation light, and a hole penetrating the titanium oxide (TiO 2 ) thin film and the substrate. The photocatalyst having pores, water, seawater, or an aqueous solution decomposes in contact with the holes (h +) generated in the titanium oxide (TiO 2 ) thin film, and the protons (H +) moving through the pores of the photocatalyst having pores (H +) are generated. ) Is simultaneously separated from oxygen that is generated simultaneously, and a platinum plate that captures the separated protons (H +), and a perforated electrochemical catalyst having pores penetrating in the plate direction, and a perforated system Substrate for electrochemical catalyst and perforated photocatalyst With a bias circuit connecting the, the porous electrochemical catalyst body is an electron (e ~) generated from the titanium oxide (TiO 2 ) thin film and flowing through the bias circuit,
A thin film photocatalytic chemical conversion device that produces hydrogen by combining with protons (H +) that have moved through its own pores.
【請求項16】 室温の水、海水または電解質を含む水
溶液を満たした容器と、該容器外から内部に紫外線波長
領域を含む光を照射する光源と、容器の中間部を遮るよ
うに一体結合して設置された、照射光を受ける光触媒と
してアナタ−ゼ型結晶構造の酸化チタン(TiO2)薄膜を導
電性基板の一つの面に形成し、酸化チタン(TiO2)薄膜お
よび基板を貫通する孔を有する有孔式光触媒体、水、海
水または水溶液が酸化チタン(TiO2)薄膜に発生するホー
ル(h+)に接して分解し発生し、有孔式光触媒体の孔
を通じて移動するプロトン(H+)を同時に発生する酸素か
ら分離するプロトン分離膜、および、分離されたプロト
ン(H+)を捕捉する白金板からなり、板方向に貫通する孔
を有する有孔式電気化学触媒体と、有孔式電気化学触媒
体で水、海水または水溶液に接する板面に炭酸ガスを供
給する炭酸ガス供給手段と、有孔式電気化学触媒体と有
孔式光触媒体の基板を接続するバイアス回路とを備え、
有孔式電気化学触媒体は、自身の孔を移動したプロトン
(H+)により炭酸ガスを還元させる薄膜光触媒化学変換装
置。
16. A container filled with room temperature water, seawater or an aqueous solution containing an electrolyte, a light source for irradiating the inside of the container with light including an ultraviolet wavelength region, and a container integrally coupled so as to block the middle part of the container. A titanium oxide (TiO 2 ) thin film with an anatase type crystal structure is formed on one surface of the conductive substrate as a photocatalyst that receives irradiation light, and a hole penetrating the titanium oxide (TiO 2 ) thin film and the substrate. The photocatalyst having pores, water, seawater, or an aqueous solution decomposes in contact with the holes (h +) generated in the titanium oxide (TiO 2 ) thin film, and the protons (H +) moving through the pores of the photocatalyst having pores (H +) are generated. ) Is simultaneously separated from oxygen that is generated simultaneously, and a platinum plate that captures the separated protons (H +), and a perforated electrochemical catalyst having pores penetrating in the plate direction, and a perforated system Electrochemical catalyst with water, seawater or aqueous solution A carbon dioxide gas supply means for supplying carbon dioxide gas to the plate surface in contact with the plate surface; and a bias circuit connecting the substrate of the perforated electrochemical catalyst and the perforated photocatalyst,
The perforated electrochemical catalyst is a proton that has moved through its own pores.
Thin film photocatalytic chemical conversion device that reduces carbon dioxide by (H +).
【請求項17】 室温の水、海水または電解質を含む水
溶液を満たした容器と、該容器外から内部に紫外線波長
領域を含む光を照射する光源と、容器の後半部に一体結
合して設置された、照射光を受ける光触媒としてアナタ
−ゼ型結晶構造の酸化チタン(TiO2)薄膜を導電性基板の
一つの面に形成し、酸化チタン(TiO2)薄膜および基板を
貫通する孔を有する有孔式光触媒体、および水、海水ま
たは水溶液が酸化チタン(TiO2)薄膜に発生するホール
(h+)に接して分解し発生し、有孔式光触媒体の孔を
通じて移動したプロトン(H+)を捕捉する水素吸蔵合金部
材と、該水素吸蔵合金部材と有孔式光触媒体の基板を接
続するバイアス回路とを備え、水素吸蔵合金部材は酸化
チタン(TiO2)薄膜から発生しバイアス回路を通じて流れ
てきた電子(e~)と捕捉したプロトンと結合させて水素と
して吸蔵する薄膜光触媒化学変換装置。
17. A container filled with room temperature water, seawater or an aqueous solution containing an electrolyte, a light source for irradiating the inside of the container with light including an ultraviolet wavelength region, and the container are integrally connected to the latter half of the container. In addition, a titanium oxide (TiO 2 ) thin film having an anatase type crystal structure is formed on one surface of the conductive substrate as a photocatalyst for receiving irradiation light, and the titanium oxide (TiO 2 ) thin film and holes having holes penetrating the substrate are formed. The photocatalyst with pores and water, seawater or aqueous solution decomposes in contact with the holes (h +) generated in the titanium oxide (TiO 2 ) thin film to generate protons (H +) that move through the pores of the photocatalyst with pores. A hydrogen storage alloy member to be captured and a bias circuit connecting the hydrogen storage alloy member and the substrate of the perforated photocatalyst body are provided, and the hydrogen storage alloy member is generated from a titanium oxide (TiO 2 ) thin film and flows through the bias circuit. Electrons (e ~) and captured Ton is coupled with the thin film optical catalytic chemical conversion device for storing the hydrogen.
【請求項18】 前記有孔式光触媒体と前記水素吸蔵合
金部材との間に、プロトン分離膜を設けたことを特徴と
する請求項17記載の薄膜光触媒化学変換装置。
18. The thin film photocatalytic chemical conversion device according to claim 17, wherein a proton separation membrane is provided between the perforated photocatalyst body and the hydrogen storage alloy member.
JP09929295A 1995-04-25 1995-04-25 Thin film photocatalytic chemical converter Expired - Fee Related JP3697591B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09929295A JP3697591B2 (en) 1995-04-25 1995-04-25 Thin film photocatalytic chemical converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09929295A JP3697591B2 (en) 1995-04-25 1995-04-25 Thin film photocatalytic chemical converter

Publications (2)

Publication Number Publication Date
JPH08290052A true JPH08290052A (en) 1996-11-05
JP3697591B2 JP3697591B2 (en) 2005-09-21

Family

ID=14243571

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09929295A Expired - Fee Related JP3697591B2 (en) 1995-04-25 1995-04-25 Thin film photocatalytic chemical converter

Country Status (1)

Country Link
JP (1) JP3697591B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11335187A (en) * 1998-05-25 1999-12-07 Toshiba Corp Photocatalyst module and equipment for photocatalyst
WO2005117137A1 (en) * 2004-05-31 2005-12-08 Nissan Motor Co., Ltd. Photoelectrochemical cell
US20070215485A1 (en) * 2006-03-17 2007-09-20 Lawrence Curtin Hydrogen absorption rod
WO2011086402A1 (en) * 2010-01-14 2011-07-21 Ferenc Meszaros Method for reduction of the co2 content of flue and atmospheric gases, and equipments for application of the method
WO2011146218A1 (en) * 2010-05-17 2011-11-24 Honda Motor Co., Ltd. Solar fuel cell
CN102305816A (en) * 2011-05-23 2012-01-04 中国科学院广州能源研究所 Method for determining total concentration of organic gas in environmental gas by photocatalytic fuel cell (PFC) photoelectrocatalysis method
JP2013081874A (en) * 2011-10-06 2013-05-09 Hitachi Zosen Corp Device for generating photocatalyst hydrogen and hydrogen production equipment
JP2014012626A (en) * 2012-06-04 2014-01-23 Tatsuhiko Yamada Water splitting method and water splitting device
JP5628928B2 (en) * 2010-09-07 2014-11-19 パナソニック株式会社 Hydrogen generation device
CN105944739A (en) * 2016-05-27 2016-09-21 郑州大学 Semiconductor hydrogen production catalyst based on compounding of titanium dioxide and molybdenum sulfide, and preparation method and application thereof
CN115466761A (en) * 2022-08-25 2022-12-13 哈尔滨工业大学(深圳) Method and equipment for preparing hydrogen by catalytically converting biomass through membrane-assisted bio-enzyme catalysis coupling

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11335187A (en) * 1998-05-25 1999-12-07 Toshiba Corp Photocatalyst module and equipment for photocatalyst
WO2005117137A1 (en) * 2004-05-31 2005-12-08 Nissan Motor Co., Ltd. Photoelectrochemical cell
JP2005346963A (en) * 2004-05-31 2005-12-15 Nissan Motor Co Ltd Photo-electrochemical cell
US8791354B2 (en) 2004-05-31 2014-07-29 Nissan Motor Co., Ltd. Photoelectrochemical cell
US20070215485A1 (en) * 2006-03-17 2007-09-20 Lawrence Curtin Hydrogen absorption rod
US8501129B2 (en) 2010-01-14 2013-08-06 Ferenc Meszaros Method for reduction of the CO2 content of flue and atmospheric gases, and equipments for application of the method
WO2011086402A1 (en) * 2010-01-14 2011-07-21 Ferenc Meszaros Method for reduction of the co2 content of flue and atmospheric gases, and equipments for application of the method
JP2013532228A (en) * 2010-05-17 2013-08-15 本田技研工業株式会社 Solar fuel cell
US8840772B2 (en) 2010-05-17 2014-09-23 Honda Motor Co., Ltd. Solar fuel cell
CN105925998A (en) * 2010-05-17 2016-09-07 本田技研工业株式会社 Solar fuel cell
CN103119203B (en) * 2010-05-17 2016-06-08 本田技研工业株式会社 Solar fuel cell
CN103119203A (en) * 2010-05-17 2013-05-22 本田技研工业株式会社 Solar fuel cell
WO2011146218A1 (en) * 2010-05-17 2011-11-24 Honda Motor Co., Ltd. Solar fuel cell
JP5628928B2 (en) * 2010-09-07 2014-11-19 パナソニック株式会社 Hydrogen generation device
CN102305816A (en) * 2011-05-23 2012-01-04 中国科学院广州能源研究所 Method for determining total concentration of organic gas in environmental gas by photocatalytic fuel cell (PFC) photoelectrocatalysis method
JP2013081874A (en) * 2011-10-06 2013-05-09 Hitachi Zosen Corp Device for generating photocatalyst hydrogen and hydrogen production equipment
JP2014012626A (en) * 2012-06-04 2014-01-23 Tatsuhiko Yamada Water splitting method and water splitting device
WO2014192188A1 (en) * 2013-05-30 2014-12-04 Yamada Tatsuhiko Water decomposition method and water decomposition device
CN105944739A (en) * 2016-05-27 2016-09-21 郑州大学 Semiconductor hydrogen production catalyst based on compounding of titanium dioxide and molybdenum sulfide, and preparation method and application thereof
CN115466761A (en) * 2022-08-25 2022-12-13 哈尔滨工业大学(深圳) Method and equipment for preparing hydrogen by catalytically converting biomass through membrane-assisted bio-enzyme catalysis coupling
CN115466761B (en) * 2022-08-25 2023-11-07 哈尔滨工业大学(深圳) Method and equipment for preparing hydrogen by coupling membrane-assisted biological enzyme catalysis and photocatalysis to convert biomass

Also Published As

Publication number Publication date
JP3697591B2 (en) 2005-09-21

Similar Documents

Publication Publication Date Title
Hisatomi et al. Introductory lecture: sunlight-driven water splitting and carbon dioxide reduction by heterogeneous semiconductor systems as key processes in artificial photosynthesis
Stolarczyk et al. Challenges and prospects in solar water splitting and CO2 reduction with inorganic and hybrid nanostructures
Yoshino et al. CO2 reduction using water as an electron donor over heterogeneous photocatalysts aiming at artificial photosynthesis
Kočí et al. Photocatalytic reduction of CO2 over TiO2 based catalysts
van de Krol et al. Perspectives on the photoelectrochemical storage of solar energy
Protti et al. Photocatalytic generation of solar fuels from the reduction of H 2 O and CO 2: a look at the patent literature
US8791354B2 (en) Photoelectrochemical cell
Ichikawa et al. Hydrogen production from water and conversion of carbon dioxide to useful chemicals by room temperature photoelectrocatalysis
Zhang et al. Electrochemical ammonia synthesis from N2 and H2O catalyzed by doped LaFeO3 perovskite under mild conditions
Ren et al. Continuous production of ethylene from carbon dioxide and water using intermittent sunlight
Luo et al. Self-driven photoelectrochemical splitting of H2S for S and H2 recovery and simultaneous electricity generation
JP2006256901A (en) Hydrogen production apparatus, hydrogen production method and hydrogen production system
EP2556183A1 (en) Photo-electrochemical cell
Poudyal et al. Insights into elevated-temperature photocatalytic reduction of CO2 by H2O
EP3006603A1 (en) Photochemical reaction device and thin film
JP3697591B2 (en) Thin film photocatalytic chemical converter
Prajapati et al. Assessment of artificial photosynthetic systems for integrated carbon capture and conversion
Albonetti et al. Horizons in sustainable industrial chemistry and catalysis
US20080289951A1 (en) Thermochemical Cycle for Production of Hydrogen and/or Oxygen Via Water Splitting Processes
Guzmán et al. Photo/electrocatalytic hydrogen exploitation for CO2 reduction toward solar fuels production
Mehmood et al. Photoelectrochemical conversion of methane into value-added products
Savino et al. Tandem devices for simultaneous CO2 reduction at the cathode and added-value products formation at the anode
JP2006182615A (en) Method of photodecomposing nitrogen-containing compound
Vinu et al. Renewable energy via photocatalysis
KR102179532B1 (en) An electrolytic apparatus for removing nitrogen oxides, and a method for removing nitrogen oxides

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050427

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050531

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050621

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080715

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090715

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090715

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100715

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100715

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110715

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110715

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120715

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120715

Year of fee payment: 7

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120715

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130715

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees