JPH08280177A - High-voltage generating device - Google Patents

High-voltage generating device

Info

Publication number
JPH08280177A
JPH08280177A JP8099495A JP8099495A JPH08280177A JP H08280177 A JPH08280177 A JP H08280177A JP 8099495 A JP8099495 A JP 8099495A JP 8099495 A JP8099495 A JP 8099495A JP H08280177 A JPH08280177 A JP H08280177A
Authority
JP
Japan
Prior art keywords
voltage
ground potential
annular body
high voltage
facing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8099495A
Other languages
Japanese (ja)
Inventor
Kenichi Inoue
憲一 井上
Kiyotaka Ishibashi
清隆 石橋
Kojin Furukawa
行人 古川
Kazuji Yokoyama
和司 横山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP8099495A priority Critical patent/JPH08280177A/en
Publication of JPH08280177A publication Critical patent/JPH08280177A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To eliminate the attenuation of a polarized charge by making a carrier current larger and suppressing the generation of leak currents by annularly arranging conductive plates so that the front surface of one conductive plate can face the rear surfaces of its adjacent conductive plates and alternately connecting rectifier elements in the forward and reverse directions between the facing surfaces of the conductive plates. CONSTITUTION: A high voltage which is the sum of a positive and negative voltages respectively generated by positive and negative charge transfer is generated across a high-potential part 30 and grounding potential part 29. Since the charge transfer by conductive plates 20 and fixed electrodes 22 facing each other is caused by close facing of large-area conductors to each other, a large quantity of charges can be carried due to the large capacitance between the conductors and a high voltage of a large current quantity is obtained. Because of such a electrode structure and electrode facing structure, the problem of the conventional technology that no large quantity of current is obtained can be solved. In addition, the polarizing power of a high-voltage generating device is not spoiled, because the potential difference caused by the fluctuation of the capacitance does not exceed a specific voltage value.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は,高エネルギーイオン分
析装置やイオン注入装置等における荷電粒子加速のため
の高電圧発生を主目的とする高電圧発生装置に係り,詳
しくは,正負静電荷を機械的に移送する移送経路上の電
極に誘起させた交流電流を逓倍整流することによって直
流高電圧を得る高電圧発生装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high voltage generator mainly intended to generate a high voltage for accelerating charged particles in a high energy ion analyzer, an ion implanter or the like. The present invention relates to a high voltage generator that obtains a DC high voltage by multiplying and rectifying an alternating current induced in an electrode on a transfer path that mechanically transfers.

【0002】[0002]

【従来の技術】直流高電圧を発生させるための従来技術
として,交流電圧を逓倍整流して直流高電圧を発生させ
るコッククロフト型,シュンケル型などの純電気的な手
段と,機械的な電荷輸送を用いるバンデグラフ型,ペレ
トロン型,ディスクトロン型などが知られている。上記
従来技術になる高電圧発生装置にはそれぞれ一長一短が
あり,電気的な手段における昇圧能力の実用限界,機械
的な手段における安定性の維持等に問題があった。本願
発明者らは電気的な手段と機械的な手段とを融合させ,
機械的接触がなく安定して高電圧を発生させ得る高電圧
発生装置を開発し,これを特開平5−324102号と
して公開した。この装置は図10に示すように構成され
ている。図10において,従来構成に係る高電圧発生装
置1は,絶縁円盤5の周縁に偶数個の金属ペレット6が
配置された電荷搬送ユニット2と,上記金属ペレット6
に対峙して偶数個の固定電極7が環状に配置された円環
体10上に逓倍整流回路を配した電圧発生ユニット3と
を1組として,この組み合わせが複数段(図示従来構成
では3段)に構成されている。各段の絶縁円盤5a,5
b,5cは共通の回転軸4に固定され,駆動モータ11
によって回転する。各段の電荷搬送ユニット2a,2
b,2cは,絶縁円盤5に配置された金属ペレット6の
隣り合う間を順方向と逆方向とを交互に配したダイオー
ドKで接続する結線がなされている。又,各段の電圧発
生ユニット3a,3b,3cは,固定電極7の隣り合う
間を2つのダイオードKと1つのコンデンサCで形成す
る逓倍整流回路によって結線されている。更に,各段の
電圧発生ユニット3a,3b,3cの間は,発生させた
電圧が直列加算されるように結線される。
2. Description of the Related Art As conventional techniques for generating high DC voltage, pure electric means such as Cockcroft type and Schunkel type for multiplying and rectifying AC voltage to generate high DC voltage and mechanical charge transport are used. The bandegraph type, peretron type, disctron type, etc. used are known. Each of the above-mentioned high voltage generators of the prior art has advantages and disadvantages, and there are problems in practical limit of boosting ability in electric means, maintenance of stability in mechanical means, and the like. The inventors of the present application fuse electric means and mechanical means,
A high voltage generator capable of generating a high voltage stably without mechanical contact was developed, and it was disclosed as Japanese Patent Laid-Open No. 5-324102. This device is constructed as shown in FIG. In FIG. 10, a high voltage generator 1 according to a conventional configuration includes a charge carrier unit 2 in which an even number of metal pellets 6 are arranged on the periphery of an insulating disk 5, and the metal pellets 6 described above.
And a voltage generating unit 3 in which a multiplying rectifier circuit is arranged on an annular body 10 in which an even number of fixed electrodes 7 are arranged in an annular shape as one set, and this combination has a plurality of stages (three stages in the illustrated conventional configuration). ) Is configured. Insulation disks 5a, 5 at each stage
b and 5c are fixed to a common rotary shaft 4, and the drive motor 11
To rotate by. Charge transfer units 2a, 2 at each stage
b and 2c are connected so that adjacent ones of the metal pellets 6 arranged on the insulating disk 5 are connected by a diode K in which the forward direction and the reverse direction are alternately arranged. Further, the voltage generating units 3a, 3b, 3c in each stage are connected between the adjacent fixed electrodes 7 by a multiplying rectifying circuit formed by two diodes K and one capacitor C. Further, the voltage generating units 3a, 3b, 3c of the respective stages are connected so that the generated voltages are added in series.

【0003】上記電圧発生ユニット3a,3b,3c各
段の結線及び各段の間の結線は,図11に示す展開表示
のようになされている。電圧発生ユニット3は1段毎
に,1/2が接地電位部位から高電位部位に正電圧を加
算する正電荷移送(上向き破線矢印)と,高電位部位か
ら接地電位部位に負電圧を加算する負電荷移送(下向き
破線矢印)とで構成されている。更に,各電圧発生ユニ
ット3a,3b,3cでの正電荷移送及び負電荷移送が
それぞれ加算されるように結線されている。3段に形成
された電荷搬送ユニット2と電圧発生ユニット3との組
み合わせは,最下段を接地電位側,最上段を高電位側と
して,接地電位側の電圧発生ユニット3cに接地電位側
インダクタ電源8,高電位側の電圧発生ユニット3aに
高電位側インダクタ電源9が接続されている。接地電位
側の電圧発生ユニット3cに接地電位側インダクタ電源
8から印加される電荷を電荷搬送ユニット2の金属ペレ
ット6に正負交互に帯電させて高電位側に移動させ,高
電位側の電圧発生ユニット3aに高電位側インダクタ電
源9から印加される電荷を電荷搬送ユニット2の金属ペ
レット6に正負交互に帯電させて接地電位側に移動させ
る機械的動作により,固定電極7に交流を発生させ,こ
の交流をダイオードKとコンデンサCとによる逓倍整流
回路によって電圧上昇させ,コンデンサCに充電された
電圧が直列加算されることによって高電圧を発生させ
る。この動作により,接地電位側の接地電極12と高電
位側の高電圧電極13との間に高電圧が得られる。
The connection of each stage of the voltage generating units 3a, 3b, 3c and the connection between each stage are shown in a developed display as shown in FIG. In the voltage generation unit 3, for each stage, 1/2 adds positive voltage from the ground potential part to the high potential part (positive upward arrow) and adds negative voltage from the high potential part to the ground potential part. Negative charge transfer (downward dashed arrow). Furthermore, the positive charge transfer and the negative charge transfer in each voltage generating unit 3a, 3b, 3c are connected so as to be added respectively. The combination of the charge carrier unit 2 and the voltage generating unit 3 formed in three stages is such that the lowermost stage is the ground potential side and the uppermost stage is the high potential side, and the ground potential side voltage generating unit 3c is connected to the ground potential side inductor power source 8a. The high-potential-side inductor power supply 9 is connected to the high-potential-side voltage generating unit 3a. The electric charge applied from the ground potential side inductor power supply 8 to the ground potential side voltage generating unit 3c is positively and negatively charged alternately on the metal pellet 6 of the charge carrier unit 2 and moved to the high potential side, and the high potential side voltage generating unit 3c. An alternating current is generated in the fixed electrode 7 by a mechanical operation in which charges applied from the high-potential-side inductor power source 9 to 3a are alternately charged to the metal pellet 6 of the charge carrier unit 2 and moved to the ground potential side. A high voltage is generated by increasing the voltage of alternating current by a multiplying rectifier circuit including a diode K and a capacitor C, and adding the voltage charged in the capacitor C in series. By this operation, a high voltage is obtained between the ground electrode 12 on the ground potential side and the high voltage electrode 13 on the high potential side.

【0004】図12は接地電位側から高電位側に正電荷
を引き上げる側の等価回路を示しており,絶縁円盤5の
回転により金属ペレット6が固定電極7に対して1つづ
つ移動していく状態が(a)(b)(c)(d)に順を
追って示されている。図12(a)において,接地電位
側インダクタ電源8が接続された固定電極7a,7bの
位置に近接した金属ペレット6a,6bには,金属ペレ
ット6a,6b間を接続するダイオードKの正方向導通
により,図示するように電荷が分極帯電する。この金属
ペレット6a,6bの帯電状態は,ダイオードKの正逆
交互の接続により保持される。帯電した金属ペレット6
a,6bは,図示(b)(c)(d)に示す位置に順次
移動するので,固定電極7c,7d…には正負交互に帯
電した金属ペレット6b,6a…が近接してくる。即
ち,各固定電極7には交流電圧が誘起されることにな
る。発生した交流電圧は,各固定電極7に接続された2
つのダイオードKとコンデンサCとからなる逓倍整流回
路により逓倍整流されてコンデンサCを充電する。この
コンデンサCの充電方向は図示するように高電位側を正
とする同一方向であるため,接地電位側と高電位側とで
直列に接続された各コンデンサCの充電電荷は加算さ
れ,高電位側の高電圧電極13に正電荷が引き上げられ
る。
FIG. 12 shows an equivalent circuit on the side where positive charges are pulled from the ground potential side to the high potential side. The rotation of the insulating disk 5 causes the metal pellets 6 to move one by one with respect to the fixed electrode 7. The states are shown in order of (a), (b), (c), and (d). In FIG. 12A, in the metal pellets 6a and 6b near the positions of the fixed electrodes 7a and 7b to which the ground potential side inductor power supply 8 is connected, the forward conduction of the diode K connecting the metal pellets 6a and 6b is established. As a result, the charge is polarized and charged as shown in the figure. The charged state of the metal pellets 6a and 6b is maintained by the forward and reverse alternating connection of the diodes K. Charged metal pellets 6
Since a and 6b are sequentially moved to the positions shown in (b), (c) and (d) in the figure, the positive and negative alternately charged metal pellets 6b, 6a ... Come close to the fixed electrodes 7c, 7d. That is, an AC voltage is induced in each fixed electrode 7. The generated AC voltage is connected to each fixed electrode 7
The capacitor C is charged by being multiplied and rectified by a multiplying rectifier circuit composed of two diodes K and a capacitor C. Since the charging direction of the capacitors C is the same direction with the high potential side being positive as shown in the figure, the charging charges of the capacitors C connected in series on the ground potential side and the high potential side are added, and the high potential side is added. The positive charge is pulled up to the high voltage electrode 13 on the side.

【0005】一方,高電位側インダクタ電源9から印加
される電圧により,高電位側から接地電位側に移動する
各金属ペレット6に正負交互の電荷が帯電保持され,帯
電した金属ペレット6の移動により各固定電極7に交流
電圧が発生し,これを逓倍整流回路により逓倍整流した
電圧が各コンデンサCに充電される。このコンデンサC
への充電方向は高電位側を正とする同一方向になるた
め,高電位側から接地電位側に直列接続された各コンデ
ンサCの充電電荷は加算され,高電位側から接地電位側
に負電荷が引き下ろされることになる。このように,接
地電位側と高電位側との間で正電荷の高電位側への引き
上げと,負電荷の接地電位側への引き下ろしとにより,
高電圧電極24と接地容器25との間に高電圧が発生す
る。上記構成になる高電圧発生装置では,機械的接触が
ないため,絶縁円盤5を高速で回転させることができ,
電荷の搬送速度が速くなるので電荷搬送能力が向上する
と共に,塵埃の発生も抑えられので,故障頻度も少な
く,定期的な保守間隔を長くすることができる。又,固
定電極7個々に機械的に搬送される電荷により発生させ
る交流電圧を逓倍整流するので,一元的な交流電圧を逓
倍整流するコッククロフト型のように段数が増えること
による電圧降下が生じることもない。更に,円盤構造を
積層した構成により電位勾配が折り畳まれるので,回転
軸方向の耐放電性能に優れ,小型化が可能となる特徴を
備えている。
On the other hand, by the voltage applied from the high-potential-side inductor power source 9, positive and negative alternating charges are charged and held in each metal pellet 6 moving from the high-potential side to the ground potential side, and the charged metal pellet 6 moves. An AC voltage is generated in each fixed electrode 7, and a voltage obtained by multiplying and rectifying the AC voltage is charged in each capacitor C. This capacitor C
Since the charging direction to the positive potential side is the same as the positive direction, the charging charge of each capacitor C connected in series from the high potential side to the ground potential side is added, and the negative charge is shifted from the high potential side to the ground potential side. Will be withdrawn. Thus, by pulling the positive charge to the high potential side and pulling the negative charge to the ground potential side between the ground potential side and the high potential side,
A high voltage is generated between the high voltage electrode 24 and the ground container 25. In the high voltage generator having the above configuration, since there is no mechanical contact, the insulating disk 5 can be rotated at high speed,
Since the charge transfer speed is increased, the charge transfer capability is improved, and the generation of dust is suppressed, so the frequency of failures is low and the regular maintenance intervals can be extended. Further, since the AC voltage generated by the electric charge mechanically transferred to each fixed electrode 7 is multiplied and rectified, a voltage drop may occur due to an increase in the number of stages as in the Cockcroft type that performs rectification of a unitary AC voltage. Absent. Furthermore, since the potential gradient is folded due to the structure in which the disc structures are laminated, it is excellent in discharge resistance in the direction of the rotation axis and has the feature of enabling miniaturization.

【0006】[0006]

【発明が解決しようとする課題】しかしながら,上記回
転円盤5の周縁に配列された金属ペレット6と,絶縁円
環10の内縁に配列された固定電極7との間の対向面積
の形成に限度があるため,電荷の授受が小さく大きな搬
送電流量が得られない第1の問題点があった。又,回転
円盤5の回転により正負電荷が帯電した1組の金属ペレ
ット6が対向する1組の固定電極7から離れる遷移位置
において,正負に帯電した金属ペレット6の間の静電容
量(C)が小さくなる結果,電荷Q=CVの公式に従う
と,金属ペレット6間の電位差(V)が一時的に非常に
高くなり,この間を接続するダイオードKに逆方向の漏
れ電流が流れ,金属ペレット6の分極電荷が減衰する。
このため,金属ペレット6に正負電荷を交互に帯電させ
て搬送する分極性能の低下がみられ,特に電圧発生ユニ
ットを複数段に構成するほどに昇圧能力が低下する第2
の問題点があった。本発明が目的とするところは,上記
従来構成における搬送電流量及び分極性能の課題を解決
した構造を備えた高電圧発生装置を提供することにあ
る。
However, there is a limit to the formation of the facing area between the metal pellets 6 arranged on the peripheral edge of the rotating disk 5 and the fixed electrodes 7 arranged on the inner edge of the insulating annular ring 10. Therefore, there is the first problem that charge transfer is small and a large carrier current amount cannot be obtained. Further, at the transition position where one set of metal pellets 6 charged with positive and negative charges due to the rotation of the rotary disk 5 separates from one set of fixed electrodes 7 facing each other, the capacitance (C) between the positive and negative charged metal pellets 6 As a result, according to the formula of charge Q = CV, the potential difference (V) between the metal pellets 6 becomes very high temporarily, and a reverse leakage current flows in the diode K connecting between the metal pellets 6 and the metal pellets 6 The polarization charge of is attenuated.
For this reason, the polarization performance of alternately charging positive and negative charges to the metal pellets 6 and carrying is deteriorated, and particularly, the boosting capability decreases as the voltage generating unit is configured in a plurality of stages.
There was a problem. An object of the present invention is to provide a high voltage generator having a structure that solves the problems of the carrier current amount and the polarization performance in the above-mentioned conventional configuration.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
に本発明が採用する手段は,接地電位部位と,該接地電
位部位と絶縁離隔された高電位部位との間で電荷移送す
ることにより,上記高電位部位と接地電位部位との間に
高電圧を発生させる高電圧発生装置において,回転軸上
に固定される円盤の上記回転軸と直交する表裏両面上
に,相互に絶縁された導電体プレートが等間隔で複数個
円環状に配列され,該導電体プレートの表裏対向する各
対向間に整流素子が順方向と逆方向とが交互になるよう
に接続され,該回転円盤が,回転駆動される回転軸上に
適宜間隔を設けて任意数固定されてなる電荷搬送手段
と,上記回転円盤それぞれの表面と裏面とに所定間隔を
設けて対向配置された表面側円環体及び裏面側円環体そ
れぞれの上記導電体プレートと対面する位置に相互に絶
縁された固定電極が複数個配列され,上記表面側円環体
及び裏面側円環体の各固定電極間が整流素子とコンデン
サとからなる逓倍整流回路により接続されてなり,上記
コンデンサが上記接地電位部位と高電位部位との間で直
列に接続されてなる電圧発生手段と,上記接地電位部位
側及び/又は高電位部位側に位置する上記表面側円環体
及び裏面側円環体の一端の上記固定電極に電荷を印加す
る電圧印加手段とを具備してなることを特徴とする高電
圧発生装置として構成されている。上記構成において,
上記回転円盤及び/又は表面側円環体,裏面側円環体を
集積回路製造プロセスにより形成することができる。
The means adopted by the present invention to achieve the above object is to transfer charges between a ground potential part and a high potential part insulated from the ground potential part. , In a high voltage generator for generating a high voltage between the high potential part and the ground potential part, electrically isolated from each other on both front and back surfaces orthogonal to the rotation axis of a disk fixed on the rotation axis. A plurality of body plates are arranged in an annular shape at equal intervals, and rectifying elements are connected between the front and back sides of the conductor plate such that the forward direction and the reverse direction are alternated, and the rotating disk rotates. A charge carrier means which is fixed at an arbitrary number on the rotating shaft to be driven and is fixed, and a front surface side annular body and a back surface side which are arranged to face each other on the front surface and the back surface of each of the rotating discs with a predetermined interval. Each of the above conductors of the torus A plurality of fixed electrodes that are insulated from each other are arranged at a position facing each other, and the fixed electrodes of the front-side annular body and the back-side annular body are connected by a multiplying rectifier circuit composed of a rectifying element and a capacitor. Voltage generating means in which the capacitor is connected in series between the ground potential part and the high potential part, and the surface side ring located on the ground potential part side and / or the high potential part side A high voltage generator comprising a body and a voltage applying means for applying charges to the fixed electrode at one end of the backside annular body. In the above configuration,
The rotating disk and / or the front surface side annular body and the back surface side annular body can be formed by an integrated circuit manufacturing process.

【0008】[0008]

【作用】本発明によれば,回転駆動される円盤の表裏両
面に所要面積に形成された複数個の導電体プレートがそ
れぞれ表裏両面から対向するように円環状に配列され,
各対向間に正方向と逆方向とを交互にして整流素子が接
続されて回転円盤が構成されている。この回転円盤に対
し,該回転円盤の表裏に形成された複数の導電体プレー
トのそれぞれに対面するように複数の固定電極が形成さ
れた表面側と裏面側の2枚の円環体が上記回転円盤の表
裏両面に配設される。上記2枚の円環体の各固定電極に
は逓倍整流回路が接続されている。上記構成になる回転
円盤を電荷搬送手段,上記構成になる表面側円環体及び
裏面側円環体を電圧発生手段の1ユニットとして所望の
高電圧が得られるユニット数に組み合わせ,回転円盤を
回転駆動させると共に,電圧印加手段から一端の固定電
極に電荷を印加すると,この電荷は各導電体プレートに
正負交互に帯電して搬送される。配列された固定電極に
は正負交互に帯電した上記導電体プレートが次々と対面
することにより,各固定電極に交流電圧が誘起し,この
交流電圧は整流素子とコンデンサとを組み合わせた逓倍
整流回路によって逓倍整流されて上記コンデンサを充電
する。このコンデンサは上記1ユニット毎に直列接続さ
れると共に,各ユニット間でも直列に接続されているの
で,接地電位部位と高電圧部位との間に高電圧が得られ
る。
According to the present invention, a plurality of conductor plates formed in a required area on both front and back surfaces of a disk driven to rotate are arranged in an annular shape so as to face each other from both front and back surfaces.
A rectifying element is connected between each pair of electrodes so that the forward direction and the reverse direction are alternately arranged to form a rotating disk. With respect to this rotating disk, the two annular bodies on the front surface side and the back surface side, on which a plurality of fixed electrodes are formed so as to face each of the plurality of conductor plates formed on the front and back sides of the rotating disk, are rotated. It is arranged on both the front and back sides of the disk. A multiplying rectifier circuit is connected to each fixed electrode of the two annular bodies. Rotate the rotating disk by combining the rotating disk having the above-mentioned configuration with the charge carrying means, and the front-side annular body and the back-side annular body having the above-mentioned configuration as one unit of the voltage generating means to obtain the desired high voltage. When electric charges are applied from the voltage applying means to the fixed electrode at one end while being driven, the electric charges are alternately charged to the conductive plates and conveyed. The arranged fixed electrodes are alternately charged with the positive and negative electrically charged conductor plates, and an alternating voltage is induced in each fixed electrode. This alternating voltage is generated by a multiplying rectifier circuit that combines a rectifying element and a capacitor. It is multiplied and rectified to charge the capacitor. Since this capacitor is connected in series for each unit and is also connected in series between each unit, a high voltage can be obtained between the ground potential part and the high voltage part.

【0009】上記構成により,導電体プレートと固定電
極とは所要面積で対面するため,この間に大きな静電容
量が得られるので,電荷の搬送量,即ち搬送電流を大き
くすることができる。ここに従来構成における第1の問
題点が解決される。又,回転円盤の表裏から対向させて
導電体プレートが配設されているので,この間に固定さ
れた大きな静電容量が得られる。この対向間に並列に導
電体プレートと固定電極との対向間の静電容量が加わ
り,この静電容量は回転円盤の回転に伴って変化する
が,導電体プレートの対向間の静電容量の方が充分に大
きいため,大きな静電容量(C)の変化は生じない。従
って,上記導電体プレートの対向間に接続されている整
流素子に加わる逆方向の電位差(V)は,電荷(Q)が
一定であるため,Q=CVの公式から過大にならず,漏
れ電流の発生は抑えられるので分極電荷の減衰はなく,
電圧発生のユニットを多段構成したときにも昇圧性能が
低下しない。ここに従来構成における第2の問題点が解
決される。又,上記回転円盤及び/又は表面側円環体,
裏面側円環体を集積回路製造プロセスにより形成するこ
とにより,面上にダイオード等のパーツや配線等を露出
させた凹凸部分が生じないため,回転円盤と表裏両円環
体との近接距離を小さくして電荷搬送量を増し,回転円
盤の回転をより高速で実行できるので,高電圧発生の効
率が増加する他,製作工数の低減,保守作業性の向上等
の効果を得ることができる。
With the above structure, since the conductor plate and the fixed electrode face each other in a required area, a large electrostatic capacitance can be obtained between them, so that the amount of charge carrier, that is, the carrier current can be increased. Here, the first problem in the conventional configuration is solved. Further, since the conductor plates are arranged so as to face each other from the front and back of the rotating disk, a large electrostatic capacitance fixed between them can be obtained. The capacitance between the facings of the conductor plate and the fixed electrode is added in parallel between these facings, and this capacitance changes with the rotation of the rotating disk. Since it is sufficiently large, a large change in capacitance (C) does not occur. Therefore, since the electric charge (Q) is constant, the potential difference (V) in the reverse direction applied to the rectifying element connected between the facing conductor plates does not become excessive from the formula of Q = CV, and the leakage current Is suppressed, so there is no attenuation of polarization charge,
The boosting performance does not deteriorate even when the voltage generating unit is configured in multiple stages. Here, the second problem in the conventional configuration is solved. Also, the rotating disc and / or the surface side torus,
By forming the backside torus by the integrated circuit manufacturing process, there are no irregularities that expose parts such as diodes or wiring on the surface, so the proximity distance between the rotating disk and the front and back torus is small. Since it can be made smaller to increase the charge carrying amount and the rotating disk can be rotated at a higher speed, the efficiency of high voltage generation can be increased, the manufacturing man-hours can be reduced, and the maintenance workability can be improved.

【0010】[0010]

【実施例】以下,添付図面を参照して本発明を具体化し
た実施例について説明し,本発明の理解に供する。尚,
以下の実施例は本発明を具体化した一例であって,本発
明の技術的範囲を限定するものではない。ここに,図1
は本発明の実施例に係る高電圧発生装置の構成を示す構
造図,図2は実施例に係る回転円盤の構成を示す側面図
(a)及び表面側平面図(b)と裏面側平面図(c),
図3は実施例に係る表面側円環体の構成を示す側面図
(a)と平面図(b),図4は実施例に係る裏面側円環
体の構成を示す平面図(a)と側面図(b),図5は実
施例に係る高電圧発生装置の電気的な構成を示す接続回
路図,図6は電荷搬送及び電圧発生の動作を回転円盤の
回転移動順に示す動作説明図,図7は実施例構成による
分極電荷の減衰防止の効果を説明する説明図,図8は分
極電荷の減衰防止を説明するための等価回路図,図9は
別実施態様による構成を示す側面図である。図1におい
て,実施例に係る高電圧発生装置15は,絶縁体により
形成された円盤21の表裏両面に導電体プレート20が
等間隔で円環状に配列され,モータ31により回転駆動
される回転軸19に固定された回転円盤18と,絶縁体
により形成された円環板23,24が上記回転円盤18
の表裏両面にそれぞれ対向して配設され,該円環板2
3,24の回転円盤18に対向する面に固定電極22が
等間隔に配列された表面側円環体25及び裏面側円環体
26とからなる組み合わせが,図示するように3段に構
成されている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The embodiments of the present invention will be described below with reference to the accompanying drawings for the understanding of the present invention. still,
The following example is an example embodying the present invention and does not limit the technical scope of the present invention. Figure 1
FIG. 2 is a structural diagram showing a configuration of a high voltage generator according to an embodiment of the present invention, FIG. 2 is a side view (a), a front surface side plan view (b) and a back surface side plan view showing a configuration of a rotating disk according to the embodiment. (C),
FIG. 3 is a side view (a) and a plan view (b) showing the configuration of the front side torus according to the embodiment, and FIG. 4 is a plan view (a) showing the configuration of the back side torus according to the example. FIG. 5 is a side view (b), FIG. 5 is a connection circuit diagram showing the electrical configuration of the high voltage generator according to the embodiment, and FIG. 6 is an operation explanatory diagram showing the operations of charge transfer and voltage generation in the order of rotational movement of the rotating disk. FIG. 7 is an explanatory view for explaining the effect of preventing the attenuation of polarization charges by the embodiment configuration, FIG. 8 is an equivalent circuit diagram for explaining the prevention of attenuation of the polarization charges, and FIG. 9 is a side view showing the configuration according to another embodiment. is there. In FIG. 1, a high voltage generator 15 according to the embodiment has a rotating shaft driven by a motor 31 in which conductor plates 20 are annularly arranged at equal intervals on both front and back surfaces of a disk 21 formed of an insulator. The rotating disk 18 fixed to 19 and the annular plates 23 and 24 formed of an insulator are the rotating disk 18 described above.
The ring-shaped plate 2 is arranged so as to face each other on both the front and back sides.
A combination of a front surface side annular body 25 and a back surface side annular body 26 in which the fixed electrodes 22 are arranged at equal intervals on the surface of the 3, 24 facing the rotating disk 18 is configured in three stages as shown in the drawing. ing.

【0011】上記回転円盤18は,図2に示すように表
裏両面に形成された導電体プレート20,20…が表裏
両面から相対向するように配置されており,各対向間に
ダイオード(整流素子)Kが順方向と逆方向とを交互に
して接続されている。本実施例構成では上記回転軸19
に所定間隔を設けて3枚の回転円盤18a,18b,1
8cが固定されており,3枚が同時回転して上記導電体
プレート20に分極帯電させた電荷を各回転円盤18
a,18b,18cそれぞれに組み合わされた上記表面
側円環体25a,25b,25c,裏面側円環体26
a,26b,26cの各固定電極22に電荷を搬送する
電荷搬送手段を構成している。又,上記表面側円環体2
5及び裏面側円環体26は,図3及び図4に示すよう
に,上記回転円盤18に対向する面に上記導電体プレー
ト20にそれぞれ対向させて複数の固定電極22が等間
隔で円環状に配列されており,表面側円環体25及び裏
面側円環体26の各固定電極22間を接続してダイオー
ドKとコンデンサCとからなる逓倍整流回路が構成され
ている。この表面側円環体25及び裏面側円環体26
は,上記回転円盤18の回転により正負交互に帯電した
導電体プレート20が上記固定電極22に次々と近接す
ることにより,各固定電極22に発生する交流電圧を上
記逓倍整流回路により逓倍整流して上記コンデンサCに
充電させる。この表面側円環体25及び裏面側円環体2
6は,各回転円盤18a,18b,18c毎に配設さ
れ,各表面側円環体25と裏面側円環体26との間で接
続されると共に,各段間でも接続され,上記コンデンサ
Cは接地電位側から高電位側の間で直列に接続され,充
電電圧が加算される結果,接地電位部位29と高電位部
位30との間に高電圧を発生させる電圧発生手段を構成
している。
As shown in FIG. 2, the rotating disk 18 is arranged such that conductor plates 20, 20 ... Formed on both front and back surfaces face each other from both front and back surfaces. ) K is connected in alternating forward and reverse directions. In the configuration of this embodiment, the rotary shaft 19
3 rotating disks 18a, 18b, 1 with a predetermined interval
8c is fixed, and the three plates rotate simultaneously to charge the conductive plate 20 with polarization to charge the rotating disks 18 respectively.
The front surface side annular body 25a, 25b, 25c and the back surface side annular body 26 which are respectively combined with a, 18b and 18c.
A charge carrier means for carrying charges to the fixed electrodes 22 of a, 26b, and 26c is configured. In addition, the front side annular body 2
As shown in FIG. 3 and FIG. 4, the backside annular member 26 has a plurality of fixed electrodes 22 arranged at equal intervals on the surface facing the rotating disk 18 and facing the conductor plate 20, respectively. And the fixed electrodes 22 of the front surface side circular ring body 25 and the back surface side circular ring body 26 are connected to each other to form a multiplication rectification circuit including a diode K and a capacitor C. The front side annular body 25 and the back side annular body 26
When the rotating disk 18 rotates, the conductive plates 20 that are alternately charged positively and negatively come close to the fixed electrodes 22 one after another, so that the AC voltage generated at each fixed electrode 22 is rectified by the rectifying circuit. The capacitor C is charged. The front surface side annular body 25 and the back surface side annular body 2
6 is provided for each rotating disk 18a, 18b, 18c, is connected between each front surface side annular body 25 and back surface side annular body 26, and is also connected between each stage. Is connected in series between the ground potential side and the high potential side, and constitutes a voltage generating means for generating a high voltage between the ground potential part 29 and the high potential part 30 as a result of adding the charging voltage. .

【0012】上記1枚の回転円盤18と,これに対向配
置される上記表面側円環体25及び裏面側円環体26と
の組み合わせを発電ユニット16として,本実施例構成
では発電ユニット16a,16b,16cの3段に構成
されている。この発電ユニット16は,所望する高電圧
が比較的小さくてよい場合には1段の構成でもよく,よ
り大きな高電圧が所望されるに応じて段数を増加させて
構成することができる。上記発電ユニット16が3段に
構成された高電圧発生装置1において,接地電位部位2
9に配置された接地電位側インダクタ電源(電圧印加手
段)27から接地電位側に位置する上記発電ユニット1
6aに起動電圧を印加すると共に,高電位部位30に配
置された高電位側インダクタ電源(電圧印加手段)28
から高電位側に位置する発電ユニット16cに起動電圧
を印加することにより,接地電位部位29から高電位部
位30に正の電荷移送がなされ,高電位部位30から接
地電位部位29に負の電荷移送がなされて,高電位部位
30と接地電位部位29との間に高電圧が発生する。こ
の動作を図5及び図6を参照して説明する。
A combination of the one rotating disk 18 and the front-side annular body 25 and the back-side annular body 26 arranged to face the rotating disk 18 is used as a power generating unit 16, and in this embodiment, the power generating unit 16a, It has three stages of 16b and 16c. The power generation unit 16 may have a single-stage configuration when the desired high voltage may be relatively small, and may be configured by increasing the number of stages according to the demand for a higher high voltage. In the high voltage generator 1 in which the power generation unit 16 has three stages, the ground potential portion 2
The power generation unit 1 located on the ground potential side from the ground potential inductor power supply (voltage applying means) 27 arranged in FIG.
A high-potential-side inductor power supply (voltage application means) 28 disposed in the high-potential portion 30 while applying a starting voltage to the 6a.
By applying a starting voltage to the power generation unit 16c located on the high potential side, the positive charge is transferred from the ground potential site 29 to the high potential site 30, and the negative charge transfer is performed from the high potential site 30 to the ground potential site 29. As a result, a high voltage is generated between the high potential part 30 and the ground potential part 29. This operation will be described with reference to FIGS.

【0013】図5は回転円盤18と表裏両円環体25.
26との組み合わせからなる各発電ユニット16を平面
的に展開し,電気接続関係を明らかにしたもので,図解
の煩雑さを避けるため2段構成として表示している。図
1に示した3段構成の場合の2段目の構成を省略したも
のと理解されたい。図1に示す3段構成の場合には,同
様の発電ユニット16bの構成が同図に示す発電ユニッ
ト16aと発電ユニット16cとの間に配置されること
になる。図5において,各発電ユニット16a,16c
は,それぞれの1/2が同図に示す破線矢印のように接
地電位側から高電位側に正電荷を搬送する正電荷移送
(図5における上向き破線矢印)と,1/2が高電位側
から接地電位側に負電荷を搬送する負電荷移送(図5に
おける下向き破線矢印)とに構成されている。又,接地
電位部位29に配置された接地電位側インダクタ電源2
7から表面側円環体25a及び裏面側円環体26aの固
定電極22に対して起動電圧が印加される。この起動電
圧の印加により電圧印加された固定電極22に対向する
位置にある回転円盤18aの導電体プレート20は帯電
し,回転円盤18aの回転により移動し,次々と回転方
向にある固定電極22に電圧を誘起させる。この様子を
図6を用いて説明する。
FIG. 5 shows the rotary disk 18 and the front and rear toroids 25.
Each power generation unit 16 composed of a combination with 26 is developed two-dimensionally to clarify the electrical connection relationship, and is shown as a two-stage configuration in order to avoid complexity of the illustration. It should be understood that the configuration of the second stage in the case of the three-stage configuration shown in FIG. 1 is omitted. In the case of the three-stage configuration shown in FIG. 1, a similar configuration of the power generation unit 16b is arranged between the power generation unit 16a and the power generation unit 16c shown in the figure. In FIG. 5, each power generation unit 16a, 16c
½ of each is a positive charge transfer (upward broken line arrow in FIG. 5) for transporting positive charges from the ground potential side to the high potential side as shown by the broken line arrow in the figure, and ½ is the high potential side. To the ground potential side, a negative charge transfer (downward dashed arrow in FIG. 5) is formed. In addition, the ground potential side inductor power supply 2 arranged in the ground potential portion 29
A starting voltage is applied from 7 to the fixed electrodes 22 of the front surface side annular body 25a and the back surface side annular body 26a. The conductor plate 20 of the rotating disk 18a located at a position facing the fixed electrode 22 to which the voltage is applied by the application of the starting voltage is charged, and is moved by the rotation of the rotating disk 18a, so that the fixed electrodes 22 in the rotating direction are sequentially moved. Induce a voltage. This situation will be described with reference to FIG.

【0014】図6は上記回転円盤18aと表面側円環体
25a及び裏面側円環体26aとの部分的な対向関係を
直線的に示したもので,図6(a)に示す状態から,回
転円盤18aが回転して導電体プレート20が1個分づ
つ移動していく状態が図6(b)(c)(d)(e)に
順を追って示されている。図6(a)において,表面側
円環体25a及び裏面側円環体26aの固定電極22
a,22b,22c,22dには接地電位側インダクタ
電源27が接続され,表裏対向する導電体プレート20
aと20b,20cと20dとのそれぞれの間にはそれ
ぞれ導通方向にダイオードKが接続されているので,各
固定電極22a,22b,22c,22dには図示する
ような極性で電圧が印加され,これらにそれぞれ対面す
る導電体プレート20a,20b,20c,20dには
反対極性の電荷が帯電する。即ち,隣り合う導電体プレ
ート20aと20c,20bと20dとの間,表裏対向
する導電体プレート20aと20b,20cと20dと
のそれぞれの間にはそれぞれ反対極性の電荷が帯電する
ことになる。
FIG. 6 linearly shows a partial facing relationship between the rotary disc 18a and the front surface side annular body 25a and the back surface side annular body 26a. From the state shown in FIG. 6 (a), The state in which the rotating disk 18a rotates and the conductor plate 20 moves one by one is shown in order in FIGS. 6B, 6C, 6D, and 6E. In FIG. 6A, the fixed electrodes 22 of the front surface side annular body 25a and the back surface side annular body 26a
A ground potential side inductor power supply 27 is connected to a, 22b, 22c and 22d, and conductor plates 20 facing each other are arranged on the front and back sides.
Since a diode K is connected between a and 20b, 20c and 20d in the conduction direction, a voltage is applied to each fixed electrode 22a, 22b, 22c, 22d with the polarity shown in the figure, The conductor plates 20a, 20b, 20c, 20d facing each other are charged with electric charges of opposite polarities. That is, electric charges of opposite polarities are charged between the adjacent conductor plates 20a and 20c, 20b and 20d and between the conductor plates 20a and 20b and 20c and 20d facing each other.

【0015】帯電した導電体プレート20a,20b,
20c,20d(ハッチングで示す位置)と,後続する
各導電体プレート20e,20f…が上記と同様に帯電
して移動していく様子は,同図(b)(c)(d)
(e)に示すようである。帯電した導電体プレート20
の移動がなされると,図示するように固定電極22e,
22f…では正負交互に帯電した導電体プレート20が
対面することになり,正負交互の電圧が誘起されるの
で,交流電圧が発生することになる。この交流電圧は表
面側円環体25aと裏面側円環体26aとの間に接続さ
れた各逓倍整流回路により逓倍整流されて各コンデンサ
Cに充電される。各コンデンサCに充電された電圧は,
各コンデンサCが接地電位側から高電位側に直列に接続
されると共に,各発電ユニット16a,16cの各コン
デンサCの間が直列に接続されていることから加算さ
れ,高電位部位30に大きな正電圧が得られる。更に,
高電位部位30に配置された高電位側インダクタ電源2
8から表面側円環体25c及び裏面側円環体26cの固
定電極22に印加される起動電圧は,上記と同様にして
回転円盤18cの各導電体プレート20に分極帯電さ
れ,各固定電極22に交流電圧を発生させる。この交流
電圧は表面側円環体25cと裏面側円環体26cとの間
に接続された各逓倍整流回路により逓倍整流されて各コ
ンデンサCに充電される。各コンデンサCに充電された
電圧は,各コンデンサCが高電位側から接地電位側に直
列に接続されていることから加算され,接地電位側に大
きな負電圧が得られる。
Charged conductor plates 20a, 20b,
20c, 20d (positions shown by hatching) and the subsequent conductor plates 20e, 20f ... Are charged and moved in the same manner as described above, as shown in (b), (c) and (d) of FIG.
It is as shown in (e). Charged conductor plate 20
Of the fixed electrode 22e, as shown in FIG.
At 22f, the positive and negative alternately charged conductor plates 20 face each other, and positive and negative alternating voltages are induced, so that an AC voltage is generated. This AC voltage is multiplied and rectified by each of the multiplying rectification circuits connected between the front surface side annular body 25a and the back surface side annular body 26a, and each capacitor C is charged. The voltage charged in each capacitor C is
Since the capacitors C are connected in series from the ground potential side to the high potential side and the capacitors C of the power generation units 16a and 16c are connected in series, the addition is performed, and a large positive potential is added to the high potential portion 30. The voltage is obtained. Furthermore,
High-potential-side inductor power supply 2 arranged in the high-potential region 30
The starting voltage applied from 8 to the fixed electrodes 22 of the front surface side annular body 25c and the back surface side annular body 26c is polarized and charged to each conductor plate 20 of the rotating disk 18c in the same manner as described above, and each fixed electrode 22. Generate an alternating voltage on. This AC voltage is multiplied and rectified by each of the multiplying rectification circuits connected between the front surface side annular body 25c and the back surface side annular body 26c, and each capacitor C is charged. The voltage charged in each capacitor C is added because each capacitor C is connected in series from the high potential side to the ground potential side, and a large negative voltage is obtained on the ground potential side.

【0016】上記のように電荷搬送ユニット16により
電荷を搬送し,この搬送されてきた電荷から電圧発生ユ
ニット17により電圧を発生させる仕組みは,図5に示
す破線矢印のように電圧発生ユニット17の1/2が接
地電位側から高電位側に正電圧を加算する正電荷移送
(図5における上向き破線矢印)と,1/2が高電位側
から接地電位側に負電圧を加算する負電荷移送(図5に
おける下向き破線矢印)とでに構成されている。更に,
各段毎の電圧発生ユニット17a,17cでの正電荷移
送及び負電荷移送がそれぞれ加算されるように結線され
ている。従って,高電位部位30と接地電位部位29と
の間には,上記正電荷移送による正電圧と上記負電荷移
送による負電圧とが加算された高電圧が発生することに
なる。上記構成において,導電体プレート20と固定電
極22との対向による電荷移送は,互いに広い面積の導
体間の近接対面によりなされるので,対向間の静電容量
が大きいため電荷の搬送量が多く,電流量の大きな高電
圧が得られる。この電極構造及び電極間の対向構造によ
り,従来技術において大きな電流量が得られなかった問
題点が解決される。又,従来技術において,帯電した導
電体プレート20(従来技術では金属ペレット6)が固
定電極22との対向位置から離れる遷移位置で発生する
高い逆電位によるダイオードKの漏れ電流のため,導電
体プレート20の分極電荷が減衰する問題点があった。
この問題点についても上記構成により解決がなされる。
この分極電荷の減衰が発生しない理由を以下に説明す
る。
As described above, the mechanism for carrying the charges by the charge carrying unit 16 and generating the voltage from the carried charges by the voltage generating unit 17 is as shown by the broken line arrow in FIG. Half of positive charge transfer adds positive voltage from ground potential side to high potential side (upward dashed arrow in FIG. 5), and half negative charge transfer adds negative voltage from high potential side to ground potential side (Downward dashed arrow in FIG. 5). Furthermore,
The voltage generation units 17a and 17c of each stage are connected so that positive charge transfer and negative charge transfer are added respectively. Therefore, a high voltage obtained by adding the positive voltage due to the positive charge transfer and the negative voltage due to the negative charge transfer is generated between the high potential part 30 and the ground potential part 29. In the above-mentioned configuration, the charge transfer by the facing of the conductor plate 20 and the fixed electrode 22 is performed by the close facing surfaces of the conductors having a large area, so that the capacitance between the facings is large and the charge carrying amount is large. A high voltage with a large amount of current can be obtained. This electrode structure and the opposing structure between the electrodes solve the problem that a large amount of current cannot be obtained in the conventional technique. Further, in the prior art, the electrically conductive plate 20 (the metal pellet 6 in the prior art) is leaked from the diode K due to the high reverse potential generated at the transition position away from the position facing the fixed electrode 22. There was a problem that the polarization charge of 20 was attenuated.
This problem is also solved by the above configuration.
The reason why the attenuation of the polarization charge does not occur will be described below.

【0017】図7に示すように,表裏1組の導電体プレ
ート20a,20bは円盤21の表裏から相対向して設
けられている。従って,この対向間には対向面積に比例
した大きな静電容量C1 が固定された状態で存在する。
又,各導電体プレート20a,20bは表裏両円環体2
5,26に形成された固定電極22a,22bとそれぞ
れ対向するので,導電体プレート20aと固定電極22
a,導電体プレート20bと固定電極22bとの対向間
にも静電容量C2 ,C3 が存在し,これは回転円盤18
の回転により導電体プレート20a,20bが移動する
ことによって変化する。上記導電体プレート20aと2
0bとの間に接続されたダイオードK1を中心に,上記
各静電容量C1 ,C2 ,C3 の存在を示す等価回路は図
8に示すようになる。即ち,導電体プレート20aがプ
ラス,導電体プレート20bがマイナスに分極帯電して
いるので,固定電極22aと22bとの間はダイオード
2 で導通接続された状態となって,静電容量C2 ,C
3 は直列接続された状態でダイオードK1 に並列に存在
することになる。回転円盤18の回転に伴って導電体プ
レート20a,20bがそれぞれ固定電極22a,22
bから離れるとき,上記静電容量C2 ,C3 は小さくな
り,ダイオードK1 の両端間の静電容量は小さくなる。
しかし,固定された静電容量C1 は,変化する静電容量
2 ,C3 が直列接続された静電容量より充分に大きい
ので,ダイオードK1 の両端間の静電容量に大きな変化
はない。従って,電荷Q,静電容量C,電位差Vの関係
式Q=CVから,電荷Qは一定であり,静電容量Cが大
きく変化しないので,電位差Vの変化は少なく,ダイオ
ードK1 に大きな逆の電位差が印加されることがない。
一般的にダイオードに加わる逆電圧による漏れ電流は,
逆電圧がある特定の電圧値付近から急激に電流が増加す
る傾向にあるが,本実施例構成による静電容量の変化に
伴う電位差は上記特定の電圧値以下であり,分極性能を
損なうことはない。
As shown in FIG. 7, one set of front and back conductor conductors
The seats 20a and 20b are installed facing each other from the front and back of the disk 21.
Have been killed. Therefore, it is proportional to the facing area between this facing
Large capacitance C1Exists in a fixed state.
In addition, the conductor plates 20a and 20b are both the front and back torus 2
Fixed electrodes 22a and 22b formed on the electrodes 5 and 26, respectively
Since they face each other, the conductor plate 20a and the fixed electrode 22
a, between the facing of the conductor plate 20b and the fixed electrode 22b
Also the capacitance C2, C3Exists, which is the rotating disk 18
Of the conductors causes the conductor plates 20a and 20b to move.
It changes depending on the situation. The conductor plates 20a and 2
Diode K connected between 0b1Centered on
Each capacitance C1, C2, C3The equivalent circuit showing the existence of
As shown in 8. That is, the conductor plate 20a is
The lath and conductor plate 20b are negatively polarized and charged.
Therefore, a diode is provided between the fixed electrodes 22a and 22b.
K 2And the capacitance C2, C
3Is a diode K when connected in series1Exist in parallel with
Will be done. As the rotary disk 18 rotates,
The rates 20a and 20b are fixed electrodes 22a and 22 respectively.
When moving away from b, the capacitance C2, C3Is small
Diode K1The capacitance between the two ends of is small.
However, the fixed capacitance C1Is the changing capacitance
C2, C3Is sufficiently larger than the capacitance connected in series
So diode K1Large change in capacitance between both ends of
There is no. Therefore, the relationship between the charge Q, the capacitance C, and the potential difference V
From the formula Q = CV, the charge Q is constant and the capacitance C is large.
Since it does not change significantly, the potential difference V changes little and
K1Therefore, a large reverse potential difference is not applied.
Generally, the leakage current due to the reverse voltage applied to the diode is
The reverse voltage causes the current to rapidly increase from around a certain voltage value.
However, there is a tendency for the capacitance to change due to the configuration of this embodiment.
The accompanying potential difference is below the specified voltage value, and
There is no loss.

【0018】以上説明した実施例構成において,図1,
2,3,4に示したように回転円盤18及び表裏両円環
体25,26の面には,ダイオードKとコンデンサCが
多数配設される。そのため,各面上は配設されたパーツ
や配線等による凹凸部が形成され,導電体プレート20
と固定電極22とを近接対向させる距離の制約を受け,
又回転駆動される回転円盤18では高速回転が阻害され
ることになる。又,製作上の工数増加や塵埃の付着によ
る絶縁性の低下,保守作業の作業性の低下等の問題もあ
る。これら上記実施例構成が抱える問題を解決するため
の別実施態様について,以下に説明する。
In the configuration of the embodiment described above, FIG.
As shown in Nos. 2, 3 and 4, a large number of diodes K and capacitors C are arranged on the surfaces of the rotary disk 18 and the front and rear toroids 25 and 26. Therefore, an uneven portion is formed on each surface by the arranged parts, wiring, etc.
Is constrained by the distance that the fixed electrode 22 and the fixed electrode 22 closely face each other,
Further, the rotating disk 18 that is driven to rotate impedes high-speed rotation. There are also problems such as an increase in the number of manufacturing steps, a decrease in insulation due to the adhesion of dust, and a decrease in workability of maintenance work. Another embodiment for solving the problems of the above-described embodiments will be described below.

【0019】図2に示した回転円盤18は,絶縁体から
なる円盤21の両面に導電体プレート20が形成され,
その表裏両面の導電体プレート20の対向間を接続して
ダイオードKが配列されている。図2に示すような状態
であれば,一般にプリント配線基板の製造技術であるエ
ッチング,プリント配線により容易に製作することがで
きる。しかし,上記問題の解決のためには円盤21の両
面には導電体プレート20のみが形成されている状態が
理想的である。そこで,上記円盤21を例えばシリコン
ウェハにより形成し,このシリコンウォハに対して集積
回路の製造プロセスを用いてダイオードK,導電体プレ
ート20の形成を行うことにより,凹凸部のない回転円
盤として構成することができる。同様に表裏両円環体2
5,26についても集積回路の製造プロセスを用いて製
作することにより,凹凸部のない円環体として構成する
ことができる。このようにして製作された回転円盤33
及び表裏両円環体34,35を用いて図1に示した実施
例構成と同じ3段構成の高電圧発生装置を構成した場
合,図9に示すような形態が得られる。図9に示す構成
では,回転円盤33の高速回転が可能となるばかりでな
く,小型化や性能の維持,保守作業性の向上等の効果が
発揮される。
The rotating disk 18 shown in FIG. 2 has a conductive disk 20 formed on both sides of a disk 21 made of an insulating material.
Diodes K are arrayed by connecting the facing conductor plates 20 on both front and back surfaces thereof. In the state shown in FIG. 2, it can be easily manufactured by etching or printed wiring, which is generally a manufacturing technique for printed wiring boards. However, in order to solve the above problem, it is ideal that only the conductor plates 20 are formed on both surfaces of the disk 21. Therefore, the disk 21 is formed of, for example, a silicon wafer, and the diode K and the conductor plate 20 are formed on the silicon wafer by using an integrated circuit manufacturing process to form a rotating disk having no uneven portion. You can Similarly, both front and back torus 2
By manufacturing the integrated circuits 5 and 26 using the manufacturing process of the integrated circuit, it is possible to form an annular body having no irregularities. Rotating disk 33 manufactured in this way
When a high voltage generator having the same three-stage configuration as that of the embodiment shown in FIG. 1 is constructed by using both the front and back torus 34, 35, a form as shown in FIG. 9 is obtained. With the configuration shown in FIG. 9, not only is it possible to rotate the rotary disk 33 at high speeds, but also effects such as downsizing, maintenance of performance, and improvement of maintenance workability are exhibited.

【0020】[0020]

【発明の効果】以上の説明のとおり本発明によれば,回
転駆動される円盤の表裏両面に所要面積に形成された複
数個の導電体プレートがそれぞれ表裏両面から対向する
ように円環状に配列され,各対向間に正方向と逆方向と
を交互にして整流素子が接続されて回転円盤が構成され
ている。この回転円盤に対し,該回転円盤の表裏に形成
された複数の導電体プレートのそれぞれに対面するよう
に複数の固定電極が形成された表面側と裏面側の2枚の
円環体が上記回転円盤の表裏両面に配設される。上記2
枚の円環体の各固定電極には逓倍整流回路が接続されて
いる。上記構成を電荷搬送及び電圧発生の1ユニットと
して所望の高電圧が得られるユニット数に組み合わせ,
回転円盤を回転駆動させると共に,電圧印加手段から一
端の固定電極に電荷を印加すると,この電荷は各導電体
プレートに正負交互の帯電電荷として搬送される。配列
された固定電極には正負交互に帯電した導電体プレート
が次々と対面することにより,各固定電極に交流電圧が
誘起し,この交流電圧は整流素子とコンデンサとを組み
合わせた逓倍整流回路によって逓倍整流されて上記コン
デンサを充電する。このコンデンサは上記1ユニット毎
に直列接続されると共に,各ユニット間でも直列に接続
されているので,接地電位部位と高電圧部位との間に高
電圧が得られる。
As described above, according to the present invention, a plurality of conductor plates formed in a required area on both front and back surfaces of a rotationally driven disk are arranged in an annular shape so as to face each other from the front and back surfaces. Then, a rectifying element is connected between each pair of the positive and negative directions alternately to form a rotating disk. With respect to this rotating disk, the two annular bodies on the front surface side and the back surface side, on which a plurality of fixed electrodes are formed so as to face each of the plurality of conductor plates formed on the front and back sides of the rotating disk, are rotated. It is arranged on both the front and back sides of the disk. 2 above
A multiplying rectifier circuit is connected to each fixed electrode of the torus. Combining the above configuration into one unit for charge transfer and voltage generation to obtain the desired high voltage,
When the rotating disk is driven to rotate and electric charges are applied from the voltage applying means to the fixed electrode at one end, the electric charges are transferred as positive and negative alternating charged charges to the respective conductor plates. AC electrodes are induced in each fixed electrode by positively and negatively charged conductor plates facing each other in sequence in the arrayed fixed electrodes, and this AC voltage is multiplied by a multiplying rectifier circuit that combines a rectifying element and a capacitor. It is rectified and charges the capacitor. Since this capacitor is connected in series for each unit and is also connected in series between each unit, a high voltage can be obtained between the ground potential part and the high voltage part.

【0021】上記構成により,導電体プレートと固定電
極とは所要面積で対面するため,この間に大きな静電容
量が得られるので,電荷の搬送量,即ち搬送電流を大き
くすることができる。又,回転円盤の表裏から対向させ
て導電体プレートが配設されているので,この間に大き
な静電容量が得られる。この対向間に並列に導電体プレ
ートと固定電極との対面間の静電容量が加わり,この静
電容量は回転円盤の回転に伴って変化するが,導電体プ
レートの対向間の静電容量の方が充分に大きいため,大
きな静電容量(C)の変化は生じず,上記導電体プレー
トの対向間に接続されている整流素子に加わる逆方向の
電位差(V)は,Q=CVの公式から過大にならず,漏
れ電流の発生は抑えられるため分極電荷の減衰はなく,
電圧発生のユニットを多段構成したときにも昇圧性能が
低下しない。従って,分極帯電の減衰がないため,より
高い電圧を大きな電流量で発生させる高電圧発生装置を
提供することができる。又,上記回転円盤及び/又は表
裏両円環体を集積回路製造プロセスにより形成すること
により,各面上に凹凸部のない円盤又は円環体が形成さ
れ,回転円盤の高速回転による高電圧発生の効率化,小
型化,性能の維持,保守作業性の向上等の効果が発揮さ
れる。
With the above structure, since the conductor plate and the fixed electrode face each other in a required area, a large electrostatic capacitance can be obtained between them, so that the amount of charge carrier, that is, the carrier current can be increased. Further, since the conductor plates are arranged so as to face each other from the front and back of the rotating disk, a large electrostatic capacitance can be obtained between them. The capacitance between the facing surfaces of the conductor plate and the fixed electrode is added in parallel between these facings, and this capacitance changes with the rotation of the rotating disk. Since it is sufficiently large, a large change in electrostatic capacitance (C) does not occur, and the potential difference (V) in the reverse direction applied to the rectifying element connected between the facing conductor plates is Q = CV. Therefore, the leakage current is suppressed and the polarization charge is not attenuated.
The boosting performance does not deteriorate even when the voltage generating unit is configured in multiple stages. Therefore, since there is no attenuation of polarization charging, it is possible to provide a high voltage generator that generates a higher voltage with a large amount of current. Further, by forming the rotating disk and / or both the front and back annular bodies by an integrated circuit manufacturing process, a disk or an annular body having no uneven portion is formed on each surface, and a high voltage is generated by high-speed rotation of the rotating disk. The effects of efficiency, miniaturization, maintenance of performance, and improvement of maintenance workability are demonstrated.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の実施例に係る高電圧発生装置の構成
を示す構造図。
FIG. 1 is a structural diagram showing a configuration of a high voltage generator according to an embodiment of the present invention.

【図2】 実施例に係る回転円盤の構成を示す側面図
(a)及び表側平面図(b),裏側平面図(c)。
FIG. 2 is a side view (a), a front side plan view (b) and a back side plan view (c) showing a configuration of a rotating disk according to an embodiment.

【図3】 実施例に係る表面側円環体の構成を示す側面
図(a)と平面図(b)。
FIG. 3 is a side view (a) and a plan view (b) showing a configuration of a front surface side torus according to an embodiment.

【図4】 実施例に係る裏面側円環体の構成を示す側面
図(a)と平面図(b)。
FIG. 4 is a side view (a) and a plan view (b) showing a configuration of a back side annular member according to an embodiment.

【図5】 実施例に係る高電圧発生装置の電気的な構成
を示す接続回路図。
FIG. 5 is a connection circuit diagram showing an electrical configuration of the high voltage generator according to the embodiment.

【図6】 電荷搬送及び電圧発生の動作を回転円盤の回
転移動順に示す動作説明図。
FIG. 6 is an operation explanatory diagram showing operations of charge transfer and voltage generation in the order of rotational movement of a rotating disk.

【図7】 実施例構成による分極電荷の減衰防止の効果
を説明する説明図。
FIG. 7 is an explanatory diagram for explaining the effect of preventing the attenuation of polarized charges according to the embodiment configuration.

【図8】 分極電荷の減衰防止を説明するための等価回
路図。
FIG. 8 is an equivalent circuit diagram for explaining the prevention of polarization charge attenuation.

【図9】 別実施態様による構成を示す側面図。FIG. 9 is a side view showing a configuration according to another embodiment.

【図10】 従来例に係る高電圧発生装置の構成を示す
構造図。
FIG. 10 is a structural diagram showing a configuration of a high voltage generator according to a conventional example.

【図11】 従来例に係る高電圧発生装置の電気的な構
成を示す接続回路図。
FIG. 11 is a connection circuit diagram showing an electrical configuration of a high voltage generator according to a conventional example.

【図12】 従来例に係る電荷搬送及び電圧発生の動作
を説明する動作説明図。
FIG. 12 is an operation explanatory view illustrating an operation of charge transfer and voltage generation according to a conventional example.

【符号の説明】[Explanation of symbols]

15,32…高電圧発生装置 18,18a,18b,18c,33…回転円盤(電荷
搬送手段) 19…回転軸 20…導電体プレート 21…円盤 22…固定電極 25,25a,25b,25c,34…表面側円環体
(電圧発生手段) 26,26a,26b,26c,35…裏面側円環体
(電圧発生手段) 27…接地電位側インダクタ電源(電圧印加手段) 28…高電位側インダクタ電源(電圧印加手段) 29…接地電位部位 30…高電位部位
15, 32 ... High-voltage generator 18, 18a, 18b, 18c, 33 ... Rotating disk (charge carrying means) 19 ... Rotating shaft 20 ... Conductor plate 21 ... Disk 22 ... Fixed electrode 25, 25a, 25b, 25c, 34 Front surface side annular body (voltage generating means) 26, 26a, 26b, 26c, 35 ... Back surface side annular body (voltage generating means) 27 ... Ground potential side inductor power source (voltage applying means) 28 ... High potential side inductor power source (Voltage applying means) 29 ... Ground potential part 30 ... High potential part

フロントページの続き (72)発明者 横山 和司 兵庫県神戸市西区高塚台1丁目5番5号 株式会社神戸製鋼所神戸総合技術研究所内Front page continuation (72) Inventor Kazushi Yokoyama 1-5-5 Takatsukadai, Nishi-ku, Kobe-shi, Hyogo Kobe Steel Works, Ltd. Kobe Research Institute

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 接地電位部位と,該接地電位部位と絶縁
離隔された高電位部位との間で電荷移送することによ
り,上記高電位部位と接地電位部位との間に高電圧を発
生させる高電圧発生装置において,回転軸上に固定され
る円盤の上記回転軸と直交する表裏両面上に,相互に絶
縁された導電体プレートが等間隔で複数個円環状に配列
され,該導電体プレートの表裏対向する各対向間に整流
素子が順方向と逆方向とが交互になるように接続され,
該回転円盤が回転駆動される回転軸上に適宜間隔を設け
て任意数固定されてなる電荷搬送手段と,上記回転円盤
それぞれの表面と裏面とに所定間隔を設けて対向配置さ
れた表面側円環体及び裏面側円環体それぞれの上記導電
体プレートと対面する位置に相互に絶縁された固定電極
が複数個配列され,上記表面側円環体及び裏面側円環体
の各固定電極間が整流素子とコンデンサとからなる逓倍
整流回路により接続されてなり,上記コンデンサが上記
接地電位部位と高電位部位との間で直列に接続されてな
る電圧発生手段と,上記接地電位部位側及び/又は高電
位部位側に位置する上記表面側円環体及び裏面側円環体
の一端の上記固定電極に電荷を印加する電圧印加手段と
を具備してなることを特徴とする高電圧発生装置。
1. A high voltage for generating a high voltage between the high potential part and the ground potential part by transferring charges between the ground potential part and the high potential part insulated and separated from the ground potential part. In the voltage generator, a plurality of electrically conductive plates, which are insulated from each other, are arrayed in an annular shape at equal intervals on both front and back surfaces of a disk fixed on the rotating shaft and orthogonal to the rotational axis. Rectifiers are connected between the front and back sides so that the forward and reverse directions are alternated.
A charge carrier means having an arbitrary number fixed on a rotary shaft on which the rotary disc is driven to rotate, and a front side circle arranged so as to face each other on the front surface and the back surface of each of the rotary discs at a predetermined interval. A plurality of fixed electrodes insulated from each other are arranged at positions facing the conductor plate of each of the ring body and the back side annular body, and the fixed electrodes of the front side ring body and the back side ring body are arranged between the fixed electrodes. Voltage generating means, which is connected by a multiplying rectifier circuit composed of a rectifying element and a capacitor, wherein the capacitor is connected in series between the ground potential portion and the high potential portion, and the ground potential portion side and / or A high voltage generator comprising: voltage applying means for applying charges to the fixed electrodes at one ends of the front surface side annular body and the back surface side annular body located on the high potential region side.
【請求項2】 上記回転円盤及び/又は表面側円環体,
裏面側円環体が,集積回路製造プロセスにより形成され
てなる請求項1記載の高電圧発生装置。
2. The rotating disk and / or surface side torus,
The high-voltage generator according to claim 1, wherein the back-side annular body is formed by an integrated circuit manufacturing process.
JP8099495A 1995-04-06 1995-04-06 High-voltage generating device Pending JPH08280177A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8099495A JPH08280177A (en) 1995-04-06 1995-04-06 High-voltage generating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8099495A JPH08280177A (en) 1995-04-06 1995-04-06 High-voltage generating device

Publications (1)

Publication Number Publication Date
JPH08280177A true JPH08280177A (en) 1996-10-22

Family

ID=13734058

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8099495A Pending JPH08280177A (en) 1995-04-06 1995-04-06 High-voltage generating device

Country Status (1)

Country Link
JP (1) JPH08280177A (en)

Similar Documents

Publication Publication Date Title
US7834513B2 (en) Electrostatic generator/motor having rotors of varying thickness and a central stator electrically connected together into two groups
US7521836B2 (en) Electrostatic actuator with fault tolerant electrode structure
JP5028185B2 (en) Electrostatic generator
US10644615B2 (en) Electrostatic induction generator
WO2007145131A1 (en) Electrostatic motor
JP6411898B2 (en) Electrostatic induction generator and charging circuit using the same
JPS627378A (en) Voltage doubler electrostatic high-tension generating set
KR101705974B1 (en) Energy harvester for generating frictional electric of polyphase
JP4684505B2 (en) Semiconductor device and power conversion device
JP2007151286A (en) Power conversion device
US2739248A (en) Electrostatic generator
JPH08280177A (en) High-voltage generating device
JP3283720B2 (en) High voltage generator
WO2007118412A1 (en) Ceramic generator
US7612541B1 (en) Charge-pump voltage converter
US3532949A (en) Commutating electric currents
JPS63161879A (en) Electrostatic motor
JP2923425B2 (en) High voltage generator
JPH10127066A (en) High voltage generator
JPH09261975A (en) Electrostatic film actuator
JPH10174461A (en) High-voltage generator
CN218975420U (en) Electrostatic chuck
CN218939633U (en) Electrostatic chuck
JP6221420B2 (en) Electrostatic motor
JPS5923500A (en) Floating electric field curtain unit