JPH08278225A - Measuring method of zero-dispersion wavelength - Google Patents

Measuring method of zero-dispersion wavelength

Info

Publication number
JPH08278225A
JPH08278225A JP8374395A JP8374395A JPH08278225A JP H08278225 A JPH08278225 A JP H08278225A JP 8374395 A JP8374395 A JP 8374395A JP 8374395 A JP8374395 A JP 8374395A JP H08278225 A JPH08278225 A JP H08278225A
Authority
JP
Japan
Prior art keywords
wavelength
light source
optical fiber
zero
dispersion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8374395A
Other languages
Japanese (ja)
Inventor
Yoshiyuki Suetsugu
義行 末次
Takatoshi Katou
考利 加藤
Masayuki Nishimura
正幸 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP8374395A priority Critical patent/JPH08278225A/en
Publication of JPH08278225A publication Critical patent/JPH08278225A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

PURPOSE: To obtain a measuring method in which the zero-dispersion wavelength of an optical fiber is measured with good accuracy. CONSTITUTION: In the measuring method of the zero-dispersion wavelength of an optical fiber, at least a beam of output light from one probing light source 7 and a beam of output light from one pumping light source 2 are composed 10, and a beam of output light which has been composed 10 is made incident on an optical fiber 5 to be measured. When the oscillation wavelength of the probing light source 7 is maintained to be constant and the oscillation wavelength of the pumping light source 2 is changed within a prescribed wavelength range, the oscillation wavelength of the probing light source 7 is changed into a plurality of wavelengths so as to be measured regarding the distribution of four-light-wave mixed power as the function of the oscillation wavelength of the pumping light source 2 radiated from the optical fiber 5 to be measured. A plurality of measured results are added or added and averaged for every wavelength position of the pumping light source 2, the oscillation wavelength of the pumping light source 2 giving the maximum value of the distribution of the four-light-wave mixed light power is decided, by which the zero-dispersion wavelength of the optical fiber 5 is found.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、光ファイバの零分散波
長を精度良く測定できる零分散波長の測定法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a zero dispersion wavelength measuring method capable of accurately measuring the zero dispersion wavelength of an optical fiber.

【0002】[0002]

【従来の技術】従来の光ファイバ中の零分散波長の測定
法としては、特開平6−331495「零分散波長測定
装置および零分散波長測定方法」がある。図2に従来技
術による測定装置の構成例を示す。本装置による測定方
法は、プローブ光源1、及び波長可変ポンプ光源2より
出力された光を偏波コントローラ3によって偏波面を合
わせた後、光合波器4によって合波し、被測定光ファイ
バ5に入力する。被測定光ファイバ5で発生した4光波
混合光パワーを光スペクトラムアナライザ6で測定す
る。4光波混合光パワーは波長可変ポンプ光源の発振波
長が被測定光ファイバの零分散波長と一致したときに最
大となるので、波長可変ポンプ光源の発振波長を掃引し
て4光波混合光パワーが最大値を示す波長可変ポンプ光
源の発振波長を求めることにより、光ファイバの零分散
波長を測定する方法である。
2. Description of the Related Art As a conventional method for measuring the zero-dispersion wavelength in an optical fiber, there is JP-A-6-331495 "Zero-dispersion wavelength measuring device and zero-dispersion wavelength measuring method". FIG. 2 shows a configuration example of a measuring device according to the related art. The measuring method by the present apparatus is such that the light outputted from the probe light source 1 and the wavelength tunable pump light source 2 are polarized by the polarization controller 3 and then multiplexed by the optical multiplexer 4, and then the optical fiber 5 is measured. input. The four-wave mixed light power generated in the optical fiber 5 to be measured is measured by the optical spectrum analyzer 6. The four-wave mixing optical power becomes maximum when the oscillation wavelength of the tunable pump light source matches the zero-dispersion wavelength of the optical fiber under measurement. Therefore, the oscillation wavelength of the tunable pump light source is swept to maximize the four-wave mixing optical power. This is a method of measuring the zero-dispersion wavelength of the optical fiber by obtaining the oscillation wavelength of the wavelength tunable pump light source showing the value.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、このよ
うな従来技術では、光ファイバ中の零分散波長が長さ方
向に分布している場合には対応できないという重大な欠
点があり、実用化には至っていない。この欠点について
以下に具体的に説明する。
However, such a conventional technique has a serious drawback that it cannot cope with the case where the zero-dispersion wavelengths in the optical fiber are distributed in the longitudinal direction. I haven't arrived. This drawback will be specifically described below.

【0004】まず、接続点を含まない一本の光ファイバ
等、零分散波長が長さ方向に一定値をとる極めて限定さ
れた場合について説明する。図3は零分散波長(λ。)
が 1550 nmの分散シフトファイバ 1 km について、従来
法で零分散波長を測定した結果を示す。測定は、プロー
ブ光源の発振波長(λprobe )を 1560 nmに固定し、ポ
ンプ光源の発振波長 を1545 nm から1560 nm まで掃引
した時得られる4光波混合光パワーを、光スペクトラム
アナライザで測定して行った。横軸はポンプ光源の発振
波長であり、縦軸は4光波混合光パワーである。これよ
り、プローブ光源の発振波長が、被測定光ファイバの既
知の零分散波長である 1550 nmに一致したときは、確か
に4光波混合光パワーは極大値かつ最大値をとり、この
波長が被測定光ファイバの零分散波長であることがわか
る。なお、4光波混合光パワーの極大値は、被測定光フ
ァイバの零分散波長が1550 nm に一致したときだけでは
なく、他の数多くの波長においてもとることがわかる。
この理由は例えば「Kyo Inoue, "Four-Wave Mixing in
an Optical Fiber in the Zero-Dispersion Wavelength
Region," IEEE Journal of Lightwave Technology, vo
l. 10, no. 11, p.p. 1553 - 1561(November 1992)」に
詳しく説明されているように、4光波混合光パワーが、
ポンプ光源の発振波長(正確にはポンプ光源の発振波長
とプローブ光源の発振波長の零分散波長に対する相対
差)に対して周期変動をするためである。このように、
零分散波長が長さ方向に一定値をとることがわかってい
る、極めて限定された場合については、4光波混合光パ
ワーの極大値かつ最大値が被測定光ファイバの零分散波
長に一致するため、従来技術でもファイバ中の零分散波
長は一応測定できていた。
First, a case will be described in which the zero dispersion wavelength is extremely limited to a constant value in the length direction, such as a single optical fiber that does not include a connection point. FIG. 3 shows the zero dispersion wavelength (λ.).
The measurement results of the zero-dispersion wavelength by the conventional method are shown for a dispersion-shifted fiber 1 km with a wavelength of 1550 nm. The measurement is performed by fixing the oscillation wavelength (λprobe) of the probe light source to 1560 nm and measuring the four-wave mixing optical power obtained by sweeping the oscillation wavelength of the pump light source from 1545 nm to 1560 nm with an optical spectrum analyzer. It was The horizontal axis represents the oscillation wavelength of the pump light source, and the vertical axis represents the four-wave mixed light power. From this, when the oscillation wavelength of the probe light source matches the known zero-dispersion wavelength of the measured optical fiber, which is 1550 nm, it is true that the four-wave mixing optical power has a maximum value and a maximum value, and this wavelength is It can be seen that it is the zero dispersion wavelength of the measurement optical fiber. It is understood that the maximum value of the four-wave mixed light power is taken not only when the zero-dispersion wavelength of the measured optical fiber matches 1550 nm, but also at many other wavelengths.
The reason for this is, for example, "Kyo Inoue," Four-Wave Mixing in
an Optical Fiber in the Zero-Dispersion Wavelength
Region, "IEEE Journal of Lightwave Technology, vo
L. 10, no. 11, pp 1553-1561 (November 1992) ”, the four-wave mixing optical power is
This is because the oscillation wavelength of the pump light source (to be precise, the relative difference between the oscillation wavelength of the pump light source and the oscillation wavelength of the probe light source with respect to the zero-dispersion wavelength) is changed periodically. in this way,
It is known that the zero-dispersion wavelength has a constant value in the length direction. In extremely limited cases, the maximum and maximum values of the four-wave mixing light power match the zero-dispersion wavelength of the measured optical fiber. Even in the prior art, the zero dispersion wavelength in the fiber could be measured for the time being.

【0005】しかしながら、通常の光通信システムで
は、線路を複数の異なる製造ロットの光ファイバを縦属
接続して構成するのが普通であり、システム全長で見る
と光ファイバ中の零分散波長は長さ方向に分布すること
になるため、零分散波長が長さ方向に一定ではなく、分
布している場合についても零分散波長を測定できること
が必要不可欠である。
However, in a general optical communication system, it is usual that a line is constructed by cascading a plurality of optical fibers of different manufacturing lots, and the zero-dispersion wavelength in the optical fiber is long when viewed from the entire system length. Since the zero-dispersion wavelength is distributed in the depth direction, it is indispensable to be able to measure the zero-dispersion wavelength even when the zero-dispersion wavelength is not constant in the length direction but is distributed.

【0006】そこで次に、このように現実的な、零分散
波長が長さ方向に分布している場合について生ずる、従
来法の重大な問題点を指摘する。図4は零分散波長
(λ。)が 1548 nm、1550 nm 、1552 nm の分散シフト
ファイバ 各0.8 km、0.5 km、0.8 kmを、順番に縦属接
続してえられた2.1 kmの分散シフトファイバ リンクに
ついて、従来法で零分散波長を測定した結果を示す。測
定は、プローブ光源の発振波長を 1565 nmに固定し、ポ
ンプ光源の発振波長を 1545 nmから1555 nm まで0.2 nm
毎に掃引した時得られる4光波混合光パワーを、光スペ
クトラムアナライザで測定して行った。これにより、プ
ローブ光源の発振波長が、被測定光ファイバの既知の零
分散波長である 1548 nm、1550 nm 、1552nm に一致し
たときは確かに4光波混合光パワーは極大値をとること
が確認できた。
Then, the serious problem of the conventional method that occurs in the case where the zero-dispersion wavelengths are distributed in the lengthwise direction is pointed out. Figure 4 shows a dispersion-shifted fiber with a zero-dispersion wavelength (λ) of 1548 nm, 1550 nm, and 1552 nm, and a 2.1-km dispersion-shifted fiber obtained by cascading 0.8 km, 0.5 km, and 0.8 km, respectively. The results of measuring the zero-dispersion wavelength of the link by the conventional method are shown. The measurement is performed by fixing the oscillation wavelength of the probe light source to 1565 nm and changing the oscillation wavelength of the pump light source from 1545 nm to 1555 nm by 0.2 nm.
The four-wave mixed light power obtained by sweeping each time was measured by an optical spectrum analyzer. From this, it can be confirmed that when the oscillation wavelength of the probe light source coincides with the known zero-dispersion wavelength of the measured optical fiber, which is 1548 nm, 1550 nm, and 1552 nm, the four-wave mixing optical power surely takes the maximum value. It was

【0007】しかしながら、極大値は、プローブ光源の
発振波長が被測定光ファイバの零分散波長に一致したと
き以外、例えば、極大波長λは 1548.7 nm 、1553.5 nm
、1555 nm 等でも数多く発生しており、必ずしも4光
波混合光パワーの極大値が被測定光ファイバの零分散波
長に対応しているわけではない。従って、被測定光ファ
イバの零分散波長が未知で、かつ長さ方向に一定ではな
く、分布している場合については、観測される4光波混
合光パワーの極大値が、ポンプ光源の発振波長と被測定
光ファイバの零分散波長が一致したことに起因するの
か、又はポンプ光源の発振波長に対する単なる周期変動
に起因するのかを区別するのは不可能であった。また、
4光波混合光パワーの極大値の大小関係も、異なる零分
散波長を持つ各構成ファイバの長短に起因するのか、又
はポンプ光源の発振波長とプローブ光源の発振波長の零
分散波長に対する相対差に基づく単なる周期変動に起因
するのか、についても区別するのは不可能であった。こ
のように、零分散波長がファイバ長さ方向に分布してい
る現実的な場合に関して、従来技術では光ファイバ中の
零分散波長を測定することは不可能であった。
However, the maximum value is different from when the oscillation wavelength of the probe light source coincides with the zero-dispersion wavelength of the optical fiber to be measured. For example, the maximum wavelength λ is 1548.7 nm and 1553.5 nm.
, 1555 nm, etc., and the maximum value of the four-wave mixing light power does not necessarily correspond to the zero-dispersion wavelength of the measured optical fiber. Therefore, when the zero-dispersion wavelength of the measured optical fiber is unknown and is not constant in the length direction but is distributed, the maximum value of the observed four-wave mixing light power is equal to the oscillation wavelength of the pump light source. It was impossible to distinguish whether the zero-dispersion wavelengths of the optical fibers to be measured coincided with each other or the periodic fluctuations with respect to the oscillation wavelength of the pump light source caused. Also,
The magnitude relationship between the maximum values of the four-wave mixed light power is also due to the length of each constituent fiber having different zero-dispersion wavelength, or based on the relative difference between the oscillation wavelength of the pump light source and the oscillation wavelength of the probe light source with respect to the zero-dispersion wavelength. It was impossible to distinguish whether or not it was simply due to periodic fluctuations. As described above, in the practical case where the zero-dispersion wavelength is distributed in the fiber length direction, it is impossible to measure the zero-dispersion wavelength in the optical fiber by the conventional technique.

【0008】そこで本発明は、零分散波長が光ファイバ
の長さ方向に分布している現実的な場合について、光フ
ァイバの零分散波長を精度良く測定できる零分散波長の
測定法を提供することを目的とする。
Therefore, the present invention provides a zero-dispersion wavelength measuring method capable of accurately measuring the zero-dispersion wavelength of an optical fiber in a realistic case where the zero-dispersion wavelength is distributed in the length direction of the optical fiber. With the goal.

【0009】[0009]

【課題を解決するための手段】上記課題を解決するた
め、本発明の請求項1に係る零分散波長の測定法では、
1つのプローブ光源と、1つのポンプ光源の出力光を合
波し、前記合波した出力光を被測定光ファイバに入射
し、かつ前記プローブ光源の発振波長を一定に維持して
前記ポンプ光源の波長を所定の波長範囲で変化させたと
きに、前記被測定光ファイバから出射する前記ポンプ光
源の波長の関数としての4光波混合光パワーの分布を測
定し、前記プローブ光源の発振波長を変えて複数同じ測
定を行ない、その複数の測定結果を、前記ポンプ光源の
各波長位置で加算もしくは加算平均して、4光波混合光
パワーの分布の極大値を与える前記ポンプ光源の発振波
長を決定することによって、光ファイバの零分散波長を
求めることを特徴とする。
In order to solve the above problems, in the method for measuring a zero dispersion wavelength according to claim 1 of the present invention,
Output light of one probe light source and output light of one pump light source are combined, the combined output light is made incident on the optical fiber to be measured, and the oscillation wavelength of the probe light source is kept constant, When the wavelength is changed in a predetermined wavelength range, the distribution of the four-wave mixed light power as a function of the wavelength of the pump light source emitted from the optical fiber under measurement is measured, and the oscillation wavelength of the probe light source is changed. A plurality of same measurements are performed, and the plurality of measurement results are added or averaged at each wavelength position of the pump light source to determine the oscillation wavelength of the pump light source that gives the maximum value of the distribution of the four-wave mixed light power. It is characterized in that the zero dispersion wavelength of the optical fiber is obtained by.

【0010】本発明の請求項2に係る零分散波長の測定
法では、1つのプローブ光源と、1つのポンプ光源の出
力光を合波し、前記合波した出力光を被測定光ファイバ
に入射し、かつ前記プローブ光源と前記ポンプ光源との
発振波長差を一定に維持して前記ポンプ光源の発振波長
を所定の波長範囲で変化させたときに、前記被測定光フ
ァイバから出射する前記ポンプ光源の発振波長の関数と
しての4光波混合光パワーの分布を測定し、前記発振波
長差を変えて複数回同じ測定を行ない、その複数の測定
結果を、前記ポンプ光源の各波長位置で加算もしくは加
算平均して、4光波混合光パワーの分布の極大値を与え
る前記ポンプ光源の発振波長を決定することによって、
光ファイバの零分散波長を求めることを特徴とする。
In the zero-dispersion wavelength measuring method according to the second aspect of the present invention, the output lights of one probe light source and one pump light source are multiplexed, and the combined output light is incident on the optical fiber to be measured. And, when the oscillation wavelength difference between the probe light source and the pump light source is kept constant and the oscillation wavelength of the pump light source is changed within a predetermined wavelength range, the pump light source emitted from the optical fiber under test. The distribution of the four-wave mixed light power as a function of the oscillation wavelength is measured, the same measurement is performed a plurality of times while changing the oscillation wavelength difference, and the plurality of measurement results are added or added at each wavelength position of the pump light source. On average, by determining the oscillation wavelength of the pump light source that gives the maximum of the distribution of the four-wave mixed light power,
It is characterized in that the zero dispersion wavelength of the optical fiber is obtained.

【0011】本発明の請求項3に係る零分散波長の測定
法では、前記プローブ光源の発振波長を前記ポンプ光源
の発振波長に比べて短波長側に設定した状態で、請求項
1又は2に記載の光ファイバの零分散波長の測定方法に
より、光ファイバの零分散波長を求めることを特徴とす
る。
In the zero-dispersion wavelength measuring method according to a third aspect of the present invention, the oscillation wavelength of the probe light source is set to a shorter wavelength side than the oscillation wavelength of the pump light source. The zero dispersion wavelength of the optical fiber is obtained by the method for measuring the zero dispersion wavelength of the optical fiber described above.

【0012】本発明の請求項4に係る零分散波長の測定
法では、前記プローブ光源の発振波長を前記ポンプ光源
の発振波長に比べて長波長側に設定した状態で請求項1
又は2に記載の光ファイバの零分散波長の測定方法によ
り、光ファイバの零分散波長を求めることを特徴とす
る。
In the zero-dispersion wavelength measuring method according to claim 4 of the present invention, the oscillation wavelength of the probe light source is set to a longer wavelength side than the oscillation wavelength of the pump light source.
Alternatively, the zero dispersion wavelength of the optical fiber is obtained by the method for measuring the zero dispersion wavelength of the optical fiber described in 2.

【0013】本発明の請求項4に係る零分散波長の測定
法では、請求項3又は4の測定方法で測定された結果を
更に加算もしくは加算平均して、4光波混合光パワーの
分布の極大値を与える前記ポンプ光源の発振波長を決定
することによって、光ファイバの零分散波長を求めるこ
とを特徴とする。
In the zero-dispersion wavelength measuring method according to claim 4 of the present invention, the results measured by the measuring method according to claim 3 or 4 are further added or averaged to obtain the maximum distribution of the four-wave mixed light power. The zero-dispersion wavelength of the optical fiber is obtained by determining the oscillation wavelength of the pump light source that gives a value.

【0014】本発明の請求項5に係る零分散波長の測定
法では、請求項3又は4の測定方法で測定された結果を
更に加算もしくは加算平均して、4光波混合光パワーの
分布の極大値を与える前記ポンプ光源の発振波長を決定
することによって、光ファイバの零分散波長を求めるこ
とを特徴とする。
In the zero-dispersion wavelength measuring method according to claim 5 of the present invention, the results measured by the measuring method according to claim 3 or 4 are further added or averaged, and the distribution of the four-wave mixed light power is maximized. The zero-dispersion wavelength of the optical fiber is obtained by determining the oscillation wavelength of the pump light source that gives a value.

【0015】本発明の請求項6に係る零分散波長の測定
法では、請求項1乃至請求項5に記載の測定方法を、前
記被測定光ファイバの入射端と出射端を入替えて行な
い、その入替え前と後の測定結果をさらに加算もしくは
加算平均して、4光波混合光パワーの極大値を与える前
記ポンプ光源の発振波長を決定することによって光ファ
イバの零分散波長を求めることを特徴とする。
In the zero-dispersion wavelength measuring method according to claim 6 of the present invention, the measuring method according to any one of claims 1 to 5 is performed by switching the incident end and the emitting end of the optical fiber to be measured. The zero dispersion wavelength of the optical fiber is obtained by further adding or averaging the measurement results before and after the replacement and determining the oscillation wavelength of the pump light source that gives the maximum value of the four-wave mixing light power. .

【0016】[0016]

【作用】本発明の測定法は、まず従来法と同様、ポンプ
光源の発振波長が被測定光ファイバの零分散波長に一致
したときにのみ、4光波混合光パワーが極大値、かつ最
大値をとるという周知の事実を利用する。
According to the measuring method of the present invention, as in the conventional method, the four-wave mixed light power reaches the maximum value and the maximum value only when the oscillation wavelength of the pump light source matches the zero dispersion wavelength of the optical fiber to be measured. Utilizing the well-known fact of taking.

【0017】しかし、この事実の利用のみでは、前記の
ように零分散波長が一定でなく光ファイバの長さ方向に
分布している場合は、正確に測定することができない。
そこで、本発明では、零分散波長に対するポンプ光源の
発振波長や、プローブ光源の発振波長を種々変化させた
場合に、被測定光ファイバから出射する4光波混合光の
パワーの極大を示す波長位置は、零分散波長に対応す
る波長位置では変化が無いのに対し、零分散波長以外
で生ずる4光波混合光のパワーの値については、前記発
振波長の変化に応じ様々に周期的変動をするという事実
を利用している。即ち、零分散波長に対するポンプ光源
の発振波長や、プローブ光源の発振波長の位置を種々変
化させて得た4光波混合光のパワーの分布を、ポンプ光
源の各発振波長位置毎に加算すれば、零分散波長の波長
位置での4光波混合光のパワ−の値は加算の回数に応じ
て大きくなるが、零分散波長以外で生ずる4光波混合光
のパワーの値は、測定ケースごとに極大及び極小を示す
波長位置が少しずつずれているために、加算すると、4
光波混合光パワ−の周期的変動がキャンセルされ、その
ポンプ光源の発振波長への依存性は平坦となる。従っ
て、上記の複数の測定結果を、加算又は加算の上平均す
ることにより、零分散波長により生ずる極大値を与える
波長位置をきわめて容易に識別できるという事実を利用
するものである。また、零分散波長が光ファイバの長さ
方向に分布している場合、被測定光ファイバ中での光の
減衰に起因して、入射側の零分散波長の4光波混合光パ
ワーは比較的大きく、出射側の零分散波長の4光波混合
光のパワーは比較的小さく表れる傾向にあり、これを考
慮して、本測定法では、入射端と出射端を入れ替えて同
じ測定をした結果を加算して更に精度の良い結果を得
る。
However, only by utilizing this fact, accurate measurement cannot be performed when the zero dispersion wavelength is not constant and distributed in the length direction of the optical fiber as described above.
Therefore, in the present invention, when the oscillation wavelength of the pump light source with respect to the zero-dispersion wavelength and the oscillation wavelength of the probe light source are variously changed, the wavelength position showing the maximum power of the four-wave mixed light emitted from the optical fiber under measurement is determined. , The fact that there is no change at the wavelength position corresponding to the zero-dispersion wavelength, but the value of the power of the four-wave mixed light that occurs at a wavelength other than the zero-dispersion wavelength varies variously in accordance with the change in the oscillation wavelength. Are using. That is, if the oscillation wavelength of the pump light source with respect to the zero-dispersion wavelength and the power distribution of the four-wave mixed light obtained by variously changing the oscillation wavelength position of the probe light source are added for each oscillation wavelength position of the pump light source, The power value of the four-wave mixed light at the wavelength position of the zero-dispersion wavelength increases with the number of additions, but the power value of the four-wave mixed light generated at a wavelength other than the zero-dispersion wavelength has a maximum value for each measurement case. Since the wavelength position showing the minimum value is slightly shifted, it becomes 4 when added.
The periodic fluctuations of the light wave mixing light power are canceled and the dependence on the oscillation wavelength of the pump light source becomes flat. Therefore, the fact that the wavelength position giving the maximum value caused by the zero-dispersion wavelength can be very easily identified by adding or averaging the plurality of measurement results described above is utilized. Further, when the zero-dispersion wavelength is distributed in the length direction of the optical fiber, the four-wave mixing optical power of the zero-dispersion wavelength on the incident side is relatively large due to the attenuation of light in the measured optical fiber. , The power of the four-wave mixed light of zero dispersion wavelength on the emission side tends to appear relatively small. In consideration of this, in this measurement method, the incident end and the emission end are exchanged and the same measurement results are added. And get more accurate results.

【0018】[0018]

【実施例】以下、添付図面を参照しながら本発明の実施
例を詳細に説明する。なお、図面の説明おいて同一の要
素には同一の符号を付し、重複する説明を省略する。
Embodiments of the present invention will now be described in detail with reference to the accompanying drawings. In the description of the drawings, the same elements will be denoted by the same reference symbols, without redundant description.

【0019】第1の実施例について説明する。図5に、
第1の実施例により得た4光波混合光パワーのポンプ光
波長依存性と既知の零分散波長(λ。)との関係を示
す。図1に、本実施例で用いる零分散波長の測定装置を
示す。本実施例で測定対象とする被測定光ファイバ 5
は、零分散波長が 1548 nm、1550nm 、1552 nm の分散
シフトファイバ 各0.8 km、0.5 km、0.8 kmを、順番に
縦属接続してえられた2.1 kmの光ファイバにより構成さ
れている。
The first embodiment will be described. In Figure 5,
The relationship between the pump light wavelength dependency of the four-wave mixed light power obtained by the first embodiment and the known zero dispersion wavelength (λ) is shown. FIG. 1 shows a zero-dispersion wavelength measuring device used in this embodiment. Optical fiber to be measured 5 to be measured in the present embodiment
Is composed of 2.1 km optical fibers obtained by cascade-connecting 0.8 km, 0.5 km, and 0.8 km of dispersion-shifted fibers with zero-dispersion wavelengths of 1548 nm, 1550 nm, and 1552 nm, respectively.

【0020】被測定光ファイバの零分散波長の測定は、
まず波長可変プローブ光源7と、波長可変ポンプ光源2
の出力光を、偏波コントローラ3により偏波面を合わせ
た後、光ファイバカプラ10により合波し、上記合波し
た出力光を、前記被測定光ファイバ 5に入射し、前記
プローブ光源7の発振波長を、ポンプ光源2の発振波長
より短波長側の 1530nm から1537 nm の範囲で1 nm毎に
可変させ、その可変の都度、前記ポンプ光源2の発振波
長を 1545 nmから1555nmまで0.2 nm毎に掃引した。
The measurement of the zero dispersion wavelength of the optical fiber to be measured is
First, the variable wavelength probe light source 7 and the variable wavelength pump light source 2
After the polarization plane of the output light is adjusted by the polarization controller 3, it is combined by the optical fiber coupler 10, and the combined output light is incident on the optical fiber 5 to be measured, and the probe light source 7 oscillates. The wavelength is tuned in the range of 1530 nm to 1537 nm, which is shorter than the oscillation wavelength of the pump light source 2, in 1 nm steps, and the oscillation wavelength of the pump light source 2 is changed from 1545 nm to 1555 nm in 0.2 nm steps each time. Swept.

【0021】このとき得られる、被測定光ファイバ5か
ら出射する出力光に含まれるポンプ光源波長の関数とし
ての4光波混合光パワーの分布値(以下単に、分布値と
いう。)を、光スペクトラムアナライザ6により複数回
同じ測定を行なった。
The distribution value of the four-wave mixed light power (hereinafter, simply referred to as a distribution value) as a function of the pump light source wavelength contained in the output light emitted from the optical fiber 5 to be measured, obtained at this time, is used as an optical spectrum analyzer. The same measurement was performed multiple times according to No. 6.

【0022】変化させたプローブ光源の発振波長に対応
する複数の測定結果を、それぞれポンプ光源の発振波長
の各波長位置毎に加算平均した。この4光波混合光パワ
ーの分布値の加算平均値(以下単に、分布加算値とい
う。)を縦軸にとり、ポンプ光源2の発振波長を横軸に
とって、図5にプロットした。なお、理解の容易のた
め、既知の零分散波長である1548 nm 、1550nm、1552 n
m (λ。)について、その横軸での位置を矢印で示して
ある。なお、加算平均する代わりに、単に加算するだけ
でも、光パワーの目盛りが変わるだけで、測定される分
布は同じである。
A plurality of measurement results corresponding to the changed oscillation wavelength of the probe light source were added and averaged for each wavelength position of the oscillation wavelength of the pump light source. This is plotted in FIG. 5 with the averaging value (hereinafter simply referred to as the distribution addition value) of the distribution values of the four-wave mixed light power as the vertical axis and the oscillation wavelength of the pump light source 2 as the horizontal axis. For easy understanding, the known zero-dispersion wavelengths are 1548 nm, 1550 nm, and 1552 n.
The position on the horizontal axis of m (λ.) is indicated by an arrow. It should be noted that the distributions measured are the same, but the scales of the optical powers are changed by simply adding instead of averaging.

【0023】図5より、ポンプ光源の発振波長が、被測
定光ファイバの既知の零分散波長である 1548nm 、1550
nm、1552nmに一致した各波長位置に極大が生じている。
零分散波長以外の波長位置でも微小なピ−クが見られる
ものの零分散波長位置での極大値と比べてその大きさが
非常に小さく両者の識別は極めて容易である。したがっ
て、分布加算値の極大を与えるポンプ光源の発振波長か
ら被測定光ファイバの零分散波長を非常に正確に測定で
きることが分かる。この実施例では、プローブ光源の発
振波長をポンプ光源の発振波長より短波長側にとった
が、長波長側にとっても同様な傾向を示す。
From FIG. 5, the oscillation wavelength of the pump light source is 1548 nm, 1550, which is the known zero dispersion wavelength of the optical fiber to be measured.
There is a maximum at each wavelength position corresponding to nm and 1552 nm.
Although a minute peak can be seen at a wavelength position other than the zero-dispersion wavelength, its size is very small compared to the maximum value at the zero-dispersion wavelength position, and it is extremely easy to distinguish between them. Therefore, it can be seen that the zero-dispersion wavelength of the optical fiber to be measured can be measured very accurately from the oscillation wavelength of the pump light source that gives the maximum distribution added value. In this embodiment, the oscillation wavelength of the probe light source is set on the shorter wavelength side than the oscillation wavelength of the pump light source, but the same tendency is exhibited on the longer wavelength side.

【0024】第2の実施例について説明する。図6に、
第2の実施例により得た分布加算値と既知の零分散波長
(λ。)との関係を示す。被測定光ファイバ 5は第1
の実施例と同じ構成となっている。被測定光ファイバの
零分散波長の測定は、まず波長可変プローブ光源7と、
波長可変ポンプ光源2の出力光を光ファイバカプラ10
により合波し、上記合波した出力光を、被測定光ファイ
バ 5に入射し、前記プローブ光源7の発振波長を1530
nmから1537 nm の範囲で1 nm毎に可変させ、その都度前
記ポンプ光源2の波長を1545 nm から1555nmまで0.2 nm
毎に掃引した。
The second embodiment will be described. In Figure 6,
The relationship between the distribution addition value obtained by the second embodiment and the known zero-dispersion wavelength (λ) is shown. Measured optical fiber 5 is the first
The configuration is the same as that of the above embodiment. To measure the zero-dispersion wavelength of the optical fiber to be measured, first, the tunable probe light source 7 and
The output light from the wavelength tunable pump light source 2 is converted into the optical fiber coupler 10
The combined output light is input to the optical fiber 5 to be measured, and the oscillation wavelength of the probe light source 7 is set to 1530.
The wavelength of the pump light source 2 is changed from 1545 nm to 1555 nm by 0.2 nm each time in the range of 1 nm to 1537 nm.
Swept every time.

【0025】このとき得られる、被測定光ファイバ5か
ら出射する出力光の分布値を、光スペクトラムアナライ
ザ6により、前記プローブ光源7の複数の異なる各発振
波長について測定し、それぞれを加算平均し、分布加算
値を求めた。
The distribution value of the output light emitted from the optical fiber 5 to be measured obtained at this time is measured by the optical spectrum analyzer 6 for each of a plurality of different oscillation wavelengths of the probe light source 7, and the respective averages are added, The distribution addition value was calculated.

【0026】次に、被測定光ファイバ5の入射端と出射
端を入れ替えて同様の測定と加算平均を行い、分布加算
値を求めた。上記の入射端と出射端の入れ替え前後の分
布加算値を、更に加算平均して目的とする分布加算値を
求めこれを図6にプロットした。
Next, the incident end and the emitting end of the optical fiber 5 to be measured were replaced with each other, and the same measurement and arithmetic averaging were performed to obtain the distribution addition value. The distribution added values before and after the exchange of the incident end and the emission end were further averaged to obtain a target distribution added value, which was plotted in FIG.

【0027】図6より、ポンプ光源の発振波長が、被測
定光ファイバの既知の零分散波長である 1548nm 、1550
nm、1552nmに一致した各波長位置に極大が生じている。
零分散波長以外の波長位置にも微小なピ−クが見られる
ものの零分散波長位置での極大値と比べて非常に小さく
両者の識別は極めて容易である。したがって、分布加算
値の極大を与えるポンプ光源の発振波長から被測定光フ
ァイバの零分散波長を非常に正確に測定できることが分
かる。
From FIG. 6, the oscillation wavelength of the pump light source is 1548 nm, 1550 which is the known zero dispersion wavelength of the optical fiber to be measured.
There is a maximum at each wavelength position corresponding to nm and 1552 nm.
Although minute peaks can be seen at wavelength positions other than the zero-dispersion wavelength, they are extremely small compared to the maximum value at the zero-dispersion wavelength position, and it is extremely easy to distinguish between them. Therefore, it can be seen that the zero-dispersion wavelength of the optical fiber to be measured can be measured very accurately from the oscillation wavelength of the pump light source that gives the maximum distribution added value.

【0028】なお、本実施例では、被測定ファイバで、
零分散波長が1548nmと1552nmの光ファイバ
長が同じ0.8kmであり、これに対応してそれら波長
位置に同じ大きさ−55dBmの極大が表れており、図
5に示す実施例1の場合は、零分散波長が1552nm
の側の端から入射したため前者の方が小さく表れている
のに対し、測定精度が向上している。これは、光ファイ
バの入射端と出射端を入れ替えて測定した結果を相互に
加算した効果による。
In this embodiment, the fiber to be measured is
The optical fiber lengths of the zero-dispersion wavelengths of 1548 nm and 1552 nm are the same 0.8 km, and the maximums of the same magnitude −55 dBm appear at those wavelength positions correspondingly, and in the case of Example 1 shown in FIG. , Zero dispersion wavelength is 1552 nm
The former appears smaller because it enters from the end on the side of, while the measurement accuracy is improved. This is due to the effect of mutually adding the results of measurements with the entrance end and the exit end of the optical fiber switched.

【0029】第3の実施例について説明する。図7に、
第3の実施例により得た分布加算値と既知の零分散波長
(λ。)との関係を示す。被測定光ファイバ 5もこれ
までの実施例と同じ構成となっている。被測定光ファイ
バの零分散波長の測定は、波長可変プローブ光源7と、
波長可変ポンプ光源2の出力光を光ファイバカプラ10
により合波し、上記合波した出力光を、被測定光ファイ
バ 5に入射し、前記プローブ光源7の発振波長を前記
ポンプ光源2の発信波長よりも短波長側である1530nm
から1537 nm の範囲、および 同光源の発信波長よりも
長波長側である1563 nm から1570 nm の範囲で1 nm毎に
可変させ、その都度前記ポンプ光源2の発信波長を 154
5 nmから1555 nm まで0.2 nm毎に掃引した。このとき得
られる、被測定光ファイバ5から出射する出力光に含ま
れる4光波混合光パワーの分布値を、光スペクトラムア
ナライザ6により測定し、それぞれ加算平均して分布加
算値を求めた。これを図7にプロットした。
The third embodiment will be described. In Figure 7,
The relationship between the distribution addition value obtained by the third embodiment and the known zero-dispersion wavelength (λ) is shown. The optical fiber 5 to be measured also has the same configuration as the above-described embodiments. The measurement of the zero-dispersion wavelength of the optical fiber to be measured is performed by the tunable probe light source 7
The output light from the wavelength tunable pump light source 2 is converted into the optical fiber coupler 10
The combined output light is incident on the optical fiber 5 to be measured, and the oscillation wavelength of the probe light source 7 is 1530 nm, which is shorter than the emission wavelength of the pump light source 2.
To 1537 nm, and from 1563 nm to 1570 nm, which is on the longer wavelength side than the emission wavelength of the same light source, the emission wavelength of the pump light source 2 is changed by 1 nm each time.
Sweep was performed from 5 nm to 1555 nm in 0.2 nm steps. The distribution value of the four-wave mixed light power included in the output light emitted from the measured optical fiber 5 obtained at this time was measured by the optical spectrum analyzer 6, and the distribution addition value was obtained by averaging each. This is plotted in FIG.

【0030】図7より、ポンプ光源の発振波長が、被測
定光ファイバの既知の零分散波長(λ。)である 1548n
m 、1550nm、1552nmに一致した各波長位置に極大が生じ
ている。零分散波長以外の波長位置にも微小なピ−クが
見られるものの零分散波長位置での極大値と比べて非常
に小さく両者の識別は極めて容易である。したがって、
分布加算値の極大を与えるポンプ光源の発振波長から被
測定光ファイバの零分散波長を非常に正確に測定できる
ことが分かる。
From FIG. 7, the oscillation wavelength of the pump light source is 1548n, which is the known zero-dispersion wavelength (λ.) Of the optical fiber to be measured.
There is a maximum at each wavelength position corresponding to m 1, 1550 nm, and 1552 nm. Although minute peaks can be seen at wavelength positions other than the zero-dispersion wavelength, they are extremely small compared to the maximum value at the zero-dispersion wavelength position, and it is extremely easy to distinguish between them. Therefore,
It can be seen that the zero-dispersion wavelength of the measured optical fiber can be measured very accurately from the oscillation wavelength of the pump light source that gives the maximum of the distribution added value.

【0031】第4の実施例について説明する。図8は、
第4の実施例により得た分布加算値と既知の零分散波長
(λ。)との関係を示す。被測定光ファイバ 5はこれ
までの実施例と同じ構成となっている。被測定光ファイ
バの零分散波長の測定は、波長可変プローブ光源7と、
波長可変ポンプ光源2の出力光を光ファイバカプラ10
により合波し、上記合波した出力光を、被測定光ファイ
バ 5に入射し、前記プローブ光源7の発振波長が前記
ポンプ光源2の発信波長よりも短波長側である1530nm
から1537 nm の範囲、および 同光源の発信波長の長波
長側である1563nm から1570 nm の範囲で1 nm毎に可変
させ、その都度前記ポンプ光源2の発信波長を 1545 nm
から1555 nm まで0.2 nm毎に掃引した。このとき得られ
る、被測定光ファイバ5から出射する出力光に含まれる
4光波混合光パワーの分布値を、光スペクトラムアナラ
イザ6により、前記プローブ光源7の複数の異なる発振
波長について測定し、分布加算値を求めた。
The fourth embodiment will be described. Figure 8
The relationship between the distribution addition value obtained by the fourth embodiment and the known zero-dispersion wavelength (λ) is shown. The optical fiber 5 to be measured has the same configuration as the above-described embodiments. The measurement of the zero-dispersion wavelength of the optical fiber to be measured is performed by the tunable probe light source 7
The output light from the wavelength tunable pump light source 2 is converted into the optical fiber coupler 10
1530 nm, in which the output wavelength of the probe light source 7 is shorter than the emission wavelength of the pump light source 2, and the combined output light is input to the optical fiber 5 to be measured.
To 1537 nm and from 1563 nm to 1570 nm, which is the long wavelength side of the emission wavelength of the same light source, every 1 nm, the emission wavelength of the pump light source 2 is changed to 1545 nm.
To 1555 nm was swept in 0.2 nm steps. The distribution value of the four-wave mixed light power included in the output light emitted from the measured optical fiber 5 obtained at this time is measured by the optical spectrum analyzer 6 for a plurality of different oscillation wavelengths of the probe light source 7, and the distribution addition is performed. The value was calculated.

【0032】次に被測定光ファイバ5の入射端と出射端
を入れ替えて同様の測定と加算平均を行って分布加算値
をもとめた。上記の入射端と出射端の入れ替え前後の分
布加算値を、更に加算平均して目的とする分布加算値を
もとめ、図8にプロットした。
Next, the incident end and the emitting end of the optical fiber 5 to be measured were replaced with each other, and the same measurement and arithmetic averaging were performed to obtain the distribution addition value. The distribution added values before and after the exchange of the incident end and the emission end were further averaged to obtain a target distribution added value and plotted in FIG.

【0033】図8より、ポンプ光源の発振波長が、被測
定光ファイバの既知の零分散波長(λ。)である 1548n
m 、1550nm、1552nmと一致した各波長位置に極大が生じ
ている。零分散波長以外の波長位置にも微小なピ−クが
見られるものの零分散波長位置での極大値と比べて非常
に小さく両者の識別は極めて容易である。したがって、
分布加算値の極大を与えるポンプ光源の発振波長から被
測定光ファイバの零分散波長を非常に正確に測定できる
ことが分かる。なお、本実施例では、光ファイバの入射
端と出射端を入れ替えて測定した結果を追加したことに
より、図7の第3の実施例よりも測定精度が向上してい
る。
From FIG. 8, the oscillation wavelength of the pump light source is 1548n, which is the known zero-dispersion wavelength (λ.) Of the optical fiber to be measured.
There is a maximum at each wavelength position that coincides with m, 1550 nm, and 1552 nm. Although minute peaks can be seen at wavelength positions other than the zero-dispersion wavelength, they are extremely small compared to the maximum value at the zero-dispersion wavelength position, and it is extremely easy to distinguish between them. Therefore,
It can be seen that the zero-dispersion wavelength of the measured optical fiber can be measured very accurately from the oscillation wavelength of the pump light source that gives the maximum of the distribution added value. In addition, in this embodiment, the measurement accuracy is improved as compared with the third embodiment of FIG. 7 by adding the result of the measurement in which the entrance end and the exit end of the optical fiber are exchanged.

【0034】なお、以上に示した実施例では、プローブ
光源の発振波長を一定とした状態で前記ポンプ光源の発
振波長を掃引したが、前記プローブ光源と前記ポンプ光
源相互の発振波長差を一定とした状態で前記ポンプ光源
の発振波長を掃引した場合についても同等の結果が得ら
れる。例えば、両光源の発振波長差を1nmと5nmで
プローブ光源の発振波長を変化させた場合にも、前記と
同様な結果を得ることが出来た。
In the embodiment described above, the oscillation wavelength of the pump light source is swept while the oscillation wavelength of the probe light source is constant, but the oscillation wavelength difference between the probe light source and the pump light source is constant. Similar results are obtained when the oscillation wavelength of the pump light source is swept in this state. For example, even when the oscillation wavelength difference between the two light sources was changed to 1 nm and 5 nm, the same result as above could be obtained.

【0035】また、光ファイバに限らず他の光導波路の
零分散波長の測定も同様に可能なことは言うまでもな
い。
Needless to say, the zero-dispersion wavelength of not only the optical fiber but also other optical waveguides can be similarly measured.

【0036】[0036]

【発明の効果】以上説明したように、本発明による零分
散波長の測定法により、光ファイバなど光導波路の零分
散波長を極めて精度良く測定できる。即ち、零分散波長
に対するポンプ光源の発振波長や、プローブ光源の発振
波長の位置を種々変化させて得た4光波混合光のパワー
の分布を、ポンプ光源の各発振波長位置毎に加算すれ
ば、零分散波長の波長位置での4光波混合光のパワ−の
値は加算の回数に応じて大きくなるが、零分散波長以外
で生ずる4光波混合光のパワーの値は、測定ケースごと
に極大及び極小を示す波長位置が少しずつずれているた
めに、加算すると、4光波混合光パワ−の周期的変動が
キャンセルされ、そのポンプ光源の発振波長への依存性
は平坦となるので、上記の複数の測定結果を、加算又は
加算の上平均することにより、零分散波長により生ずる
極大値を与える波長位置をきわめて容易に識別、測定で
きる。
As described above, the zero-dispersion wavelength measuring method according to the present invention can measure the zero-dispersion wavelength of an optical waveguide such as an optical fiber with extremely high accuracy. That is, if the oscillation wavelength of the pump light source with respect to the zero-dispersion wavelength and the power distribution of the four-wave mixed light obtained by variously changing the oscillation wavelength position of the probe light source are added for each oscillation wavelength position of the pump light source, The power value of the four-wave mixed light at the wavelength position of the zero-dispersion wavelength increases with the number of additions, but the power value of the four-wave mixed light generated at a wavelength other than the zero-dispersion wavelength has a maximum value for each measurement case. Since the wavelength positions showing the minimum are slightly shifted, when added, the periodic fluctuation of the four-wave mixing light power is canceled and the dependence on the oscillation wavelength of the pump light source becomes flat. By adding or averaging the measurement results of, the wavelength position giving the maximum value generated by the zero-dispersion wavelength can be identified and measured very easily.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例に用いる零分散波長の測定装置
である。
FIG. 1 is a zero-dispersion wavelength measuring device used in an embodiment of the present invention.

【図2】従来技術による零分散波長の測定装置の例であ
る。
FIG. 2 is an example of a zero-dispersion wavelength measuring device according to the prior art.

【図3】従来法により得た、零分散波長が光ファイバの
長さ方向に一定の場合の、4光波混合光パワーの分布と
光ファイバの零分散波長との関係である。
FIG. 3 shows the relationship between the distribution of four-wave mixed light power and the zero-dispersion wavelength of the optical fiber when the zero-dispersion wavelength is constant in the length direction of the optical fiber, which is obtained by the conventional method.

【図4】従来法により得た、零分散波長が光ファイバの
長さ方向に分布している場合の、4光波混合光パワーの
分布と光ファイバの零分散波長との関係である。
FIG. 4 is a relationship between the distribution of the four-wave mixed light power and the zero-dispersion wavelength of the optical fiber when the zero-dispersion wavelength is distributed in the length direction of the optical fiber, obtained by the conventional method.

【図5】第1の実施例に基づいて得られた、ポンプ光源
波長の関数としての4光波混合光パワーの分布と光ファ
イバの零分散波長との関係である。
FIG. 5 is a relationship between the distribution of the four-wave mixing light power as a function of the pump light source wavelength and the zero-dispersion wavelength of the optical fiber, which is obtained based on the first embodiment.

【図6】第2の実施例に基づいて得られた、ポンプ光源
波長の関数としての4光波混合光パワーの分布と光ファ
イバの零分散波長との関係である。
FIG. 6 shows the relationship between the distribution of the four-wave mixing light power as a function of the pump light source wavelength and the zero-dispersion wavelength of the optical fiber, obtained based on the second embodiment.

【図7】第3の実施例に基づいて得られた、ポンプ光源
波長の関数としての4光波混合光パワーの分布と光ファ
イバの零分散波長との関係である。
FIG. 7 shows the relationship between the distribution of the four-wave mixing light power as a function of the pump light source wavelength and the zero-dispersion wavelength of the optical fiber, obtained based on the third embodiment.

【図8】第4の実施例に基づいて得られた、ポンプ光源
波長の関数としての4光波混合光パワーの分布と光ファ
イバの零分散波長との関係である。
FIG. 8 is a relationship between the distribution of the four-wave mixing light power as a function of the pump light source wavelength and the zero-dispersion wavelength of the optical fiber, which is obtained based on the fourth embodiment.

【符号の説明】[Explanation of symbols]

1:プロ−ブ光源 2:波長可変ポンプ光源 3:偏波コントロ−ラ 4:光合波器 5:被測定光ファイバ 6:光スペクトルアナライザ 7:可変プロ−ブ光源 10:光ファイバカプラ 1: Probe light source 2: Variable wavelength pump light source 3: Polarization controller 4: Optical multiplexer 5: Optical fiber under test 6: Optical spectrum analyzer 7: Variable probe light source 10: Optical fiber coupler

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】1つのプローブ光源と、1つのポンプ光源
の出力光を合波し、前記合波した出力光を被測定光ファ
イバに入射し、かつ前記プローブ光源の発振波長を一定
に維持して前記ポンプ光源の発振波長を所定の波長範囲
で変化させたときに、前記被測定光ファイバから出射す
る前記ポンプ光源の発振波長の関数としての4光波混合
光パワーの分布を測定し、前記プローブ光源の発振波長
を変えて複数同じ測定を行ない、その複数の測定結果
を、前記ポンプ光源の各波長位置で加算もしくは加算平
均して、4光波混合光パワーの分布の極大値を与える前
記ポンプ光源の発振波長を決定することによって、光フ
ァイバの零分散波長を求めることを特徴とする光ファイ
バの零分散波長の測定方法。
1. A probe light source and an output light of a pump light source are combined, the combined output light is incident on an optical fiber to be measured, and the oscillation wavelength of the probe light source is kept constant. Measuring the distribution of the four-wave mixed light power as a function of the oscillation wavelength of the pump light source emitted from the optical fiber under test when the oscillation wavelength of the pump light source is changed within a predetermined wavelength range. A plurality of the same measurements are performed by changing the oscillation wavelength of the light source, and the plurality of measurement results are added or averaged at each wavelength position of the pump light source to give the maximum value of the distribution of the four-wave mixed light power. A method for measuring the zero-dispersion wavelength of an optical fiber, characterized in that the zero-dispersion wavelength of the optical fiber is determined by determining the oscillation wavelength of the optical fiber.
【請求項2】1つのプローブ光源と、1つのポンプ光源
の出力光を合波し、前記合波した出力光を被測定光ファ
イバに入射し、かつ前記プローブ光源と前記ポンプ光源
との発振波長差を一定に維持して前記ポンプ光源の発振
波長を所定の波長範囲で変化させたときに、前記被測定
光ファイバから出射する前記ポンプ光源の発振波長の関
数としての4光波混合光パワーの分布を測定し、前記発
振波長差を変えて複数回同じ測定を行ない、その複数の
測定結果を、前記ポンプ光源の各波長位置で加算もしく
は加算平均して、4光波混合光パワーの分布の極大値を
与える前記ポンプ光源の発振波長を決定することによっ
て、光ファイバの零分散波長を求めることを特徴とする
光ファイバの零分散波長の測定方法。
2. A probe light source and an output light of one pump light source are combined, the combined output light is incident on an optical fiber to be measured, and the oscillation wavelengths of the probe light source and the pump light source are combined. Distribution of the four-wave mixed light power as a function of the oscillation wavelength of the pump light source emitted from the optical fiber under measurement when the oscillation wavelength of the pump light source is changed within a predetermined wavelength range while keeping the difference constant. Is measured, the same measurement is performed a plurality of times while changing the oscillation wavelength difference, and the plurality of measurement results are added or averaged at each wavelength position of the pump light source to obtain the maximum value of the distribution of the four-wave mixed light power. A method for measuring the zero-dispersion wavelength of an optical fiber, characterized in that the zero-dispersion wavelength of the optical fiber is obtained by determining the oscillation wavelength of the pump light source that gives
【請求項3】前記プローブ光源の発振波長を前記ポンプ
光源の発振波長に比べて短波長側に設定したことを特徴
とする請求項1又は2に記載の光ファイバの零分散波長
の測定方法。
3. The method for measuring the zero-dispersion wavelength of an optical fiber according to claim 1, wherein the oscillation wavelength of the probe light source is set to a shorter wavelength side than the oscillation wavelength of the pump light source.
【請求項4】前記プローブ光源の発振波長を前記ポンプ
光源の発振波長に比べて長波長側に設定したことを特徴
とする請求項1又は2に記載の光ファイバの零分散波長
の測定方法。
4. The method for measuring the zero-dispersion wavelength of an optical fiber according to claim 1, wherein the oscillation wavelength of the probe light source is set to a longer wavelength side than the oscillation wavelength of the pump light source.
【請求項5】請求項3又は4の測定方法で測定された結
果を更に加算もしくは加算平均して、4光波混合光パワ
ーの分布の極大値を与える前記ポンプ光源の発振波長を
決定することによって、光ファイバの零分散波長を求め
ることを特徴とする光ファイバの零分散波長の測定方
法。
5. The oscillation wavelength of the pump light source that gives the maximum value of the distribution of the four-wave mixed light power is further determined by adding or averaging the results measured by the measuring method according to claim 3 or 4. , A method for measuring the zero-dispersion wavelength of an optical fiber, characterized in that the zero-dispersion wavelength of the optical fiber is obtained.
【請求項6】請求項1乃至請求項5に記載の測定方法
を、前記被測定光ファイバの入射端と出射端を入替えて
行ない、その入替え前と後の測定結果をさらに加算もし
くは加算平均して、4光波混合光パワーの極大値を与え
る前記ポンプ光源の発振波長を決定することによって光
ファイバの零分散波長を求めることを特徴とする請求項
1乃至請求項5に記載の光ファイバの零分散波長の測定
方法。
6. The measuring method according to claim 1, wherein the entrance end and the exit end of the optical fiber to be measured are interchanged, and the measurement results before and after the interchange are further added or arithmetically averaged. The zero-dispersion wavelength of the optical fiber is determined by determining the oscillation wavelength of the pump light source that gives the maximum value of the four-wave mixed light power. Dispersion wavelength measurement method.
JP8374395A 1995-04-10 1995-04-10 Measuring method of zero-dispersion wavelength Pending JPH08278225A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8374395A JPH08278225A (en) 1995-04-10 1995-04-10 Measuring method of zero-dispersion wavelength

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8374395A JPH08278225A (en) 1995-04-10 1995-04-10 Measuring method of zero-dispersion wavelength

Publications (1)

Publication Number Publication Date
JPH08278225A true JPH08278225A (en) 1996-10-22

Family

ID=13811016

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8374395A Pending JPH08278225A (en) 1995-04-10 1995-04-10 Measuring method of zero-dispersion wavelength

Country Status (1)

Country Link
JP (1) JPH08278225A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010151673A (en) * 2008-12-25 2010-07-08 Sumitomo Electric Ind Ltd Apparatus and method for measuring chromatic dispersion

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010151673A (en) * 2008-12-25 2010-07-08 Sumitomo Electric Ind Ltd Apparatus and method for measuring chromatic dispersion

Similar Documents

Publication Publication Date Title
Cohen Comparison of single-mode fiber dispersion measurement techniques
US6937346B2 (en) Wavemeter having two interference elements
Shimizu et al. Coherent self-heterodyne Brillouin OTDR for measurement of Brillouin frequency shift distribution in optical fibers
JPH04215B2 (en)
US6771360B2 (en) Method and apparatus for measuring wavelength dispersion value and/or nonlinear coefficient of optical fibers
Calvani et al. Polarization measurements on single-mode fibers
JP2001228054A (en) Apparatus and method for measurement of polarization mode dispersion
CN111277328A (en) System and method for measuring group velocity dispersion in optical waveguide
US5661554A (en) Method of and device for measuring the nonlinear refractive index in a single mode optical fibre
JP2010151674A (en) Apparatus and method for measuring chromatic dispersion
US4790655A (en) System for measuring laser spectrum
JPH08278225A (en) Measuring method of zero-dispersion wavelength
JP2010151673A (en) Apparatus and method for measuring chromatic dispersion
US11243141B2 (en) Method and apparatus for chromatic dispersion measurement based on optoelectronic oscillations
Mochizuki et al. Optical fiber dispersion measurement technique using a streak camera
Jiao et al. High-precision microwave frequency measurement based on stimulated Brillouin scattering with simple configuration
Day et al. Optical fiber metrology
Lamminpää et al. Reliable determination of optical fiber nonlinearity using dispersion simulations and improved power measurements
US7352450B2 (en) Determination of polarization dependent properties
Ilev et al. A fiber-optic autocollimation refractometric method for dispersion measurement of bulk optical materials using a widely tunable fiber Raman laser
JP3317654B2 (en) Chromatic dispersion measuring device for optical components using delay unit
JPH0953999A (en) Optical external force detector
Morrone et al. Simple method to measure the fiber optic nonlinear coefficient using a Sagnac interferometer
Melloni et al. Polarization independent nonlinear refractive index measurement in optical fiber
Grace et al. 1550Nm Chromatic Dispersion Measurement Techniques For Field Application