JPH08285814A - Biosensor - Google Patents

Biosensor

Info

Publication number
JPH08285814A
JPH08285814A JP7112593A JP11259395A JPH08285814A JP H08285814 A JPH08285814 A JP H08285814A JP 7112593 A JP7112593 A JP 7112593A JP 11259395 A JP11259395 A JP 11259395A JP H08285814 A JPH08285814 A JP H08285814A
Authority
JP
Japan
Prior art keywords
electrodes
biosensor
substrate
electrode
enzyme
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
JP7112593A
Other languages
Japanese (ja)
Inventor
Tadahisa Toyama
忠久 当山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Casio Computer Co Ltd
Original Assignee
Casio Computer Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Casio Computer Co Ltd filed Critical Casio Computer Co Ltd
Priority to JP7112593A priority Critical patent/JPH08285814A/en
Publication of JPH08285814A publication Critical patent/JPH08285814A/en
Abandoned legal-status Critical Current

Links

Abstract

PURPOSE: To provide a small-sized biosensor which can measure a liquid specimen in a very small quantity. CONSTITUTION: A working electrode 14 and a counter electrode 16 are installed on opposite inside faces of an upper substrate 11 and a lower substrate 12 which are faced, and an immobilized enzyme film 15 is formed on the surface of the working electrode 14. A spacer 13 is interposed between the immobilized enzyme film 15 and the counter electrode 16 so as to be dispersed, the interval between both electrodes is made uniform, and both electrodes are held by a seal material. A drop introduction part 12a which is extended to a side part from the opposite part is formed on the lower substrate 12. By this constitution, both substrates can be formed to be of a stacked and compact structure as viewed from a plane. In addition, a liquid specimen 18 which has been soaked between both electrodes can be set to be a very small quantity, it is sufficient to drop the liquid onto the drop introduction part 12a, and a measurement can be performed surely and easily.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、バイオセンサに関
し、さらに詳しくは、各種液体の成分濃度を、固定化し
た酵素などを利用して検出する、臨床検査や水質検査な
どに用いられる酵素センサに係る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a biosensor, and more particularly to an enzyme sensor used in clinical tests, water quality tests, etc., for detecting the concentration of various liquid components by using immobilized enzymes. Pertain.

【0002】[0002]

【従来の技術】従来、固定化した酵素を用いたバイオセ
ンサの一つとしては、図3(A)および(B)に示すも
のが知られている。図3(A)は平面図であり、図3
(B)は図3(A)のa−b断面図である。このバイオ
センサは、基板1の一側表面上に作用極2と対極3とが
共に設けられている。対極3は、略コ字状の平面形状で
あり、矩形状の作用極2の三辺に対して所定距離だけ隔
てて形成されている。また、作用極2の表面には、例え
ばグルコース酸化酵素(グルコースオキシダーゼ)を固
定化した固定化酵素膜4が被着されている。このような
構成のバイオセンサは、図3(B)に示すように、被検
査液(例えば血液、尿など)5を作用極2と対極3とに
跨がるように滴下することにより、その測定が可能とな
る。そして、このバイオセンサは、グルコース酸化酵素
の触媒作用により、基質(酵素の作用を受けて変化する
物質)であるグルコースが酸化されるときに消費される
酸素の減少、またはこのとき生成される過酸化水素の増
大を電流測定することにより、グルコース濃度を測定す
ることができるようになっている。
2. Description of the Related Art Conventionally, as one of biosensors using an immobilized enzyme, those shown in FIGS. 3A and 3B are known. FIG. 3A is a plan view.
3B is a cross-sectional view taken along the line ab of FIG. In this biosensor, a working electrode 2 and a counter electrode 3 are both provided on one surface of a substrate 1. The counter electrode 3 has a substantially U-shaped planar shape, and is formed at a predetermined distance from the three sides of the rectangular working electrode 2. Further, the surface of the working electrode 2 is coated with an immobilized enzyme membrane 4 on which, for example, glucose oxidase (glucose oxidase) is immobilized. As shown in FIG. 3 (B), the biosensor having such a configuration is prepared by dropping a test liquid (eg, blood, urine, etc.) 5 so as to straddle the working electrode 2 and the counter electrode 3. It becomes possible to measure. This biosensor reduces the oxygen consumed when glucose, which is a substrate (substance that changes by the action of an enzyme), is oxidized by the catalytic action of glucose oxidase, or the amount of oxygen generated at this time is reduced. By measuring the increase in hydrogen oxide amperometrically, the glucose concentration can be measured.

【0003】また、他のバイオセンサとしては、図4に
示すような構成のものが知られている。このバイオセン
サは、絶縁基板6の一側表面に作用極7が設けられ、そ
の他側表面に対極8が設けられている。そして、作用極
7の表面には、固定化酵素膜9が被着されている。この
ような構成のバイオセンサは、被検査液の中にセンサ自
体を浸して両電極間に被検査液が存在するようにして検
査を行っている。このバイオセンサにおいても、グルコ
ース酸化酵素の触媒作用により、グルコースが酸化され
るときに消費される酸素の減少、またはこのとき生成さ
れる過酸化水素の増大を電流測定することにより、グル
コース濃度を測定することができるようになっている。
As another biosensor, one having a structure as shown in FIG. 4 is known. In this biosensor, the working electrode 7 is provided on one surface of the insulating substrate 6, and the counter electrode 8 is provided on the other surface. The surface of the working electrode 7 is coated with the immobilized enzyme film 9. The biosensor having such a structure is tested by immersing the sensor itself in the test liquid so that the test liquid exists between the electrodes. Also in this biosensor, the glucose concentration is measured by measuring the decrease in oxygen consumed when glucose is oxidized by the catalytic action of glucose oxidase or the increase in hydrogen peroxide produced at this time, by measuring the current. You can do it.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記し
た従来のバイオセンサのうちの前者にあっては、基板1
の一側表面上に作用極4と対極3とが平面的に重なり合
わないように配置されているため、これら電極が基板1
の一側表面で占有する面積は必然的に大きいものであっ
た。このため、バイオセンサの小型化が図りにくいもの
であった。一方、後者では、作用極7と対極8とが絶縁
基板6を挟んで対向するように形成することにより、平
面的にみて重なり合わせることができるため小型化を図
ることは可能である。しかし、絶縁基板6により電極ど
うしが隔てられているため、バイオセンサを被検査液に
浸けて両電極が被検査液に接触するようにしなければな
らず、このためには相当量の被検査液が必要となる。こ
のように、後者では、被検査液の微量測定ができないと
いう問題点があった。
However, in the former of the above-mentioned conventional biosensors, the substrate 1
Since the working electrode 4 and the counter electrode 3 are arranged so as not to overlap each other in plan view on one surface of the substrate 1, these electrodes are arranged on the substrate 1
The area occupied by one side surface was inevitably large. Therefore, it is difficult to reduce the size of the biosensor. On the other hand, in the latter case, since the working electrode 7 and the counter electrode 8 are formed so as to face each other with the insulating substrate 6 sandwiched therebetween, they can be overlapped with each other when seen in a plan view, so that the size can be reduced. However, since the electrodes are separated from each other by the insulating substrate 6, it is necessary to immerse the biosensor in the liquid to be inspected so that both electrodes come into contact with the liquid to be inspected. Is required. As described above, the latter method has a problem that it is impossible to measure a trace amount of the test liquid.

【0005】この発明が解決しようとする課題は、小型
化を図ることができると共に、被検査液が微量でも測定
できるバイオセンサを得るにはどのような手段を講じれ
ばよいかという点にある。
The problem to be solved by the present invention lies in what means should be taken to obtain a biosensor which can be downsized and which can measure a small amount of test liquid.

【0006】[0006]

【課題を解決するための手段】請求項1記載の発明は、
相対向する一対の電極のうち一方の電極の対向内側面
に、酵素、あるいは酵素とメディエータとが固定化さ
れ、かつ前記一対の電極どうしの間隔をスペーサにより
保持されることを特徴としている。
According to the first aspect of the present invention,
An enzyme or an enzyme and a mediator are immobilized on the inner surface of one of the pair of electrodes facing each other, and the space between the pair of electrodes is held by a spacer.

【0007】請求項2記載の発明は、前記一対の電極の
うち一つの電極側に、側方近傍に延在された被検査液の
滴下導入部が形成されていることを特徴としている。請
求項3記載の発明は、前記一対の電極は、少なくとも前
記滴下導入部に臨む部分を除いた部分でシール材を介し
て接合されていることを特徴としている。
The invention according to claim 2 is characterized in that a drop introducing portion for the liquid to be inspected extending in the lateral direction is formed on one electrode side of the pair of electrodes. The invention according to claim 3 is characterized in that the pair of electrodes are bonded to each other via a sealing material at least at a portion excluding a portion facing the drip introducing portion.

【0008】請求項4記載の発明は、前記一対の電極間
に電圧を印加するための電圧印加回路と、前記電極間に
流れる電流を検出するための電流検出回路と、を備える
ことを特徴としている。
According to a fourth aspect of the present invention, there is provided a voltage application circuit for applying a voltage between the pair of electrodes, and a current detection circuit for detecting a current flowing between the electrodes. There is.

【0009】[0009]

【作用】請求項1記載の発明においては、相対向する一
対の電極間にスペーサが介在されているため、両電極間
に所定の間隔を設けることができ、このため両電極間の
間隙に被検査液を注入させることができるので迅速に測
定することができる。また、両電極の間隔を狭くすれば
被検査液が微量であっても毛細管現象により確実に両電
極間に浸入し、検出されることができる。このように、
両電極を対向させ、しかもその間隔を狭くすることによ
り、センサ本体の小型化にでき被検査液が微量であって
も十分かつ迅速に検出することができる。また、両電極
間の間隔を均一に保持することにより、微量の被検査液
でも電極間全体にわたって均一な電界を形成することが
でき高精度な定量分析が行える。
According to the first aspect of the invention, since the spacer is interposed between the pair of electrodes facing each other, a predetermined space can be provided between the two electrodes. Since the test liquid can be injected, the measurement can be performed quickly. Further, if the distance between both electrodes is narrowed, even if a small amount of the liquid to be inspected can be reliably infiltrated between both electrodes by the capillary phenomenon and can be detected. in this way,
By making both electrodes face each other and narrowing the interval between them, the sensor main body can be downsized, and even a small amount of test liquid can be detected sufficiently and quickly. Further, by keeping the interval between both electrodes uniform, a uniform electric field can be formed over the entire electrodes even with a small amount of test liquid, and highly accurate quantitative analysis can be performed.

【0010】請求項2記載の発明においては、一つの電
極側に側方近傍に延在するように形成された滴下導入部
に被検査液が滴下されると、被検査液が両電極間にすみ
やかに浸入して両電極に接触する。このため、センサ自
体を大量の被検査液に浸ける必要がなく、滴下できる程
度の微量での測定が可能となる。
According to the second aspect of the present invention, when the liquid to be inspected is dripped into the drip introducing portion formed on one electrode side so as to extend in the vicinity of the side, the liquid to be inspected is dropped between both electrodes. Immediate penetration and contact with both electrodes. For this reason, it is not necessary to immerse the sensor itself in a large amount of the liquid to be inspected, and it is possible to perform measurement with a minute amount that can be dropped.

【0011】請求項3記載の発明においては、両電極間
にスペーサを散布しているため、シール材を用いて容易
に両基板を所定間隔に対向して接合することができる。
このとき、被検査液を滴下する滴下導入部に臨む部分以
外をシール材で接合するため、このシール材が被検査液
の両電極間への浸入を妨げることがない。
According to the third aspect of the present invention, since the spacers are scattered between the two electrodes, both substrates can be easily opposed to each other at a predetermined interval by using a sealing material.
At this time, since the portion other than the portion facing the drip introducing portion for dropping the liquid to be inspected is joined by the sealing material, the sealing material does not prevent the infiltration of the liquid to be inspected between the electrodes.

【0012】請求項4記載の発明においては、電極間に
電圧を印加するための電圧印加回路と、前記電極間に流
れる電流を検出するための電流検出回路と、を備えるこ
とにより、一方の電極に固定化された酵素の触媒作用に
より、例えば基質が酸化されるときに消費される酸素の
減少や、またはこのとき生成される過酸化水素の増大な
どを電流測定することにより、被検査液中の基質濃度を
測定することが可能となる。酸素は一方の電極表面で電
気化学還元され、過酸化水素は電気化学酸化される。こ
の性質を利用して、例えば一方の電極の電位を所定の電
位になるように電圧印加回路を制御すると酸素は電気化
学還元され、また酸素以外に電極で反応する物質がない
状態では、電流検出回路で検出される電流値は被検査液
中の酸素分圧に比例する。このようにして、酸素の消費
量が判明するため、酵素によって酸化される基質の濃度
が測定できる。なお、過酸化水素の増大をみる場合、過
酸化水素は電気化学酸化されるため、設定する電位の極
性が酸素の減少をみる場合と逆となるが測定原理は酸素
をみる場合と同様である。また、一方の電極に酵素とメ
ディエータとが固定化されている場合は、一対の電極間
に電圧印加回路で所定の電位を印加し、電流検出回路で
直接酵素からの電子移動を測ることができる。これによ
り、被検査液中の基質の濃度を測定することができる。
According to the fourth aspect of the invention, by providing a voltage applying circuit for applying a voltage between the electrodes and a current detecting circuit for detecting a current flowing between the electrodes, one electrode is provided. By the catalytic action of the enzyme immobilized on the substrate, for example, the decrease in oxygen consumed when the substrate is oxidized or the increase in hydrogen peroxide produced at this time is measured by current, and It becomes possible to measure the substrate concentration of. Oxygen is electrochemically reduced on the surface of one electrode, and hydrogen peroxide is electrochemically oxidized. Utilizing this property, for example, when the voltage application circuit is controlled so that the potential of one electrode becomes a predetermined potential, oxygen is electrochemically reduced, and current detection is performed in the state where there is no substance other than oxygen that reacts at the electrode. The current value detected by the circuit is proportional to the oxygen partial pressure in the test liquid. In this way, the consumption of oxygen is known, so that the concentration of the substrate oxidized by the enzyme can be measured. When hydrogen peroxide increases, the polarity of the potential to be set is opposite to that when oxygen decreases because the hydrogen peroxide is electrochemically oxidized, but the measurement principle is the same as when oxygen is observed. . When the enzyme and the mediator are immobilized on one of the electrodes, a predetermined potential is applied between the pair of electrodes by a voltage application circuit, and the electron transfer from the enzyme can be directly measured by the current detection circuit. . Thereby, the concentration of the substrate in the test liquid can be measured.

【0013】[0013]

【実施例】以下、この発明の実施例を図面に基づいて詳
細に説明する。図1はこの発明に係るバイオセンサの実
施例を示す断面説明図、図2(A)はバイオセンサの平
面図、図2(B)は同図(A)のc−d断面図を示して
いる。図中10は、本実施例のバイオセンサを示してい
る。このバイオセンサ10は、上基板11と下基板12
とを対向させ、両基板11、12の相対向する面にそれ
ぞれ電極が設けられている。下基板12は上基板11と
幅がほぼ等しく、長さが上基板11より長く設定されて
いる。そして、両基板11、12は長さ方向の一端縁ど
うしが揃い、他端縁側で下基板12のほうが側方近傍に
延在するように配置されている。この下基板12の延在
した部分の上面は、被検査液の滴下導入部12aとなっ
ている。
Embodiments of the present invention will be described below in detail with reference to the drawings. 1 is a sectional explanatory view showing an embodiment of a biosensor according to the present invention, FIG. 2 (A) is a plan view of the biosensor, and FIG. 2 (B) is a sectional view taken along line cd of FIG. 1 (A). There is. In the figure, 10 indicates the biosensor of the present embodiment. The biosensor 10 includes an upper substrate 11 and a lower substrate 12.
And are opposed to each other, and electrodes are provided on the surfaces of the two substrates 11 and 12 facing each other. The lower substrate 12 has a width substantially equal to that of the upper substrate 11, and the length is set longer than that of the upper substrate 11. The both substrates 11 and 12 are arranged such that one end edges in the length direction are aligned with each other, and the lower substrate 12 extends closer to the lateral side on the other end edge side. The upper surface of the extending portion of the lower substrate 12 serves as a drop introducing portion 12a for the test liquid.

【0014】上基板11の対向内側面に設けられた電極
は、例えば真空蒸着法、マグネットスパッタリング法、
スクリーン印刷法などの周知の方法で形成された作用極
14であり、この作用極14の表面には固定化酵素膜1
5が設けられている。なお、この固定化酵素15は、グ
ルコース酸化酵素を高分子膜に例えば架橋法や包括法な
どの周知の方法で固定化してなる。一方、下基板12の
対向内側面に設けられた電極は、上基板11の作用極1
4と対向する対極16であり、作用極14と同様の方法
で形成されている。また、上基板11に設けられた固定
化酵素膜15と下基板12に設けられた対極16との間
には、複数の、例えば電気絶縁性を有する樹脂でなる、
球状のスペーサ13が分散されて介在されている。この
ため、上基板11と下基板12との間には、均一な間隙
が形成されている。また、固定化酵素膜15と対極16
との間の距離は、滴下導入部12aに滴下された被検査
液が毛細管現象により、固定化酵素膜15と対極16と
の間に導入され得るような距離に設定されている。この
距離は、スペーサ13の径寸法により決定することがで
きる。そして、上基板11と下基板12とは、図2
(A)、(B)に示すように、両側部でシール材17に
より互いに固定されている。
The electrodes provided on the inner surface of the upper substrate 11 facing each other are, for example, a vacuum vapor deposition method, a magnet sputtering method,
The working electrode 14 is formed by a known method such as a screen printing method, and the surface of the working electrode 14 has the immobilized enzyme membrane 1
5 are provided. The immobilized enzyme 15 is obtained by immobilizing glucose oxidase on a polymer membrane by a known method such as a crosslinking method or an encapsulation method. On the other hand, the electrode provided on the inner surface facing the lower substrate 12 is the working electrode 1 of the upper substrate 11.
The counter electrode 16 faces the counter electrode 4 and is formed in the same manner as the working electrode 14. Further, between the immobilized enzyme film 15 provided on the upper substrate 11 and the counter electrode 16 provided on the lower substrate 12, a plurality of, for example, electrically insulating resins are formed.
The spherical spacers 13 are dispersed and interposed. Therefore, a uniform gap is formed between the upper substrate 11 and the lower substrate 12. In addition, the immobilized enzyme membrane 15 and the counter electrode 16
The distance between and is set to such a distance that the liquid to be inspected dropped in the dropping introduction part 12a can be introduced between the immobilized enzyme membrane 15 and the counter electrode 16 by the capillary phenomenon. This distance can be determined by the diameter dimension of the spacer 13. The upper substrate 11 and the lower substrate 12 are shown in FIG.
As shown in (A) and (B), both sides are fixed to each other by the sealing material 17.

【0015】また、図1に示すように、作用極14と対
極16とには、配線19、20を介して電圧印加回路2
1および電流測定回路22が接続されている。
Further, as shown in FIG. 1, the voltage application circuit 2 is connected to the working electrode 14 and the counter electrode 16 via wirings 19 and 20.
1 and the current measuring circuit 22 are connected.

【0016】本実施例では、上記の構成としたことによ
り、図1に示すように、下基板12に滴下導入部12a
に被検査液18を滴下すると、被検査液18が固定化酵
素膜15と対極16との間に毛細管現象により速やかに
導入されるという作用をもつ。このように、作用極14
と対極16との間に被検査液18が介在された状態で、
グルコース濃度の測定が可能となる。
In the present embodiment, by adopting the above-mentioned structure, as shown in FIG.
When the test liquid 18 is dripped on, the test liquid 18 has a function of being promptly introduced between the immobilized enzyme membrane 15 and the counter electrode 16 by a capillary phenomenon. In this way, the working electrode 14
In a state where the liquid 18 to be inspected is interposed between the counter electrode 16 and the counter electrode 16,
It becomes possible to measure the glucose concentration.

【0017】すなわち、グルコースを含む、例えば血
液、尿、だ液などの微量の被検査液18を下基板12の
滴下導入部12aに滴下する。そして、被検査液18が
固定化酵素膜15と対極16との間に浸透すると、被検
査液18中のグルコースが、固定化酵素膜15中に固定
化されているグルコース酸化酵素によって酸化され、一
方グルコース酸化酵素自体は還元されて還元型となる。
このとき、被検査液18中に酸素が存在していれば、酸
素が電子受容体となり、還元型となっているグルコース
酸化酵素は元の酸化型に戻る。
That is, a small amount of the test liquid 18 containing glucose, such as blood, urine, saliva, etc., is dropped onto the dropping introduction part 12a of the lower substrate 12. Then, when the test liquid 18 permeates between the immobilized enzyme film 15 and the counter electrode 16, glucose in the test liquid 18 is oxidized by the glucose oxidase immobilized in the immobilized enzyme film 15, On the other hand, glucose oxidase itself is reduced to a reduced form.
At this time, if oxygen is present in the test liquid 18, the oxygen serves as an electron acceptor, and the glucose oxidase in the reduced form returns to the original oxidized form.

【0018】また、このようなグルコースの酸化反応と
同時に過酸化水素が生成される。このとき、電圧印加回
路21により、作用極14と対極16との間に所定の電
圧が印加されていると、生成した過酸化水素が還元さ
れ、これにより作用極14と対極16との間に過酸化水
素の還元電流が流れる。この還元電流は、電流測定回路
22で測定することができる。この還元電流の大きさ
は、生成する過酸化水素量に依存している。したがっ
て、過酸化水素の生成量が被検査液18中のグルコース
濃度に依存していることから、還元電流の大きさを測定
することにより、被検査液18中のグルコース濃度を決
定することができる。すなわち、このときの電流の時間
変化は、被検査液18中の基質であるグルコース濃度に
依存して既知の関数に乗る。このため、電流変化を検出
すれば基質濃度を測定することが可能となる。
Further, hydrogen peroxide is produced at the same time as the glucose oxidation reaction. At this time, if a predetermined voltage is applied between the working electrode 14 and the counter electrode 16 by the voltage application circuit 21, the generated hydrogen peroxide is reduced, and as a result, the hydrogen peroxide is reduced between the working electrode 14 and the counter electrode 16. A reduction current of hydrogen peroxide flows. This reduction current can be measured by the current measuring circuit 22. The magnitude of this reduction current depends on the amount of hydrogen peroxide produced. Therefore, since the amount of hydrogen peroxide produced depends on the glucose concentration in the test liquid 18, the glucose concentration in the test liquid 18 can be determined by measuring the magnitude of the reduction current. . That is, the time change of the current at this time is a known function depending on the glucose concentration which is the substrate in the test liquid 18. Therefore, the substrate concentration can be measured by detecting the change in current.

【0019】以上、実施例について説明したが、この発
明はこれに限定されるものではなく、構成の要旨に付随
する各種の設計変更が可能である。上記実施例では、作
用極14に固定化する酵素をグルコース酸化酵素とする
ことにより、バイオセンサをグルコース濃度の測定に供
されるものとしたが、これに限定されるものではなく、
その触媒作用により基質(測定対象)を酸化する酵素を
作用極に固定化し、基質を酸化することにより発生する
過酸化水素を検出することにより、その基質測定用のバ
イオセンサに適用することができる。例えば、固定化酵
素としてアルコール酸化酵素であるアルコールオキシダ
ーゼを用いれば、アルコール濃度測定用のバイオセンサ
とすることができる。また、固定化される酵素がコレス
テロール酸化酵素であるコレステロールオキシダーゼを
用いれば、コレステロール測定用のバイオセンサとする
ことができる。
Although the embodiment has been described above, the present invention is not limited to this, and various design changes accompanying the gist of the configuration can be made. In the above example, the enzyme to be immobilized on the working electrode 14 was glucose oxidase, and the biosensor was provided for measurement of glucose concentration. However, the present invention is not limited to this.
By immobilizing an enzyme that oxidizes a substrate (measurement target) by its catalytic action on the working electrode and detecting hydrogen peroxide generated by oxidizing the substrate, it can be applied to a biosensor for measuring the substrate. . For example, if alcohol oxidase, which is an alcohol oxidase, is used as the immobilized enzyme, it can be used as a biosensor for measuring alcohol concentration. If cholesterol oxidase whose enzyme to be immobilized is cholesterol oxidase is used, it can be used as a biosensor for cholesterol measurement.

【0020】また、上記実施例では、作用極14の表面
に酵素のみを固定したが、これに加えてメディエータを
共存させれば、基質を酸化させて還元型に変化した酵素
が元の酸化型に戻る際に、メディエータが酵素から電子
を奪い還元型メディエータとなる。そして、この還元型
メディエータが電極反応によって電極に電子を与え、こ
れにより元の酸化型に戻る。すなわち、酵素とメディエ
ータとを含む基質が作用極表面に存在すれば、酵素とメ
ディエータとを仲介して電子が電極へ移動し、基質濃度
に応じた電流が流れる。したがって、この電流を検出す
れば基質濃度を測定することができる。
Further, in the above embodiment, only the enzyme was immobilized on the surface of the working electrode 14, but if a mediator coexists in addition to this, the enzyme that has oxidized the substrate and changed to the reduced form is the original oxidized form. When returning to, the mediator takes an electron from the enzyme and becomes a reduced mediator. Then, this reduced mediator gives electrons to the electrode by an electrode reaction, thereby returning to the original oxidized form. That is, if the substrate containing the enzyme and the mediator is present on the surface of the working electrode, the electrons move to the electrode via the enzyme and the mediator, and a current corresponding to the substrate concentration flows. Therefore, the substrate concentration can be measured by detecting this current.

【0021】また、作用極14、対極16は基質と酵素
との間等に行われる化学反応に応じて一方をアノード電
極、他方をカソード電極として設定すればよい。さら
に、上記実施例では、滴下導入部12aを下基板12側
に設けたが、対極16を作用極14より長くして、対極
16自体に滴下導入部を形成しても勿論よい。
Further, one of the working electrode 14 and the counter electrode 16 may be set as an anode electrode and the other as a cathode electrode according to a chemical reaction performed between a substrate and an enzyme or the like. Furthermore, in the above-described embodiment, the drop introducing portion 12a is provided on the lower substrate 12 side, but the counter electrode 16 may be longer than the working electrode 14 and the drop introducing portion may be formed on the counter electrode 16 itself.

【0022】またさらに、上記実施例では、絶縁性の樹
脂からなるスペーサ13を球状の粒子としたが、絶縁性
であればガラス等の無機材料からなるものでもよい。さ
らに所定の径寸法を有する円柱状の粒子としてもよく、
また、作用極と対極との間の距離を均一に保てるもので
あれば他の形状でもよい。
Further, in the above embodiment, the spacers 13 made of an insulating resin are spherical particles, but may be made of an inorganic material such as glass as long as they are insulating. Further, it may be a cylindrical particle having a predetermined diameter dimension,
Other shapes may be used as long as the distance between the working electrode and the counter electrode can be kept uniform.

【0023】[0023]

【発明の効果】以上の説明から明らかなように、この発
明によれば、相対向する電極を平面的に見て重ねた配置
とすることができると共に、電極間を狭くできるため、
バイオセンサの小型化及び測定の迅速化を図ることがで
きる。特に、スペーサの径寸法を、電極間に被検査液が
毛細管現象により染み込む程度に小さくできるため、バ
イオセンサの薄型化を図れるという効果がある。また、
狭い電極間に被検査液が浸入するだけでよいため、測定
に用いる被検査液の量が微量でよいという効果がある。
さらに、滴下導入部が形成されているため、被検査液を
容易かつ確実に供給することが可能となり、使い易いバ
イオセンサを実現する効果がある。
As is apparent from the above description, according to the present invention, it is possible to arrange the electrodes facing each other in a plan view and to reduce the distance between the electrodes.
It is possible to downsize the biosensor and speed up the measurement. In particular, since the diameter of the spacer can be reduced to such an extent that the test liquid permeates between the electrodes due to the capillary phenomenon, the biosensor can be thinned. Also,
Since the liquid to be inspected only needs to enter between the narrow electrodes, there is an effect that the amount of the liquid to be inspected used for the measurement can be small.
Further, since the drip introducing portion is formed, the liquid to be inspected can be easily and surely supplied, and there is an effect of realizing an easy-to-use biosensor.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例のバイオセンサを示す断面説明
図。
FIG. 1 is an explanatory sectional view showing a biosensor according to an embodiment of the present invention.

【図2】(A)は本実施例のバイオセンサの平面図、
(B)は図2(A)のc−d断面図。
FIG. 2A is a plan view of the biosensor of this embodiment,
FIG. 2B is a sectional view taken along line cd of FIG.

【図3】(A)従来のバイオセンサを示す平面図、
(B)は図3(A)のa−b断面図。
FIG. 3A is a plan view showing a conventional biosensor,
FIG. 3B is a cross-sectional view taken along the line ab of FIG.

【図4】他の従来例を示す断面図。FIG. 4 is a sectional view showing another conventional example.

【符号の説明】[Explanation of symbols]

10 バイオセンサ 13 スペーサ 14 作用極 15 固定化酵素膜 16 対極 17 シール材 18 被検査液 21 電圧印加回路 22 電流測定回路 10 Biosensor 13 Spacer 14 Working Electrode 15 Immobilized Enzyme Membrane 16 Counter Electrode 17 Sealing Material 18 Test Liquid 21 Voltage Application Circuit 22 Current Measurement Circuit

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 相対向する一対の電極のうち一方の電極
の対向内側面に、酵素、あるいは酵素とメディエータと
が固定化され、かつ前記一対の電極どうしの間隔をスペ
ーサにより保持されることを特徴とするバイオセンサ。
1. An enzyme or an enzyme and a mediator are immobilized on the inner surfaces of one of the pair of electrodes facing each other, and the space between the pair of electrodes is held by a spacer. Characteristic biosensor.
【請求項2】 前記一対の電極のうち一つの電極側に、
側方近傍に延在された被検査液の滴下導入部が形成され
ていることを特徴とする請求項1記載のバイオセンサ。
2. The one electrode side of the pair of electrodes,
The biosensor according to claim 1, wherein a drop introducing portion for the liquid to be inspected is formed extending in the vicinity of the side.
【請求項3】 前記一対の電極は、少なくとも前記滴下
導入部に臨む部分を除いた部分でシール材を介して接合
されていることを特徴とする請求項2記載のバイオセン
サ。
3. The biosensor according to claim 2, wherein the pair of electrodes are bonded to each other via a sealing material at least at a portion excluding a portion facing the drip introducing portion.
【請求項4】 前記一対の電極間に電圧を印加するため
の電圧印加回路と、前記電極間に流れる電流を検出する
ための電流検出回路と、を備えることを特徴とする請求
項1記載のバイオセンサ。
4. A voltage applying circuit for applying a voltage between the pair of electrodes, and a current detecting circuit for detecting a current flowing between the electrodes, according to claim 1. Biosensor.
JP7112593A 1995-04-14 1995-04-14 Biosensor Abandoned JPH08285814A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7112593A JPH08285814A (en) 1995-04-14 1995-04-14 Biosensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7112593A JPH08285814A (en) 1995-04-14 1995-04-14 Biosensor

Publications (1)

Publication Number Publication Date
JPH08285814A true JPH08285814A (en) 1996-11-01

Family

ID=14590627

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7112593A Abandoned JPH08285814A (en) 1995-04-14 1995-04-14 Biosensor

Country Status (1)

Country Link
JP (1) JPH08285814A (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11352093A (en) * 1998-06-11 1999-12-24 Matsushita Electric Ind Co Ltd Biosensor
US6893545B2 (en) 1997-09-12 2005-05-17 Therasense, Inc. Biosensor
JP2006317470A (en) * 2006-08-31 2006-11-24 Matsushita Electric Ind Co Ltd Biosensor
JP2007268289A (en) * 1997-02-06 2007-10-18 Therasense Inc Small volume in vitro analyte sensor
US8840553B2 (en) 1998-04-30 2014-09-23 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8915850B2 (en) 2005-11-01 2014-12-23 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8920319B2 (en) 2005-11-01 2014-12-30 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8933664B2 (en) 2006-03-31 2015-01-13 Abbott Diabetes Care Inc. Method and system for powering an electronic device
US8974386B2 (en) 1998-04-30 2015-03-10 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US9011332B2 (en) 2001-01-02 2015-04-21 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US9039975B2 (en) 2006-03-31 2015-05-26 Abbott Diabetes Care Inc. Analyte monitoring devices and methods therefor
US9066695B2 (en) 1998-04-30 2015-06-30 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US9078607B2 (en) 2005-11-01 2015-07-14 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US9095290B2 (en) 2007-03-01 2015-08-04 Abbott Diabetes Care Inc. Method and apparatus for providing rolling data in communication systems
US9234863B2 (en) 1998-10-08 2016-01-12 Abbott Diabetes Care Inc. Small volume in vitro analyte sensor
US9323898B2 (en) 2005-11-04 2016-04-26 Abbott Diabetes Care Inc. Method and system for providing basal profile modification in analyte monitoring and management systems
US9962091B2 (en) 2002-12-31 2018-05-08 Abbott Diabetes Care Inc. Continuous glucose monitoring system and methods of use
US9980670B2 (en) 2002-11-05 2018-05-29 Abbott Diabetes Care Inc. Sensor inserter assembly
US10039881B2 (en) 2002-12-31 2018-08-07 Abbott Diabetes Care Inc. Method and system for providing data communication in continuous glucose monitoring and management system
US10478108B2 (en) 1998-04-30 2019-11-19 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
USD902408S1 (en) 2003-11-05 2020-11-17 Abbott Diabetes Care Inc. Analyte sensor control unit

Cited By (63)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9234864B2 (en) 1997-02-06 2016-01-12 Abbott Diabetes Care Inc. Small volume in vitro analyte sensor
JP2007268289A (en) * 1997-02-06 2007-10-18 Therasense Inc Small volume in vitro analyte sensor
JP2012101092A (en) * 1997-02-06 2012-05-31 Abbott Diabetes Care Inc Small volume in vitro analyte sensor
US8557103B2 (en) 1997-09-12 2013-10-15 Abbott Diabetes Care Inc. Biosensor
US6893545B2 (en) 1997-09-12 2005-05-17 Therasense, Inc. Biosensor
US7713406B2 (en) 1997-09-12 2010-05-11 Abbott Diabetes Care Inc. Biosensor
US7901554B2 (en) 1997-09-12 2011-03-08 Abbott Diabetes Care Inc. Biosensor
US7905998B2 (en) 1997-09-12 2011-03-15 Abbott Diabetes Care Inc. Biosensor
US7918988B2 (en) 1997-09-12 2011-04-05 Abbott Diabetes Care Inc. Biosensor
US7998336B2 (en) 1997-09-12 2011-08-16 Abbott Diabetes Care Inc. Biosensor
US8414761B2 (en) 1997-09-12 2013-04-09 Abbott Diabetes Care Inc. Biosensor
US10478108B2 (en) 1998-04-30 2019-11-19 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US9066697B2 (en) 1998-04-30 2015-06-30 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8880137B2 (en) 1998-04-30 2014-11-04 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8840553B2 (en) 1998-04-30 2014-09-23 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US9072477B2 (en) 1998-04-30 2015-07-07 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US9066694B2 (en) 1998-04-30 2015-06-30 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8974386B2 (en) 1998-04-30 2015-03-10 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US9014773B2 (en) 1998-04-30 2015-04-21 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US9011331B2 (en) 1998-04-30 2015-04-21 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US9066695B2 (en) 1998-04-30 2015-06-30 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US9042953B2 (en) 1998-04-30 2015-05-26 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
JPH11352093A (en) * 1998-06-11 1999-12-24 Matsushita Electric Ind Co Ltd Biosensor
US9341591B2 (en) 1998-10-08 2016-05-17 Abbott Diabetes Care Inc. Small volume in vitro analyte sensor
US9891185B2 (en) 1998-10-08 2018-02-13 Abbott Diabetes Care Inc. Small volume in vitro analyte sensor
US9234863B2 (en) 1998-10-08 2016-01-12 Abbott Diabetes Care Inc. Small volume in vitro analyte sensor
US9291592B2 (en) 1998-10-08 2016-03-22 Abbott Diabetes Care Inc. Small volume in vitro analyte sensor
US9316609B2 (en) 1998-10-08 2016-04-19 Abbott Diabetes Care Inc. Small volume in vitro analyte sensor
US9011332B2 (en) 2001-01-02 2015-04-21 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US9610034B2 (en) 2001-01-02 2017-04-04 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US9498159B2 (en) 2001-01-02 2016-11-22 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US9980670B2 (en) 2002-11-05 2018-05-29 Abbott Diabetes Care Inc. Sensor inserter assembly
US10973443B2 (en) 2002-11-05 2021-04-13 Abbott Diabetes Care Inc. Sensor inserter assembly
US11116430B2 (en) 2002-11-05 2021-09-14 Abbott Diabetes Care Inc. Sensor inserter assembly
US11141084B2 (en) 2002-11-05 2021-10-12 Abbott Diabetes Care Inc. Sensor inserter assembly
US9962091B2 (en) 2002-12-31 2018-05-08 Abbott Diabetes Care Inc. Continuous glucose monitoring system and methods of use
US10039881B2 (en) 2002-12-31 2018-08-07 Abbott Diabetes Care Inc. Method and system for providing data communication in continuous glucose monitoring and management system
US10750952B2 (en) 2002-12-31 2020-08-25 Abbott Diabetes Care Inc. Continuous glucose monitoring system and methods of use
USD914881S1 (en) 2003-11-05 2021-03-30 Abbott Diabetes Care Inc. Analyte sensor electronic mount
USD902408S1 (en) 2003-11-05 2020-11-17 Abbott Diabetes Care Inc. Analyte sensor control unit
US8920319B2 (en) 2005-11-01 2014-12-30 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US10952652B2 (en) 2005-11-01 2021-03-23 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US11911151B1 (en) 2005-11-01 2024-02-27 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US11399748B2 (en) 2005-11-01 2022-08-02 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US9078607B2 (en) 2005-11-01 2015-07-14 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US11363975B2 (en) 2005-11-01 2022-06-21 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US11272867B2 (en) 2005-11-01 2022-03-15 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US10201301B2 (en) 2005-11-01 2019-02-12 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US10231654B2 (en) 2005-11-01 2019-03-19 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8915850B2 (en) 2005-11-01 2014-12-23 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US11103165B2 (en) 2005-11-01 2021-08-31 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US9326716B2 (en) 2005-11-01 2016-05-03 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US9669162B2 (en) 2005-11-04 2017-06-06 Abbott Diabetes Care Inc. Method and system for providing basal profile modification in analyte monitoring and management systems
US9323898B2 (en) 2005-11-04 2016-04-26 Abbott Diabetes Care Inc. Method and system for providing basal profile modification in analyte monitoring and management systems
US11538580B2 (en) 2005-11-04 2022-12-27 Abbott Diabetes Care Inc. Method and system for providing basal profile modification in analyte monitoring and management systems
US9380971B2 (en) 2006-03-31 2016-07-05 Abbott Diabetes Care Inc. Method and system for powering an electronic device
US9625413B2 (en) 2006-03-31 2017-04-18 Abbott Diabetes Care Inc. Analyte monitoring devices and methods therefor
US8933664B2 (en) 2006-03-31 2015-01-13 Abbott Diabetes Care Inc. Method and system for powering an electronic device
US9743863B2 (en) 2006-03-31 2017-08-29 Abbott Diabetes Care Inc. Method and system for powering an electronic device
US9039975B2 (en) 2006-03-31 2015-05-26 Abbott Diabetes Care Inc. Analyte monitoring devices and methods therefor
JP2006317470A (en) * 2006-08-31 2006-11-24 Matsushita Electric Ind Co Ltd Biosensor
US9095290B2 (en) 2007-03-01 2015-08-04 Abbott Diabetes Care Inc. Method and apparatus for providing rolling data in communication systems
US9801545B2 (en) 2007-03-01 2017-10-31 Abbott Diabetes Care Inc. Method and apparatus for providing rolling data in communication systems

Similar Documents

Publication Publication Date Title
JPH08285814A (en) Biosensor
JP5197552B2 (en) Electrochemical biosensor strip for analysis of liquid samples
Urban et al. Miniaturized multi-enzyme biosensors integrated with pH sensors on flexible polymer carriers for in vivo applications
KR100340174B1 (en) Electrochemical Biosensor Test Strip, Fabrication Method Thereof and Electrochemical Biosensor
US5567302A (en) Electrochemical system for rapid detection of biochemical agents that catalyze a redox potential change
US6776888B2 (en) Biosensor
US6210907B1 (en) Measuring device with electrodes fabricated on porous membrane substrate in whole
Suzuki et al. An integrated three-electrode system with a micromachined liquid-junction Ag/AgCl reference electrode
JPH11352094A (en) Electrochemical analysis element
KR20030036609A (en) Hemoglobin sensor
JPH11352093A (en) Biosensor
Kim et al. Disposable creatinine sensor based on thick-film hydrogen peroxide electrode system
US5078855A (en) Chemical sensors and their divided parts
JPH0921778A (en) Biosensor
Urban et al. Performance of integrated glucose and lactate thin-film microbiosensors for clinical analysers
WO1995021934A1 (en) Hexacyanoferrate modified electrodes
Yu et al. An independently addressable microbiosensor array: What are the limits of sensing element density?
RU2271536C2 (en) Method for measuring hemoglobin quantity
US20210255134A1 (en) Biosensor and method for producing same
US7547381B2 (en) Sensor array integrated electrochemical chip, method of forming same, and electrode coating
US20230271185A1 (en) Biosensor system for multiplexed detection of biomarkers
JPH09264870A (en) Biosensor
KR100739865B1 (en) Bio-sensor
JPH04279854A (en) Platinum coated carbon fiber electrode and enzymatic film sensor using same
JP2001305095A (en) Biosensor

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040803

A762 Written abandonment of application

Free format text: JAPANESE INTERMEDIATE CODE: A762

Effective date: 20040929