JPH08280135A - Voltage reactive power controller - Google Patents

Voltage reactive power controller

Info

Publication number
JPH08280135A
JPH08280135A JP7078587A JP7858795A JPH08280135A JP H08280135 A JPH08280135 A JP H08280135A JP 7078587 A JP7078587 A JP 7078587A JP 7858795 A JP7858795 A JP 7858795A JP H08280135 A JPH08280135 A JP H08280135A
Authority
JP
Japan
Prior art keywords
reactive power
power
voltage
power system
power control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7078587A
Other languages
Japanese (ja)
Other versions
JP3355857B2 (en
Inventor
Takaharu Ishida
隆張 石田
Chihiro Fukui
千尋 福井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP07858795A priority Critical patent/JP3355857B2/en
Publication of JPH08280135A publication Critical patent/JPH08280135A/en
Application granted granted Critical
Publication of JP3355857B2 publication Critical patent/JP3355857B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/30Reactive power compensation

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)
  • Control Of Electrical Variables (AREA)

Abstract

PURPOSE: To make it possible to control a reactive power generator for power systems by dividing a power system to calculate matching between a reactive power generating source and a reactive power consuming source within the power system. CONSTITUTION: Fed with data on a power system from a data reading device 102 through a communication line 258, a power system division calculating device 104 divides the power system into subsystems most suitable for voltage reactive power control. For each of the resultant subsystems, the amounts of reactive power consumed and generated are calculated, and the adequacy of reactive power balance is judged. As a result the system in question is dynamically divided into the subsystems, and reactive power is allotted with reactive power balance taken into account for each subsystem. This enables prevention of reverse control phenomena. This also makes it possible to perform total calculation at high speed and thus provide voltage reactive power control on- line.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は任意の時間断面の潮流状
態に対する最適な電圧無効電力の配置を計算する方法お
よび装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and apparatus for calculating an optimum voltage reactive power distribution for a power flow state of an arbitrary time section.

【0002】[0002]

【従来の技術】[Prior art]

(1)電気学会編,電力系統の電圧安定維持対策,電気
学会技術報告II−73号,43−45(1979) 電圧無効電力制御方法の公知例として上記の文献があ
る。この中には(a)判定関数を用いる方法、(b)等
余裕率で配分する方法、(c)送電損失最小で配分する
方法がある。(a)の判定関数を用いて配分する方法
は、対象系統内の全調整機器について判定関数の変化量
を計算し、最大の判定関数減少を与える調整機器を選定
し、その調整上下限内で操作を行う。この過程を監視点
の制約条件が満足されるまで繰り返す。また、(b)の
方法は電力系統中の電圧監視機器の基準電圧の逸脱に対
して、これを調整する発電機のグループを、系統特性定
数によってあらかじめ対応づけておき、そのグループ内
では各ユニットが定められた無効電力調整範囲内で同じ
余裕率になるように調整量を求める。また、(c)の送
電損失最小で配分する方法は、系統各所の電圧の基準値
からの偏差の平均値を少なくし、かつ、連系点の無効電
力潮流が基準値に近づくように火力の無効電力の合計値
を制御する。
(1) Edited by The Institute of Electrical Engineers of Japan, measures for maintaining voltage stability of power systems, Institute of Electrical Engineers of Japan Technical Report II-73, 43-45 (1979) The above literature is known as a known example of the voltage reactive power control method. Among these, there are (a) a method of using a judgment function, (b) a method of allocating at a margin ratio, and (c) a method of allocating at the minimum transmission loss. The method of allocating using the judgment function of (a) is to calculate the amount of change of the judgment function for all the adjustment devices in the target system, select the adjustment device that gives the largest decrease in the judgment function, and Do the operation. This process is repeated until the constraint condition of the monitoring point is satisfied. In the method (b), the deviation of the reference voltage of the voltage monitoring device in the electric power system is associated in advance with a group of generators for adjusting the deviation, and each unit within the group is associated with the deviation. The adjustment amount is calculated so that the same margin ratio is obtained within the defined reactive power adjustment range. In addition, the method of (c) allocating with the minimum transmission loss reduces the average value of the deviation of the voltage of each part of the system from the reference value, and the reactive power flow at the interconnection point approaches the reference value. Control the total value of reactive power.

【0003】(2)特開平5−108177号 公知例(2)の方法の特徴は、各電圧無効電力制御機器
には動作回数の制約があることに着目し、動作回数の制
約を持つ制御対象機器について、制約値を加味した制御
を行うよう構成することにより、各制御機器の平均的な
使用頻度が確保できるとともに、需要の急変時について
は、制御追随性を確保する方式となっている。
(2) Japanese Unexamined Patent Publication No. 5-108177 The feature of the method of the known example (2) is that each voltage reactive power control device has a restriction on the number of operations, and a control target having a restriction on the number of operations is provided. By configuring the devices so as to perform control in consideration of the constraint value, the average frequency of use of each control device can be ensured, and the control followability is ensured when the demand changes suddenly.

【0004】[0004]

【発明が解決しようとする課題】前記従来技術中、
(1)(a)の方法では、電圧、ならびに無効電力量の大
幅な変化時に、電圧,無効電力調整のための計算繰り返
し回数が増える欠点がある。また、(1)(b)の等余裕
率で配分する方法は、対象とする電力系統の系統構成の
大幅な変更時に基準電圧の変更が必要となり、この操作
で大幅な作業の増大となる。また、(1)(c)の送電損
失最小で配分する方式では、発電機の無効電力出力の調
整だけが制御変数であるので、現実の電力系統の運用を
考えると、調相設備投入量,変圧器タップの調整を制御
変数に入れる必要がある。
Among the above prior arts,
The method (1) (a) has a drawback that the number of calculation iterations for adjusting the voltage and the reactive power increases when the voltage and the reactive power change significantly. Further, in the method (1) and (b) of distributing with an equal margin ratio, it is necessary to change the reference voltage when the system configuration of the target power system is significantly changed, and this operation greatly increases the work. In addition, in the method of (1) (c) that allocates with minimum transmission loss, since only the adjustment of the reactive power output of the generator is the control variable, considering the actual operation of the power system, Transformer tap adjustments need to be included in the controlled variable.

【0005】さらに公知例(2)では調相設備の操作回
数制約を考慮し、同一調相機器に対する動作回数の集中
化を防いでいる点で前記の公知例を改善している。この
公知例での改善策は、調相機器の評価関数の重み係数を
変化させているため、系統状態の変化、あるいは、制御
対象機器が変化するごとに評価関数に対する重み係数を
変化させる必要がある。そのため、計算効率が上がらな
く、オンラインでの制御として使用するためには問題が
ある。
Further, in the publicly known example (2), the above publicly known example is improved in that the number of operations of the same phase adjusting device is prevented from being concentrated in consideration of the number of operations of the phase adjusting equipment. Since the improvement measure in this known example changes the weighting coefficient of the evaluation function of the phase adjusting device, it is necessary to change the weighting coefficient for the evaluation function every time the system state changes or the control target device changes. is there. Therefore, the calculation efficiency is not improved, and there is a problem in using it for online control.

【0006】これまでの公知例にある電圧無効電力制御
装置は、対象とする電力系統すべての中の電圧無効電力
制御機器を制御対象と考える、いわゆる全系一括に制御
を行う概念を用いて電圧無効電力制御を行っている。こ
の全系一括の方法では、計算によって得られる解が現実
の電力系統の運用の指針にそぐわないことがある。たと
えば電圧に対する操作感度の低い、電圧制御母線周辺の
調相機器よりも、電圧に対する操作感度の高い電圧制御
母線から遠い発電機無効電力出力の操作を最適と選ぶ場
合である。同様に、公知例(1)では電圧無効電力制御
機器個々の電圧感度係数を全系一括で求めているため
に、前記の様な機器の選択の現象が起きる。そのため、
一貫した電圧制御が行われずに、現実的な運用とは異な
った制御結果になることが多い。
The voltage reactive power control device in the publicly known examples so far considers the voltage reactive power control device in all the target power systems as a control target, that is, the voltage is controlled by using a so-called overall system control concept. Reactive power control is performed. In this all-in-one method, the solution obtained by calculation may not match the actual operation guideline of the power system. For example, it is a case where the operation of the generator reactive power output farther from the voltage control bus bar having a higher operation sensitivity to the voltage than the phase adjusting device around the voltage control bus having a low operation sensitivity to the voltage is optimally selected. Similarly, in the known example (1), since the voltage sensitivity coefficient of each voltage reactive power control device is obtained for the entire system collectively, the phenomenon of device selection as described above occurs. for that reason,
In many cases, consistent voltage control is not performed, resulting in a control result that differs from actual operation.

【0007】本発明では動的に対象系統を部分系統に分
割し、各部分系統ごとに無効電力バランスを考慮しなが
ら無効電力配分を行い、系統全体での逆制御現象を防ぐ
こと、また、本発明は潮流計算以外は簡単な加減乗除計
算だけで行い、全体計算を高速に実行し、オンラインで
の電圧無効電力制御を実現すること、さらに、無効電力
制御装置選択の過程が電力系統の運用者にもわかりやす
い電圧無効電力制御装置を提供することを目的とする。
In the present invention, the target system is dynamically divided into sub-systems, and reactive power is distributed to each sub-system while considering the reactive power balance to prevent the reverse control phenomenon in the entire system. The invention is to perform simple addition / subtraction / multiplication / division calculations other than power flow calculation, to execute the entire calculation at high speed, to realize voltage reactive power control online, and the process of selecting the reactive power control device is performed by the power system operator. It is also an object of the present invention to provide a voltage reactive power control device that is easy to understand.

【0008】[0008]

【課題を解決するための手段】本発明では対象とする電
力系統に対し、この電力系統を分割して、この分割され
た電力系統内で無効電力発生源と無効電力消費源との整
合状態を計算することにより、電力系統の無効電力発生
装置を制御するようにしたものである。
According to the present invention, this power system is divided with respect to a target power system, and a matching state between a reactive power generation source and a reactive power consumption source is determined in the divided power system. By calculating, the reactive power generator of the power system is controlled.

【0009】すなわち、本発明では対象とする電力系統
に対し、これまで全系一括で求めている電圧無効電力調
整機器を、いくつかの部分系統に分割する。これまでの
公知例では特定の種類の電圧感度の高い電気無効電力調
整機器に限って部分系統に分割する公知例はあったが
(公知例(1)(b))、本発明では、この部分系統の分
割を基幹系統の変電所とその下位系統、あるいは電源供
給が同一の系統を一単位として行う。この分割方法で
は、無効電力の需要と供給のバランスがとれない場合
は、隣接した部分系統との融合,分割を繰り返し最適な
部分系統分割を行う。このように分割した部分系統ごと
に無効電力バランスを求め、各部分系統ごとに最適な電
圧無効電力調整機器を求める。
That is, in the present invention, the voltage-reactive power adjusting device, which has been required for the whole system until now, is divided into some partial systems for the target power system. In the publicly known examples up to now, there has been a publicly known example in which only a specific type of electric reactive power regulator having high voltage sensitivity is divided into partial systems (publicly known example (1) (b)), but in the present invention, this part is used. The system is divided into a substation of the main system and its subsystems, or a system with the same power supply as one unit. In this division method, when the demand and supply of reactive power cannot be balanced, fusion and division with adjacent sub-systems are repeated to perform optimum sub-system division. The reactive power balance is calculated for each of the divided partial systems in this way, and the optimum voltage reactive power adjusting device is calculated for each of the partial systems.

【0010】各部分系統ごとの最適な制御すべき電圧無
効電力調整機器の算出には、従来用いられていたアルゴ
リズムに加え、過去の履歴データより類似の系統状況の
場合を検索し、その過去の結果を元に最適な電圧無効電
力制御装置を選択する方法を用いる。また、この考えを
数時間先将来時点の潮流状態予測支援システムと結合す
ることにより、時々刻々と変化する系統状態に対処でき
るようにした。また、各時点での無効電力操作機器の結
果と潮流状態を学習し、次時点での最適な無効電力制御
装置の計算に用いるようにした。
In order to calculate the optimum voltage reactive power regulating device to be controlled for each partial system, in addition to the algorithm used in the past, a case of a similar system condition is searched from past history data, and the past A method of selecting an optimum voltage reactive power control device based on the result is used. By combining this idea with a power flow state prediction support system for a few hours in the future, we have made it possible to deal with the system state that changes from moment to moment. Moreover, the result of the reactive power operating device and the power flow state at each time point were learned and used for the calculation of the optimum reactive power control device at the next time point.

【0011】[0011]

【作用】将来時点での潮流状態を予測した後に、各潮流
状態に適した形で対象系統全系を複数の部分系統に分割
する。対象系統を無効電力の発生量と消費量を考慮しな
がら融合,分割を繰り返し最適な部分系統に分割して無
効電力配分計算を行うことにより、系統全体で逆制御現
象が起きない一貫した制御が可能となる。さらに、計算
実行時点での潮流状態と、過去の履歴データ中の類似の
潮流状態との比較を行い、該時間断面での差分量を類似
日の制御状態に反映して無効電力配分を行う。ここでは
電圧無効電力調整機器の余裕量を考慮しながら無効電力
の最適な分布を求める。この方法により、潮流計算を実
行する以外は簡潔な計算を行うだけですむので、高速な
処理が可能となる。
[Operation] After predicting the power flow state at a future time point, the entire target system is divided into a plurality of partial systems in a form suitable for each power flow state. By performing fusion and division of the target system while considering the amount of reactive power generation and consumption and dividing into optimum sub-systems and performing reactive power distribution calculation, consistent control that does not cause reverse control phenomenon in the entire system can be achieved. It will be possible. Further, the power flow state at the time of execution of the calculation is compared with the similar power flow state in the past history data, and the reactive power is distributed by reflecting the difference amount in the time section in the control state on the similar day. Here, the optimum distribution of reactive power is obtained while considering the margin of the voltage reactive power adjustment device. By this method, it is possible to perform high-speed processing because it is only necessary to perform simple calculations other than executing the power flow calculation.

【0012】[0012]

【実施例】次に本発明の実施例を図1を用いて説明す
る。図1は本発明の電力系統電圧無効電力制御装置の1
構成図である。本発明は対象とする電力系統101,電
力系統101より必要なデータを読み込むデータ読み込
み装置102,読み込みだデータより、該時点の尤もら
しい系統状態を推定する状態推定装置103,電圧無効
電力制御の実施を行う前処理としての電力系統部分系統
分割計算装置104,前記状態推定装置より、数時間先
将来の電力系統を予測する将来系統潮流状態予測装置1
05,前記装置より求めた予測潮流状態より、最適な無
効電力の配分のための操作すべき電圧無効電力制御装置
を選択する、無効電力最適配分計算装置106,装置1
06の結果を元に操作機器に指令を出す、無効電力配分
指令装置107,操作結果を出力する、出力装置108
からなる。
EXAMPLE An example of the present invention will be described below with reference to FIG. FIG. 1 shows a power system voltage reactive power controller 1 according to the present invention.
It is a block diagram. The present invention relates to a target power system 101, a data reading device 102 that reads necessary data from the power system 101, a state estimation device 103 that estimates a likely system state at the time based on the read data, and a voltage reactive power control implementation. The power system partial system partitioning calculation device 104 as a pre-processing for performing the above, and the future system power flow state prediction device 1 for predicting the power system in the future by several hours from the state estimation device.
05, the reactive power optimal distribution calculating device 106, the device 1 for selecting a voltage reactive power control device to be operated for optimal reactive power distribution from the predicted power flow state obtained from the device
Based on the result of 06, a command is issued to the operation device, a reactive power distribution command device 107, an operation result is output, and an output device 108
Consists of

【0013】次の各装置の詳細について説明する。デー
タ読み込み装置102では各設備から通信線251を通
じて情報を得、さらに対象系統を縮約し、たとえば図2
のようなフォーマットで系統情報を記憶するための処理
を行う。装置102での処理結果は通信線252を通じ
て状態推定装置103に送られる。状態推定装置103で
は該時点での電力系統における尤もらしい状態を、以下
の公知例に代表される方法を用いて推定する手段であ
る。
Details of each of the following devices will be described. In the data reading device 102, information is obtained from each facility through the communication line 251, and the target system is further contracted.
A process for storing the system information in a format like this is performed. The processing result in the device 102 is sent to the state estimation device 103 through the communication line 252. The state estimation device 103 is means for estimating a likely state in the power system at that time using a method represented by the following known example.

【0014】Lars Holten, Anders Gjelsvik, Sverre A
dam, F. F. Wu and Wen-Hsiung E.Liu, Comparison of
Diffeent Methods for State Estimation. IEEE Trans.
Power Syst.,3(1988),1798−1806. 装置103での推定結果は通信線253を通じて将来系
統潮流状態予測装置に送られる。ここでは、過去の総電
力需要量,発電機に関するデータ,各変電所の負荷デー
タと、前記装置103での結果を元に将来時点での電力
系統の潮流状態を予測する機能である。この詳細につい
ては以下の公知例に詳しく記述されている。
Lars Holten, Anders Gjelsvik, Sverre A
dam, FF Wu and Wen-Hsiung E. Liu, Comparison of
Diffeent Methods for State Estimation. IEEE Trans.
Power Syst., 3 (1988), 1798-1806. The estimation result of the device 103 is sent to the future system power flow state prediction device through the communication line 253. Here, it is a function of predicting the power flow state of the power system at a future time point based on the past total power demand, data on the generator, load data of each substation, and the result of the device 103. The details are described in detail in the following publicly known examples.

【0015】中島,大久保,松本,石田,田村,次期中
央給電指令所向け数時間先潮流状態予測システム(DP
F)システムの開発,平成7年電気学会全国大会,13
96(1995)。
Nakajima, Okubo, Matsumoto, Ishida, Tamura, several hours ahead power flow state prediction system (DP)
F) System development, 1995 IEEJ National Convention, 13
96 (1995).

【0016】電力系統部分系統分割計算装置104は本
発明の特徴的な装置である。装置104ではデータ読み
込み装置102より通信線258を通じて電力系統デー
タを、さらに装置103で求めた状態推定結果、あるい
は装置105にて求めた潮流状態予測結果を得る。以上
のデータを元に本装置では電圧無効電力制御を行うため
の電力系統を最適な部分系統に分割する。本装置で行う
系統分割方法の詳細を図3を用いて説明する。まず、手
段301にて対象系統を基幹系変電所とその下位系統を
単位とする系統に分割する。この分割の実際例を図4を
用いて説明する。図4の例題の系統は基幹系変電所がA
s/s〜Cs/sである。その他の変電所は下位系統変
電所である。手段301により、図4の対象電力系統は
401,402,403の部分系統に分割される。
The electric power system partial system division calculation device 104 is a characteristic device of the present invention. The device 104 obtains the power system data from the data reading device 102 through the communication line 258, and the state estimation result obtained by the device 103 or the power flow state prediction result obtained by the device 105. Based on the above data, this device divides the power system for voltage reactive power control into optimum sub-systems. Details of the system division method performed by this device will be described with reference to FIG. First, the means 301 divides the target system into a system in which the main system substation and its subordinate system are units. An actual example of this division will be described with reference to FIG. In the example system of Fig. 4, the core substation is A
s / s to Cs / s. The other substations are subordinate substations. The means 301 divides the target power system of FIG. 4 into sub-systems 401, 402 and 403.

【0017】次に分割した部分系統ごとの無効電力の消
費量と無効電力発生量、あるいは無効電力発生可能量を
もとに、無効電力バランスを手段302にて求める。手
段302で無効電力バランスを求めた後に、それが適正
かどうかの判定を手段303で行う。手段303では以下
の式に基づいて無効電力バランスの適否を判定する。
Next, the means 302 calculates the reactive power balance based on the reactive power consumption and the reactive power generation amount or the reactive power generation possible amount for each of the divided partial systems. After obtaining the reactive power balance by the means 302, the means 303 determines whether or not the reactive power balance is appropriate. The means 303 determines the suitability of the reactive power balance based on the following formula.

【0018】[0018]

【数1】 (無効電力消費量)≦(無効電力発生量、あるいは発生可能量)…(式1) 式1が満足されれば、電力系統部分系統分割計算装置の
処理を終了する。そうでない場合は、式1を満足しない
部分系統を選び、手段304にて隣接する部分系統の一
つを融合し、手段305にて融合後の部分系統に対する
無効電力バランスを計算する。たとえば図4の電力系統
を例にすると、部分系統402の無効電力バランスが適
正でない場合は、部分系統401と部分系統402を融
合させて、両部分系統を併せた無効電力バランスを計算
する。次に手段306にて融合後の無効電力バランスの
チェックを行う。ここで、前記式1を満足する場合は部
分系統分割計算処理を終了する。式1を満足しない場合
は、手段307にて、手段304にて融合した部分系統
に融合検討済みのフラグを設定し、手段308にて手段
304にて融合した部分系統を分割する。次に手段30
9にて、隣接する部分系統すべてに融合検討済みのフラ
グが設定されているかどうかを確かめる。すべて隣接す
る部分系統に前記フラグが設定されている場合は、手段
310にて系統構成を変化させる必要がある旨を表示し
て、系統分割処理を終了する。まだ前記フラグが設定さ
れていない場合は、手段304に戻り処理を続行する。
## EQU00001 ## (Reactive power consumption amount) .ltoreq. (Reactive power generation amount or possible generation amount) (Equation 1) When the expression 1 is satisfied, the processing of the power system partial system division calculation device is ended. If not, a partial system that does not satisfy the formula 1 is selected, one of the adjacent partial systems is fused by the means 304, and the reactive power balance for the fused partial system is calculated by the means 305. For example, taking the power system of FIG. 4 as an example, when the reactive power balance of the partial system 402 is not appropriate, the partial system 401 and the partial system 402 are fused to calculate the reactive power balance of both partial systems. Next, the means 306 checks the reactive power balance after fusion. Here, if the above expression 1 is satisfied, the partial system division calculation process is terminated. When the expression 1 is not satisfied, the means 307 sets a fusion examination completed flag to the partial system fused by the means 304, and the means 308 divides the fused partial system by the means 304. Next means 30
At 9, it is confirmed whether or not the fusion examination completed flag is set for all the adjacent partial lines. If the flags are set for all the adjacent partial systems, the means 310 indicates that the system configuration needs to be changed, and the system division processing ends. If the flag is not set yet, the processing returns to the means 304 and continues the processing.

【0019】系統状態予測装置105、さらに電力系統
部分系統分割計算手段104での結果はそれぞれ通信線
254,255を通じて無効電力最適配分計算装置に送
られる。無効電力最適配分計算装置の詳細を図5を用い
て説明する。
The results of the grid state predicting device 105 and the power grid sub grid dividing calculating means 104 are sent to the reactive power optimum distribution calculating device through the communication lines 254 and 255, respectively. Details of the reactive power optimal distribution calculation device will be described with reference to FIG.

【0020】まず、手段501にて図1の将来系統状態
予測装置105で得た結果を取り込む。次に手段502
にて、最適電圧無効電力配分を行うための目的関数を設
定する。目的関数の一例として、本実施例では式2,式
3に示す送電線の有効電力損失,無効電力損失のいずれ
かを用いる。
First, the means 501 fetches the result obtained by the future system state prediction device 105 of FIG. Next means 502
At, the objective function for optimal voltage reactive power distribution is set. In this embodiment, as an example of the objective function, either the active power loss or the reactive power loss of the transmission line shown in Expression 2 and Expression 3 is used.

【0021】[0021]

【数2】 [Equation 2]

【0022】[0022]

【数3】 (Equation 3)

【0023】次に、手段503にて図1装置104にて
分割した各部分系統毎の無効電力バランスに関する制約
を設定する。ここでの制約とは、調相設備に関しては、
発生・消費無効電力の上下限、発電機に関しては無効電
力の出力上下限制約曲線、変圧器タップは運用の上下限
値を設定する。ここでの設定値を用い、手段504での
各部分系統毎の無効電力の配分計算を行う。
Next, the means 503 sets a constraint on the reactive power balance for each of the sub-systems divided by the device 104 in FIG. The constraint here is that the
Set the upper and lower limits for generated and consumed reactive power, the output upper and lower limit constraint curve for reactive power for generators, and the upper and lower limits for operation for transformer taps. Using the setting value here, the means 504 calculates the reactive power distribution for each partial system.

【0024】無効電力配分計算の実施例として、本発明
の特徴の一つである事例ベース方式を用いた最適無効電
力配分方法を図6,図7を用いて説明する。図6は事例
ベース方式を用いた最適無効電力配分方法を示すフロー
チャートである。まず、手段601で計算を実行するに
当たっての初期設定を行う。ここでの処理は、後に述べ
る各電圧無効電力調整機器に対する評価関数値と、操作
機器を実際に制御するかの判断を行う閾値の初期設定、
さらに、後に計算する送電損失量の初期化を行う。この
処理の終了後、手段602にて各無効電力制御設備の送
電損失係数を計算する。この係数は、離散変数として操
作を行う調相設備,発電機の無効電力出力,変圧器タッ
プが一単位変化した際に送電損失が減少あるいは増大す
る変化量を意味する。送電損失係数の実施例は以下の文
献が詳しい。
As an example of the reactive power distribution calculation, an optimal reactive power distribution method using the case-based method, which is one of the features of the present invention, will be described with reference to FIGS. 6 and 7. FIG. 6 is a flowchart showing an optimum reactive power distribution method using the case-based method. First, the means 601 performs initial setting for executing the calculation. The process here is an evaluation function value for each voltage reactive power adjusting device described later, and an initial setting of a threshold value for determining whether to actually control the operating device,
Furthermore, the amount of transmission loss calculated later is initialized. After this processing is completed, the means 602 calculates the transmission loss coefficient of each reactive power control facility. This coefficient means the amount of change in which the transmission loss decreases or increases when one unit of the phasing equipment that operates as a discrete variable, the reactive power output of the generator, and the transformer tap changes by one unit. The following documents are detailed for examples of the transmission loss coefficient.

【0025】電気学会編,電力系統の電圧安定維持対策,
電気学会技術報告II−73号,43−45(197
9)。
[The Institute of Electrical Engineers of Japan, Electric Power System Voltage Stable Maintenance Measures,
IEEJ Technical Report II-73, 43-45 (197)
9).

【0026】次に、手段603にて無効電力最適配分計
算を実行する。この詳細を図7を用いて説明する。本発
明での無効電力最適配分計算は、過去の履歴データより
該時間断面の潮流状態に最も類似しているデータを、あ
る類似度評価関数を用いて検索し、その検索結果と該時
間断面の電圧無効電力制御機器の制御変数の状態量を用
いて、対象とする無効電力制御機器の設定を行う。この
詳細を図7を用いて説明する。図7のグラフ701は任
意の時間断面の潮流状態を代表する物理量の一例であ
る。各グラフは縦軸は各物理量の時間変化予想、横軸は
時間経過を表わす。グラフ721〜724は系統計算該
当時間断面までの数時間過去の物理量の変化、グラフ7
11〜714は類似度検索指標が最小とする過去の履歴
データ中、最も類似した場合の例である。
Next, the means 603 executes the optimum reactive power distribution calculation. The details will be described with reference to FIG. 7. In the reactive power optimal distribution calculation of the present invention, data that is most similar to the power flow state of the time section from the past history data is searched using a certain similarity evaluation function, and the search result and the time section of the time section are searched. The target reactive power control device is set using the state quantity of the control variable of the voltage reactive power control device. The details will be described with reference to FIG. 7. A graph 701 in FIG. 7 is an example of a physical quantity that represents a power flow state in an arbitrary time section. In each graph, the vertical axis represents the predicted time change of each physical quantity, and the horizontal axis represents the passage of time. Graphs 721 to 724 are changes in the physical quantity in the past several hours until the time section corresponding to the system calculation, graph 7
11 to 714 are examples of the case where the history data of the past having the smallest similarity search index is the most similar.

【0027】ここでの類似度検索指標は以下の式を用い
て行う。
The similarity search index here is calculated using the following formula.

【0028】[0028]

【数4】 [Equation 4]

【0029】ただし t:対象とする時間断面数 n:各部分系統ごとの電圧無効電力制御の目安とする物
理量(たとえば送電線有効電力潮流,無効電力潮流,変
電所負荷など) 前記した類似度検索指標を元に履歴データを検索した結
果、電圧無効電力制御量に関して702に示すグラフの
結果が検索された場合の、無効電力調整機器の選択とそ
の操作量の決定方法について以下に示す。ここでは前記
した各電圧無効電力調整機器ごとに求めた送電損失係数
と、該時点での実績データと、検索結果のデータの差分
量を用いる。ここでの差分量とは、計算実行時点での検
索結果と、実績値の差を各設備ごとに求めたものであ
る。図7のグラフ702の例ではグラフ731〜734
の実践が実績値を示し、グラフ741〜744の点線が
検索結果を示す。この場合に、再上段のグラフでは、グ
ラフ731とグラフ741の差分量のことを意味する。
この量をもとに、以下の式により各電圧無効電力制御設
備に対する評価関数を手段604にて求める。
However, t: number of target time sections n: physical quantity as a guideline for voltage reactive power control for each sub-system (eg, transmission line active power flow, reactive power flow, substation load, etc.) Similarity search described above A method of selecting the reactive power adjusting device and determining the operation amount thereof when the result of the historical data is searched based on the index and the result of the graph 702 regarding the voltage reactive power control amount is searched is shown below. Here, the amount of difference between the transmission loss coefficient obtained for each of the voltage reactive power adjusting devices, the actual data at that time, and the search result data is used. The difference amount here is the difference between the search result at the time of executing the calculation and the actual result value obtained for each piece of equipment. In the example of the graph 702 in FIG. 7, graphs 731 to 734
Indicates the actual value, and the dotted lines in the graphs 741 to 744 indicate the search results. In this case, the uppermost graph means the difference amount between the graph 731 and the graph 741.
Based on this amount, the means 604 obtains an evaluation function for each voltage reactive power control equipment by the following formula.

【0030】[0030]

【数5】 (設備iの評価関数)=(送電損失係数)i ×(履歴データと実績データとの差分量)i ×(設備余裕量) …(式5) 電圧無効電力制御を行う場合には、制御対象機器とし
て、制御効果が最も大きい機器を選択することが望まし
い。したがって本発明では、式5にて求めた各電圧無効
電力制御設備の評価関数中、最大の評価関数を持つ電圧
無効電力調整設備を制御対象機器として選択する(手段
605)。
[Equation 5] (Evaluation function of equipment i) = (transmission loss coefficient) i × (difference amount between history data and actual data) i × (equipment allowance amount) (Equation 5) When performing voltage reactive power control It is desirable to select, as the control target device, a device having the largest control effect. Therefore, in the present invention, among the evaluation functions of the respective voltage reactive power control equipment obtained by the equation 5, the voltage reactive power adjusting equipment having the largest evaluation function is selected as the control target device (means 605).

【0031】対象とする電力系統によっては電圧無効電
力制御機器を操作しても目標関数の減少に効果を与えな
い場合がある。その場合の処理を省略するために、評価
関数値がある一定の値以下の場合は操作指令を出さない
ようにする必要がある。この処理を手段606で行う。
手段606での判定条件が満たされれば手段607にて
潮流計算を実施し、手段608に送電損失量を求め、操
作後の潮流状態を決定する。この処理を手段609,手
段610を通じてこの状態を満足する調整対象設備があ
り、かつ送電損失が減少する限り実行する。
Depending on the target power system, operating the voltage reactive power control device may not have the effect of reducing the target function. In order to omit the processing in that case, it is necessary not to issue the operation command when the evaluation function value is less than a certain value. This processing is performed by the means 606.
If the determination condition in the means 606 is satisfied, the means 607 calculates the power flow, the means 608 calculates the amount of power transmission loss, and determines the power flow state after the operation. This processing is executed through the means 609 and the means 610 as long as there is a facility to be adjusted that satisfies this state and the transmission loss decreases.

【0032】無効電力配分計算が各部分系統ごとに終了
した時点で、潮流制約違反の有無を図5の手段505に
て確認する。制約違反があると手段505にて判定され
た場合は手段507,508にて前記(式2),(式
3)を利用し、送電損失が最大の送電線を求める。送電
損失が大きい場合は、送電線の両端ノードの電圧が基準
値を逸脱している場合が多い。そのために、該送電線の
両端ノードの電圧をチェックする。ノード電圧が基準値
を超過している場合は手段513にてノード電圧を基準
値に設定して手段504の無効電力配分計算を実行す
る。この処理を手段510,511を通じて検討対象と
なる送電線がなくなるまで続行する。電圧無効電力に関
する設備制約違反があり、かつ、該部分系統中のノード
の電圧値に異常がない場合には、運転者にアラーム提示
し、電力系統中で発生している不具合を調査するよう警
告する。
When the reactive power distribution calculation is completed for each partial system, the means 505 of FIG. 5 confirms whether or not there is a power flow constraint violation. When the means 505 determines that there is a constraint violation, means (507) and (508) use the above (formula 2) and (formula 3) to determine the transmission line with the maximum transmission loss. When the transmission loss is large, the voltage at both nodes of the transmission line often deviates from the reference value. Therefore, the voltage of the nodes at both ends of the power transmission line is checked. If the node voltage exceeds the reference value, the means 513 sets the node voltage to the reference value and executes the reactive power distribution calculation of the means 504. This processing is continued through the means 510 and 511 until there are no transmission lines to be considered. If there is a violation of equipment restrictions related to voltage reactive power and there is no abnormality in the voltage value of the node in the sub system, an alarm will be presented to the driver and a warning will be issued to investigate the fault occurring in the power system. To do.

【0033】以上にて、無効電力最適配分計算装置10
7の説明を終了する。この結果を図1通信線256を通
じて装置107にて実際の機器に操作指令をだし、その
結果を通信線257を通じて出力装置に出力する。
As described above, the reactive power optimal distribution calculation device 10
The description of 7 ends. The device 107 issues an operation command to the actual device through the communication line 256 in FIG. 1 and outputs the result to the output device through the communication line 257.

【0034】本方法は以上示したように、動的に対象系
統を部分系統に分割し、各部分系統ごとに無効電力バラ
ンスを考慮しながら無効電力配分を行うため、系統全体
での逆制御現象を防ぐことが可能となる。また、本発明
は潮流計算以外は簡単な加減乗除計算だけで成り立ち、
全体計算を高速に実行することが可能なため、オンライ
ンでの電圧無効電力制御の実現が可能となる。また、無
効電力制御装置選択の過程が電力系統の運用者にもわか
りやすい利点がある。
As described above, this method dynamically divides the target system into sub-systems and distributes the reactive power while considering the reactive power balance for each partial system. Can be prevented. In addition, the present invention consists of simple addition, subtraction, multiplication and division calculations other than power flow calculation,
Since the whole calculation can be executed at high speed, it is possible to realize the voltage reactive power control online. Further, there is an advantage that the process of selecting the reactive power control device can be easily understood by the operator of the power system.

【0035】また、上述した本発明の実施例において
は、オラインでの電圧無効電力制御の方法を示したが、
本発明はこれに限らずオフライン状態においても使用す
ることが可能である。例えば図2にて示したデータ読み
込み装置で入力される電力系統のデータをリアルタイム
でなく、予め制御システム中の記憶装置に入れておくこ
とにより電力系統全体の無効電力のシュミレータ等に利
用可能であることは明白である。
Further, in the above-mentioned embodiment of the present invention, the method of voltage reactive power control in the online is shown.
The present invention is not limited to this, and can be used in an offline state. For example, the data of the power system input by the data reading device shown in FIG. 2 is not stored in real time but is stored in a storage device in the control system in advance so that it can be used as a simulator of reactive power of the entire power system. That is clear.

【0036】[0036]

【発明の効果】以上に説明したように、本発明によれば
以下の効果がある。
As described above, the present invention has the following effects.

【0037】対象とする電力系統を動的に対象系統を部
分系統に分割し、各部分系統ごとに無効電力バランスを
考慮しながら無効電力配分を行うため、系統全体での逆
制御現象を防ぐことが可能となる。また、本発明は潮流
計算以外は簡単な加減乗除計算だけで成り立ち、全体計
算を高速に実行することが可能なため、オンラインでの
電圧無効電力制御の実現が可能となる。また、無効電力
制御装置選択の過程が電力系統の運用者にもわかりやす
い利点がある。
The target power system is dynamically divided into sub-systems, and reactive power is distributed while considering the reactive power balance for each sub-system, so that the reverse control phenomenon in the entire system is prevented. Is possible. Further, the present invention consists of simple addition / subtraction / multiplication / division calculations other than the power flow calculation, and since the whole calculation can be executed at high speed, it is possible to realize the voltage reactive power control online. Further, there is an advantage that the process of selecting the reactive power control device can be easily understood by the operator of the power system.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の特徴を表わす図。FIG. 1 is a diagram showing the features of the present invention.

【図2】データ読み込み装置で読み込むデータ種類の一
例。
FIG. 2 is an example of data types read by a data reading device.

【図3】対象全体系統を部分系統に分割する処理を表わ
すフローチャート。
FIG. 3 is a flowchart showing a process of dividing the entire target system into partial systems.

【図4】対象全体系統を部分系統に分割する処理の一例
を表わす図。
FIG. 4 is a diagram showing an example of a process of dividing the entire target system into partial systems.

【図5】電圧無効電力最適配分方法全体の処理の流れを
表わすフローチャート。
FIG. 5 is a flowchart showing the flow of processing of the entire voltage reactive power optimal distribution method.

【図6】電圧無効電力最適配分方法の詳細処理を表わす
フローチャート。
FIG. 6 is a flowchart showing detailed processing of a voltage reactive power optimal distribution method.

【図7】類似ケース選択による電圧無効電力最適配分方
法の一例を表わす図。
FIG. 7 is a diagram showing an example of a voltage reactive power optimal distribution method by selecting similar cases.

【符号の説明】[Explanation of symbols]

101…対象とする電力系統、102…データ読み込み
装置、103…状態推定装置、104…電力系統部分系
統分割計算装置、105…将来系統潮流状態予測装置、
106…無効電力最適配分計算装置、107…無効電力
配分指令装置、108…出力装置、201…系統定数産
み込みの例、202…発電機出力、母線負荷データベー
ス読み込みの例、251…電力系統より、系統中の状態
量をデータ読み込み装置に供給する通信線、252…デ
ータ読み込み装置と状態推定装置とを連結する通信線、
253…状態推定装置と、将来系統潮流状態予測装置を
連結する通信線、254…電力系統部分系統分割装置と
無効電力最適配分計算装置を連結する通信線、255…
将来系統潮流状態予測装置は無効電力配分計算装置を連
結する通信線、256…無効電力最適配分装置と無効電
力配分指令装置を連結する通信線、257…無効電力配
分指令装置と出力装置を連結する通信線、258…デー
タ読み込み装置と電力系統部分系統分割計算装置を連結
する通信線、301…系統分割の初期状態、302,3
05…無効電力バランス計算装置、303,306…無
効電力バランス判断装置、304…部分系統融合手段、
307,309…検討済み部分系統判定処理、308…部分
系統分割手段、310…メッセージ出力装置、401,
402,403…部分系統の実例、501…データ取り
込み装置、502…目標関数設定手段、503…無効電
力バランス設定装置、504…無効電力配分計算装置、
505…制約違反検出装置、506…計算続行判定装
置、507…送電損失計算装置、508…最大損失発生
送電線検出装置、509…送電線両端ノード制約違反検
出装置、510,511…計算続行判断装置、512…
アラーム出力装置、513…基準電圧設定装置、601
…初期設定装置、602…送電損失係数計算装置、60
3…無効電力最適配分計算装置、604…評価関数計算
装置、605…無効電力操作機器設定装置、606…計
算続行判断装置、607,611…潮流計算装置、60
8…送電損失計算装置、609,610…計算続行判断
装置、612…送電損失計算装置、701…無効電力配
分計算入力変数の時間推移を示したグラフ、702…無
効電力配分計算制御変数の時間推移を示したグラフ、7
11…過去の履歴データ中の変電所有効電力負荷の時間
推移を表わすグラフ、712…過去の履歴データ中の変
電所無効電力負荷の時間推移を表わすグラフ、713…
過去の履歴データ中の連系線有効潮流の時間推移を表わ
すグラフ、714…過去の履歴データ中の連系線無効潮
流の時間推移を表わすグラフ、721…実績データ中の
変電所有効電力負荷の時間推移を表わすグラフ、722
…実績データ中の変電所無効電力負荷の時間推移を表わ
すグラフ、723…実績データ中の連系線有効電力潮流
の時間推移を表わすグラフ、724…実績データ中の連
系線無効電力潮流の時間推移を表わすグラフ、731…
実績データ中の調相設備使用量の時間推移を表わすグラ
フ、732…実績データ中のタップ比の時間推移を表わ
すグラフ、733…実績データ中の発電機無効電力出力
の時間推移を表わすグラフ、734…実績データ中の母
線電圧の時間推移を表わすグラフ、741…過去の履歴
データ中の調相設備使用量の時間推移を表わすグラフ、
742…過去の履歴データ中のタップ比の時間推移を表
わすグラフ、743…過去の履歴データ中の発電機無効
電力出力の時間推移を表わすグラフ、744…過去の履
歴データ中の母線電圧の時間推移を表わすグラフ。
101 ... Target electric power system, 102 ... Data reading device, 103 ... State estimation device, 104 ... Electric power system partial system division calculation device, 105 ... Future system power flow state prediction device,
106 ... Reactive power optimal distribution calculation device, 107 ... Reactive power distribution command device, 108 ... Output device, 201 ... Example of system constant production, 202 ... Example of generator output, bus load database reading, 251 ... From power system, A communication line for supplying the state quantity in the system to the data reading device, 252 ... A communication line connecting the data reading device and the state estimating device,
253 ... Communication line connecting state estimating device and future system power flow state predicting device, 254 ... Communication line connecting electric power system partial system dividing device and reactive power optimum distribution calculating device, 255 ...
The future system power flow state prediction device is a communication line connecting the reactive power distribution calculating device, 256 ... A communication line connecting the reactive power optimal distribution device and the reactive power distribution command device, 257 ... Connecting the reactive power distribution command device and the output device. Communication line, 258 ... Communication line connecting data reading device and power system partial system division calculation device, 301 ... Initial state of system division, 302, 3
05 ... Reactive power balance calculation device, 303, 306 ... Reactive power balance determination device, 304 ... Subsystem fusion means,
307, 309 ... Considered partial system determination processing, 308 ... Partial system dividing means, 310 ... Message output device, 401,
402, 403 ... Examples of partial system, 501 ... Data capturing device, 502 ... Target function setting means, 503 ... Reactive power balance setting device, 504 ... Reactive power distribution calculation device,
505 ... Constraint violation detection device, 506 ... Calculation continuation determination device, 507 ... Transmission loss calculation device, 508 ... Maximum loss occurrence transmission line detection device, 509 ... Transmission line both-end node constraint violation detection device, 510, 511 ... Calculation continuation determination device 512 ...
Alarm output device, 513 ... Reference voltage setting device, 601
... Initial setting device, 602 ... Transmission loss coefficient calculation device, 60
3 ... Reactive power optimal distribution calculating device, 604 ... Evaluation function calculating device, 605 ... Reactive power operating device setting device, 606 ... Calculation continuation judging device, 607, 611 ... Power flow calculating device, 60
8 ... Transmission loss calculation device, 609, 610 ... Calculation continuation determination device, 612 ... Transmission loss calculation device, 701 ... Graph showing time transition of reactive power distribution calculation input variable, 702 ... Time transition of reactive power distribution calculation control variable Showing the graph, 7
11 ... Graph showing time transition of substation active power load in past history data, 712 ... Graph showing time transition of substation reactive power load in past history data, 713 ...
Graph showing time transition of interconnection line effective power flow in past history data, 714 ... Graph showing time transition of interconnection line reactive power flow in past history data, 721 ... of substation active power load in actual data 722 is a graph showing time transition
… Graph showing time transition of substation reactive power load in actual data, 723… Graph showing time transition of interconnection active power flow in actual data, 724… Time of interconnection reactive power flow in actual data Graph showing transition, 731 ...
A graph showing the time transition of the amount of phase-modifying equipment used in the actual result data, 732 ... A graph showing the time transition of the tap ratio in the actual data, 733 ... A graph showing the time transition of the generator reactive power output in the actual data, 734 ... graph showing time transition of bus voltage in actual data, 741 ... graph showing time transition of phase adjusting equipment usage in past history data,
742 ... Graph showing time transition of tap ratio in past history data, 743 ... Graph showing time transition of generator reactive power output in past history data, 744 ... Time transition of bus voltage in past history data A graph that represents.

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】制御対象の電力系統の系統状態を取り込む
電力系統データ取り込み手段と、 該電力系統データを用いて電力系統の潮流状態を判断す
る電力系統潮流状態判断手段と、 対象とする電力系統を分割して、該分割された電力系統
内で無効電力発生源と無効電力消費源との整合状態を計
算する電力系統部分系統分割計算手段と、 該電力系統部分系統分割手段からの出力を用いて、前記
電力系統の無効電力発生装置に制御信号を送る無効電力
配分指令出力手段とを備えたことを特徴とする電圧無効
電力制御装置。
1. A power system data fetching means for fetching a power system state of a power system to be controlled, a power system power flow state judging means for judging a power flow state of the power system using the power system data, and a power system to be controlled. Is used to calculate the matching state between the reactive power generation source and the reactive power consumption source in the divided power system, and the output from the power system partial system division means is used. And a reactive power distribution command output means for sending a control signal to the reactive power generator of the power system.
【請求項2】請求項第1項の電圧無効電力制御装置にお
いて、 前記電力系統部分系統分割計算手段は、電力系統の基幹
系変電所を単位として分割することを特徴とする電圧無
効電力制御装置。
2. The voltage reactive power control device according to claim 1, wherein the power system partial system division calculation means divides the main system substation of the power system in units. .
【請求項3】請求項第1項、又は第2項の電圧無効電力
制御装置において、 前記電力系統部分系統分割計算手段は、各部分系統の無
効電力需要量と供給量を用いて、部分系統の分割,融合
を行いながら対象電力系統を複数の部分系統に最適に分
割することを特徴とする電圧無効電力制御装置。
3. The voltage reactive power control device according to claim 1 or 2, wherein the power system partial system division calculation means uses the reactive power demand amount and supply amount of each partial system to form a partial system. A voltage reactive power control device characterized by optimally dividing a target power system into a plurality of sub-systems while dividing and fusing.
【請求項4】請求項第1項、第2項又は第3項の電圧無
効電力制御装置において、 前記電力系統部分系統分割計算手段は、過去の履歴デー
タより類似の系統状態を検索し、その類似の系統状態を
用いて最適配分状態を計算することを特徴とする電圧無
効電力制御装置。
4. The voltage reactive power control device according to claim 1, 2, or 3, wherein the power system partial system division calculation means retrieves a similar system state from past history data, and A voltage reactive power controller characterized by calculating an optimum distribution state using similar system states.
【請求項5】任意の時間断面における電力系統の負荷量
ならびに発電量に対する有効電力,無効電力、該時間断
面での系統定数,該時間断面における調相設備の使用量
とその運転カーブ,該時間断面における変電所における
母線電圧の大きさ,変圧器のタップ値,前記必要データ
を読み込むデータ読み込み装置,電力系統の内部状態を
推定するための状態推定装置,前記状態推定装置より得
た現在潮流状態より将来時点での潮流状態を推定する将
来系統状態予測装置,無効電力発生源と無効電力消費源
とのバランスがとれるように、対象とする電力系統を分
割する電力系統部分系統分割計算装置、前記将来系統潮
流状態予測装置より、電力系統への無効電力発生量を最
適に配分する無効電力最適配分計算装置、前記無効電力
最適配分計算装置の結果を元に、無効電力発生装置に制
御信号を送る無効電力配分指令装置からなる電圧無効電
力制御装置。
5. An active power, a reactive power with respect to a load amount and a power generation amount of a power system in an arbitrary time section, a system constant in the time section, an amount of use of a phase-modulating facility in the time section and its operation curve, and the time. Magnitude of bus voltage at substation in cross section, tap value of transformer, data reading device for reading the necessary data, state estimating device for estimating internal state of power system, current flow state obtained by the state estimating device A future system state prediction device for estimating a power flow state at a more future time point, a power system partial system division calculation device for dividing a target power system so that a reactive power generation source and a reactive power consumption source are balanced, Optimal reactive power distribution calculation device for optimally distributing the amount of reactive power generation to the power system from the future system power flow state prediction device, and the reactive power optimum distribution calculation device Results based on a voltage consisting of reactive power distribution command device for sending a control signal to disable the power generator reactive power controller.
【請求項6】請求項5の電圧無効電力制御装置におい
て、前記電力部分系統分割計算装置にて対象系統を分割
することを特徴とする電圧無効電力制御装置。
6. The voltage reactive power control device according to claim 5, wherein the power partial system division calculation device divides the target system.
【請求項7】請求項5の電圧無効電力制御装置におい
て、前記電力系統部分系統分割計算装置は、電力系統の
分割を基幹系変電所を単位として分割することを特徴と
する電圧無効電力制御方式。
7. A voltage reactive power control system according to claim 5, wherein said power system sub-grid partitioning computing device divides the power system in units of trunk substations. .
【請求項8】請求項5の電圧無効電力制御装置におい
て、前記電力系統部分系統分割計算装置は、各部分系統
の無効電力需要量と供給量をもとに、該部分系統の分
割,融合を行いながら対象全体系統を複数の部分系統に
最適に分割することを特徴とする電圧無効電力制御方
式。
8. The voltage reactive power control device according to claim 5, wherein the power system sub-system division calculation device divides or fuses the sub-systems based on the reactive power demand and supply of each sub-system. A voltage reactive power control method characterized by optimally dividing the entire target system into multiple sub-systems while performing.
【請求項9】請求項2,請求項3、又は請求項4の電圧
無効電力制御装置において、前記電力系統部分系統分割
計算装置にて分割した、電力系統の部分系統ごとに独立
に無効電力制御量を算出することを特徴とする電圧無効
電力制御方式。
9. The voltage reactive power control device according to claim 2, claim 3, or claim 4, wherein reactive power control is independently performed for each partial system of the power system divided by the power system partial system division calculation device. A voltage reactive power control method characterized by calculating a quantity.
【請求項10】請求項5の電圧無効電力制御装置におい
て、前記無効電力最適配分計算装置は、無効電力最適配
分計算を、過去の履歴データより類似の系統状況を探索
し、その類似の系統状況を用いて最適配分結果を計算す
ることを特徴とする電圧無効電力制御装置。
10. The voltage reactive power control device according to claim 5, wherein the reactive power optimum distribution calculation device searches for a similar system status from past history data for the reactive power optimum distribution calculation, and the similar system status. A voltage reactive power controller characterized by calculating an optimum distribution result using.
【請求項11】請求項5の電圧無効電力制御装置におい
て、前記無効電力最適配分計算装置は、最適な無効電力
配分を決定する際に、調整する電圧無効電力制御機器の
選択基準に、前記機器の各設備余裕量,送電線損失係
数,計算実行時点での実績値と、類似日検索結果の該当
時点での差分量を用いて無効電力制御量を算出すること
を特徴とする電圧無効電力制御方式。
11. The voltage reactive power control device according to claim 5, wherein the reactive power optimal distribution calculation device uses the device as a selection criterion of the voltage reactive power control device to be adjusted when determining the optimal reactive power distribution. Voltage reactive power control characterized by calculating each reactive power control amount using each equipment margin, transmission line loss coefficient, actual value at the time of calculation execution, and difference amount of similar date search results at that time method.
【請求項12】請求項5の電圧無効電力制御装置におい
て、前記無効電力最適配分計算装置は、該時間断面での
制御実行実績の入力,出力データをデータベース中に記
憶し次断面での制御実行計算に用いることを特徴とする
電圧無効電力制御方式。
12. The voltage reactive power control device according to claim 5, wherein the reactive power optimal distribution calculation device stores the input and output data of the control execution record in the time section in a database and executes the control execution in the next section. A voltage reactive power control method characterized by being used for calculation.
JP07858795A 1995-04-04 1995-04-04 Voltage reactive power control device Expired - Fee Related JP3355857B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07858795A JP3355857B2 (en) 1995-04-04 1995-04-04 Voltage reactive power control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07858795A JP3355857B2 (en) 1995-04-04 1995-04-04 Voltage reactive power control device

Publications (2)

Publication Number Publication Date
JPH08280135A true JPH08280135A (en) 1996-10-22
JP3355857B2 JP3355857B2 (en) 2002-12-09

Family

ID=13666051

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07858795A Expired - Fee Related JP3355857B2 (en) 1995-04-04 1995-04-04 Voltage reactive power control device

Country Status (1)

Country Link
JP (1) JP3355857B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1035626A2 (en) * 1999-03-09 2000-09-13 The Kansai Electric Power Co., Inc. Power system control apparatus and relative method
JP2013005621A (en) * 2011-06-17 2013-01-07 Chugoku Electric Power Co Inc:The Voltage and reactive power control system
CN104821589A (en) * 2015-04-22 2015-08-05 国家电网公司 Optical selection method, based on total life cycle costs, transformer station reactive power compensation devices
CN104852386A (en) * 2015-04-23 2015-08-19 国网重庆市电力公司 Electric power system reactive partition method taking regard of voltage control and reactive power balance
WO2017221483A1 (en) * 2016-06-20 2017-12-28 株式会社日立製作所 Voltage and reactive power monitoring/control device and method
JP2019154204A (en) * 2018-03-06 2019-09-12 富士電機株式会社 Optimal calculation device, optimal calculation method, and program
CN111602307A (en) * 2018-01-10 2020-08-28 通用电气公司 System and method for optimizing reactive power generation of wind farm

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1035626A2 (en) * 1999-03-09 2000-09-13 The Kansai Electric Power Co., Inc. Power system control apparatus and relative method
EP1035626A3 (en) * 1999-03-09 2006-01-25 The Kansai Electric Power Co., Inc. Power system control apparatus and relative method
JP2013005621A (en) * 2011-06-17 2013-01-07 Chugoku Electric Power Co Inc:The Voltage and reactive power control system
CN104821589A (en) * 2015-04-22 2015-08-05 国家电网公司 Optical selection method, based on total life cycle costs, transformer station reactive power compensation devices
CN104852386A (en) * 2015-04-23 2015-08-19 国网重庆市电力公司 Electric power system reactive partition method taking regard of voltage control and reactive power balance
WO2017221483A1 (en) * 2016-06-20 2017-12-28 株式会社日立製作所 Voltage and reactive power monitoring/control device and method
JP2017229110A (en) * 2016-06-20 2017-12-28 株式会社日立製作所 Voltage reactive power monitoring control device and method
US20190148977A1 (en) * 2016-06-20 2019-05-16 Hitachi, Ltd. Voltage and reactive power monitoring/control device and method
US10892640B2 (en) 2016-06-20 2021-01-12 Hitachi, Ltd. Voltage and reactive power monitoring/control device and method for calculating required reactive power amount for suppressing a fluctuation component and selecting an appropriate equipment
CN111602307A (en) * 2018-01-10 2020-08-28 通用电气公司 System and method for optimizing reactive power generation of wind farm
CN111602307B (en) * 2018-01-10 2023-08-18 通用电气公司 System and method for optimizing reactive power generation of wind farm
JP2019154204A (en) * 2018-03-06 2019-09-12 富士電機株式会社 Optimal calculation device, optimal calculation method, and program

Also Published As

Publication number Publication date
JP3355857B2 (en) 2002-12-09

Similar Documents

Publication Publication Date Title
RU2601957C2 (en) Method and apparatus for controlling energy services based on market data
JP2007288877A (en) Power quality maintenance supporting method and system for power distribution system in linkage with a plurality of decentralized power sources
JP6587522B2 (en) Voltage / reactive power control device, method, and voltage / reactive power control system
JP2000261965A (en) Apparatus and method for controlling power system
Meng et al. An advanced real-time dispatching strategy for a distributed energy system based on the reinforcement learning algorithm
Ma et al. A centralized voltage regulation method for distribution networks containing high penetrations of photovoltaic power
JP2019091124A (en) Reliability evaluation system, reliability evaluation method and program
Razmi et al. Steady state voltage stability with AVR voltage constraints
Naidji et al. Efficient allocation strategy of energy storage systems in power grids considering contingencies
Ferraz et al. MILP model for volt-var optimization considering chronological operation of distribution systems containing DERs
CN110994589B (en) Online evaluation method and system for frequency modulation capability of power electronic access power system
JPH08280135A (en) Voltage reactive power controller
JP7131971B2 (en) Power system stabilization system and power system stabilization method
JP2017175908A (en) Power generation control device and control method
JP2007189840A (en) Power system stabilizing apparatus
Shchetinin et al. Decomposed algorithm for risk-constrained AC OPF with corrective control by series FACTS devices
CN111864744B (en) Online switching method and system for control modes of speed regulator of high-proportion hydroelectric system
Bernstein et al. Real-time control of microgrids with explicit power setpoints: Unintentional islanding
Thatte et al. Analysis of locational marginal prices in look-ahead economic dispatch
Ahmed Reactive power and voltage control in grid-connected wind farms: an online optimization based fast model predictive control approach
JP6067289B2 (en) Reduced model creation device, creation method and creation program for power system
CN115136438A (en) Distributed resource management device and distributed resource management method
JP2020137164A (en) Power system stabilization system
Wang et al. Voltage instability performance of risk-based security constrained optimal power flow
JP2021023004A (en) Control device for power system

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081004

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091004

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091004

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101004

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111004

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121004

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131004

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees