JPH08285465A - Fluidized bed furnace - Google Patents

Fluidized bed furnace

Info

Publication number
JPH08285465A
JPH08285465A JP7090955A JP9095595A JPH08285465A JP H08285465 A JPH08285465 A JP H08285465A JP 7090955 A JP7090955 A JP 7090955A JP 9095595 A JP9095595 A JP 9095595A JP H08285465 A JPH08285465 A JP H08285465A
Authority
JP
Japan
Prior art keywords
fluidized bed
furnace body
dispersion plate
powder
cylindrical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7090955A
Other languages
Japanese (ja)
Other versions
JP2653991B2 (en
Inventor
Eiji Inoue
英二 井上
Yoshio Uchiyama
義雄 内山
Junya Nakatani
純也 中谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Heavy Industries Ltd
Original Assignee
Kawasaki Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Heavy Industries Ltd filed Critical Kawasaki Heavy Industries Ltd
Priority to JP7090955A priority Critical patent/JP2653991B2/en
Publication of JPH08285465A publication Critical patent/JPH08285465A/en
Application granted granted Critical
Publication of JP2653991B2 publication Critical patent/JP2653991B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Abstract

PURPOSE: To effectively ensure a flow path in a cylindrical furnace main body without forming a dead zone. CONSTITUTION: A spiral partition wall is provided on a gas distribution plate 12 of a cylindrical furnace body 11. Ore powder to be treated is charged into the furnace body from an inlet 14 at the center and discharged from an outlet 15 provided on the side wall of the furnace body 11. A spiral flow path 16 is formed from the inlet 14 to the outlet 15 along the partition wall. As the flow path is spiral, the long flow path 16 can be ensured by effectively using the inside space even though the furnace body 11 is cylindrical.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、粉体上の固体を予熱、
乾燥あるいは造粒などの物理的処理や、反応等の化学的
処理を施すために利用する流動層炉、特に円筒状の炉体
を有する流動層炉に関する。
The present invention relates to a method for preheating a solid on a powder,
The present invention relates to a fluidized bed furnace used for performing a physical treatment such as drying or granulation, or a chemical treatment such as a reaction, and more particularly to a fluidized bed furnace having a cylindrical furnace body.

【0002】[0002]

【従来の技術】従来から、図6に示すような円筒状の流
動層炉が粉粒体の物理的あるいは化学的処理のために用
いられている。典型的な先行技術は、たとえば合衆国特
許USP5,118,479に開示されている。この先
行技術では、鉄鉱石中に含まれるヘマタイト(Fe
32)などの鉄酸化物を炭化して、セメンタイト(Fe
3C)などの鉄炭化物であるアイアンカーバイドを製造
するために、流動層反応炉を用いる。その反応炉では、
円筒状の炉体1を軸線が鉛直となるように設置し、水平
なガス分散板2を設け、ガス分散板2上に鉄鉱石粉体の
流動層を形成する。ガス分散板2上の空間は、仕切板3
によって仕切り、鉄鉱石粉体を装入する入口4と炭化さ
れたアイアンカーバイドを排出する出口5との間の流路
6が、屈曲した形状となり、流路6の実質的距離が増大
するように構成されている。流路6が長くなると、炉体
1内で原料粉体の平均滞留時間が長くなり、所望の反応
の反応速度が遅くても高反応率を得ることができる。
2. Description of the Related Art Conventionally, a cylindrical fluidized bed furnace as shown in FIG. 6 has been used for physical or chemical treatment of a granular material. Typical prior art is disclosed, for example, in US Pat. No. 5,118,479. In this prior art, hematite (Fe) contained in iron ore
3 O 2 ) and other iron oxides are carbonized to give cementite (Fe
A fluidized bed reactor is used to produce iron anchor carbides such as 3 C). In that reactor,
A cylindrical furnace body 1 is installed so that the axis is vertical, a horizontal gas dispersion plate 2 is provided, and a fluidized bed of iron ore powder is formed on the gas dispersion plate 2. The space above the gas dispersion plate 2 is the partition plate 3
Thus, the flow path 6 between the inlet 4 for charging the iron ore powder and the outlet 5 for discharging the carbonized eye anchor carbide has a bent shape, so that the substantial distance of the flow path 6 is increased. It is configured. When the flow path 6 becomes longer, the average residence time of the raw material powder in the furnace body 1 becomes longer, and a high reaction rate can be obtained even if the reaction rate of the desired reaction is low.

【0003】図6に示すような仕切板3の配置では、流
路6が大きな角度で変化するので、処理粉体が流動層の
状態あるいはガス分散板2上に堆積した状態で滞留する
デットゾーンが、斜線を施して示すように形成されやす
い。仕切板3を設けなければ、炉体1内は全体として一
様な流動層が形成される。そのような単純な1段式の連
続流動層炉では、完全混合状態を仮定すると、装入され
た処理粉体が一瞬にして均一に混合され、図7に示すよ
うな滞留時間で排出される。この例では、たとえば平均
滞留時間1時間以内に63%の処理粉体が排出されてし
まう。この結果、たとえば1時間あたり未反応率0.1
%の1tonの製品を得るのに、250tonの原料を
装入出来る流動層炉が必要となる。
In the arrangement of the partition plate 3 as shown in FIG. 6, since the flow path 6 changes at a large angle, a dead zone in which the treated powder stays in a fluidized bed state or a state of being deposited on the gas dispersion plate 2. However, they are easily formed as shown by hatching. If the partition plate 3 is not provided, a uniform fluidized bed is formed in the furnace body 1 as a whole. In such a simple one-stage continuous fluidized bed furnace, assuming a perfect mixing state, the charged processing powders are uniformly mixed instantaneously and discharged with a residence time as shown in FIG. . In this example, for example, 63% of the treated powder is discharged within one hour of the average residence time. As a result, for example, an unreacted rate of 0.1 per hour
A fluidized bed furnace capable of loading 250 tonnes of raw material is required to obtain 1% tonnes of product.

【0004】図8に示すように、流動層炉を多段式にし
て、上段の出口5と下段の入口4との間を連結管8によ
って連結すれば、1段ではすぐ排出されてしまう粉体粒
子も、次の段では長く留まる可能性があるので、たとえ
ば1時間に未反応率0.1%の1tonの製品を得るの
に14tonを7tonずつに分けて1段目と2段目と
のそれぞれに装入するようにすればよい。1個の粒子が
反応を完結するのに必要な時間をθ0とすれば、未反応
率を0.1%とするときの平均滞留時間θは、1段でθ
=250θ0、2段でθ=14θ0、3段でθ=5θ0
となる。すなわち、段数が多ければ、各段の炉体は小さ
くすることができる。この場合の滞留時間分布は、図7
に2点鎖線で示すように、滞留時間分布を所望の時間に
合わせることができ、効率的な処理が可能である。しか
しながら、多段式の流動層炉では、装置が大掛かりとな
り、製造コストが上昇する。
As shown in FIG. 8, if the fluidized bed furnace is multi-staged and the upper stage outlet 5 and the lower stage inlet 4 are connected by a connecting pipe 8, the powder which is immediately discharged in the first stage can be obtained. The particles may also remain for a long time in the next stage. For example, in order to obtain a product of 1 ton with an unreacted rate of 0.1% in one hour, 14 tons are divided into 7 tons and the first and second stages are separated. What is necessary is just to charge each. Assuming that the time required for one particle to complete the reaction is θ0, the average residence time θ when the unreacted rate is 0.1% is θθ in one stage.
= 250θ0, θ = 14θ0 in two stages, θ = 5θ0 in three stages
Becomes That is, if the number of stages is large, the furnace body of each stage can be made small. The residence time distribution in this case is shown in FIG.
As shown by a two-dot chain line, the residence time distribution can be adjusted to a desired time, and efficient processing is possible. However, in the multi-stage fluidized bed furnace, the size of the apparatus becomes large and the manufacturing cost increases.

【0005】[0005]

【発明が解決しようとする課題】図6に示すような流動
層炉では、仕切板3が直線上に設けられているので、円
筒状の炉体1に対しては無理のない流路6を形成するこ
とが困難であり、斜線を施して示すデッドゾーン7が形
成されやすい。図6に示すような仕切板3の配置では、
約18%のデッドゾーンが形成される。デッドゾーン7
では、処理粒子がガス分散板2上に堆積して流路6の有
効断面積を狭め、流路6に沿った流速を速めて炉体1内
での処理粉体の滞留時間を減少させて反応率を低下させ
てしまう。またデッドゾーン7に堆積した処理粉末は、
炉体1内に長時間にわたって滞在するので、反応が過剰
に進行し、不所望な反応が発生したり、品質が劣化した
りしやすい。さらに、デッドゾーン7内での処理粉体の
堆積は、操業時間とともに増大するので、最適な操業条
件が時間経過とともに変化し、安定な操業の維持が困難
となる。
In the fluidized bed furnace as shown in FIG. 6, since the partition plate 3 is provided in a straight line, the flow path 6 which is not unreasonable for the cylindrical furnace body 1 is provided. It is difficult to form, and the dead zone 7 shown by hatching is likely to be formed. In the arrangement of the partition plate 3 as shown in FIG. 6,
About 18% dead zone is formed. Dead zone 7
Then, the processing particles are deposited on the gas dispersion plate 2 to reduce the effective cross-sectional area of the flow path 6, increase the flow velocity along the flow path 6, and reduce the residence time of the processing powder in the furnace body 1. The reaction rate decreases. The processing powder deposited in the dead zone 7 is
Since the reactor stays in the furnace body 1 for a long time, the reaction proceeds excessively, and an undesired reaction is likely to occur or the quality is likely to deteriorate. Furthermore, since the accumulation of the treated powder in the dead zone 7 increases with the operation time, the optimal operation conditions change with the lapse of time, and it becomes difficult to maintain a stable operation.

【0006】本発明の目的は、炉体が円筒状でもデッド
ゾーンを形成することなく、流路の延長を図ることがで
きる流動層炉を提供することである。
An object of the present invention is to provide a fluidized-bed furnace in which the flow path can be extended without forming a dead zone even when the furnace body is cylindrical.

【0007】[0007]

【課題を解決するための手段】本発明は、円筒状の炉体
に分散板を設け、分散板の下方からガスを噴出させて分
散板上に処理粉体の流動層を形成する流動層炉におい
て、分散板上に螺旋状の仕切を設けることを特徴とする
流動層炉である。さらに本発明は、円筒状の炉体に分散
板を設け、分散板の下方からガスを噴出させて分散板上
に処理粉体の流動層を形成する流動層炉において、分散
板上に複数の環状の仕切を同心円状に設け、各環状の仕
切には、隣接する環状の仕切とは異なる半径上に内外を
連通させる連通部を形成することを特徴とする流動層炉
である。また本発明の前記円筒状の炉体には、中心部に
処理粉体装入口を設け、側壁部に処理粉体排出口を設け
ることを特徴とする。また本発明の前記円筒状の炉体に
は、側壁部に処理粉体装入口を設け、中心部に処理粉体
排出口を設けることを特徴とする。
SUMMARY OF THE INVENTION The present invention provides a fluidized-bed furnace in which a dispersion plate is provided on a cylindrical furnace body, and a gas is blown from below the dispersion plate to form a fluidized bed of the treated powder on the dispersion plate. , Wherein a spiral partition is provided on the dispersion plate. Further, the present invention provides a fluidized bed furnace in which a dispersion plate is provided in a cylindrical furnace body, and a gas is ejected from below the dispersion plate to form a fluidized bed of the treated powder on the dispersion plate. The fluidized bed furnace is characterized in that annular partitions are provided concentrically, and each annular partition is formed with a communicating portion for communicating the inside and outside with a radius different from that of an adjacent annular partition. Further, the cylindrical furnace body according to the present invention is characterized in that a processing powder loading port is provided at a center portion and a processing powder discharge port is provided at a side wall portion. Further, the cylindrical furnace body of the present invention is characterized in that a processing powder loading port is provided in a side wall portion and a processing powder discharge port is provided in a central portion.

【0008】[0008]

【作用】本発明に従えば、円筒状の炉体に設ける分散板
上には、螺旋状の仕切を設けるので、処理粉体の流動層
を螺旋状の流路に沿って移動させることができる。した
がって、炉体が円筒状であっても、デッドゾーンを形成
することなく、炉体内を有効に利用して充分な処理を行
うことができる。
According to the present invention, a spiral partition is provided on the dispersion plate provided in the cylindrical furnace body, so that the fluidized bed of the treated powder can be moved along the spiral flow path. . Therefore, even if the furnace body is cylindrical, a sufficient treatment can be performed by effectively using the furnace body without forming a dead zone.

【0009】また本発明に従えば、円筒状の炉体内で、
分散板上には複数の環状の仕切を同心円状に設け、各環
状の仕切には隣接する環状の仕切とは異なる半径上に、
内外を連通させる連通部を形成する。
According to the invention, in a cylindrical furnace body,
A plurality of annular partitions are provided concentrically on the dispersion plate, and each annular partition has a different radius from the adjacent annular partition,
A communication part is formed to communicate the inside and the outside.

【0010】分散板上に形成される処理粉体の流動層
は、各環状の仕切に沿って円周方向に流通しながら、連
通部で半径方向に移動する。隣接する環状の仕切では異
なる半径上に連通部が形成されているので、流動層は円
周方向の移動と半径方向の移動とを繰返しながら、屈曲
した流路に沿って移動し、炉体内でデッドゾーンを形成
せずに、充分な処理を行うことができる。
The fluidized bed of the treated powder formed on the dispersion plate moves in the radial direction at the communicating portion while flowing in the circumferential direction along each annular partition. Since the communicating portions are formed on different radii in the adjacent annular partitions, the fluidized bed moves along the curved flow path while repeating movement in the circumferential direction and movement in the radial direction, and within the furnace body. Sufficient processing can be performed without forming a dead zone.

【0011】また本発明に従えば、処理粉体を円筒状の
炉体の中心部に設ける装入口から装入し、側壁部に設け
る排出口から排出する。処理粉体装入口から処理粉体排
出口までの間の流路は、螺旋状または同心円状の仕切板
によって、円筒状の炉体内にデッドゾーンを形成するこ
となく円滑に流れ、側壁部の排出口から容易に高反応率
の処理品を得ることができる。
Further, according to the present invention, the treated powder is charged through a charging port provided at the center of the cylindrical furnace body and discharged through a discharging port provided at the side wall. The flow path from the processing powder loading inlet to the processing powder discharge port flows smoothly without forming a dead zone in the cylindrical furnace by a spiral or concentric partition plate, and the side wall is discharged. A treated product having a high reaction rate can be easily obtained from the outlet.

【0012】また本発明に従えば、処理粉体の装入口を
炉体側壁部に設けるので、炉体内に処理粉体を容易に装
入することができる。
Further, according to the present invention, since the charging powder inlet is provided in the side wall of the furnace body, the processing powder can be easily charged into the furnace body.

【0013】[0013]

【実施例】図1は、本発明の第1実施例の簡略化した平
面構成を示し、図2は図1のII−IIから見た断面構
成を示す。断面が円筒状の炉体11は、軸線が鉛直とな
るように設置され、ガス分散板12がほぼ水平となるよ
うに配置される。ガス分散板12上には、螺旋状の仕切
板13が立設される。炉体11には、ガス分散板12の
中心部に処理粉体である鉱石を装入するための入口14
が設けられ、炉体11の側壁には処理された鉱石を排出
するための出口15が設けられる。入口14と出口15
との間には、仕切板13に沿って螺旋状の流路16が形
成される。ガス分散板12には、反応ガスを噴出させる
ためのノズル17が設けられ、ガス分散板12の下方の
炉体11内に形成される風箱部18に供給された反応ガ
スを噴出させる。ノズル17から噴出する反応ガスは、
ガス分散板12上の上方の空間に処理粉体である鉱石の
粒子を吹上げる。ガス分散板12のさらに上方の空間は
空塔部19として確保される。ノズル17から噴出する
反応ガスによって、鉱石の粉体粒子は吹上げられ、流動
層20が形成される。流動層20の高さは、空塔部19
を流れる反応ガスの流速に従って変化し、この流速を制
御することによって、形成される流動層20の高さを制
御することができる。仕切板13の高さは、流動層20
の高さよりも高くしておき、流路16に沿って流動層2
0が確実に移動するように案内する。風箱部18には、
反応ガスが供給ガス21として供給され、空塔部19の
上方からは、排出ガス22として排出される。これらの
反応ガスのため、炉体11内はたとえば数気圧に加圧さ
れ、しかも反応ガスはたとえば一酸化炭素(CO)を多
量に含むので、気密性を有する。そのような圧力容器と
しては、箱形よりも円筒状の方が好ましい。
1 shows a simplified plan view of a first embodiment of the present invention, and FIG. 2 shows a cross-sectional view taken along line II-II of FIG. The furnace body 11 having a cylindrical cross section is installed so that its axis line is vertical, and the gas dispersion plate 12 is arranged substantially horizontally. A spiral partition plate 13 is erected on the gas dispersion plate 12. The furnace body 11 has an inlet 14 for charging ore, which is a processing powder, at the center of the gas dispersion plate 12.
Is provided, and an outlet 15 for discharging the processed ore is provided on the side wall of the furnace body 11. Inlet 14 and outlet 15
A spiral channel 16 is formed along the partition plate 13 between and. The gas dispersion plate 12 is provided with a nozzle 17 for ejecting a reaction gas, and ejects the reaction gas supplied to a wind box 18 formed in the furnace body 11 below the gas dispersion plate 12. The reaction gas ejected from the nozzle 17 is
Particles of ore, which is the treated powder, are blown up into the space above the gas dispersion plate 12. A space further above the gas dispersion plate 12 is secured as an empty tower portion 19. Ore powder particles are blown up by the reaction gas ejected from the nozzle 17, and the fluidized bed 20 is formed. The height of the fluidized bed 20 is
The height of the fluidized bed 20 formed can be controlled by changing the flow rate according to the flow rate of the reaction gas flowing through the fluidized bed. The height of the partition plate 13 is equal to that of the fluidized bed 20.
Higher than the height of the fluidized bed 2 along the flow path 16.
Guide to ensure that 0 moves. The wind box 18
The reaction gas is supplied as a supply gas 21, and is discharged as an exhaust gas 22 from above the empty tower portion 19. Due to these reaction gases, the inside of the furnace body 11 is pressurized to, for example, several atmospheres, and the reaction gas contains, for example, a large amount of carbon monoxide (CO), and thus has airtightness. As such a pressure vessel, a cylindrical shape is preferable to a box shape.

【0014】図3は本発明の第2実施例の簡略化した平
面構成を示し、図4は図3の切断面線IV−IVから見
た断面を示す。本実施例で注目すべきは、円筒状の炉体
31に設置されるガス分散板32上に、螺旋状の仕切板
33が立設され、炉体31の側壁に設けられる入口34
から処理粉体である鉱石が装入され、中心部の出口35
から排出されることである。本実施例の流路36は、し
たがって仕切板33に沿って外から内へ向かう螺旋とし
て形成される。ガス分散板32上に分布するノズル37
からは風箱部38に貯留された反応ガスが噴出し、上方
の空塔部39まで流れる間に流動層40を形成する。燃
料ガスは、風箱部38に供給ガス41として供給され、
炉体31の頂部から排出ガス22として排出される。
FIG. 3 shows a simplified plan configuration of the second embodiment of the present invention, and FIG. 4 shows a cross section taken along the section line IV-IV of FIG. In this embodiment, it should be noted that the spiral partition plate 33 is erected on the gas dispersion plate 32 installed in the cylindrical furnace body 31, and the inlet 34 provided on the side wall of the furnace body 31.
Ore, which is a processed powder, is charged from the outlet 35 at the center.
Is to be discharged from. The flow path 36 in this embodiment is thus formed as a spiral from the outside to the inside along the partition plate 33. Nozzles 37 distributed on the gas distribution plate 32
From there, the reaction gas stored in the wind box section 38 gushes and forms a fluidized bed 40 while flowing to the upper empty space section 39 above. The fuel gas is supplied to the wind box section 38 as a supply gas 41,
The exhaust gas 22 is discharged from the top of the furnace body 31.

【0015】第1実施例および第2実施例は、螺旋状の
流路16,36を形成するけれども、その向きが逆向き
となる。第1実施例では、入口14が炉体11の中心部
に設けられているので、入口14にはシュート24を設
けて炉体11の外部から中心部に装入する必要がある。
しかしながら、出口15は炉体11の側壁部に設けられ
ているので、処理後の搬出は容易となる。第2実施例で
は、入口34は炉体31の側壁部に設けられているの
で、処理粉体の装入が容易である。しかしながら、出口
35が中心部に設けられているので、処理後の粉体の排
出は風箱部38内を下方に貫くシュート44を介して行
う必要がある。またこのため、炉体31の底部にシュー
ト44の出口を設ける必要があり、装置全体の高さが増
大する。一方、内側に向かう螺旋状の流路36は、ガス
分散板32を内側で窪むような円錐面状に形成すること
ができ、大径の粒子が装入される処理粉体に混入してい
てガス分散板32上に堆積しても、容易に排出させるこ
とができる。
In the first embodiment and the second embodiment, the spiral flow paths 16 and 36 are formed, but their directions are reversed. In the first embodiment, since the inlet 14 is provided at the center of the furnace body 11, it is necessary to provide a chute 24 at the inlet 14 and charge the furnace body 11 from outside to the center.
However, since the outlet 15 is provided on the side wall of the furnace body 11, it is easy to carry it out after the treatment. In the second embodiment, the inlet 34 is provided on the side wall of the furnace body 31, so that the processing powder can be easily charged. However, since the outlet 35 is provided in the central portion, it is necessary to discharge the powder after processing through the chute 44 that penetrates the inside of the air box portion 38 downward. Therefore, it is necessary to provide the outlet of the chute 44 at the bottom of the furnace body 31, which increases the height of the entire apparatus. On the other hand, the inward spiral flow path 36 can form the gas dispersion plate 32 into a conical surface that is depressed on the inside, and large particles are mixed in the processing powder to be charged. Even if it accumulates on the gas dispersion plate 32, it can be easily discharged.

【0016】図5(A)は、本発明の第3実施例の概略
的な平面構成を示す。本実施例では、円筒状の炉体51
内のガス分散板52上に、環状の仕切板53,54,5
5を同心円状に配置する。各仕切板53,54,55に
は、流路56が円周方向と半径方向とを交互に繰返しな
がら形成されるように、仕切板53,54,55をそれ
ぞれ部分的に切欠いて連通部57,58,59をそれぞ
れ形成する。連通部57,58,59は、同一の半径上
には重ならないようにずらしながら配置する。180°
ずつずらすことが好ましい。また図5(B)に示すよう
に、連通部57,58,59を少しずつずらしながら配
置し、内側の仕切板の一方の端部と外側の仕切板の他方
の端部との間を仕切板61,62,63でそれぞれ連結
するようにして、流路66を形成するようにしてもよ
い。以上のように図5(A)に示す第3実施例および図
5(B)に示す第4実施例も同様に、円筒状の炉体51
内の空間を有効に利用してデッドゾーンのない流路5
6,66を形成することができる。処理粉体の装入およ
び排出は、第1実施例のように中心から装入して外側か
ら排出するようにしてもよいし、外側から装入して中心
から排出するようにしてもよい。
FIG. 5A shows a schematic plan structure of a third embodiment of the present invention. In the present embodiment, a cylindrical furnace body 51 is used.
Annular partitioning plates 53, 54, 5
5 are arranged concentrically. The partition plates 53, 54, 55 are partially cut out of the partition plates 53, 54, 55, respectively, such that the communication portions 57 are formed such that the flow path 56 is alternately formed in the circumferential direction and the radial direction. , 58 and 59 are respectively formed. The communicating portions 57, 58, 59 are arranged so as to be shifted on the same radius so as not to overlap. 180 °
It is preferable to shift by one. Further, as shown in FIG. 5 (B), the communication parts 57, 58, 59 are arranged while being slightly displaced from each other, and a partition is provided between one end of the inner partition plate and the other end of the outer partition plate. The flow paths 66 may be formed by connecting the plates 61, 62 and 63, respectively. As described above, similarly to the third embodiment shown in FIG. 5A and the fourth embodiment shown in FIG. 5B, the cylindrical furnace body 51 is used.
Channel 5 without dead zone by effectively utilizing the space inside
6,66 can be formed. The charging and discharging of the processing powder may be performed from the center and discharged from the outside as in the first embodiment, or may be performed from the center and discharged from the center.

【0017】以上の各実施例は、アイアンカーバイドの
製造を例として説明しているけれども、加熱、乾燥ある
いは造粒などの物理的処理や、各種化学反応処理などに
有効に利用することができる。
Although each of the above embodiments has been described with reference to the production of eye anchor carbide, it can be effectively used for physical treatments such as heating, drying or granulation, and various chemical reaction treatments.

【0018】[0018]

【発明の効果】以上のように本発明によれば、分散板上
に螺旋状の仕切を設けるので、円筒状の炉体内に螺旋状
の流路を形成し、炉体内の空間を有効に利用しながらデ
ッドゾーンを形成することなく処理粉体の効率的な処理
を行うことができる。
As described above, according to the present invention, since the spiral partition is provided on the dispersion plate, the spiral flow path is formed in the cylindrical furnace body, and the space in the furnace body is effectively utilized. However, the processed powder can be efficiently processed without forming a dead zone.

【0019】また本発明によれば、円筒状の炉体内に複
数の環状の仕切を同心円状に設け、円周方向と半径方向
とが交互に繰返す屈曲した流路を形成して、炉体内の空
間を有効にデッドゾーンが生じないようにしながら処理
粉体の有効な処理を行うことができる。
Further, according to the present invention, a plurality of annular partitions are provided concentrically in a cylindrical furnace, and a curved flow path in which a circumferential direction and a radial direction are alternately repeated is formed to form a curved flow path inside the furnace. Effective processing of the processing powder can be performed while effectively preventing a dead zone from occurring in the space.

【0020】また本発明によれば、円筒状の炉体の中心
部に処理粉体を装入し、側壁部から排出することができ
る。排出口が側壁部に設けられるので、流動層炉内で処
理された処理粉体を容易に取扱うことができる。
According to the present invention, the processing powder can be charged into the center of the cylindrical furnace body and discharged from the side wall. Since the discharge port is provided in the side wall portion, the processed powder processed in the fluidized bed furnace can be easily handled.

【0021】また本発明によれば、流動層炉には処理粉
体を側壁部から装入するので、炉体の外部から容易に処
理粉体を供給することができる。処理後の処理粉体は炉
体の中心部から排出されるので、たとえば分散板に中心
部が窪むような円錐状の傾斜を設ければ、分散板上に堆
積した処理粉体を容易に排出することができる。
According to the present invention, since the processing powder is charged into the fluidized bed furnace from the side wall, the processing powder can be easily supplied from outside the furnace body. Since the treated powder after treatment is discharged from the center of the furnace body, for example, if the dispersion plate is provided with a conical slope such that the center is depressed, the treated powder deposited on the dispersion plate can be easily discharged. can do.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1実施例の概略的な構成を示す平面
断面図である。
FIG. 1 is a plan sectional view showing a schematic configuration of a first embodiment of the present invention.

【図2】図1の切断面線II−IIから見た側面断面図
である。
FIG. 2 is a side cross-sectional view taken along the line II-II in FIG. 1;

【図3】本発明の第2実施例の概略的な構成を示す平面
断面図である。
FIG. 3 is a plan sectional view showing a schematic configuration of a second embodiment of the present invention.

【図4】図3の切断面線IV−IVから見た側面断面図
である。
FIG. 4 is a side cross-sectional view taken along a section line IV-IV in FIG. 3;

【図5】本発明の第3および第4実施例の概略的な平面
断面図である。
FIG. 5 is a schematic plan sectional view of a third and a fourth embodiment of the present invention.

【図6】先行技術の概略的な平面断面図である。FIG. 6 is a schematic plan sectional view of the prior art.

【図7】流動層炉内の時間経過と滞留している粉体粒子
の技術を示すグラフである。
FIG. 7 is a graph showing the lapse of time in the fluidized bed furnace and the technology of the retained powder particles.

【図8】多段式流動層炉の構成を示す簡略化した側面図
である。
FIG. 8 is a simplified side view showing the configuration of a multistage fluidized bed furnace.

【符号の説明】[Explanation of symbols]

11,31,51 炉体 12,32,52 ガス分散板 13,33,53,54,55 仕切板 14,34 入口 15,35 出口 16,36,56,66 流路 17,37 ノズル 20,40 流動層 57,58,59 連通部 11, 31, 51 Furnace body 12, 32, 52 Gas dispersion plate 13, 33, 53, 54, 55 Partition plate 14, 34 Inlet 15, 35 Outlet 16, 36, 56, 66 Channel 17, 37 Nozzle 20, 40 Fluidized bed 57, 58, 59 Communication part

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 円筒状の炉体に分散板を設け、分散板の
下方からガスを噴出させて分散板上に処理粉体の流動層
を形成する流動層炉において、 分散板上に螺旋状の仕切を設けることを特徴とする流動
層炉。
1. A fluidized bed furnace in which a dispersion plate is provided in a cylindrical furnace body, and a gas is blown from below the dispersion plate to form a fluidized bed of treated powder on the dispersion plate. A fluidized bed furnace characterized by providing a partition of:
【請求項2】 円筒状の炉体に分散板を設け、分散板の
下方からガスを噴出させて分散板上に処理粉体の流動層
を形成する流動層炉において、 分散板上に複数の環状の仕切を同心円状に設け、 各環状の仕切には、隣接する環状の仕切とは異なる半径
上に内外を連通させる連通部を形成することを特徴とす
る流動層炉。
2. A fluidized bed furnace in which a dispersion plate is provided on a cylindrical furnace body, and a gas is jetted from below the dispersion plate to form a fluidized bed of treated powder on the dispersion plate. A fluidized bed furnace characterized in that annular partitions are concentrically provided, and each annular partition is formed with a communicating portion for communicating the inside and the outside on a radius different from that of an adjacent annular partition.
【請求項3】 前記円筒状の炉体には、 中心部に処理粉体装入口を設け、 側壁部に処理粉体排出口を設けることを特徴とする請求
項1または2記載の流動層炉。
3. The fluidized bed furnace according to claim 1, wherein the cylindrical furnace body is provided with a treated powder charging port at a central portion and a treated powder discharging port at a side wall portion. .
【請求項4】 前記円筒状の炉体には、 側壁部に処理粉体装入口を設け、 中心部に処理粉体排出口を設けることを特徴とする請求
項1または2記載の流動層炉。
4. The fluidized bed furnace according to claim 1, wherein the cylindrical furnace body is provided with a processing powder loading port at a side wall portion and a processing powder discharge port at a central portion. .
JP7090955A 1995-04-17 1995-04-17 Fluidized bed furnace Expired - Fee Related JP2653991B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7090955A JP2653991B2 (en) 1995-04-17 1995-04-17 Fluidized bed furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7090955A JP2653991B2 (en) 1995-04-17 1995-04-17 Fluidized bed furnace

Publications (2)

Publication Number Publication Date
JPH08285465A true JPH08285465A (en) 1996-11-01
JP2653991B2 JP2653991B2 (en) 1997-09-17

Family

ID=14012918

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7090955A Expired - Fee Related JP2653991B2 (en) 1995-04-17 1995-04-17 Fluidized bed furnace

Country Status (1)

Country Link
JP (1) JP2653991B2 (en)

Also Published As

Publication number Publication date
JP2653991B2 (en) 1997-09-17

Similar Documents

Publication Publication Date Title
US6367165B1 (en) Device for treating particulate product
US8021600B2 (en) Method and plant for the heat treatment of solids containing iron oxide
CN106573219B (en) Plug flow reactor with internal recirculating fluidized bed
US3578798A (en) Cyclonic fluid bed reactor
CN105727845A (en) Double-solid-phase suspended bed reactor used for heavy oil hydrocracking and application thereof
CN105694959A (en) Jet-type internal circulation flow reactor for heavy oil hydrocracking
US7878156B2 (en) Method and plant for the conveyance of fine-grained solids
US3806324A (en) Air distribution system for catalyst regenerator
JP2653991B2 (en) Fluidized bed furnace
EP0085610A2 (en) Gas distributor for fluidized beds
US5904119A (en) Furnace apparatus for fluidized bed processes
US2758884A (en) Transfer and circulation of solid granular material
KR100360110B1 (en) Fluidized bed reactor for achieving high efficiency and preventing back-mixing
CN115253934B (en) Propane catalytic dehydrogenation fluidized bed reaction-regeneration coupling device and propane catalytic dehydrogenation process method
CN216367904U (en) Gas-solid two-phase fluidized bed reaction device
US4062530A (en) Oxygen-lime distributor for steelmaking vessel
EP1575699B1 (en) Method and apparatus for heat treatment in a fluidised bed
CN210419858U (en) Catalyst mixing device and reaction device
US2734781A (en) fowler
US2715048A (en) Method and apparatus for elevating granular material
EP4063009A1 (en) Gas distribution plate, fluidization device, and reaction method
US2813756A (en) Lift pot
USRE23942E (en) Apparatus for contacting solid materials with fluids
US2726121A (en) Apparatus for pneumatic elevation of granular solids
JP3204917B2 (en) Fluidized bed furnace

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees