JPH0828303A - Moving blade of gas turbine - Google Patents

Moving blade of gas turbine

Info

Publication number
JPH0828303A
JPH0828303A JP15855094A JP15855094A JPH0828303A JP H0828303 A JPH0828303 A JP H0828303A JP 15855094 A JP15855094 A JP 15855094A JP 15855094 A JP15855094 A JP 15855094A JP H0828303 A JPH0828303 A JP H0828303A
Authority
JP
Japan
Prior art keywords
shroud
moving blade
gas turbine
blade
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15855094A
Other languages
Japanese (ja)
Other versions
JP3188105B2 (en
Inventor
Yasuoki Tomita
康意 富田
Sunao Aoki
素直 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP15855094A priority Critical patent/JP3188105B2/en
Publication of JPH0828303A publication Critical patent/JPH0828303A/en
Application granted granted Critical
Publication of JP3188105B2 publication Critical patent/JP3188105B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To prevent deformation of creep generated on a root of a shroud by sufficiently cooling a top of a moving blade. CONSTITUTION:Convective cooling is performed in a gas turbine moving blade 3 through pores 5 penetrating in a longitudinal direction. Cooling gas subjected to convective cooling passes through the pores communicated with a plurality of grooves (b) branched along a shuroud 1 from the pores 5, to cool the top of the moving blade 3. The grooves (b) are formed in a recession on the surface of the shroud 1, while a plug plate 2 on which holes corresponding to the groove are formed are fitted to the recession, followed by soldering.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、火力発電などに適用さ
れガスタービンの動翼に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a moving blade of a gas turbine applied to thermal power generation and the like.

【0002】[0002]

【従来の技術】図3は火力発電などに使用されている従
来のガスタービンの動翼の説明図である。図において、
本ガスタービンの動翼はインテグラルシュラウドブレー
ドと称され、それぞれの動翼11の先端にシュラウド1
2が一体に形成されており、シュラウド12は動翼11
の先端から漏洩するガスを減少させるとともに、シュラ
ウド12の端面を隣接するシュラウド12の端面に圧接
して連続したシュラウド12を形成することにより動翼
11の耐振動強度を向上させるようになっている。動翼
11にはロータの軸方向と円周方向との両方向の振動が
発生するが、シュラウド12の端面を斜めに形成するこ
とにより両方向の振動が抑制される。また、シュラウド
12には動翼11の先端から漏洩するガスを減少させる
ためと、ケーシング側との接触に備えてフィン13が突
設されている。
2. Description of the Related Art FIG. 3 is an explanatory view of a moving blade of a conventional gas turbine used for thermal power generation and the like. In the figure,
The rotor blades of this gas turbine are called integral shroud blades, and the shroud 1 is attached to the tip of each rotor blade 11.
2 are integrally formed, and the shroud 12 has a moving blade 11
The amount of gas leaking from the tip of the shroud 12 is reduced, and the end face of the shroud 12 is pressed against the end face of the adjacent shroud 12 to form a continuous shroud 12, thereby improving the vibration resistance strength of the moving blade 11. . Vibrations in both the axial direction and the circumferential direction of the rotor are generated in the rotor blade 11, but the vibrations in both directions are suppressed by forming the end surface of the shroud 12 obliquely. Further, the shroud 12 is provided with a fin 13 so as to reduce the gas leaking from the tip of the moving blade 11 and in preparation for contact with the casing side.

【0003】また、ガスタービンの動翼には高温のガス
に対応するために冷却が施されており、入口温度が10
00〜1200℃の場合には一般に動翼11を長さ方向
に貫通する多孔14による対流冷却方式が採用されてい
る。矢印はその冷却空気の流れを示す。
Further, the rotor blades of the gas turbine are cooled to cope with high-temperature gas, and the inlet temperature is 10
In the case of 00 to 1200 ° C., a convection cooling method is generally adopted by the perforations 14 that penetrate the moving blade 11 in the length direction. The arrow indicates the flow of the cooling air.

【0004】[0004]

【発明が解決しようとする課題】上記のように、従来の
ガスタービンの動翼においては動翼11を長さ方向に貫
通する多孔14による対流冷却が行われており、動翼1
1内部を冷却して昇温した冷却空気は動翼11頂部も冷
却して多孔14先端から流出するが、動翼11頂部の冷
却効果は極めて低い。動翼11頂部のシュラウド12は
熱容量が小さく、冷却が不足するとシュラウド12の温
度は高温のガス温度に相当するまで昇温する。このた
め、動翼11に対するシュラウド12の付け根部に高遠
心力に加えて高温度によりクリープ変形が発生し、動翼
11頂部がケーシング側に接触して焼損することがあ
る。
As described above, in the moving blade of the conventional gas turbine, the convection cooling is performed by the perforations 14 penetrating the moving blade 11 in the longitudinal direction.
Although the cooling air that has cooled the inside of the No. 1 and has been heated up also cools the top of the moving blade 11 and flows out from the tip of the multi-hole 14, the cooling effect of the top of the moving blade 11 is extremely low. The shroud 12 at the top of the moving blade 11 has a small heat capacity, and if cooling is insufficient, the temperature of the shroud 12 rises to a temperature corresponding to a high temperature gas. For this reason, creep deformation may occur at the root of the shroud 12 with respect to the moving blade 11 due to high temperature in addition to high centrifugal force, and the top of the moving blade 11 may contact the casing side and burn out.

【0005】[0005]

【課題を解決するための手段】本発明に係るガスタービ
ンの動翼は上記課題の解決を目的にしており、長さ方向
に貫通する多孔を介して対流冷却されるガスタービンの
動翼において、上記多孔からシュラウドに沿って分岐し
て設けられ上記多孔を介して対流冷却を行った冷却気体
を通して動翼頂部を冷却する複数の溝を備えた構成を特
徴とする。
DISCLOSURE OF THE INVENTION A blade of a gas turbine according to the present invention is intended to solve the above-mentioned problems, and in a blade of a gas turbine that is convectively cooled through a porous hole penetrating in the longitudinal direction, The present invention is characterized in that it is provided with a plurality of grooves that are provided so as to be branched from the perforations along the shroud and that cool the top of the moving blades through a cooling gas that has been convectively cooled through the perforations.

【0006】また、本発明に係るガスタービンの動翼
は、長さ方向に貫通する多孔を介して対流冷却されるガ
スタービンの動翼において、上記多孔からシュラウドに
沿って分岐して設けられ上記多孔を介して対流冷却を行
った冷却気体を通して動翼頂部を冷却する複数の溝を備
え、上記複数の溝は上記シュラウドの表面に窪みを設け
上記窪み内に刻設して上記溝に対応して切込穴が穿設さ
れたプラグ板を上記窪みに嵌込んで蝋付けした構成を特
徴とする。
Further, the rotor blade of the gas turbine according to the present invention is a rotor blade of a gas turbine that is convectively cooled through a porous hole penetrating in the lengthwise direction, and is provided so as to branch from the porous hole along the shroud. It is provided with a plurality of grooves for cooling the rotor blade apex through the cooling gas that has been convectively cooled through the perforations, and the plurality of grooves are provided in the recess of the surface of the shroud and are engraved in the recess to correspond to the grooves. Is characterized in that a plug plate having a cut hole formed therein is fitted into the recess and brazed.

【0007】[0007]

【作用】即ち、本発明に係るガスタービンの動翼におい
ては、長さ方向に貫通する多孔を介して対流冷却される
ガスタービンの動翼における多孔からシュラウドに沿っ
て分岐して設けられた複数の溝に多孔を介して対流冷却
を行った冷却気体を通して動翼頂部を冷却するようにな
っており、多孔から複数の溝をシュラウドに沿って分岐
して設けたことにより動翼頂部における冷却空気の通過
面積が増加し冷却空気がシュラウドに沿って流れて熱交
換を行う距離が長くなり動翼頂部の冷却が十分に行われ
る。
That is, in the gas turbine blade according to the present invention, a plurality of gas turbine blades convection-cooled through the longitudinally extending pores are branched from the pores along the shroud. It is designed to cool the rotor blade apex through the convection-cooled cooling gas in the groove of the blade, and the cooling air at the blade apex is provided by branching multiple grooves from the porous along the shroud. Of the cooling air flows along the shroud to increase the distance for heat exchange, so that the top of the moving blade is sufficiently cooled.

【0008】また、本発明に係るガスタービンの動翼に
おいては、長さ方向に貫通する多孔を介して対流冷却さ
れるガスタービンの動翼における多孔からシュラウドに
沿って分岐して設けられた複数の溝に多孔を介して対流
冷却を行った冷却気体を通して動翼頂部を冷却するよう
になっているとともに、これら複数の溝はシュラウドの
表面に設けた窪み内に刻設して溝に対応する穴が穿設さ
れたプラグ板を窪みに嵌込んで蝋付けしており、多孔か
ら複数の溝をシュラウドに沿って分岐して設けたことに
より動翼頂部における冷却空気の通過面積が増加し冷却
空気がシュラウドに沿って流れて熱交換を行う距離が長
くなり動翼頂部の冷却が十分に行われる。これら複数の
溝はシュラウド表面の窪み内に刻設して窪みにプラグ板
を嵌込んで蝋付けすることにより特に高度な加工技術を
要することなく容易に製作できて製作費に対する影響も
少ない。
Further, in the rotor blade of the gas turbine according to the present invention, a plurality of rotor blades provided along the shroud are branched from the perforations in the rotor blade of the gas turbine which is convectively cooled through the pores penetrating in the length direction. The cooling gas, which has been convectively cooled through the grooves of the above, is passed through the cooling gas to cool the moving blade apex, and these grooves are engraved in the depressions provided on the surface of the shroud to correspond to the grooves. A plug plate with holes is fitted into the recess and brazed, and multiple grooves are branched from the perforations along the shroud to increase the passage area of the cooling air at the top of the rotor blade for cooling. The air flows along the shroud to exchange heat for a longer distance, so that the top of the blade is sufficiently cooled. These plural grooves are engraved in the recess of the shroud surface, and the plug plate is fitted into the recess and brazed, so that the groove can be easily manufactured without requiring a particularly high processing technique, and the manufacturing cost is little affected.

【0009】[0009]

【実施例】図1および図2は本発明の一実施例に係るガ
スタービンの動翼の説明図である。図において、本実施
例に係るガスタービンの動翼は火力発電などに使用され
るガスタービンのもので、インテグラルシュラウドブレ
ードと称され、それぞれの動翼3の先端にシュラウド1
が一体に形成されており、シュラウド1は動翼3の先端
から漏洩するガスを減少させるとともに、シュラウド1
の端面を隣接するシュラウド1の端面に圧接して連続し
たシュラウド1を形成することにより動翼3の耐振動強
度を向上させるようになっている。動翼3にはロータの
軸方向と円周方向との両方向の振動が発生するが、シュ
ラウド1の端面を斜めに形成することにより両方向の振
動が抑制される。また、シュラウド1には動翼3の先端
から漏洩するガスを減少させるためと、ケーシング側と
の接触に備えてフィン4が突設されている。
1 and 2 are explanatory views of a blade of a gas turbine according to an embodiment of the present invention. In the figure, the blades of the gas turbine according to the present embodiment are those of a gas turbine used for thermal power generation, etc., and are called integral shroud blades, and the shroud 1 is attached to the tip of each blade 3.
Are integrally formed, the shroud 1 reduces the gas leaking from the tip of the rotor blade 3, and the shroud 1
The end face of the shroud 1 is pressed against the end face of the adjacent shroud 1 to form the continuous shroud 1, so that the vibration resistance strength of the rotor blade 3 is improved. Vibrations in both the axial direction and the circumferential direction of the rotor are generated in the rotor blade 3, but the vibrations in both directions are suppressed by forming the end face of the shroud 1 obliquely. Further, fins 4 are provided on the shroud 1 so as to reduce gas leaking from the tips of the moving blades 3 and in preparation for contact with the casing side.

【0010】また、本ガスタービンの動翼には入口温度
が1000〜1200℃と高温のガスに対応するために
冷却が施されており、図1に示すように動翼3を長さ方
向に貫通する多孔5による対流冷却方式が採用されてい
る。矢印はその冷却空気の流れをす。また、本ガスター
ビン動翼においては図2に示すようにシュラウド1に長
方形或いは方形の窪みaが設けられており、窪みa内に
は回転方向に複数条の冷却空気用の溝bが刻設されてい
る。窪みaにはプラグ板2が嵌込まれており、このプラ
グ板2には冷却空気の溝bの両端に対応する部位にそれ
ぞれ溝幅と同等幅の切込みcが設けられている。プラグ
板2は窪みaに嵌込まれて窪みa周辺に当接する全周辺
を蝋付けして固定されている。
Further, the rotor blades of the present gas turbine are cooled in order to cope with the high temperature gas having an inlet temperature of 1000 to 1200 ° C. As shown in FIG. The convection cooling method by the perforation 5 is adopted. The arrow indicates the flow of the cooling air. Further, in this gas turbine rotor blade, as shown in FIG. 2, the shroud 1 is provided with a rectangular or rectangular recess a, and a plurality of grooves b for cooling air are engraved in the rotation direction in the recess a. Has been done. The plug plate 2 is fitted in the depression a, and the plug plate 2 is provided with notches c having the same width as the groove width at portions corresponding to both ends of the groove b of the cooling air. The plug plate 2 is fixed by being brazed into the recess a and contacting the periphery of the recess a by brazing.

【0011】冷却空気は動翼3を貫通している多孔5内
を流れて動翼3を冷却してシュラウド1に至り、プラグ
板2によって両方向に流れの方向を変え、窪みa内の溝
bを通ってシュラウド1を冷却し、矢印で示すようにラ
ジアル方向に流出する。動翼1を長さ方向に貫通する多
孔5により動翼3頂部を対流冷却しようとしても、動翼
3の形状に制限されて孔数を増やして冷却空気量を増や
すことは殆ど不可能に近く、また冷却空気は多孔5内を
直線的に流出するので熱交換を行う距離が非常に短い
が、上述のように長方形、或いは方形の窪みaに冷却空
気用の溝bを刻設して溝bに対応する部位に切込みcを
有するプラグ板2を嵌込んで蝋付けして固定することに
より冷却空気の通過面積が大幅に増加して冷却空気量も
大幅に増加する。また、プラグ板2を介して冷却空気が
両側の切込みcから流出するので、冷却空気がシュラウ
ド1に沿って流れる距離も長くなって熱交換を行う距離
も長くなり冷却効果が向上する。
The cooling air flows in the perforations 5 penetrating the moving blade 3 to cool the moving blade 3 to reach the shroud 1, and the plug plate 2 changes the flow direction in both directions to form a groove b in the depression a. Through which the shroud 1 cools and flows out in the radial direction as indicated by the arrow. Even if it is attempted to convectively cool the top of the moving blade 3 by the porous holes 5 penetrating the moving blade 1 in the longitudinal direction, it is almost impossible to increase the number of holes and increase the cooling air amount due to the shape of the moving blade 3. Further, since the cooling air flows out linearly in the perforations 5, the distance for heat exchange is very short. However, as described above, the groove b for cooling air is formed by engraving the groove b for the cooling air in the rectangular or rectangular recess a. By fitting and brazing and fixing the plug plate 2 having the notch c in the portion corresponding to b, the passage area of the cooling air is greatly increased and the amount of cooling air is also greatly increased. Further, since the cooling air flows out from the notches c on both sides via the plug plate 2, the distance that the cooling air flows along the shroud 1 becomes longer, the distance for heat exchange becomes longer, and the cooling effect improves.

【0012】従来のガスタービンの動翼においては動翼
を長さ方向に貫通する多孔による対流冷却が行われてお
り、動翼内部を冷却して昇温した冷却空気は動翼頂部も
冷却して多孔先端から流出するが、動翼頂部の冷却効果
は極めて低い。動翼頂部のシュラウドは熱容量が小さ
く、冷却が不足するとシュラウドの温度は高温のガス温
度に相当するまで昇温する。このため、動翼に対するシ
ュラウドの付け根部に高遠心力に加えて高温度によりク
リープ変形が発生し、動翼頂部がケーシング側に接触し
て焼損することがあるが、本ガスタービンの動翼はこの
問題点を解消するためにシュラウド1に長方形或いは方
形の窪みaを加工し、この窪みa内にロータの回転方向
に複数条の冷却空気用の溝bを刻設するとともに窪みa
に嵌め込むプラグ板2の冷却空気用の溝b終端に対応す
る部位に溝幅と同等幅の切込みcを設け、このプラグ板
2を窪みaに嵌込み、嵌込んだプラグ板2の全周縁を窪
みaに蝋付けして固定しており、このようなシュラウド
1の冷却構造によってシュラウド1および動翼3頂部の
冷却が十分に行われ、動翼3に対するシュラウド1の付
け根部に高遠心力と高温度によって惹き起こされるクリ
ープ変形を防止することができる。なお、窪みaは必ず
しも長方形または方形である必要はなく、シュラウド1
の形状や冷却の必要な場所の状態などに応じて変えても
よい。また、溝bは必ずしも回転方向に刻設する必要は
なく、ロータの軸方向や斜め、或いは曲がって刻設され
ていてもよい。また、シュラウド1における窪みaの加
工、冷却空気用の溝bの加工、切込みcの加工、プラグ
板2の蝋付けも特に高度な技術を必要とするものではな
く容易で、製作費への影響も少ない。
In a conventional gas turbine moving blade, convection cooling is performed by perforation that penetrates the moving blade in the lengthwise direction, and the cooling air that has been heated by cooling the inside of the moving blade also cools the moving blade top. Flow out from the porous tip, but the cooling effect at the blade top is extremely low. The shroud at the top of the blade has a small heat capacity, and if cooling is insufficient, the temperature of the shroud rises to a temperature corresponding to a high temperature gas. For this reason, creep deformation may occur at the root of the shroud against the rotor blade due to high temperature in addition to high centrifugal force, and the rotor blade top may contact the casing side and burn out. In order to solve the problem, a rectangular or rectangular recess a is formed in the shroud 1, and a plurality of grooves b for cooling air are engraved in the recess a in the direction of rotation of the rotor and the recess a.
A notch c having the same width as the groove width is provided at a portion corresponding to the end of the groove b for the cooling air of the plug plate 2 to be fitted into the plug plate 2, and the plug plate 2 is fitted into the recess a so that the entire periphery of the fitted plug plate 2 is provided. Is brazed and fixed to the depression a, and the cooling structure of the shroud 1 sufficiently cools the tops of the shroud 1 and the rotor blades 3, and a high centrifugal force is applied to the root portion of the shroud 1 with respect to the rotor blades 3. Creep deformation caused by high temperature can be prevented. The depression a does not necessarily have to be rectangular or rectangular, and the shroud 1
It may be changed according to the shape of the above and the condition of the place where cooling is required. Further, the groove b does not necessarily have to be engraved in the rotation direction, and may be engraved in the axial direction of the rotor, obliquely, or bent. Further, the processing of the depression a in the shroud 1, the processing of the groove b for the cooling air, the processing of the notch c, and the brazing of the plug plate 2 do not require any particularly high technology and are easy, and the manufacturing cost is affected. Also few.

【0013】[0013]

【発明の効果】本発明に係るガスタービンの動翼は前記
のように構成されており、動翼頂部の冷却が十分に行わ
れるので、動翼に対するシュラウドの付け根部に高遠心
力と高温度により発生するクリープ変形が防止される。
Since the rotor blade of the gas turbine according to the present invention is configured as described above and the rotor blade top portion is sufficiently cooled, a high centrifugal force and a high temperature are applied to the root portion of the shroud with respect to the rotor blade. The creep deformation that occurs is prevented.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1(a)は本発明の一実施例に係るガスター
ビンの動翼の斜視図、動図(b)は断面図である。
FIG. 1 (a) is a perspective view of a moving blade of a gas turbine according to an embodiment of the present invention, and FIG. 1 (b) is a sectional view.

【図2】図2は分解図である。FIG. 2 is an exploded view.

【図3】図3は(a)は従来のガスタービンの動翼の斜
視図、同図(b)は断面図、同図(c)はその多孔の斜
視図である。
3 (a) is a perspective view of a moving blade of a conventional gas turbine, FIG. 3 (b) is a sectional view, and FIG. 3 (c) is a perspective view of its perforations.

【符号の説明】[Explanation of symbols]

1 シュラウド 2 プラグ板 3 動翼 4 フィン 5 多孔 a 窪み b 冷却空気用の溝 c 切込み 1 Shroud 2 Plug plate 3 Blade 4 Fin 5 Porous a Recess b Groove for cooling air c Notch

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 長さ方向に貫通する多孔を介して対流冷
却されるガスタービンの動翼において、上記多孔からシ
ュラウドに沿って分岐して設けられ上記多孔を介して対
流冷却を行った冷却気体を通して動翼頂部を冷却する複
数の溝を備えたことを特徴とするガスタービンの動翼。
1. A moving gas of a gas turbine that is convectively cooled through a porous hole penetrating in a length direction, the cooling gas being branched from the porous hole along a shroud and convectively cooled through the porous gas. A rotor blade for a gas turbine, comprising a plurality of grooves for cooling the rotor blade top through the rotor blade.
【請求項2】 上記シュラウドの表面に窪みを設け上記
窪み内に上記複数の溝を刻設して上記溝に対応して切込
穴が穿設されたプラグ板を上記窪みに嵌込んで蝋付けし
たことを特徴とする請求項1に記載のガスタービンの動
翼。
2. A plug plate having a recess formed on the surface of the shroud and having the plurality of grooves engraved in the recess and having cut holes corresponding to the grooves is fitted into the recess to be waxed. The moving blade of the gas turbine according to claim 1, wherein the moving blade is attached.
JP15855094A 1994-07-11 1994-07-11 Gas turbine blades Expired - Fee Related JP3188105B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15855094A JP3188105B2 (en) 1994-07-11 1994-07-11 Gas turbine blades

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15855094A JP3188105B2 (en) 1994-07-11 1994-07-11 Gas turbine blades

Publications (2)

Publication Number Publication Date
JPH0828303A true JPH0828303A (en) 1996-01-30
JP3188105B2 JP3188105B2 (en) 2001-07-16

Family

ID=15674161

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15855094A Expired - Fee Related JP3188105B2 (en) 1994-07-11 1994-07-11 Gas turbine blades

Country Status (1)

Country Link
JP (1) JP3188105B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10306706A (en) * 1997-05-01 1998-11-17 Mitsubishi Heavy Ind Ltd Cooling stationary blade for gas turbine
JP2000291405A (en) * 1999-04-05 2000-10-17 General Electric Co <Ge> Cooling circuit for gas turbine bucket and upper shroud
EP1126136A2 (en) * 1999-12-28 2001-08-22 ALSTOM (Schweiz) AG Turbine blade with air cooled tip shroud
US6682304B2 (en) 2000-12-16 2004-01-27 Alstom Technology Ltd Cooled gas turbine blade
JP2006316750A (en) * 2005-05-16 2006-11-24 Hitachi Ltd Gas turbine moving blade, gas turbine using the same, and its power generation plant
JP2011001919A (en) * 2009-06-21 2011-01-06 Toshiba Corp Turbine moving blade
JP2013144994A (en) * 2013-04-30 2013-07-25 Mitsubishi Heavy Ind Ltd Turbine blade and method for cooling the same
EP2149675A3 (en) * 2008-07-29 2014-07-09 General Electric Company A turbine blade and method of fabricating the same
CN106907181A (en) * 2015-12-18 2017-06-30 通用电气公司 Internal cooling construction in turbine rotor blade
CN109681464A (en) * 2018-11-27 2019-04-26 上海万泽精密铸造有限公司 It is preset with the fire-resistant impeller of deformation slot
DE102018200964A1 (en) * 2018-01-23 2019-07-25 MTU Aero Engines AG Rotor bucket cover for a turbomachine, rotor blade, method of making a rotor blade shroud and a rotor blade
EP3550111A1 (en) * 2018-04-06 2019-10-09 United Technologies Corporation Turbine blade shroud for gas turbine engine with power turbine and method of manufacturing same

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10306706A (en) * 1997-05-01 1998-11-17 Mitsubishi Heavy Ind Ltd Cooling stationary blade for gas turbine
JP2000291405A (en) * 1999-04-05 2000-10-17 General Electric Co <Ge> Cooling circuit for gas turbine bucket and upper shroud
EP1126136A2 (en) * 1999-12-28 2001-08-22 ALSTOM (Schweiz) AG Turbine blade with air cooled tip shroud
EP1126136A3 (en) * 1999-12-28 2004-05-19 ALSTOM Technology Ltd Turbine blade with air cooled tip shroud
US6682304B2 (en) 2000-12-16 2004-01-27 Alstom Technology Ltd Cooled gas turbine blade
JP2006316750A (en) * 2005-05-16 2006-11-24 Hitachi Ltd Gas turbine moving blade, gas turbine using the same, and its power generation plant
JP4628865B2 (en) * 2005-05-16 2011-02-09 株式会社日立製作所 Gas turbine blade, gas turbine using the same, and power plant
EP2149675A3 (en) * 2008-07-29 2014-07-09 General Electric Company A turbine blade and method of fabricating the same
JP2011001919A (en) * 2009-06-21 2011-01-06 Toshiba Corp Turbine moving blade
JP2013144994A (en) * 2013-04-30 2013-07-25 Mitsubishi Heavy Ind Ltd Turbine blade and method for cooling the same
CN106907181A (en) * 2015-12-18 2017-06-30 通用电气公司 Internal cooling construction in turbine rotor blade
DE102018200964A1 (en) * 2018-01-23 2019-07-25 MTU Aero Engines AG Rotor bucket cover for a turbomachine, rotor blade, method of making a rotor blade shroud and a rotor blade
US11098609B2 (en) 2018-01-23 2021-08-24 MTU Aero Engines AG Rotor blade shroud for a turbomachine, rotor blade, method of making a rotor blade shroud and a rotor blade
EP3550111A1 (en) * 2018-04-06 2019-10-09 United Technologies Corporation Turbine blade shroud for gas turbine engine with power turbine and method of manufacturing same
US10641108B2 (en) 2018-04-06 2020-05-05 United Technologies Corporation Turbine blade shroud for gas turbine engine with power turbine and method of manufacturing same
CN109681464A (en) * 2018-11-27 2019-04-26 上海万泽精密铸造有限公司 It is preset with the fire-resistant impeller of deformation slot

Also Published As

Publication number Publication date
JP3188105B2 (en) 2001-07-16

Similar Documents

Publication Publication Date Title
JP4713423B2 (en) Oblique tip hole turbine blade
EP0935052B1 (en) Gas turbine rotor blade
US6086328A (en) Tapered tip turbine blade
JP4463916B2 (en) Turbine blades with tapered tip ribs
JP4731199B2 (en) Turbulator on lower surface of turbine blade tip reversal and related method
CA2147448C (en) Gas turbine rotor blade tip cooling device
US3902820A (en) Fluid cooled turbine rotor blade
EP1201343B1 (en) Turbine bucket with turbulated cooling passage and electrode for electochemical machining.
US6991430B2 (en) Turbine blade with recessed squealer tip and shelf
JP3510467B2 (en) Gas turbine blades
US8267659B2 (en) Turbine blade
JPH0828303A (en) Moving blade of gas turbine
JP2002235502A5 (en)
JP2015521706A (en) Turbine airfoil with cast platform cooling circuit
US20080085191A1 (en) Thermal barrier coating system for a turbine airfoil usable in a turbine engine
JPH07305602A (en) Cooling device for platform of gas turbine moving blade
JP3426948B2 (en) Gas turbine blade
JP2971356B2 (en) Gas turbine blades
JPH07332004A (en) Cooling mechanism for gas turbine moving blade platform
JP2001107701A (en) Gas turbine moving blade
JP3416184B2 (en) Cooling structure at the tip of a gas turbine air-cooled rotor blade
JP3035187B2 (en) Gas turbine hollow cooling blade
JPH11229808A (en) Gas turbine rotor blade
JP3546134B2 (en) Gas turbine blade
JPH11223102A (en) Gas turbine moving blade

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010327

LAPS Cancellation because of no payment of annual fees