JPH08287403A - Magnetic recorder - Google Patents

Magnetic recorder

Info

Publication number
JPH08287403A
JPH08287403A JP8516795A JP8516795A JPH08287403A JP H08287403 A JPH08287403 A JP H08287403A JP 8516795 A JP8516795 A JP 8516795A JP 8516795 A JP8516795 A JP 8516795A JP H08287403 A JPH08287403 A JP H08287403A
Authority
JP
Japan
Prior art keywords
magnetic
amplifier circuit
magnetic head
rin
head
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8516795A
Other languages
Japanese (ja)
Inventor
Isao Sakaguchi
勇夫 坂口
Shigeo Fujii
重男 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP8516795A priority Critical patent/JPH08287403A/en
Publication of JPH08287403A publication Critical patent/JPH08287403A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To reduce regenerative waveform distortion and to eliminate a data error by making the number of turns of a coil of an inductive magnetic head a prescribed value and satisfying a specific relation between the input resistance and the input capacity of an amplifier circuit. CONSTITUTION: In the amplifier circuit of a MIG type magnetic head, for inducing no data error, it is necessary that the maximum waveform distortion factor is made 15% or below, and for satisfying the request, the matter that the inductance component Lh of the magnetic head among respective circuit constants is reduced is most effective. The reduction of the inductance component Lh is dealt with by reducing the number of turns of the coil 4. However, the number of turns of the coil 4 is limited to about 30 turns since a reproducing output is lowered. Further, when the input resistance of the amplifier circuit is defined Rin (Ω), and the input capacity is defined Cin (pF), the combination between the inductive magnetic head and the amplifier circuit satisfied with the relation of Rin<14300×Cin<-1.5> is required to be used.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は磁気記録装置、主として
磁気ディスク装置の磁気ヘッドと磁気ヘッドが検出した
信号を増幅する増幅回路に関わる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic recording device, mainly a magnetic head of a magnetic disk device and an amplifier circuit for amplifying a signal detected by the magnetic head.

【0002】[0002]

【従来の技術】磁気ディスク装置の磁気ヘッドには各種
の誘導型磁気ヘッドが広く使用されているが、大別する
とホトリソグラフィ−、スパッタリングといった技術を
用いて形成される薄膜ヘッドと、フェライト等の磁性材
料を機械加工で切り出し作成するバルク型ヘッドに分け
られる。バルク型ヘッドとしては、フェライトコアの磁
気ギャップ対向面に飽和磁束密度の高い金属磁性膜を形
成したMIG(Metal・In・Gap)型ヘッドが代表的であ
る。それら2種類の磁気ヘッドは磁性材料の体積、コイ
ル巻線形態の違いによりインダクタンスとコイル直流抵
抗が異なっている。
2. Description of the Related Art Various types of induction type magnetic heads are widely used as magnetic heads for magnetic disk devices. The main types of magnetic heads are thin film heads formed by using techniques such as photolithography and sputtering, and ferrite. It can be divided into bulk type heads that are created by cutting out magnetic materials by machining. The bulk type head, MIG forming a high metal magnetic film having saturation magnetic flux density in the magnetic gap facing surfaces of the ferrite core (M etal · I n · G ap) head is typical. The two types of magnetic heads differ in the inductance and the coil DC resistance due to the volume of the magnetic material and the coil winding form.

【0003】薄膜ヘッドはインダクタンスが小さく(1
μH以下)、コイル直流抵抗が大きい(30Ω前後)の
に対し、バルク型ヘッドはインダクタンスが大きく(2
μH〜5μH)、コイル直流抵抗が小さい(10Ω以
下)のが特徴である。従って、従来はインピーダンスノ
イズの観点から周波数帯域が広い磁気ディスク装置には
薄膜ヘッド、周波数帯域が比較的狭い磁気ディスク装置
にはMIG型ヘッドが採用されていた。
The thin film head has a small inductance (1
μH or less) and the coil DC resistance is large (around 30Ω), whereas the bulk type head has a large inductance (2
μH to 5 μH), and the DC resistance of the coil is small (10Ω or less). Therefore, from the viewpoint of impedance noise, a thin film head is conventionally used for a magnetic disk device having a wide frequency band, and a MIG type head is used for a magnetic disk device having a relatively narrow frequency band.

【0004】しかしながら近年、磁気ディスク装置の大
容量化、デ−タ転送の高速化が進み、記録周波数は高く
なる傾向にあり、MIG型ヘッドに対し低インダクタン
ス化の要求が高まってきた。その低インダクタンス化の
要求に対しMIG型ヘッドでは、磁気コアを小型化する
事で磁性体の体積を減らし、コイル巻数30〜40タ−
ンで1〜1.8μHのインダクタンスを実現した(特開
平6−325314)。MIG型磁気ヘッドは、薄膜ヘ
ッドに比べコストが安いのが最大の利点である。
However, in recent years, the recording frequency has tended to increase due to the increase in the capacity of magnetic disk devices and the increase in the speed of data transfer, and there has been an increasing demand for the MIG type head to have a low inductance. In order to meet the demand for low inductance, the MIG type head reduces the volume of the magnetic body by downsizing the magnetic core, so that the number of coil turns is 30 to 40.
And an inductance of 1 to 1.8 μH has been realized (Japanese Patent Laid-Open No. 6-325314). The greatest advantage of the MIG type magnetic head is that the cost is lower than that of the thin film head.

【0005】ところで、磁気ディスク装置の大容量化を
可能にする手法としてゾ−ン・ビット記録という技術が
採用されている。これは、ディスクの内周側から外周側
の半径方向を複数のゾ−ンに分け、記録周波数をゾ−ン
毎に切り替えることによりディスクの内周側と外周側で
記録密度を同じにする手法であり、ディスク面当たりの
記録容量をあげる有効な手段である。
By the way, a technique called zone bit recording is adopted as a method for increasing the capacity of a magnetic disk device. This is a method in which the radial direction from the inner side to the outer side of the disc is divided into a plurality of zones, and the recording frequency is switched for each zone so that the inner side and the outer side of the disc have the same recording density. It is an effective means for increasing the recording capacity per disc surface.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、ゾ−ン
・ビット記録においては、MIG型ヘッドを使用した場
合、高速回転で信号再生が行われるほどディスク外周で
は薄膜ヘッドに比較しデ−タエラ−が多くなり、今後の
高記録密度化に対応できなくなる不具合が出てきた。
However, in the zonal bit recording, when the MIG type head is used, the data error is higher at the outer circumference of the disk as compared with the thin film head as the signal reproduction is performed at a high speed. The number has increased, and there has been a problem that it will not be possible to cope with future high recording density.

【0007】[0007]

【課題を解決するための手段】本発明は、誘導型磁気ヘ
ッドを用いた磁気記録装置において、その誘導型磁気ヘ
ッドは、磁気ギャップを挟んで一対の磁気コア半体の少
なくとも一方の磁気ギャップ対向部に、金属磁性膜を形
成したMIG型の磁気ヘッドで、その磁気ヘッドに施さ
れているコイルの巻数が30タ−ン以上であり、その磁
気ヘッドが検出した信号を出力増幅する駆動増幅回路の
入力抵抗をRin(Ω)、入力容量をCin(pF)としたとき Rin<14300・Cin-1.15 の関係を満たす事を特徴とする。
According to the present invention, in a magnetic recording apparatus using an inductive magnetic head, the inductive magnetic head faces a magnetic gap of at least one of a pair of magnetic core halves. A MIG type magnetic head having a metal magnetic film formed in its part, and the number of turns of the coil applied to the magnetic head is 30 turns or more, and a drive amplifier circuit for amplifying a signal detected by the magnetic head. It is characterized by satisfying the relationship of Rin <14300 · Cin -1.15 when the input resistance of Rin (Ω) and the input capacitance are Cin (pF).

【0008】[0008]

【作用】本発明者はデータエラーの原因を種々解析した
結果、デ−タエラ−には主としてディスク外周側で生じ
る波形歪みが影響していることを明らかにした。周波数
1MHzで記録したディスク外周側におけるMIG型ヘ
ッドの再生信号を観察したところ、図5(a)のような
再生波形が得られた。同じ条件における薄膜ヘッドの再
生信号を同図(b)に示すが、MIG型ヘッドでは薄膜
ヘッドに比べ信号の後部(ピ−ク右側)に大きな波形振
動が発生していることがわかる。そこで、波形歪みの原
因を調べるべく鋭意研究を重ねたところ、波形歪みは時
間変化に対して急激な出力変動が生じた場合に起こる、
ヘッド・アンプ系回路の過渡応答現象によるものである
ことを見い出した。
As a result of various analyzes of the cause of the data error, the present inventor has clarified that the data error is mainly affected by the waveform distortion generated on the outer peripheral side of the disk. When the reproduced signal of the MIG type head on the outer peripheral side of the disk recorded at a frequency of 1 MHz was observed, a reproduced waveform as shown in FIG. 5A was obtained. The reproduced signal of the thin film head under the same conditions is shown in FIG. 6B, and it can be seen that in the MIG type head, a large waveform vibration is generated in the rear part (right side of the peak) of the signal as compared with the thin film head. Therefore, when intensive research was conducted to investigate the cause of waveform distortion, waveform distortion occurs when a sudden output change occurs with time.
It was found that it was due to the transient response phenomenon of the head amplifier system circuit.

【0009】MIG型ヘッドで、このような波形歪みを
改善するためには、磁気ヘッドからの出力信号を増幅す
る増幅回路において、増幅回路の入力抵抗をRin
(Ω)、入力容量をCin(pF)と表したとき
In order to improve such waveform distortion in the MIG type head, in the amplifier circuit for amplifying the output signal from the magnetic head, the input resistance of the amplifier circuit is set to Rin.
(Ω), when the input capacitance is expressed as Cin (pF)

【数式1】 Rin<14300・Cin-1.15 (1) の関係をみたすように調整すればよい。[Formula 1] Rin <14300 · Cin -1.15 (1) It should be adjusted so as to satisfy the relationship.

【0010】本発明におけるMIG型磁気ヘッドは、図
2(a)のような構造を有している。磁気的な情報を読
み出すために磁気コア半体2および2’にはコイル4が
巻かれており、磁気コア部は同図(b)に示すような構
造となっている。図2(b)中2および2'がMn−Z
nなどの単結晶フェライトから成る磁気コア半体であ
り、磁気ギャップ部5の対向面には6のように鉄を主体
とする金属磁性薄膜が形成されている。磁気コア半体2
に巻かれる磁気的な情報を電気的信号として得るための
コイル4が巻装されており、更に、磁気ヘッドからの微
弱な信号出力を増幅するため増幅回路に入力される。
The MIG type magnetic head according to the present invention has a structure as shown in FIG. A coil 4 is wound around the magnetic core halves 2 and 2'to read out magnetic information, and the magnetic core portion has a structure as shown in FIG. 2 and 2'in FIG. 2 (b) are Mn-Z.
It is a magnetic core half body made of single crystal ferrite such as n, and a metal magnetic thin film mainly made of iron is formed on the facing surface of the magnetic gap portion 5 as shown by 6. Magnetic core half 2
A coil 4 for obtaining the magnetic information wound on the magnetic head as an electric signal is wound, and is further input to an amplifier circuit for amplifying a weak signal output from the magnetic head.

【0011】増幅回路は回路定数として、入力抵抗Rin
(Ω)、入力容量Cin(pF)で規定されるが、その回路
構成はMIG型ヘッドも受動部品として置き換えれば、
図3のような等価回路で表される。記号Lh、Rh、R
p、Chはそれぞれ磁気ヘッドのインダクタンス成分、直
流抵抗成分、磁気コアの高周波損失相当抵抗成分および
浮遊容量である。
The amplifier circuit has a circuit constant with an input resistance Rin
(Ω) and input capacitance Cin (pF) are specified, but if the MIG type head is replaced as a passive component, the circuit configuration will be
It is represented by an equivalent circuit as shown in FIG. Symbols Lh, Rh, R
p and Ch are the inductance component of the magnetic head, the direct current resistance component, the high frequency loss equivalent resistance component of the magnetic core, and the stray capacitance, respectively.

【0012】(1)式の関係式は以下のような解析によ
り導かれる。まず、図3のような等価回路モデルに基づ
き、表1のような回路定数諸元で表される磁気ヘッドお
よび増幅回路を考える。LhおよびRhはインピーダンス
・アナライザーで周波数1MHzにおいて測定されたMI
G型ヘッドの値を準拠としている。
The relational expression of the equation (1) is derived by the following analysis. First, consider a magnetic head and an amplification circuit represented by the circuit constant specifications as shown in Table 1 based on the equivalent circuit model as shown in FIG. Lh and Rh are MI measured at a frequency of 1 MHz by an impedance analyzer
The value of the G type head is based.

【表1】 磁気ヘッドから誘導された出力信号f(t)として、以下の
式で表されるローレンツ関数で近似される理想波形を考
える。ここに、記号T50は信号波形の半値幅、Aは振幅
である。
[Table 1] As an output signal f (t) induced from the magnetic head, consider an ideal waveform approximated by a Lorentz function represented by the following equation. Here, the symbol T50 is the full width at half maximum of the signal waveform, and A is the amplitude.

【数式2】 [Formula 2]

【0013】上式においてT50=20ns、A=1として図3の
等価回路における伝送後に復元される波形h(t)を求める
と、図4の結果が得られる。実線h(t)が解析結果であ
る。破線g(t)は、出力信号f(t)が増幅回路のみを通過し
たと仮定した場合に出力される信号波形である。h(t)と
g(t)の差を一点鎖線△(t)と表し、△(t)の絶対値が最大
となる時間における振幅を△MAXとする。このとき最大
波形歪み率を以下の式で定義する。
When the waveform h (t) restored after transmission in the equivalent circuit of FIG. 3 is obtained with T50 = 20 ns and A = 1 in the above equation, the result of FIG. 4 is obtained. The solid line h (t) is the analysis result. A broken line g (t) is a signal waveform output when it is assumed that the output signal f (t) has passed only the amplifier circuit. h (t) and
The difference in g (t) is represented by the alternate long and short dash line Δ (t), and the amplitude at the time when the absolute value of Δ (t) is maximum is ΔMAX. At this time, the maximum waveform distortion rate is defined by the following formula.

【数式3】 最大波形歪み率=△MAX÷入力振幅A×100 (%) (3)[Formula 3] Maximum waveform distortion rate = △ MAX ÷ input amplitude A × 100 (%) (3)

【0014】本発明者らは、上記等価回路に基ずく解析
を進め、データエラーを誘発しないためには、最大波形
歪み率を15%以下とする必要があることも見い出し
た。図3の磁気ヘッドの等価回路において、この要求を
満足するためには各回路定数中磁気ヘッドのインダクタ
ンス成分Lhを小さくすることが最も有効である。
The inventors of the present invention have also conducted an analysis based on the above equivalent circuit and found that the maximum waveform distortion rate must be 15% or less in order not to induce a data error. In the equivalent circuit of the magnetic head of FIG. 3, in order to satisfy this requirement, it is most effective to reduce the inductance component Lh of the magnetic head among the circuit constants.

【0015】本発明で対象とするMIG型ヘッド(図
2)ではLhの低下のためには、コイルの巻線を施す部
位(図2の磁気コア半体2および2’)の磁性体の断面
積を小さくすること、およびコイル4の巻数を減らすこ
とで対処できる。しかし、断面積は機械的強度および再
生効率の点から2000μm2が、またコイルの巻数は
再生出力が低下するためおよそ30ターンが限界であ
る。したがって、Lhの下限は周波数1MHzにおいて約1
μHと予想され、大きな低減は望めない。そこで、磁気
ヘッド以外で波形歪みを低減させため、増幅回路の入力
抵抗Rinならび入力容量Cinの調整を目的として検討し
た。
In the MIG type head (FIG. 2) which is the object of the present invention, in order to reduce Lh, the magnetic material is cut off at the coil winding portions (magnetic core halves 2 and 2'in FIG. 2). This can be dealt with by reducing the area and the number of turns of the coil 4. However, the cross-sectional area is 2000 μm 2 in view of mechanical strength and reproduction efficiency, and the number of turns of the coil is limited to about 30 turns because the reproduction output is reduced. Therefore, the lower limit of Lh is about 1 at a frequency of 1MHz.
It is expected to be μH, and a large reduction cannot be expected. Therefore, in order to reduce the waveform distortion in other than the magnetic head, we examined for the purpose of adjusting the input resistance Rin and the input capacitance Cin of the amplifier circuit.

【0016】図1の実線でしめす曲線は、Lhを1μH
と仮定し、最大波形歪み率が15%となるときの入力容
量Cinと入力抵抗Rinの関係を示す。つまり、Cinなら
びRinが曲線より下側の範囲にあれば、波形歪みを15
%以下に抑えることができる事を示し、これより関係式
(1)を決定した。この関係式を満足させるためには、
市販の駆動増幅回路の外部に抵抗や容量を接続すること
で対応できるが、予め当該関係式を満たす増幅回路を使
用してもよいことは勿論である。以下、実施例に基づき
本発明の効果を記載する。
The curve shown by the solid line in FIG. 1 is Lh of 1 μH.
The relationship between the input capacitance Cin and the input resistance Rin when the maximum waveform distortion rate is 15% is shown below. In other words, if Cin and Rin are in the range below the curve, waveform distortion will be 15
The relational expression (1) was determined based on the fact that it can be suppressed to less than or equal to%. To satisfy this relation,
This can be dealt with by connecting a resistor or a capacitor to the outside of a commercially available drive amplifier circuit, but it goes without saying that an amplifier circuit satisfying the relational expression may be used in advance. Hereinafter, the effects of the present invention will be described based on Examples.

【0017】(実施例1)磁気ヘッドは図2(a)のよ
うな非磁性の50%スライダー1に磁気コア半体2およ
び2’が挿入され、ガラス3で固定されたMIG型ヘッ
ドを用いた。磁気コアは図2(b)において、磁気ギャ
ップ5の両側に厚み2μmのセンダスト合金磁性薄膜6
が形成された構造で、磁気コア半体2は厚さが50μm、
巻線4を施す部分の幅Iwは50μmである。記録媒体へ
の対向面となるステップ状に機械加工が施されたトラッ
ク幅Twは、6.0μmである。巻線4は線径20μmの
銅線を使用し、33ターン巻きつけた。この時のインダ
クタンス成分は1.2μH(at1MHz)で、直流抵抗成分は
10Ωであった。
(Embodiment 1) The magnetic head is a MIG type head in which magnetic core halves 2 and 2'are inserted into a non-magnetic 50% slider 1 as shown in FIG. 2A and fixed with glass 3. I was there. In FIG. 2B, the magnetic core is a sendust alloy magnetic thin film 6 having a thickness of 2 μm on both sides of the magnetic gap 5.
And the magnetic core half body 2 has a thickness of 50 μm.
The width Iw of the portion to which the winding wire 4 is applied is 50 μm. The track width Tw, which is machined in steps to be the surface facing the recording medium, is 6.0 μm. As the winding 4, a copper wire having a wire diameter of 20 μm was used and wound for 33 turns. At this time, the inductance component was 1.2 μH (at 1 MHz) and the DC resistance component was 10Ω.

【0018】上記磁気ヘッドを増幅回路に接続し、3.
5インチ(外径95mm)の磁気ディスク上半径40mmの
位置において回転数4500rpm、ヘッドの磁気ギャ
ップとディスクの隙間高さ(浮上量)0.05μmの条
件で周波数1MHzとなる同値信号(111・・・)を記録し
た。次に記録した情報を再生し、再生波形の歪み率を測
定した。本実験では、増幅回路として市販されている一
般的な2種類AおよびBを使用した。増幅回路Aの入力
容量Cinは15pFで、入力抵抗Rinは1000Ωであ
る。また、増幅回路Bの入力容量Cinは25pFで、入
力抵抗Rinは1000Ωである。
The above magnetic head is connected to an amplifier circuit, and 3.
At a radius of 40 mm on a 5-inch (outer diameter 95 mm) magnetic disk, a rotation frequency of 4500 rpm and a magnetic head / disk gap height (flying height) of 0.05 μm will give a frequency of 1 MHz.・) Was recorded. Next, the recorded information was reproduced and the distortion rate of the reproduced waveform was measured. In this experiment, two general types A and B which are commercially available as an amplifier circuit were used. The input capacitance Cin of the amplifier circuit A is 15 pF and the input resistance Rin is 1000Ω. The input capacitance Cin of the amplifier circuit B is 25 pF and the input resistance Rin is 1000Ω.

【0019】本発明では関係式(1)よりCinが15p
Fの時、Rinは635Ω以下、Cinが25pFの時、Rin
は353Ω 以下でなければならない。従って、増幅回
路A,B共にそのままでは本発明に適応しない。そこ
で、増幅回路の入力端に外部抵抗RaをRinと並列に接続
し、実効的な入力抵抗Rin'を調整した。Rin'は下記
(4)式で計算できる。
In the present invention, Cin is 15p from the relational expression (1).
When F, Rin is 635Ω or less, when Cin is 25pF, Rin
Must be less than 353Ω. Therefore, the amplifier circuits A and B are not applicable to the present invention as they are. Therefore, an external resistance Ra was connected in parallel with Rin at the input end of the amplifier circuit to adjust the effective input resistance Rin '. Rin 'can be calculated by the following equation (4).

【数式4】Rin'=Rin・Ra/(Rin+Ra) (4) 従って、増幅回路AにRa=1740Ω以下、増幅回路B
にはRa=545Ω以下の外部抵抗を接続することで本発
明を満たす条件が達成できる。表2に外部抵抗Raの値を
換え、増幅回路の実効入力抵抗Rin'を変化させて測定し
た結果を示す。
[Formula 4] Rin ′ = Rin · Ra / (Rin + Ra) (4) Therefore, Ra = 1740Ω or less in the amplification circuit A, amplification circuit B
The condition satisfying the present invention can be achieved by connecting an external resistance of Ra = 545 Ω or less to. Table 2 shows the results measured by changing the value of the external resistance Ra and changing the effective input resistance Rin 'of the amplifier circuit.

【0020】[0020]

【表2】 Rin'が本発明の条件*Rinを満たした実施例では、いずれ
も波形歪み率が許容量の15%以下の結果を得た。
[Table 2] In each of the examples in which Rin 'satisfied the condition * Rin of the present invention, the waveform distortion rate was 15% or less of the allowable amount.

【0021】[0021]

【発明の効果】本発明によれば、インダクタンスが1μ
H(at 1MHz)以上のMIG型ヘッドの高速回転時発生す
る波形歪みが低減でき、デ−タエラ−を対策でき、高記
録密度の磁気ディスク装置にMIG型ヘッドで対応可能
となる。
According to the present invention, the inductance is 1 μm.
The waveform distortion that occurs when the MIG type head of H (at 1 MHz) or higher is rotated at a high speed can be reduced, data error can be prevented, and the MIG type head can be applied to a magnetic disk device having a high recording density.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による入力容量と入力抵抗の関係。FIG. 1 shows the relationship between input capacitance and input resistance according to the present invention.

【図2】MIG型磁気ヘッドと磁気コアの外観図FIG. 2 is an external view of a MIG type magnetic head and a magnetic core.

【図3】磁気ヘッドと増幅器を含めた等価回路FIG. 3 is an equivalent circuit including a magnetic head and an amplifier.

【図4】入力信号f(t)の過渡応答解析計算結果の一例。FIG. 4 is an example of a transient response analysis calculation result of an input signal f (t).

【図5】本発明による再生波形測定例と従来の再生波形FIG. 5 is a reproduction waveform measurement example according to the present invention and a conventional reproduction waveform.

【符号の簡単な説明】[Brief description of reference numerals]

1 非磁性スライダ−、2 磁気コア半体、2’磁気コ
ア半体、3 固定ガラス、4 巻線、5 磁気ギャッ
プ、6 金属磁性膜、7 接合ガラス。
1 non-magnetic slider, 2 magnetic core half body, 2'magnetic core half body, 3 fixed glass, 4 windings, 5 magnetic gap, 6 metal magnetic film, 7 bonded glass.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 磁気ギャップを挟んで一対の磁気コア半
体の少なくとも一方の磁気ギャップ対向部に金属磁性膜
を形成したメタル・イン・ギャップ(以下、MIGと省
略する。)の誘導型磁気ヘッドと、増幅回路からなる磁
気記録装置において、該誘導型磁気ヘッドに巻かれるコ
イルが30ターン以上であると共に、該増幅回路の入力
抵抗をRin(Ω)、入力容量をCin(pF)のとき Rin<14300・Cin-1.15 の関係を満たす該誘導型磁気ヘッドと増幅回路の組み合
わせから成ることを特徴とする磁気記録装置。
1. An induction type magnetic head having a metal-in-gap (hereinafter abbreviated as MIG) in which a metal magnetic film is formed on at least one magnetic gap facing portion of a pair of magnetic core halves with a magnetic gap interposed therebetween. In a magnetic recording device including an amplifier circuit, when the coil wound around the inductive magnetic head has 30 turns or more, the input resistance of the amplifier circuit is Rin (Ω), and the input capacitance is Cin (pF), Rin A magnetic recording device comprising a combination of the induction type magnetic head and an amplifier circuit satisfying the relationship of <14300 · Cin -1.15 .
JP8516795A 1995-04-11 1995-04-11 Magnetic recorder Pending JPH08287403A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8516795A JPH08287403A (en) 1995-04-11 1995-04-11 Magnetic recorder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8516795A JPH08287403A (en) 1995-04-11 1995-04-11 Magnetic recorder

Publications (1)

Publication Number Publication Date
JPH08287403A true JPH08287403A (en) 1996-11-01

Family

ID=13851114

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8516795A Pending JPH08287403A (en) 1995-04-11 1995-04-11 Magnetic recorder

Country Status (1)

Country Link
JP (1) JPH08287403A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3575263A1 (en) 2013-06-25 2019-12-04 Servicios Administrativos Peñoles S.A. de C.V Bacteriostatic and fungistatic additive in masterbatch for application in plastics, and method for producing same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3575263A1 (en) 2013-06-25 2019-12-04 Servicios Administrativos Peñoles S.A. de C.V Bacteriostatic and fungistatic additive in masterbatch for application in plastics, and method for producing same

Similar Documents

Publication Publication Date Title
US5764451A (en) Multi-tapped coil having tapped segments casaded for amplification for improving signal-to-noise ratio
KR0144355B1 (en) Magnetic disk device and method of recording retrieving information
JPH02232803A (en) Magnetic head
JPH08287403A (en) Magnetic recorder
CA1219366A (en) Thin film type magnetic transducer head
JP2002312907A (en) Magnetic mead and its manufacturing method
JPH04341916A (en) Floating type magnetic head
US6563675B1 (en) Magnetic head unit
JPS62121917A (en) Buried servo type thin film magnetic head
JP2696831B2 (en) Magnetic head
JP2703079B2 (en) Magnetic disk device and information recording / reproducing method
JP2570435B2 (en) Magnetic disk drive
JPH0765343A (en) Laminated magnetic head
JPH06325314A (en) Induction type magnetic head
JP3228128B2 (en) Magnetic disk drive
JP2784917B2 (en) Magnetic head
JP2509073Y2 (en) Magnetic head
JPH0793707A (en) Magnetic recording and reproducing device
JP2695890B2 (en) Deep recording servo type magnetic disk drive
JP3611156B2 (en) Hybrid magnetic head slider using thin film coil
JPH1040506A (en) Magnetic head device and magnetic recording device
JPH05101310A (en) Magnetic recording method
JPH04339307A (en) Magnetic head
JPH09305907A (en) Induction type magnetic head and drive circuit
JP2002074619A (en) Magnetic head