JPH0828632A - Gear mechanism - Google Patents

Gear mechanism

Info

Publication number
JPH0828632A
JPH0828632A JP15983594A JP15983594A JPH0828632A JP H0828632 A JPH0828632 A JP H0828632A JP 15983594 A JP15983594 A JP 15983594A JP 15983594 A JP15983594 A JP 15983594A JP H0828632 A JPH0828632 A JP H0828632A
Authority
JP
Japan
Prior art keywords
tooth
gear
external gear
pitch angle
internal gear
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15983594A
Other languages
Japanese (ja)
Inventor
Masuo Suzuki
増雄 鈴木
Masayoshi Furuichi
正義 古市
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kokusai Electric Corp
Original Assignee
Kokusai Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kokusai Electric Corp filed Critical Kokusai Electric Corp
Priority to JP15983594A priority Critical patent/JPH0828632A/en
Publication of JPH0828632A publication Critical patent/JPH0828632A/en
Pending legal-status Critical Current

Links

Landscapes

  • Gear Transmission (AREA)
  • Gears, Cams (AREA)

Abstract

PURPOSE:To secure smooth meshing by forming involute curves or approximate curves from pitch angle intersections in an area of circumferences of tooth ends and tooth bottoms, for forming gear phases of an external gear and an internal gear, and thereby eliminating interference in the gear in case that tooth length and number of theeth are reduced. CONSTITUTION:Involute curves IC1, IC2 are alternatively prepared outward from a required toth bottom periphery drtheta in respect to each of pitch angle intersections PP1 to be supplied to required number of teeth. An intersection PP2 of both the curves serves as a temporary length of an external gear. An approximate line ICr is prepared in the vicinity of the intersection. An external gear G' having tooth length (h) which is 30 to 70% of the temporary length. The required number of teeth exceeds the number of teeth of the external gear. In an internal gear Gi, a required pitch angle is narrowed and the number of pitches are increased compared to those of the external gear. The internal gear Gi has a tooth end diameter and a toot bottom diameter obtained respectively by multiplying those of the external gear G'.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、伝達効率を損わず、減
速比を多く期待できる、内歯車及び外歯車を組合せ、特
に外歯車をカム機構により回動し、内歯車と外歯車の歯
数の差分だけが回動変位する、外歯車の偏心回動をベロ
ーズ機構を仲介に、中心回動を抽出する、減速機に供す
る内歯車及び外歯車を組合せる歯車機構に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a combination of an internal gear and an external gear that does not impair transmission efficiency and can be expected to have a large reduction ratio. The present invention relates to a gear mechanism in which an eccentric rotation of an external gear, which is rotationally displaced only by the difference in the number of teeth, is extracted through a bellows mechanism for center rotation, and which combines an internal gear and an external gear used for a reduction gear.

【0002】[0002]

【従来の技術】一般に内歯車と外歯車(ピニオン)を噛
合せるとき、内歯車の歯数が少なかったり、内歯車と外
歯車の歯数差が少なかったりすると、歯車内の干渉によ
り組立できないことがあるので、内歯車の歯数と両歯車
の歯数差を多くすることが必要である。内歯車と外歯車
を組合せた歯車機構は、内歯車に内接して外歯車を噛合
させ、両歯車の回転方向が同じになり、場所をとらず、
大きな速比の伝達を行うことができるものである。従来
機構は、ハーモニックギヤーと称してコップ状の肉厚の
薄いバネ材で縁のみを厚くして外歯車を形成し、内歯車
に対し、外歯車をカムにて変形させ、噛合い係合位置を
順次移動しコップ状の底部から中心回動を抽出するもの
である。
2. Description of the Related Art Generally, when meshing an internal gear and an external gear (pinion), if the number of teeth of the internal gear is small or the difference in the number of teeth of the internal gear and the external gear is small, it is impossible to assemble due to interference in the gear. Therefore, it is necessary to increase the difference between the number of teeth of the internal gear and the number of teeth of both gears. A gear mechanism that combines an internal gear and an external gear makes inward contact with the internal gear and meshes the external gear, the rotation directions of both gears are the same, and the space is saved.
A large speed ratio can be transmitted. In the conventional mechanism, a cup-shaped thin spring material called a harmonic gear is used to form an external gear by thickening only the edges, and the external gear is deformed by a cam with respect to the internal gear, and the meshing engagement position. Is sequentially moved to extract the center rotation from the cup-shaped bottom.

【0003】[0003]

【発明が解決しようとする課題】従来にあっては、外歯
車をリング状にし、その外周側面に所要の歯相の歯形を
付し、カム駆動にて外歯車を回動させ、従来固形のリン
グ状の外歯車を内歯車に噛合せた、減速装置は無かっ
た。
In the prior art, the external gear is formed into a ring shape, and the outer peripheral side surface thereof is provided with a tooth profile of a required tooth phase, and the external gear is rotated by a cam drive so that the conventional solid gear is used. There was no speed reducer in which a ring-shaped external gear was meshed with an internal gear.

【0004】[0004]

【課題を解決するための手段】本発明は、この点に鑑み
てなされたもので、歯丈を低く、内歯車及び外歯車の歯
数の差を少なくし、しかも円滑な内歯車及び外歯車の噛
合いを可能にし、減速機に供する場合の減速比の増大に
寄与できる歯車機構を提供しようとするものである。即
ち、本発明機構は、所要歯底円周drθ上から、所要歯
数に供する各ピッチ角dθ′交点PP1から歯形を形成
のためのインボリュート曲線IC1,IC2を外方に交
互に描き、当該ピッチ角dθ′の延長範域内に当該イン
ボリュート曲線の交点PP2を外歯車G′の仮歯丈と
し、当該インボリュート曲線の交点PP2の前後近くの
近似曲線ICrを描き、当該近似曲線ICrを歯相と
し、当該歯相の半径Gr中心を得ると共に前記仮歯丈の
高さの30%〜70%の歯丈hにて形成する外歯車であ
って、歯先円周dKSθと歯底円周drθとの範域にお
いて、各ピッチ角交点PP1から、前記インボリュート
曲線IC1,IC2又は近似曲線ICrを画いて歯相を
形成して成る外歯車G′と、この外歯車G′に噛合い係
合する内歯車Giであって、所要歯数は外歯車の歯数よ
りも多く,外歯車G′のピッチ角dθ′の角度及び数に
対し、内歯車Giのピッチ角dθiの角度は狭くその数
は多くし、かつ外歯車のピッチ角dθ′の角度を,内歯
車のピッチ角dθiの角度で除した値を倍数とし、外歯
車の歯底直径drに当該倍数を乗じた値を内歯車の歯先
直径dKiとすると共に外歯車G′の歯先直径dKSに
当該倍数を乗じた値を内歯車Giの歯底直径driと
し、内歯車の歯先円周dKiθと、歯底円周driθと
の範域内にて、当該歯底円周上のピッチ角交点P6iか
ら、内側に存する歯先円周dKiθに向ってインボリュ
ート曲線又は近似曲線を描いて歯相を形成して成る内歯
車Giとを組合せたことを特徴とする。
The present invention has been made in view of this point, and has a low tooth height, a small difference in the number of teeth of an internal gear and an external gear, and a smooth internal gear and external gear. It is an object of the present invention to provide a gear mechanism capable of engaging with each other and contributing to an increase in a reduction ratio when the gear mechanism is used in a speed reducer. That is, the mechanism of the present invention alternately draws the involute curves IC1 and IC2 for forming the tooth profile outward from the desired tooth bottom circumference drθ from each of the pitch angles dθ ′ intersection points PP1 to be provided for the required number of teeth, and the pitch concerned. Within the extended range of the angle dθ ', the intersection point PP2 of the involute curve is the temporary tooth length of the external gear G', the approximate curve ICr near the front and rear of the intersection point PP2 of the involute curve is drawn, and the approximate curve ICr is the tooth phase, An external gear that is formed with a tooth height h of 30% to 70% of the height of the temporary tooth height while obtaining the center of the radius Gr of the tooth phase, and has a tooth circumference dKSθ and a tooth circumference drθ. In the range, an external gear G'formed by drawing the involute curves IC1, IC2 or the approximate curve ICr from each pitch angle intersection PP1 to form a tooth phase, and an internal gear meshingly engaged with the external gear G '. Gi The required number of teeth is greater than the number of teeth of the external gear, the pitch angle dθi of the internal gear Gi is narrow and the number is large compared to the angle and number of the pitch angle dθ ′ of the external gear G ′. A value obtained by dividing the angle of the gear pitch angle dθ ′ by the angle of the inner gear pitch angle dθi is taken as a multiple, and the value obtained by multiplying the root diameter dr of the external gear by the multiple is taken as the tip diameter dKi of the internal gear. A value obtained by multiplying the tip diameter dKS of the external gear G ′ by the multiple is set as the root diameter dri of the internal gear Gi, and within the range of the tip circumference dKiθ of the internal gear and the root circumference driθ, A combination of an internal gear Gi formed by forming an involute curve or an approximate curve from the pitch angle intersection point P6i on the tooth bottom circumference toward the tooth tip circumference dKiθ existing inside to form a tooth phase. To do.

【0005】[0005]

【作 用】上記のような手法を採用することにより外歯
車G′及び内歯車Giの歯丈を低く、両歯車の歯数の差
を少なくしても、歯車内の干渉がなく、円滑な内歯車と
外歯車の噛合いが可能となり、カム機構により外歯車を
駆動する減速機に使用する場合、減速比の増大を図るこ
とができることになる。
[Operation] By adopting the above-mentioned method, the external gear G'and the internal gear Gi have low tooth heights, and even if the difference in the number of teeth of both gears is reduced, there is no interference in the gears and smooth operation is achieved. The internal gear and the external gear can be meshed with each other, and when the cam gear is used for a speed reducer that drives the external gear, the reduction ratio can be increased.

【0006】[0006]

【実施例】本発明の内歯車及び外歯車の形成は歯丈を低
くし、内歯車及び外歯車の歯数の差を少なくしても、干
渉のない歯相を形成し、結果的には小さなモジュールで
は両者の歯数の差を1歯数を可能にしたのである。本記
述においては作図し易く、且つ従来の歯相では干渉して
噛合ない様な歯数でも、本記述においては噛合い円滑な
回動が行える本発明の1実施例を示し、内歯車及び外歯
車の歯数の差を4歯数のものを記述する。記述する外歯
車は歯底直径75mm、歯数24,またこれに噛合う内
歯車の歯数を28とする。
EXAMPLE The formation of the internal gear and the external gear of the present invention has a low tooth height, and even if the difference in the number of teeth of the internal gear and the external gear is reduced, a tooth phase without interference is formed. In a small module, the difference in the number of teeth between the two allows for one tooth. In the present description, one embodiment of the present invention is shown in which the present invention can smoothly rotate even if the number of teeth is such that it is easy to draw and does not mesh due to interference in the conventional tooth phase. The difference in the number of gear teeth is described as having four teeth. The external gear described has a root diameter of 75 mm, the number of teeth is 24, and the number of teeth of an internal gear that meshes with this is 28.

【0007】図1(A)は基本的な数値を算出する、外
歯車G′の展開図である。1歯当りのピッチ角dθ′は
中心角を全歯数で除した値で360°/24=15°で
ある。歯底円周drθとピッチ角dθ′との交点PP1
から各々のインボリュート曲線IC1及びIC2を描
き、両インボリュート曲線IC1及びIC2の交点PP
2を図1(A)における歯先直径dKSとする。インボ
リュート曲線IC1の近似曲線ICrを得るため、イン
ボリュート曲線の交点PP2の前後のインボリュート曲
線IC1上の交点P1及びP2から各々の半径r1
r′1 及びr2 ,r′2 を描き各々の交点P3及びP
3′を得、交点P3及びP3′を結ぶ直線rs,インボ
リュート曲線IC1に近似な近似曲線ICrを得るので
ある。近似曲線ICrの半径中心に至る長さは、近似半
径Grであり、インボリュート曲線IC1或は近似曲線
ICrは歯の形を決める歯相Gfを示すのである。
FIG. 1A is a development view of an external gear G'for calculating basic numerical values. The pitch angle dθ 'per tooth is 360 ° / 24 = 15 °, which is a value obtained by dividing the central angle by the total number of teeth. An intersection point PP1 of the tooth bottom circumference drθ and the pitch angle dθ ′
Draw the respective involute curves IC1 and IC2 from, and set the intersection point PP of both involute curves IC1 and IC2
2 is the tip diameter dKS in FIG. 1 (A). In order to obtain the approximate curve ICr of the involute curve IC1, from the intersection points P1 and P2 on the involute curve IC1 before and after the intersection point PP2 of the involute curve, respective radii r 1 ,
r ′ 1 and r 2 , r ′ 2 are drawn, and the respective intersection points P3 and P
3'is obtained, and a straight line rs connecting the intersection points P3 and P3 'and an approximate curve ICr approximate to the involute curve IC1 are obtained. The length of the approximate curve ICr to the radius center is the approximate radius Gr, and the involute curve IC1 or the approximate curve ICr shows the tooth phase Gf that determines the tooth shape.

【0008】歯底円周drθから歯先円周dKSθまで
を歯丈hである。図1(A)からの実測により、歯丈h
は11.5mm、近似半径Grは32mmである。図1
(A)においての歯丈hの11.5mmではこれに対応
する内歯車との噛合いは干渉により不可能なので、これ
を可能にすべく本手法により外歯車の設定を行うのであ
る。図1(A)による歯丈hの11.5mmをその高さ
の60%である歯丈h1を11.5mm×0.6=6.
9mm=7mmとする。 これにより、 歯数 Z 24歯 歯底直径 dr 75mm 歯先直径 dK1 89mm ピッチ角 dθ 15° 近似半径 Gr 32mm となり、不明はピッチ円直径dOである。
The tooth height h is from the root circumference drθ to the tip circumference dKSθ. From the actual measurement from Fig. 1 (A), tooth height h
Is 11.5 mm and the approximate radius Gr is 32 mm. FIG.
In the case of the tooth height h of 11.5 mm in (A), since meshing with the corresponding internal gear is impossible due to interference, the external gear is set by this method to make this possible. 11.5 mm of the tooth height h according to FIG. 1 (A) is 11.5 mm × 0.6 = 6.
9 mm = 7 mm. As a result, the number of teeth is Z 24, the root diameter is dr 75 mm, the tip diameter is dK1 89 mm, the pitch angle is dθ 15 °, the approximate radius is Gr 32 mm, and the unknown is the pitch circle diameter dO.

【0009】以下ピッチ円直径dOの図からの抽出を行
うべく記述する。図2に示す外歯車Gを形成する場合を
図3に示す拡大図により詳細に説明する。外歯車Gの歯
底半径dr/2は75÷2=37.5mm、歯丈h1は
7mm、歯先半径dK1/2は歯底半径dr/2+歯丈
h1から37.5mm+7mm=44.5mmである。
図3から解かるように歯先Gtはピッチ角dθ0(図1
(A)のdθ′と同一)の中心である、半ピッチ角dθ
1の接点P7を通る中心SSからの各々の直線SS1と
歯先円周dK1θ上の交点P6群が歯先Gtの位置を示
すのである。歯底の谷部Gr1を示す位置はピッチ角d
θ0を形成する境の直線SS0と歯底円周dr1θとの
交点P5群位置である。歯先円周dK1θ及び歯底円周
dr1θの各々に交点P6及び交点P5が千鳥状に在
り、これを図示のように近似半径GrO(図1(A)の
Grと同一)32mmにて交点P6及び交点P5を近似
曲線GfO(図1(A)のICrと同一)で結ぶのであ
る。近似曲線GfOを歯相と称するのである。
The pitch circle diameter dO will be described below for extraction from the drawing. The case of forming the external gear G shown in FIG. 2 will be described in detail with reference to the enlarged view shown in FIG. The root radius dr / 2 of the external gear G is 75/2 = 37.5 mm, the tooth length h1 is 7 mm, the tip radius dK1 / 2 is the root radius dr / 2 + the tooth length h1 to 37.5 mm + 7 mm = 44.5 mm. is there.
As can be seen from FIG. 3, the tooth tip Gt has a pitch angle dθ0 (see FIG.
(Same as dθ 'in (A)), which is the half pitch angle dθ
Each straight line SS1 from the center SS passing through the contact point P7 of No. 1 and the intersection P6 group on the tooth tip circumference dK1θ indicate the position of the tooth tip Gt. The position showing the valley portion Gr1 of the tooth bottom is the pitch angle d.
This is the position of the group P5 of the intersection of the straight line SS0 of the boundary forming θ0 and the tooth root circumference dr1θ. The intersection points P6 and P5 are staggered on each of the tooth tip circumference dK1θ and the tooth bottom circumference dr1θ, and the intersection point P6 is at an approximate radius GrO (the same as Gr in FIG. 1A) 32 mm as shown in the figure. And the intersection point P5 is connected by an approximated curve GfO (the same as ICr in FIG. 1A). The approximate curve GfO is called a tooth phase.

【0010】次にピッチ円直径dOを求めることにす
る。外歯車Gのピッチ円周dOθ上での円ピッチtO
と、円弧歯厚SOとの間には円ピッチtOの1/2と円
弧歯厚SOとは等しいことが必要である。これは円弧歯
厚SOと、円弧非歯厚SOnとが等しいことであり、こ
れに対応する半ピッチ角に相当する円弧歯厚角SOθ
と、円弧非歯厚角SOnθとが等しいことである。従っ
てピッチ角dθの半分であるdθ1の中で占める円弧歯
厚角SOθの半分であるピッチ角dθ2(ピッチ角dθ
0の1/4)と円弧非歯厚角SOnθの半分であるピッ
チ角dθ2(ピッチ角dθ0の1/4)とが等しいの
で、ピッチ角dθ2相互の境界を形成する接点P9を通
る中心SSからの直線SS2の近似曲線GfOとの交点
P8の位置が中心SSからのピッチ円半径dO/2であ
る。図においての実測値は41.2mmである。従って
ピッチ円直径dOはその2倍の82.4mmである。以
上で外歯車Gの各部の数値が示されたのである。
Next, the pitch circle diameter dO will be determined. Circle pitch tO on pitch circle dOθ of external gear G
And the arc tooth thickness SO, it is necessary that 1/2 of the circular pitch tO be equal to the arc tooth thickness SO. This means that the circular arc tooth thickness SO and the circular arc non-tooth thickness SOn are equal, and the circular arc tooth thickness angle SOθ corresponding to the half pitch angle corresponding to this.
And the arc non-tooth thickness angle SOnθ are equal. Therefore, the pitch angle dθ2 (pitch angle dθ) which is half the arc tooth thickness angle SOθ occupied in dθ1 which is half the pitch angle dθ
0/4) and the pitch angle dθ2 (1/4 of the pitch angle dθ0), which is half the arc non-tooth thickness angle SOnθ, are equal, so from the center SS passing through the contact point P9 forming the boundary between the pitch angles dθ2. The position of the intersection P8 of the straight line SS2 with the approximate curve GfO is the pitch circle radius dO / 2 from the center SS. The measured value in the figure is 41.2 mm. Therefore, the pitch circle diameter dO is twice that, which is 82.4 mm. The numerical values of the respective parts of the external gear G are shown above.

【0011】図4に示す内歯車Giを形成する各部の数
値の算出は図1(B)の拡大図によりその詳細を記述す
る。内歯車Giの歯数ziは既に記述した28なのでピ
ッチ角dθiは360°/28=12.8571428
6°であるが12.857°とする。外歯車Gの歯底直
径drに対応する内歯車Giの歯先直径dKiは、外歯
車Gの歯底直径drに倍数を乗じた値であり、その倍数
は外歯車Gのピッチ角dθ0の値を内歯車Giのピッチ
角dθiの値で除したもので、倍数は15°/12.8
57°=1.167である。従って歯先直径dKiは7
5mm×1.167=87.525mmである。歯先半
径dKi/2はその半分の87.525/2≒44mm
である。外歯車Gの歯先直径dK1に対応する、内歯車
Giの歯底直径driは、歯先直径dK1 に倍数を乗じ
た値であり、89mm×1.167=104mmであ
る。歯先半径dKi/2は52mmである。歯先Gti
の位置はピッチ角dθiの各々の境線SS0iと、歯先
円周dKiθとの各々の交点P5iである。内歯車Gi
の谷部Gniの位置は、ピッチ角dθiを2分する半ピ
ッチの角であるピッチ角dθi1の接点P7iを通る中
心SSiからの直線SS1iと歯底円周driθ上の各
々の交点P6iである。歯先円周dKiθ上の交点P5
iと歯底円周driθ上の交点P6iとを近似半径Gr
i(図1(A)のGrと同一)の32mmにて描く、近
似曲線Gfi(図1(A )のICrと同一)で結び歯
相を形成するのである。
The calculation of the numerical values of the respective parts forming the internal gear Gi shown in FIG. 4 will be described in detail with reference to the enlarged view of FIG. 1 (B). Since the number of teeth zi of the internal gear Gi has already been described as 28, the pitch angle dθi is 360 ° / 28 = 12.8571428.
It is 6 ° but 12.857 °. The tooth tip diameter dKi of the internal gear Gi corresponding to the tooth bottom diameter dr of the external gear G is a value obtained by multiplying the tooth bottom diameter dr of the external gear G by a multiple, and the multiple is the value of the pitch angle dθ0 of the external gear G. Is divided by the value of the pitch angle dθi of the internal gear Gi, and the multiple is 15 ° / 12.8.
57 ° = 1.167. Therefore, the tip diameter dKi is 7
It is 5 mm x 1.167 = 87.525 mm. The tip radius dKi / 2 is half that, 87.525 / 2 ≈ 44 mm
Is. The root diameter dri of the internal gear Gi corresponding to the tip diameter dK1 of the external gear G is a value obtained by multiplying the tip diameter dK1 by a multiple, which is 89 mm × 1.167 = 104 mm. The addendum radius dKi / 2 is 52 mm. Tooth tip Gti
Is the intersection point P5i of each boundary line SS0i of the pitch angle dθi and the tooth tip circumference dKiθ. Internal gear Gi
The position of the valley portion Gni is a straight line SS1i from the center SSi passing through the contact point P7i having a pitch angle dθi1 that is a half-pitch angle that divides the pitch angle dθi into two intersections P6i on the tooth circumference driθ. Intersection P5 on the tip circumference dKiθ
i and the intersection point P6i on the tooth circumference driθ are approximated by the radius Gr
i (same as Gr in FIG. 1 (A)) is drawn at 32 mm, and the approximated curve Gfi (same as ICr in FIG. 1 (A)) forms a connecting tooth phase.

【0012】ピッチ円周dOiθ上では円ピッチtOi
と円弧歯厚SOiとは円ピッチtOiの1/2の値と円
弧歯厚SOiの値とは等しい条件を要する。従って、円
弧歯厚SOiの値と円弧非歯厚SOniとの値とが等し
いのであり、これに対応する円弧歯厚角SOiθと円弧
非歯厚角SOniθとは等しい値である。円弧歯厚角S
Oiθ及び円弧非歯厚角SOniθとは共にピッチ角d
θiの1/2の角度であり、ピッチ角dθiの1/2で
あるピッチ角dθi1と同一値である。以上のことから
ピッチ角dθiの1/2であるピッチ角dθi1の角範
域内にある各々の円弧歯厚角SOiθの1/2であるピ
ッチ角dθi2(ピッチ角dθiの1/4)と円弧非歯
厚角SOniθの1/2であるピッチ角dθi2(ピッ
チ角dθiの1/4)とは等しい値であり、ピッチ角d
θiの1/4のピッチ角dθi2の境点P9iを通り、
ピッチ角dθi1を2分する中心SSiからの直線SS
2iと近似曲線Gfi(図1(A)のICrと同一)と
の交点P8iの位置が中心SSiからのピッチ円半径d
Oi/2である。ピッチ円半径dOi/2は実測にて4
7mmである。従ってピッチ円直径dOiは47mm×
2=94mmである。
On the pitch circumference dOiθ, the circle pitch tOi
And the circular arc tooth thickness SOi require that the value of 1/2 of the circular pitch tOi and the circular arc tooth thickness SOi be equal. Therefore, the value of the arc tooth thickness SOi and the value of the arc non-tooth thickness SOni are equal, and the corresponding arc tooth thickness angle SOiθ and arc non-tooth thickness angle SOniθ are equal. Arc tooth thickness angle S
Both Oiθ and arc non-tooth thickness angle SOniθ are pitch angles d
The angle is 1/2 of θi and is the same value as the pitch angle dθi1 which is 1/2 of the pitch angle dθi. From the above, the pitch angle dθi2 (1/4 of the pitch angle dθi), which is ½ of each arc tooth thickness angle SOiθ within the angular range of the pitch angle dθi1, which is ½ of the pitch angle dθi, and the arc non- The pitch angle dθi2 (1/4 of the pitch angle dθi), which is ½ of the tooth thickness angle SOniθ, is equal to the pitch angle d.
It passes through the boundary point P9i of the pitch angle dθi2 which is ¼ of θi,
A straight line SS from the center SSi that bisects the pitch angle dθi1
The position of the intersection P8i between 2i and the approximate curve Gfi (the same as ICr in FIG. 1A) is the pitch circle radius d from the center SSi.
It is Oi / 2. Pitch circle radius dOi / 2 is 4 measured
7 mm. Therefore, the pitch circle diameter dOi is 47 mm ×
2 = 94 mm.

【0013】以上の結果の数値を纏めると、内歯車Gi
は 歯数 zi 28歯 歯先直径 dKi 87.525mm 歯底直径 dri 104mm ピッチ角 dθi 12.857° 近似半径 Gr 32mm ピッチ円直径 dOi 94mm である。前述せるように外歯車Gのピッチ円直径dOは
82.4mmに対して、内歯車Giのピッチ円直径dO
iが94mmなので、内歯車Giの中心SSiに対し外
歯車Gの中心SSの偏心VBは94mm−82.4mm
/2=5.8mmであり、内歯車Gi及び外歯車Gとの
噛合いの状態は図5及び図6に示す。図6に示すは各々
の歯の歯先の強化のため先端を落したのである。
Summarizing the numerical values of the above results, the internal gear Gi
Is the number of teeth zi 28 teeth tip diameter dKi 87.525 mm root diameter dri 104 mm pitch angle dθi 12.857 ° approximate radius Gr 32 mm pitch circle diameter dOi 94 mm. As described above, the pitch circle diameter dO of the external gear G is 82.4 mm, while the pitch circle diameter dO of the internal gear Gi is
Since i is 94 mm, the eccentricity VB of the center SS of the external gear G with respect to the center SSi of the internal gear Gi is 94 mm-82.4 mm.
/2=5.8 mm, and the state of meshing with the internal gear Gi and the external gear G is shown in FIGS. 5 and 6. As shown in FIG. 6, the tips are dropped to strengthen the tip of each tooth.

【0014】[0014]

【発明の効果】上述のように本発明によれば、歯先円周
と歯底円周との範域において各々のピッチ角境点からイ
ンボリュート曲線又は近似曲線を描いて外歯車と内歯車
の歯相を形成することにより両歯車の歯丈を低く、歯数
の差を少なくしても歯車内の干渉がなく、しかも円滑な
噛合いを行うことができ、且つ外歯車を駆動するカム機
構活用の減速機に使用する場合、大きな減速比を得るこ
とができる。
As described above, according to the present invention, an involute curve or an approximate curve is drawn from each pitch angle boundary point in the range of the tip circumference and the root circumference to draw the external gear and the internal gear. By forming a tooth phase, the tooth height of both gears is low, there is no interference in the gears even if the difference in the number of teeth is reduced, and smooth meshing is possible, and a cam mechanism that drives the external gear A large reduction ratio can be obtained when used as a reduction gear for practical use.

【図面の簡単な説明】[Brief description of drawings]

【図1】(A),(B)はそれぞれ本発明機構の1実施
例における外歯車及び内歯車の構成説明図である。
FIG. 1A and FIG. 1B are structural explanatory views of an external gear and an internal gear in one embodiment of the mechanism of the present invention.

【図2】本発明における外歯車全体の歯形を示す正面図
である。
FIG. 2 is a front view showing a tooth profile of the entire external gear according to the present invention.

【図3】図2の要部の拡大正面図である。FIG. 3 is an enlarged front view of a main part of FIG.

【図4】本発明における内歯車全体の歯形を示す正面図
である。
FIG. 4 is a front view showing the tooth profile of the entire internal gear according to the present invention.

【図5】本発明における外歯車及び内歯車の噛合い状態
を示す正面図である。
FIG. 5 is a front view showing a meshing state of an external gear and an internal gear in the present invention.

【図6】同じく噛合い状態の他の例を示す正面図であ
る。
FIG. 6 is a front view showing another example of the meshed state.

【符号の説明】[Explanation of symbols]

dθ′ ピッチ角(外歯車G′) dθ ピッチ角(外歯車G) dθ0 ピッチ角 dθ1 ピッチ角(dθの1/2) dθ2 ピッチ角(dθ0の1/4) dθi ピッチ角(内歯車Gi) dθi1 ピッチ角(dθiの1/2) dθi2 ピッチ角(dθiの1/4) IC1 インボリュート曲線 IC2 インボリュート曲線 ICr 近似曲線(歯相) Gfi 近似曲線(歯相) GfO 近似曲線(歯相) G′ 外歯車 G 外歯車 Gi 内歯車 r1 半径 r′1 半径 r2 半径 r′2 半径 rs 直線 hi 歯丈 h 歯丈 GrO 近似半径 Gr 近似半径 Gri 近似半径 SS 中心 SSi 中心 Gf 歯相 Gni 谷部 Gr1 谷部 Gt 歯先 Gti 歯先 P1〜P3 交点 P3′ 交点 PP1 交点 PP2 交点 P5 交点 P6 交点 P8 交点 P5i 交点 P6i 交点 P8i 交点 P7i 境点 P9i 境点 P7 接点 P9 接点 dr 歯底直径 dri 歯底直径 dKs 歯先直径 dK1 歯先直径 dKi 歯先直径 SS0 直線 SS1 直線 SS2 直線 SOn 円弧非歯厚 SOn 円弧非歯厚 tO 円ピッチ tOi 円ピッチ SO 円弧歯厚 SOi 円弧歯厚 dO ピッチ円直径 dOi ピッチ円直径 drθ 歯底円周 dr1θ 歯底円周 driθ 歯底円周 VB 偏心 dKSθ 歯先円周 dK1θ 歯先円周 dKiθ 歯先円周 dOθ ピッチ円周 dOiθ ピッチ円周dθ 'Pitch angle (external gear G') dθ Pitch angle (external gear G) dθ0 Pitch angle dθ1 Pitch angle (1/2 of dθ) dθ2 Pitch angle (1/4 of dθ0) dθi Pitch angle (internal gear Gi) dθi1 Pitch angle (1/2 of dθi) dθi2 Pitch angle (1/4 of dθi) IC1 Involute curve IC2 Involute curve ICr Approximate curve (tooth phase) Gfi Approximate curve (tooth phase) GfO Approximate curve (tooth phase) G ′ External gear G in outer gears Gi gear r 1 radius r '1 radius r 2 the radius r' 2 radius rs linear hi tooth height h tooth depth GrO approximate radius Gr approximate radius Gri approximate radius SS center SSi center Gf tooth phase Gni valley Gr1 valleys Gt tooth tip Gti tooth tip P1 to P3 intersection point P3 'intersection point PP1 intersection point PP2 intersection point P5 intersection point P6 intersection point P8 intersection point P5i intersection point P6i intersection point P8i Point P7i Boundary point P9i Boundary point P7 contact point P9 contact point dr Root diameter dri root diameter dKs Tip diameter dK1 Tip diameter dKi Tip diameter SS0 straight line SS1 straight line SS2 straight line SOn arc non-tooth thickness SOn arc pitch non-tooth thickness tO tOi circle pitch SO arc tooth thickness SOi arc tooth thickness dO pitch circle diameter dOi pitch circle diameter drθ tooth bottom circumference dr1θ tooth bottom circumference driθ tooth bottom circumference VB eccentricity dKSθ tooth tip circumference dK1θ tooth tip circumference dKiθ tooth circumference Circumference dOθ pitch circumference dOiθ pitch circumference

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 所要歯底円周上から、所要歯数に供する
各ピッチ角交点から歯形を形成のためのインボリュート
曲線を外方に交互に描き、当該ピッチ角の延長範域内に
当該インボリュート曲線の交点を外歯車の仮歯丈とし、
当該インボリュート曲線の交点の前後近くの近似曲線を
描き、当該近似曲線を歯相とし、当該歯相の半径中心を
得ると共に前記仮歯丈の高さの30%〜70%の歯丈h
にて形成する外歯車であって、歯先円周と歯底円周との
範域において、各ピッチ角交点から、前記インボリュー
ト曲線又は近似曲線を画いて歯相を形成して成る外歯車
と、この外歯車に噛合い係合する内歯車であって、所要
歯数は外歯車の歯数よりも多く,外歯車のピッチ角の角
度及び数に対し、内歯車のピッチ角の角度は狭くその数
は多くし、かつ外歯車のピッチ角の角度を,内歯車のピ
ッチ角の角度で除した値を倍数とし、外歯車の歯底直径
に当該倍数を乗じた値を内歯車の歯先直径とすると共に
外歯車の歯先直径に当該倍数を乗じた値を内歯車の歯底
直径とし、内歯車の歯先円周と、歯底円周との範域内に
て、当該歯底円周上のピッチ角交点から、内側に存する
歯先円周に向ってインボリュート曲線又は近似曲線を描
いて歯相を形成して成る内歯車とを組合せたことを特徴
とする歯車機構。
1. An involute curve for forming a tooth profile is alternately drawn outward from each pitch angle intersection point to provide a required number of teeth from the circumference of the required tooth bottom, and the involute curve is extended within the extension range of the pitch angle. The temporary gear length of the external gear at the intersection of
Draw an approximate curve near the intersection of the involute curve, use the approximate curve as a tooth phase, obtain the radius center of the tooth phase, and obtain a tooth height h of 30% to 70% of the height of the temporary tooth height.
An external gear formed by forming an involute curve or an approximate curve from each pitch angle intersection point in the range of the tooth tip circumference and the tooth root circumference to form a tooth phase. , The internal gear meshingly engaged with this external gear, the required number of teeth is greater than the number of teeth of the external gear, and the pitch angle angle of the internal gear is narrower than the pitch angle angle and number of the external gear. The number should be increased, and the value obtained by dividing the pitch angle of the external gear by the pitch angle of the internal gear shall be a multiple, and the value obtained by multiplying the root diameter of the external gear by the multiple shall be the tip of the internal gear. In addition to the diameter, the value obtained by multiplying the tip diameter of the external gear by the multiple is taken as the root diameter of the internal gear, and within the range of the tip circumference of the internal gear and the root circumference, the root circle concerned The involute curve or approximate curve is drawn from the intersection of the pitch angles on the circumference toward the inner circumference of the tooth tip to form the tooth phase. Gear mechanism, characterized in that the internal gear combination composed.
JP15983594A 1994-07-12 1994-07-12 Gear mechanism Pending JPH0828632A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15983594A JPH0828632A (en) 1994-07-12 1994-07-12 Gear mechanism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15983594A JPH0828632A (en) 1994-07-12 1994-07-12 Gear mechanism

Publications (1)

Publication Number Publication Date
JPH0828632A true JPH0828632A (en) 1996-02-02

Family

ID=15702290

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15983594A Pending JPH0828632A (en) 1994-07-12 1994-07-12 Gear mechanism

Country Status (1)

Country Link
JP (1) JPH0828632A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2415026A (en) * 2004-06-08 2005-12-14 Alan Robert Newton Tooth form of cycloidal gearing having different pitch circles
KR100721228B1 (en) * 1999-11-22 2007-05-22 가부시키가이샤 하모닉 드라이브 시스템즈 Flexible meshing type gear device having deflection meshing involute tooth profile
JP2019156042A (en) * 2018-03-09 2019-09-19 住友重機械工業株式会社 Steering assist device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100721228B1 (en) * 1999-11-22 2007-05-22 가부시키가이샤 하모닉 드라이브 시스템즈 Flexible meshing type gear device having deflection meshing involute tooth profile
GB2415026A (en) * 2004-06-08 2005-12-14 Alan Robert Newton Tooth form of cycloidal gearing having different pitch circles
GB2415026B (en) * 2004-06-08 2007-12-27 Alan Robert Newton Offset drive direct ratio gear coupling
JP2019156042A (en) * 2018-03-09 2019-09-19 住友重機械工業株式会社 Steering assist device

Similar Documents

Publication Publication Date Title
US3267763A (en) Variable-ratio toothed gearing mechanism
TWI638104B (en) Harmonic gear device, friction-locking harmonic device and harmonic generator
US8789437B2 (en) Eccentrically cycloidal engagement of toothed profiles having curved teeth
JPS62278368A (en) Low-noise vibrating gear
EP0640778A1 (en) Harmonic drive gearing apparatus, and a method of generating tooth profiles therefor
US6178840B1 (en) Gear form constructions
JP2001519013A (en) Gear shape configuration
US20020142873A1 (en) Chain drive arrangement
WO2020133650A1 (en) Line-surface conjugation-based paired gear meshing pair and design method therefor
US20190264791A1 (en) Optimized harmonic drive
JP2018513332A (en) Drive device with partial cycloidal tooth profile
US10409222B2 (en) Gearwheel for clock movement
TW201706523A (en) Strain wave gearing with multiple meshing accompanied by coincidence of tooth surfaces
WO2007013373A1 (en) Method of designing gear using cad system, and gear
JPH0828632A (en) Gear mechanism
JP4618566B2 (en) A gear having an arc tooth profile and a gear transmission using the gear.
JPS63259249A (en) Motion transmission gear by external gear
WO2017030471A1 (en) Bi-directional pin-cycloidal gearing of two wheels and a mechanism with gear wheels
JP4803442B2 (en) Oil pump rotor
TWI518266B (en) Harmonic speed reduction mechanism
WO1996001372A1 (en) Gerotor-type pump
US6212967B1 (en) Variable gear assembly and method
CN112024999B (en) Method for generating point contact ring surface worm gear pair by involute spiral double-generating surface
JP4877836B2 (en) Tooth profile setting method capable of meshing non-positive deviation maximum in flat wave gear device
RU184504U1 (en) GEAR WHEEL WITH HARMONIOUS TEETH PROFILE