JPH08278090A - Heat exchanger and heat machine - Google Patents

Heat exchanger and heat machine

Info

Publication number
JPH08278090A
JPH08278090A JP8018595A JP8018595A JPH08278090A JP H08278090 A JPH08278090 A JP H08278090A JP 8018595 A JP8018595 A JP 8018595A JP 8018595 A JP8018595 A JP 8018595A JP H08278090 A JPH08278090 A JP H08278090A
Authority
JP
Japan
Prior art keywords
fluid
pressure
heat exchanger
heat
fluids
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP8018595A
Other languages
Japanese (ja)
Inventor
Hidekazu Goto
英一 後藤
Susumu Kase
晋 加瀬
Kaitou Chiyou
懐東 丁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Hitachi Ltd
NEC Corp
IBM Japan Ltd
RIKEN Institute of Physical and Chemical Research
Original Assignee
Fujitsu Ltd
Hitachi Ltd
NEC Corp
IBM Japan Ltd
RIKEN Institute of Physical and Chemical Research
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd, Hitachi Ltd, NEC Corp, IBM Japan Ltd, RIKEN Institute of Physical and Chemical Research filed Critical Fujitsu Ltd
Priority to JP8018595A priority Critical patent/JPH08278090A/en
Publication of JPH08278090A publication Critical patent/JPH08278090A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

PURPOSE: To reduce the thermal conduction in the flowing direction of fluid, to make the fluid pressure in a pore group or groove group uniform and to increase the heat exchange capacity by opening the pore group or the groove group for reducing the thermal resistance between the fluid and a thin plate on the plate, providing a small gap in the flowing direction of the fluid and providing a plurality of the gaps in parallel on the plate. CONSTITUTION: A plurality of thin plates 30 made of metal material having high thermal conductivity which is spread perpendicular to the flowing directions of fluid 1 (F1) and fluid 2 (F2) are provided substantially in contact with pressure resistant circular tubes 10 and 20. A plurality of pores (circular pores) 32 for passing the fluids 1, 2 are opened to a pore group on the plate 30 to reduce the thermal resistance between the fluid and the plate 30. The heat from the fluid 1 is rapidly transferred to the tube 10 by the highly thermal conduction in the plate 10. As a result, the heat exchange between the fluids 1 and 2 is increased as compared with the case that the plate 30 is not provided. A laminated structure is formed via a small gap 34 to make the fluid pressure in the hole 32 uniform.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、熱交換器及び熱機械に
関し、特に装置の容積当たりの熱交換能力が極めて大き
い熱交換器及びこれを用いた熱機械に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat exchanger and a heat machine, and more particularly to a heat exchanger having a very large heat exchange capacity per unit volume of a device and a heat machine using the same.

【0002】[0002]

【従来の技術】従来の熱交換器としては、例えば熱機関
または熱ポンプの重要な要素として広く用いられている
多管式熱交換器が知られている。
2. Description of the Related Art As a conventional heat exchanger, for example, a multi-tube heat exchanger widely used as an important element of a heat engine or a heat pump is known.

【0003】多管式熱交換器では複数の真直な円管を一
方向に平行して配置し、各々の円管の内側に第1の流体
を円管の軸方向に流し、円管の外側に第2の流体を、円
管の軸方向に流すことにより2流体の間に熱交換(熱の
授受)を行わせる仕組であり、熱機関と熱ポンプでは全
体装置の中で熱交換器が大きな容積割合を占める場合が
多く、また流体の流れは乱流であることが多い。
[0003] In a multi-tube heat exchanger, a plurality of straight circular tubes are arranged in parallel in one direction, a first fluid flows in the inside of each circular tube in the axial direction of the circular tube, and outside the circular tube. The second fluid is caused to flow in the axial direction of the circular tube so that heat exchange (transfer of heat) is performed between the two fluids. In a heat engine and a heat pump, a heat exchanger is used in the overall apparatus. Often they occupy a large volume fraction and the fluid flow is often turbulent.

【0004】[0004]

【発明が解決しようとする課題】上記の従来の多管式熱
交換器の中の流体と熱の流れについては、これまでに多
くの実験的、理論的な研究があり、その成果の一端は、
例えば機械工学便覧(日本機械学会刊行)に見ることが
できるが、これら従来の研究ならびにこれら研究に基づ
く多管式熱交換器の従来の設計指針では、本発明の後述
の着目点、つまり中に流体を流す円管(もしくは後述の
円孔)の直径(半径)を小さくすることによって熱交換
器の容積を著しく小さくできると言う理論的事実、に実
用性が認識されたことはなく、従ってこの事実を利用し
て装置の容積当たりの熱交換能力が極めて大きい熱交換
器が設計製作されたこともなく、熱交換器設計の選択肢
が狭められていた。
There have been many experimental and theoretical studies on the flow of fluid and heat in the conventional multi-tube heat exchanger described above. ,
For example, as can be seen in the Handbook of Mechanical Engineering (published by the Japan Society of Mechanical Engineers), in these conventional studies and the conventional design guidelines for the multitubular heat exchanger based on these studies, the following points of interest of the present invention, namely, The theoretical fact that the volume of a heat exchanger can be significantly reduced by reducing the diameter (radius) of a circular pipe (or a circular hole described later) through which a fluid flows has not been recognized as practical, and thus this Utilizing the fact, no heat exchanger having a very large heat exchange capacity per unit volume of the device was designed and manufactured, and the options for heat exchanger design were narrowed.

【0005】本発明は、従来の技術の有するこのような
問題点に鑑みてなされたものであり、その目的とすると
ころは、従来注目されなかった理論的事実を利用するこ
とにより、従来達成が困難とされていた装置容積当たり
熱交換能力が極めて大きな熱交換器及び熱機械を提供し
ようとするものである。
The present invention has been made in view of the above-mentioned problems of the prior art, and an object of the present invention is to make use of theoretical facts which have not been noticed so far to achieve the conventional art. An object of the present invention is to provide a heat exchanger and a heat machine having a very large heat exchange capacity per unit volume, which has been regarded as difficult.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
に、本発明における熱交換器は、互いに熱を交換する2
つの流体を、当該2流体間の圧力差に耐える材質で作ら
れた耐圧壁で分離し、当該2流体は互いに逆方向に対向
して流し、当該2流体の内、少なくとも一方の流体中に
あって、前記耐圧壁に略接触し、当該流体の流れる方向
と直角方向に広がる高熱伝導率材質の薄板を配し、当該
薄板には前記流体が通過することによって当該流体と薄
板の間の熱抵抗を減少させる細孔群又は溝群を穿設し、
当該薄板を、前記流体の流れ方向に僅少な間隙を設けて
複数並設して流体の流れ方向への熱伝導を減少せしめる
とともに、前記細孔群又は溝群内の流体圧力を均一なら
しめたことを特徴とする。
In order to achieve the above object, a heat exchanger according to the present invention exchanges heat with each other.
The two fluids are separated by a pressure-resistant wall made of a material that can withstand the pressure difference between the two fluids, and the two fluids flow in opposite directions to each other, and are separated by at least one of the two fluids. A thin plate made of a material having a high thermal conductivity that is substantially in contact with the pressure-resistant wall and spreads in a direction perpendicular to the direction in which the fluid flows, and the thermal resistance between the fluid and the thin plate is increased by passing the fluid through the thin plate. Drilling a group of pores or grooves to reduce
The thin plates were arranged in parallel with a small gap in the flow direction of the fluid to reduce the heat conduction in the flow direction of the fluid and to equalize the fluid pressure in the group of pores or grooves. It is characterized by the following.

【0007】また、本発明の熱交換器は、請求項1記載
の熱交換器において、前記耐圧壁が、前記2流体の内一
方の流体を内側に流す少なくとも1以上の耐圧管であっ
て、他方の流体を内側に流す耐圧管の内部に配置された
耐圧管の管壁によって構成されたことを特徴とする。
In the heat exchanger according to the present invention, the pressure-resistant wall is at least one pressure-resistant tube through which one of the two fluids flows. It is characterized by being constituted by the tube wall of the pressure-resistant tube arranged inside the pressure-resistant tube through which the other fluid flows.

【0008】さらに、本発明の熱交換器は、請求項2記
載の熱交換器において、前記耐圧壁が、断面形状が閉曲
線状であって前記僅少な間隙程度の高さを有する部材を
各前記薄板の間に配設して構成されたことを特徴とす
る。
Further, in the heat exchanger according to the present invention, in the heat exchanger according to the second aspect, each of the pressure-resistant walls includes a member having a closed curved cross section and a height of about the small gap. It is characterized by being arranged between thin plates.

【0009】さらにまた、本発明の熱交換器は、請求項
1〜3記載の熱交換器において、隣接する前記薄板の細
孔又は溝の少なくとも一部が、互いにずれた位置に配置
されるよう構成されたことを特徴とする。
Further, in the heat exchanger according to the present invention, at least a part of the pores or the grooves of the adjacent thin plates are arranged at positions shifted from each other. It is characterized by comprising.

【0010】また、本発明の熱機械は、各々略一定の温
度の高低2熱源との間に作業ガスを熱的に接触せしめ、
当該作業ガスに等温圧縮、等温膨脹と等圧熱交換を行わ
しめることにより、エントロピー生成損失のないエリク
ソンサイクルを近似的に実現せしめる熱機械であって、
請求項1乃至4記載の熱交換器を具備したことを特徴と
する。
[0010] Further, the thermal machine of the present invention makes the working gas thermally contact between the heat source and the two heat sources having a substantially constant temperature.
A thermal machine that approximately realizes an Ericsson cycle without loss of entropy generation by performing isothermal compression, isothermal expansion, and isobaric heat exchange on the working gas,
A heat exchanger according to any one of claims 1 to 4 is provided.

【0011】[0011]

【作用】本発明による熱交換器においては、一方の流体
(流体1)は薄板に穿たれた細孔群又は溝群の中を流れ
通過するに際して薄板と熱交換(熱の授受)を行い、交
換された熱は高熱伝導率の薄板材質内の熱伝導によって
耐圧壁に伝えられ、この耐圧壁に接して流れる他方の流
体(流体2)に直接伝えられるか、もしくは流体1の場
合と同様に、耐圧管に接しつつ流体2の中に向かって耐
圧管の軸と垂直方向に広がる薄板材質内の熱伝導によっ
てこの薄板に穿たれた細孔群又は溝群に伝えられ、次い
でこの細孔群又は溝群を通過する流体2に伝えられる
が、後述の円孔内の層流(ハーゲン・ポアゾイユ流れ)
の熱伝導理論によれば、熱交換器の容積Vは円孔半径R
0 、或いは溝幅2X0 を小さく選ぶことによりR0 2
比例して小さくすることができるので、孔又は溝加工の
難易、コスト、ごみによる孔又は溝の目詰まり、などを
考慮しつつ可能な限り小さい円孔半径R0 、或いは溝幅
2X0 、を採用することにより、容積当たりの熱交換能
力が極めて大きな熱交換器を得ることができる。
In the heat exchanger according to the present invention, one of the fluids (fluid 1) exchanges heat with the thin plate when passing through a group of pores or grooves formed in the thin plate. The exchanged heat is transmitted to the pressure-resistant wall by heat conduction in the thin plate material having a high thermal conductivity, and is directly transmitted to the other fluid (fluid 2) flowing in contact with the pressure-resistant wall, or similarly to the case of the fluid 1, Is transmitted to the group of pores or grooves formed in the thin plate by heat conduction in the thin plate material which spreads in the direction perpendicular to the axis of the pressure tube toward the fluid 2 while being in contact with the pressure tube. Alternatively, the flow is transmitted to the fluid 2 passing through the groove group, but is described as a laminar flow (hagen-poiseuille flow) in a circular hole described later.
According to the heat conduction theory, the volume V of the heat exchanger is equal to the radius R of the hole.
0 or the groove width 2X 0 can be reduced in proportion to R 0 2 by selecting a small value, so that it is possible to take into account the difficulty of drilling holes or grooves, cost, clogging of holes or grooves due to dust, etc. By adopting the smallest possible hole radius R 0 or groove width 2X 0 , a heat exchanger having an extremely large heat exchange capacity per volume can be obtained.

【0012】このような細孔群又は溝群を採用すること
により、円管を用いた多管式熱交換器よりも製作が容易
で容積が大幅に小さい熱交換器を実現することができ
る。また、細孔群又は溝群を持つ薄板を僅少な間隙を設
けて複数並設した構造とすることにより、流体の流れ方
向への熱伝導を減少せしめると共に、薄板にかかる静水
圧的応力以外の応力を減少せしめて薄板の長寿命化等を
図ることができる。
By employing such a group of pores or grooves, it is possible to realize a heat exchanger which is easier to manufacture and has a significantly smaller volume than a multi-tube heat exchanger using circular tubes. In addition, by having a plurality of thin plates having a group of pores or grooves arranged side by side with a small gap, heat conduction in the flow direction of the fluid is reduced, and other than the hydrostatic stress applied to the thin plate. The stress can be reduced to extend the life of the thin plate.

【0013】[0013]

【実施例】以下、図面に基づいて、本発明による熱交換
器及び熱機械の実施例を詳細に説明するが、説明の便宜
上まず本発明による改善の対象となる従来の多管式熱交
換器の構造例について述べる。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is an exploded perspective view of a heat exchanger and a heat machine according to an embodiment of the present invention. An example of the structure will be described.

【0014】図9及び図10はこのような従来の多管式
熱交換器の一例50の主要部分を示すものである。
FIGS. 9 and 10 show the main parts of an example 50 of such a conventional multi-tube heat exchanger.

【0015】1本の耐圧円管10の内部空間11に流体
1をz方向に流し、この耐圧円管10を1本の耐圧円管
20の内部に、耐圧円管20に対して同心円状に配置
し、また耐圧円管10の外側であると同時に耐圧円管2
0の内側である空間13に流体2を−z方向に流すこと
によって、流体1と流体2の間で熱の交換を行う。
The fluid 1 is caused to flow in the z direction in the internal space 11 of one pressure-resistant circular tube 10, and the pressure-resistant circular tube 10 is placed inside the one pressure-resistant circular tube 20 concentrically with respect to the pressure-resistant circular tube 20. It is placed outside the pressure-resistant tube 10 and at the same time as the pressure-resistant tube 2
Heat is exchanged between the fluid 1 and the fluid 2 by flowing the fluid 2 in the −z direction into the space 13 inside the zero.

【0016】図11及び図12に示すものは、従来の多
管式熱交換器の一例50における耐圧管の配置の他の例
であり、7本の耐圧円管10を1本の耐圧円管20の内
部に放射状に配置し、各々の耐圧円管10の内部11に
流体1をz方向に流し、耐圧円管10の外側であって耐
圧円管20の内側である空間13に流体2を−z方向に
流すことによって、流体1と流体2の間で熱の交換を行
う。
FIGS. 11 and 12 show another example of the arrangement of pressure-resistant tubes in an example 50 of a conventional multi-tube heat exchanger, in which seven pressure-resistant tubes 10 are replaced with one pressure-resistant tube. 20, the fluid 1 flows in the z direction in the interior 11 of each pressure-resistant tube 10, and the fluid 2 flows into the space 13 outside the pressure-resistant tube 10 and inside the pressure-resistant tube 20. Heat is exchanged between the fluid 1 and the fluid 2 by flowing in the −z direction.

【0017】図1及び図2は、本発明の第1の実施例に
よる熱交換器100の主要部分であり、耐圧円管10の
内部空間11、及び耐圧円管10の外側であって耐圧円
管20の内側である空間13、の両空間の一方または双
方(図1、2の場合は双方)に、耐圧円管10と耐圧円
管20に略接触して、流体1(F1),流体2(F2)
の流れる方向(+−z方向)と直角方向に広がる熱伝導
率の高い金属材質(表1参照)の薄板30を複数個置
き、この薄板30には流体1,2の通過する複数個の細
孔(円孔)32を穿って細孔群とすることによって流体
と薄板30の間の熱抵抗を小ならしめ、薄板30内の高
度の熱伝導によって流体1からの熱を急速に耐圧円管1
0に伝え、結果として流体1と流体2の間の熱交換を薄
板30の設けられていない場合に比して大幅に増大せし
め、また薄板30複数個を流体1,2の流れる方向(+
−z方向)に僅少な間隙34を介して積み重ねた構造と
することにより、この間隙が流体1,2の流れる方向
(+−z方向)への熱伝導による熱損失を減少せしめる
と共に円孔32内の流体圧力を均一ならしめて、薄板3
0に不均一な圧力がかかることによる応力の発生を減少
させている。
FIGS. 1 and 2 show a main part of a heat exchanger 100 according to a first embodiment of the present invention. One or both of the spaces 13 inside the tube 20 (both in FIGS. 1 and 2) substantially contact the pressure-resistant circular tube 10 and the pressure-resistant circular tube 20, and the fluid 1 (F1) and the fluid 2 (F2)
A plurality of thin plates 30 made of a metal material having a high thermal conductivity (see Table 1) spreading in a direction perpendicular to the flowing direction (+ -z direction) are placed on the thin plate 30. By forming holes (circular holes) 32 to form a group of pores, the thermal resistance between the fluid and the thin plate 30 is reduced, and the heat from the fluid 1 is rapidly released from the fluid 1 by a high degree of heat conduction in the thin plate 30. 1
0, and as a result, the heat exchange between the fluid 1 and the fluid 2 is greatly increased as compared with the case where the thin plate 30 is not provided.
In a structure in which the small holes 34 are stacked in a small gap (−z direction), the gap reduces heat loss due to heat conduction in the direction in which the fluids 1 and 2 flow (+ −z direction), and the circular holes 32. Equalize the fluid pressure in the
The occurrence of stress due to non-uniform pressure applied to zero is reduced.

【0018】また熱交換器100において図5に示すよ
うに流体1の幅に広がる薄板30を、そのまま引き続き
流体2の中に広がらしめ、耐圧円管10に替えて複数の
薄い耐圧管15も用いることができる。この場合、薄板
30と環状の薄い耐圧管15を交互に積み上げ、薄板3
0に円環状の溝31を設けて耐圧管15をはめ込み、は
め込み部分を溶接或いは蝋付けして漏れ止めとする。こ
の構造は流体1から流体2への伝熱を更に確実にするも
のである。
In the heat exchanger 100, as shown in FIG. 5, the thin plate 30 spreading over the width of the fluid 1 is continuously spread in the fluid 2 as it is, and a plurality of thin pressure-resistant tubes 15 are used instead of the pressure-resistant circular tube 10. be able to. In this case, the thin plates 30 and the annular thin pressure-resistant tubes 15 are alternately stacked, and the thin plates 3
An annular groove 31 is provided at 0 and the pressure-resistant tube 15 is fitted therein, and the fitted portion is welded or brazed to prevent leakage. This structure further ensures the heat transfer from the fluid 1 to the fluid 2.

【0019】図3,4に示すものは本発明による熱交換
器100の主要部分の別例であり、複数の耐圧円管10
の内部空間11、及び耐圧円管10の外側であって耐圧
円管20の内側である空間13、の両空間の一方または
双方に、図1、2に示したものと同様な細孔(円孔)3
2群付きの薄板30を複数個設け、また耐圧円管10を
複数設けたものである。耐圧円管10の本数N1 を耐圧
円管10の内部11での半径方向のエントロピー生成損
失を一定限度内に抑制することを考慮して後述の式(4
6)に従って決定することが好ましい。
FIGS. 3 and 4 show another example of the main part of the heat exchanger 100 according to the present invention.
In one or both of the internal space 11 and the space 13 outside the pressure-resistant circular tube 10 and inside the pressure-resistant circular tube 20, pores (circles) similar to those shown in FIGS. (Hole) 3
A plurality of thin plates 30 with two groups are provided, and a plurality of pressure-resistant circular tubes 10 are provided. Considering that the number N 1 of the pressure-resistant pipes 10 is to keep the entropy generation loss in the radial direction within the inside 11 of the pressure-resistant pipe 10 within a certain limit, the following equation (4) is used.
Preferably, it is determined according to 6).

【0020】また図3,4に示す実施例においても、図
5に示すように流体1の中に広がる薄板30を、そのま
ま引き続き流体2の中に広がらしめ、耐圧円管10に替
えて複数の薄い環状の耐圧管15を用いることもできる
ことは、前述した場合と同様である。
Also, in the embodiment shown in FIGS. 3 and 4, the thin plate 30 spreading in the fluid 1 is continuously spread in the fluid 2 as shown in FIG. As in the case described above, a thin annular pressure-resistant tube 15 can be used.

【0021】以上で本発明による熱交換器の構造の概要
を説明したが、ここで本発明の着想の理論的基礎である
ハーゲン・ポアゾイユ流れにおける熱伝導の理論、特に
細孔(円孔)32の大きさ(円孔の半径R0 )を小さく
選ぶことにより熱交換器の容積VをR0 2 に比例して小
さくすることができることの理論的根拠を説明する。
The outline of the structure of the heat exchanger according to the present invention has been described above. Here, the theory of heat conduction in the Hagen-Poiseuille flow, which is the theoretical basis of the idea of the present invention, in particular, pores (circular holes) 32 choosing the size of (the radius R 0 of the circular holes) reduce the volume V of the heat exchanger will be described the theoretical basis for being able to be reduced in proportion to the R 0 2 by the.

【0022】先ず、円孔32内の流れが、円孔軸をz軸
とする直交座標系(x,y,z)の上の速度ベクトル
(u,v,w)によって表されるとき (u,v,w)=(0,0,w(r)) r2 =x2 +y2 (1) w(r)=2WA (1−(r/R0 2 ) (2) WA =−Pz 0 2 /(8η)=−ZPz L/(8η) (3) L=R0 2 /Z (4) Pz =(∂P/∂z)=gradP=定数 (5) が成立するものと仮定すると、この流れベクトルはニュ
ートン流体の流動を支配するナビエ・ストークス方程式 D(u,v,w)/Dt=−gradP+ηΔ(u,v,w) D/Dt= (∂/∂t)+u(∂/∂x)+v(∂/∂y)+w(∂/∂z) (6) 或いは、式(6)を円孔内の軸対象で軸方向のみの流れ
に即した表現に書き直した Pz /η=(1/r)(∂/∂r)(r(∂W/∂r)) (7) および境界条件 r=0で ∂W/∂r=0 および r=R0 で W=0 (8) を満足する。これがハーゲン・ポアゾイユ流れとして知
られるものである。なおtは時間、rは円孔32の半径
方向の距離変数、ηは流体の粘性係数、R0 は円孔32
の半径、Zは円孔32の軸方向長さであって薄板30の
厚みの総合計を代表するものであり、WA は円孔32内
の平均流速、式(4)のLは特徴長さ、Pは静圧であ
り、Pz はPのz方向の微分であって、定数であるもの
とする。
First, when the flow in the circular hole 32 is represented by a velocity vector (u, v, w) on a rectangular coordinate system (x, y, z) with the circular axis as the z-axis, (u , v, w) = (0,0 , w (r)) r 2 = x 2 + y 2 (1) w (r) = 2W A (1- (r / R 0) 2) (2) W A = −P z R 0 2 / (8η) = − ZP z L / (8η) (3) L = R 0 2 / Z (4) P z = (∂P /) z ) = gradP = constant (5) Assuming that this holds, this flow vector is the Navier-Stokes equation governing the flow of Newtonian fluid D (u, v, w) / Dt = -gradP + ηΔ (u, v, w) D / Dt = (∂ / ∂ t) + u (∂ / ∂x) + v (∂ / ∂y) + w (∂ / ∂z) (6) Alternatively, the expression (6) can be expressed in accordance with the flow only in the axial direction with respect to the axial object in the circular hole. Rewritten P z / η = (1 / r) (∂ / ∂r) (r (∂W / ∂r)) (7) and boundary condition W / ∂r = 0 when r = 0 and W when r = R 0 = 0 (8) is satisfied. This is known as the Hagen-Poazoille flow. Here, t is time, r is a distance variable in the radial direction of the circular hole 32, η is the viscosity coefficient of the fluid, and R 0 is the circular hole 32.
Radius, Z is intended to be the axial length of the circular hole 32 to represent the total sum of the thickness of the thin plate 30, W A is the average flow velocity of the circular hole in the 32, L is characterized lengths of formula (4) It is assumed that P is a static pressure, and Pz is a derivative of P in the z direction and is a constant.

【0023】更にT、ρ、Cp 、κをそれぞれ流体の温
度、密度、定圧比熱、熱伝導率とするとき、円孔32内
の温度分布は熱伝導の方程式 ρCp (DT/Dt)=κΔT+(u,v,w)∇P (9) に従う。なお、以下に代表的な作業流体の物性を表2に
示す。
Further, when T, ρ, C p , and κ are temperature, density, specific heat at constant pressure, and heat conductivity of the fluid, respectively, the temperature distribution in the circular hole 32 is represented by a heat conduction equation ρC p (DT / Dt) = κΔT + (u, v, w) ∇P (9) Table 2 below shows the physical properties of typical working fluids.

【0024】[0024]

【表1】 [Table 1]

【0025】[0025]

【表2】 さらに詳しくは、上記式(9)の右辺第2項(粘性発熱
項)を省略し、さらにこの式を円孔32の形状に即した
表現に書き直した上で、Tを孔壁からの温度差TR T(r,z)=Tz (z)+TR (r) (10) に置き換えた方程式 wTz /a=(1/r)(∂/∂r)(r(∂TR /∂r)) (11) 並びに境界条件 r=0で ∂TR /∂r=0 および r=R0 で TR =0 (12) に円孔32内の温度分布が従うことになる。さて温度分
布 Tz =(∂Tz (z)/∂z)=const. (13) TR =(18/11)TRA(1−(4/3)(r/R0 2 +(1/3)(r/R0 4 ) (14) TRA=11Pz z 0 4 /(384 aη) (15) a=k/(ρCp ) (16) =k(1−1/γ)TA /PA (完全気体の場合) (16´) は(11)式(12)式を満足し、熱伝導の微分方程式
(9)の右辺第2項の流体の粘性に伴う発熱を無視した
場合を満足する。但しTz (Z)は円孔32の内壁の温
度、TRAは流体と孔壁の温度差を流速wで加重して求め
た平均温度差であり、TA とPA は熱交換器内の流体の
平均温度と平均圧力である。式(9)の右辺第2項は他
の項よりも小さいので式(12)−(16´)の温度分
布は式(9)の十分満足できる近似解であり、この近似
解を用いて式(9)の粘性損失項(右辺第2項)は別途
に計算することができる。
[Table 2] More specifically, the second term (the viscous heat generation term) on the right side of the above equation (9) is omitted, and this equation is rewritten into an expression conforming to the shape of the circular hole 32, and T is defined as the temperature difference from the hole wall. T R T (r, z) = T z (z) + T R (r) (10) to replace equation wT z / a = (1 / r) (∂ / ∂r) (r (∂T R / ∂ r)) (11) and boundary conditions The temperature distribution in the circular hole 32 follows ∂T R / ∂r = 0 at r = 0 and T R = 0 at r = R 0 (12). Now the temperature distribution T z = (∂T z (z ) / ∂z) = const. (13) T R = (18/11) T RA (1- (4/3) (r / R 0) 2 + ( 1/3) (r / R 0) 4) (14) T RA = 11P z T z R 0 4 / (384 aη) (15) a = k / (ρC p) (16) = k (1-1 / Γ) T A / P A (in the case of a perfect gas) (16 ′) satisfies the equation (11) and the equation (12), and is accompanied by the viscosity of the fluid in the second term on the right side of the differential equation (9) of heat conduction. Satisfies the case where heat generation is ignored. Here, T z (Z) is the temperature of the inner wall of the circular hole 32, T RA is the average temperature difference obtained by weighting the temperature difference between the fluid and the hole wall by the flow velocity w, and T A and P A are inside the heat exchanger. Mean temperature and pressure of the fluid. Since the second term on the right side of the equation (9) is smaller than the other terms, the temperature distribution of the equations (12) to (16 ′) is a sufficiently satisfactory approximate solution of the equation (9). The viscous loss term of (9) (the second term on the right side) can be calculated separately.

【0026】式(2)、(3)のハーゲン・ポアゾイユ
流れに対してこの粘性損失項は (u,v,w)∇P=|WA z | =8ηWA 2 0 -2=Pz 2 0 2 /(8η) (17) となり、この粘性発熱損失を熱交換器の全容積について
積分した値をEとすると F=G/ρ Ε=FZPz (18) となる。但し、Gは流体の質量流量、Fは熱交換器内の
平均的な温度圧力条件(TA ,PA )の下での流体の容
積流量である。ここでは上記の通りこの粘性発熱損失は
充分に小さく無視できるものとして論じたが、後に実際
に無視できることを数値的に確認する。
For the Hagen-Poiseuille flow of equations (2) and (3), this viscous loss term is (u, v, w) ∇P = | W A P z | = 8ηW A 2 R 0 -2 = P z 2 R 0 2 / (8η) (17), and when a value obtained by integrating the viscous heat loss with respect to the entire volume of the heat exchanger is E, F = G / ρΕ = FZP z (18). However, G is the mass flow rate of the fluid, F is a volumetric flow rate of the fluid under average temperature and pressure conditions in the heat exchanger (T A, P A). Here, as described above, this viscous heat loss is discussed as being sufficiently small and negligible, but it will be later confirmed numerically that it is actually negligible.

【0027】以上の解析は既知であり[Sellers,J.R.ほ
か2名Trans.ASME,78−2,441(195
6)]等の文献がある。また式(4)の特徴長さLと積
LwA については L=R0 2 /Z=(384 aηTRA1/2 (11ZTz ZPz -1/2 (19) R0 =(ZL)1/2 =Z1/2 (384 aηTRA1/4 (11ZTZ ZPz -1/4 (20) LwA =48aTRA/(11ZTz ) (21) が成り立つ。ここにZTz とZPz はそれぞれ円孔32
の長手方向両端の温度差と圧力差であり、流体の物性
a,η及びZTz ,ZPz ,TRA,Fは熱交換器の満た
すべき能力条件として外部から与えられる外部仕様であ
るが、式(19)と式(21)に見る通りLとLwA
外部仕様のみによって決まってしまうことは重要であ
る。
The above analysis is known [Sellers, JR et al., Trans. ASME, 78-2, 441 (195)
6)]. The feature length L for a product Lw A L = R 0 2 / Z = (384 aηT RA) 1/2 (11ZT z ZP z) -1/2 (19) of the formula (4) R 0 = (ZL ) 1/2 = Z 1/2 (384 aηT RA) 1/4 (11ZT Z ZP z) -1/4 (20) Lw A = 48aT RA / (11ZT z) (21) holds. Here, ZT z and ZP z are circular holes 32, respectively.
Are the temperature difference and pressure difference at both ends in the longitudinal direction, and the physical properties a, η and ZT z , ZP z , T RA , and F of the fluid are external specifications given externally as capacity conditions to be satisfied by the heat exchanger. It is important that L and Lw A are determined only by the external specifications as seen from the equations (19) and (21).

【0028】これに反してR0 とZは外部仕様を与えた
だけでは決定できず、二者の内何れか一者を任意に決め
うる自由度を残している。以下に熱交換器の要目に関す
る幾つかの重要な量をこれら外部仕様及びR0 の関数と
して示すが、先ず外部仕様値を与えるだけで決まってし
まう諸量の数式的な表現を示す。
On the other hand, R 0 and Z cannot be determined only by providing external specifications, but have a degree of freedom in which one of the two can be arbitrarily determined. In the following, some important quantities relating to the characteristics of the heat exchanger are shown as a function of these external specifications and R 0 , but first a mathematical expression of the quantities which are determined only by giving the external specification values.

【0029】先ず式(3)の孔内平均流速wA は式(1
9)と組み合わせることにより wA =(6aZPz RA1/2 (11ηZTz -1/2 (22) の表現となり、外部仕様のみで定まる量であることが分
かる。図1と図3が示すように、一般には複数(N
1 本)ある耐圧円管10の内断面積の総合計をAとする
と、Aは耐圧円管10内に設置された薄板30の前面面
積の総合計でもあり、このAを流体1、流体2の双方に
対して計算して合計すればその合計が熱交換器の前面面
積を決定することになるが、このAの表現も A=F/(hwA )=(F/h)(6aZPz RA-1/2(11ηZTz 1/2 (23) となって、外部仕様のみで決定してしまうことが分か
る。この式(23)でhは薄板30の開口率、つまり薄
板30の前面面積(=耐圧円管10の内断面積A)に占
める薄板30上の多数の円孔32の総断面積の割合であ
る。また面積Aが1個の円形より成る場合、その半径R
1 は R1 =(F/(πhwA ))1/2 =F1/2 (πh)-1/2(6aZPz RA-1/4(11ηZTz 1/4 (24) であるが、この面積Aは図3,4に示すように複数個N
1 に分割されることもある。また熱交換器の熱負荷、つ
まり単位時間に交換される熱量Qは Q=Fρcp ZTz (25) であり、このQと式(18)のEの比 E/Q=ZPz /(ρcp ZTz ) (26) が熱交換器の全伝熱量に対する粘性発熱損失の割合を表
す。またこの比E/Qは粘性発熱によるエントロピー生
成損失Sη とエントロピー流量Sの比 Sη /S=(ZPz A /TA )/(cp ZTz /TA )=E/Q (27) として表現することができる。但しVA は流体のモル当
たりの容積である。このSη /Sが式(9)右辺第2
項の粘性発熱損失の相対的な大きさを示すことになる。
この値は圧力損失ZPz を小さく設定することにより如
何ほどでも小さくすることができるが、後に述べる実施
例では1%前後に選択しており、この1%程度の値は式
(9)の右辺第2項(粘性発熱項)を略無視しうるほど
小さくするものだと言える。
First, the average flow velocity w A in the hole of the equation (3) is obtained by the equation (1)
By combining with 9), w A = (6aZP z T RA ) 1/2 (11ηZT z ) -1/2 (22), which indicates that the amount is determined only by the external specification. As shown in FIGS. 1 and 3, generally, a plurality (N
1 ) When the total sum of the internal cross-sectional areas of a certain pressure-resistant circular pipe 10 is A, A is also the total sum of the front surface areas of the thin plates 30 installed in the pressure-resistant circular pipe 10. , The sum determines the frontal area of the heat exchanger, and the expression of A is also expressed as A = F / (hw A ) = (F / h) (6aZP z T RA ) -1/2 (11ηZT z ) 1/2 (23), which indicates that the determination is made only by the external specification. In this equation (23), h is the aperture ratio of the thin plate 30, that is, the ratio of the total cross-sectional area of the large number of circular holes 32 on the thin plate 30 to the front surface area of the thin plate 30 (= the internal cross-sectional area A of the pressure-resistant tube 10). is there. When the area A is composed of one circle, its radius R
1 is a R 1 = (F / (πhw A)) 1/2 = F 1/2 (πh) -1/2 (6aZP z T RA) -1/4 (11ηZT z) 1/4 (24) However, as shown in FIGS.
Also it is divided into one. The heat load of the heat exchanger, heat Q exchanged in unit time that is is Q = Fρc p ZT z (25 ), the ratio E / Q = ZP z / ( ρc of E of the Q of the formula (18) p ZT z) (26) represents the percentage of the viscous heating loss for Zenden heat of the heat exchanger. The specific S η * / S = (ZP z V A / T A) / (c p ZT z / T A) of the ratio E / Q is entropy production losses due to viscous heating S eta * and the entropy rate S = E / Q (27). Where VA is the volume per mole of fluid. This S η * / S is the second value on the right side of Expression (9).
The term indicates the relative magnitude of the viscous heat loss of the term.
This value can be less than about whether by specifying a smaller pressure loss ZP z, in the embodiments described later are selected around 1%, the right-hand side of the value of the order of 1% (9) It can be said that the second term (the viscous heating term) is so small that it can be ignored.

【0030】次に円孔32内を流れる流体中の熱伝導に
よるエントロピー生成損失を計算する。半径rの方向の
熱伝導のみを考えるものとすると、局所の単位容積当た
りのエントロピー生成率sは、TA を円孔32内の平
均温度として s=κ(∇T)2 /T2 =κ(∂T/∂r)2 /TA 2 (28) であり、これを円孔32の全断面に渡って積分した値S
は S=∫2πrsdr=(48/11)πκTRA 2 /TA 2 (29) と計算される。一方円孔壁から流出するエントロピーの
総量Sは S=2πR0 κ|∇T/T| =(2πR0 κ/TA )|∂T/∂a| (r=R0 ) =(48/11)πκTRA/TA (30) と計算され、両者の比 S/S=TRA/TA (31) がエントロピー総流量に対するエントロピー生成による
損失の割合を与える。この式(31)に含まれ式(1
5)で規定された平均温度差TRAは円孔32の出口でも
そのまま存在し続けるので、熱交換器が流体を加熱又は
冷却することができる温度幅は、このTRAの分だけ減少
することになり、従ってこのTRAは熱交換器設計の上で
の重要な値であるが、そのTRAがS/Sを指定すれば
定まることは重要である。
Next, an entropy generation loss due to heat conduction in the fluid flowing through the circular hole 32 is calculated. Assuming only the heat conduction in the direction of the radius r, the local entropy generation rate s * per unit volume can be expressed as s * = κ (∇T) 2 / T 2 where T A is the average temperature in the circular hole 32. = Κ (∂T / ∂r) 2 / T A 2 (28), and a value S obtained by integrating this over the entire cross section of the circular hole 32
* It is calculated S * = ∫2πrs * dr = ( 48/11) πκT RA 2 / T A 2 and (29). Meanwhile total S entropy flowing out circular hole wall S = 2πR 0 κ | ∇T / T | = (2πR 0 κ / T A) | ∂T / ∂a | (r = R 0) = (48/11 ) ΠκT RA / T A (30), and the ratio S * / S = T RA / T A (31) gives the ratio of loss due to entropy generation to total entropy flow. Expression (1) included in this expression (31)
Since the average temperature difference T RA specified in 5) continues to exist at the outlet of the circular hole 32, the temperature range in which the heat exchanger can heat or cool the fluid should be reduced by this T RA. Therefore, this T RA is an important value in the design of the heat exchanger, but it is important that the T RA be determined if S * / S is specified.

【0031】以上が外部仕様を与えただけで値の決まる
諸量であるが、これ以降はR0 の影響を受ける諸量を外
部仕様とR0 の関数として示す。上記のように、R0
外部仕様とは独立に自由に値を決めることのできる量で
ある。
[0031] The above is a various amount determined the value just by applying an external specification, since it shows the various amounts affected by the R 0 as a function of the external specifications and R 0. As described above, R 0 is an amount whose value can be freely determined independently of the external specification.

【0032】円孔32の合計長さZと、円孔32の長さ
直径比Z/(2R0 )、つまり円孔32の細長さは、 Z=R0 2 /L=R0 2 (384 aηTRA-1/2(11ZTz ZPz 1/2 (32) Z/(2R0 )=R0 (1536aηTRA-1/2(11ZTz ZPz 1/2 (33) 円孔32内の流体の滞在時間τは τ=Z/wA =R0 2 /(LwA )=R0 2 (11ZTz )(48aTRA-1 (34) であり V=Fτ/h=R0 2 (F/h)(11ZTz )(48aTRA-1 (35) が熱交換器内に滞在する流体の容積である。このVを熱
交換をする二流体の両方に対して計算して両者の和を求
めると、その和が熱交換器の全容積となる。Vは流体物
性aと管内温度差TRAに逆比例し、要求される昇温ZT
Z に正比例するが、孔半径R0 の2乗にも比例するの
で、孔径R0 を小さくすることによって、外部仕様を一
定に保ったまま熱交換器容積Vを思いの侭に小さくでき
ることを、この理論が示していることになる。この事実
は、ハーゲン・ポアゾイユ流れそのものが長年に渡って
知られていたにも拘らず、特に強調されることがなかっ
たものであり、本発明の主要な着眼点である。また熱交
換器の前面面積の総合計Aの上に設けられる円孔32の
総数Nは N=Ah/(πR0 2 ) =R0 -2(F/π)(11ηZTz 1/2 (6aZPz RA-1/2 (36) であり、R0 -2に比例する。ただしこのNは流体1を流
す円孔32の総合計であって、複数個の耐圧円管10に
分散して存在する。
The total length Z of the circular holes 32 and the ratio of the length and diameter of the circular holes 32 to Z / (2R 0 ), that is, the narrow length of the circular holes 32, are as follows: Z = R 0 2 / L = R 0 2 (384 aηT RA) -1/2 (11ZT z ZP z) 1/2 (32) Z / (2R 0) = R 0 (1536aηT RA) -1/2 (11ZT z ZP z) 1/2 (33) circular hole The residence time τ of the fluid in 32 is τ = Z / w A = R 0 2 / (Lw A ) = R 0 2 (11ZT z ) (48aT RA ) −1 (34), and V = Fτ / h = R 0 2 (F / h) ( 11ZT z) (48aT RA) -1 (35) is a volume of the fluid to stay in the heat exchanger. When this V is calculated for both of the two fluids that exchange heat and the sum of the two is obtained, the sum becomes the total volume of the heat exchanger. V is inversely proportional to the fluid property a and the pipe temperature difference T RA , and the required temperature rise ZT
Since it is directly proportional to Z , but also proportional to the square of the hole radius R 0 , by reducing the hole diameter R 0 , the heat exchanger volume V can be reduced as desired while keeping the external specifications constant. This theory shows. This fact has not been emphasized in spite of the fact that the Hagen-Poiseuille flow itself has been known for many years, and is the main point of view of the present invention. The total number N of the circular holes 32 provided on the total sum A of the front area of the heat exchanger is N = Ah / (πR 0 2 ) = R 0 -2 (F / π) (11ηZT z ) 1/2 ( 6aZP z T RA ) -1/2 (36), which is proportional to R 0 -2 . However, N is a total sum of the circular holes 32 through which the fluid 1 flows, and is present in a plurality of pressure-resistant circular tubes 10 in a dispersed manner.

【0033】尚上記の解析は総てハーゲン・ポアゾイユ
流れ、つまり層流、の場合に限って成り立つものである
が層流は次に定義するレイノズル数Re が 2000 以下の
ときに存在し、Reが 2000 を越えると流れが乱流に移
行するために、上記の解析は適用できなくなることに注
意せねばならない。Reの表現は Re=wA (2R0 )ρ/η =R0 (24aρ2 ZPz RA1/2 (11η3 ZTz -1/2 =R0 (24κρZPz RA1/2 (11cp η3 ZTz -1/2 (37) であって、外部仕様が決定した後はR0 に正比例する。
The above analysis is valid only for the Hagen-Poiseuille flow, that is, the laminar flow. The laminar flow exists when the Reynolds number Re defined below is 2000 or less, and Re is It should be noted that above 2000, the above analysis is no longer applicable due to the turbulence of the flow. The expression of Re is: Re = w A (2R 0 ) ρ / η = R 0 (24 aρ 2 ZP z T RA ) 1/2 (11η 3 ZT z ) -1/2 = R 0 (24κρZP z T RA ) 1 / 2 (11 c p η 3 ZT z ) -1/2 (37), which is directly proportional to R 0 after the external specification is determined.

【0034】この他、熱交換器の総伝熱面積は AH =2πR0 ZN=R0 (11FZTz )/(24aTRA) (38) 円孔内壁の熱伝達係数は α=Q/(AH RA)=R0 -1(24/11)κ (39) であり、αを無次元の表現としたヌッセルト数Nuは Nu=α(2R0 /κ)=48/11=4.36 (40) と定数であり、円孔32内のハーゲン・ポアゾイユ流れ
の抵抗係数は λ=4Pz 0 ρ-1A -2=(22/3)ηTz 0 /(ρaTRA) =256 η2 (ρPz -10 -3=64Re-1 (41) である。
In addition, the total heat transfer area of the heat exchanger is A H = 2πR 0 ZN = R 0 (11FZT z ) / (24aT RA ) (38) The heat transfer coefficient of the inner wall of the hole is α = Q / (A H T RA ) = R 0 −1 (24/11) κ (39), and the Nusselt number Nu in which α is dimensionlessly expressed is Nu = α (2R 0 /κ)=48/11=4.36 (40 ) and a constant, circular hole resistance coefficient of Hagen Poazoiyu flow 32 is λ = 4P z R 0 ρ -1 W a -2 = (22/3) ηT z R 0 / (ρaT RA) = 256 η 2 (ρP z ) -1 R 0 -3 = 64Re -1 (41)

【0035】次は薄板30に穿たれた円孔32と円孔3
2の間の金属部分の熱伝導であるが、半径R0 の円孔3
2が多数軸方向に貫通した半径R1 の薄板30が半径R
1 の耐圧円管10に固くはめ込まれているときの熱伝導
は全面に一様熱源bを有する円板内の軸対称熱伝導で近
似することができる。この熱伝導を支配する方程式はκ
を流体の熱伝導率、κ1 を金属部分の熱伝導率、κ1
を開孔による伝熱疎害効果を加味した薄板30内の有効
熱伝導率とするとき ∇2 T=(∂/∂r)2 T+(1/r)(∂T/∂r)=−b (42) b=−ρcp hwA ZTz /(Zκ1 ) =(48/11)(κ/κ1 )hTRA0 -2 (43) 方程式(42)の解は軸対称性を考慮すると、内管壁の
温度をT1 とするとき T=T1 +(b/4)(R1 2 −r2 ) (44) と2次曲線の温度分布になる。
Next, a circular hole 32 and a circular hole 3 formed in the thin plate 30 will be described.
The thermal conductivity is a metal portion between the two, but circular holes 3 having a radius R 0
2 is a thin plate 30 having a radius R 1 penetrating in the axial direction.
Heat conduction can be approximated by axisymmetric heat conduction circle plate having a uniform heat source b on the entire surface when the first is fitted tightly in a pressure circular pipe 10. The equation governing this heat conduction is κ
The thermal conductivity of the fluid, kappa 1 the thermal conductivity of the metal part, kappa 1 *
Where 2 T = (∂ / ∂r) 2 T + (1 / r) (∂T / ∂r) = − b (42) b = -ρc p hw a ZT z / (Zκ 1 *) = (48/11) (κ / κ 1 *) hT RA R 0 -2 (43) solution is axial symmetry of equation (42) considering, comprising the temperature of the inner tube wall temperature distribution T = T 1 + (b / 4) (R 1 2 -r 2) (44) and the quadratic curve when the T 1.

【0036】またこの熱伝導によるエントロピー生成の
損失率S1 /S1 を式(28)−(30)のTA
κ,R0 をそれぞれTA1,κ1 ,R1 に置き換えた式に
よって次のように求められる。
Further, the loss rate S 1 * / S 1 of entropy generation due to the heat conduction is calculated as T A ,
It is obtained as follows by an equation in which κ and R 0 are replaced by T A1 , κ 1 and R 1 respectively.

【0037】 S1 /S1 =bR1 2 /(8TA1) =hR1 2 (TA1κ-1(3κρcp ZTz ZPz RA1/2 (352 η)-1/2 =TRA1 /TA1 (45) この式(45)でTRA1 は温度差T−T1 を面積2πd
rで加重して平均したものであり、式(31)と完全に
対応した比例関係がある。損失率S1 /S1 はR1 2
に比例して増大するのでS1 /S1 の値を一定水準に
定め、外部仕様値を与えると内管の半径R1 の値が R1 =((S1 /S1 )(8TA1/b)1/2 =R0 ((11/6)(S1 /S1 )(TA1/TRA)(κ1 /κ)/h)1/2 =R0 ((11/6)(TRA1 /TRA)(κ1 /κ)/h)1/2 (46) として決定し、その結果、1本の耐圧円管10を通過す
る流体の流量も定まり、総流量Fを確保するのに必要な
内管の本数N1 も N1 =F/(WA πR1 2 ) (47) として決定する。
[0037] S 1 * / S 1 = bR 1 2 / (8T A1) = hR 1 2 (T A1 κ *) -1 (3κρc p ZT z ZP z T RA) 1/2 (352 η) -1 / 2 = T RA1 / T A1 (45) In this equation (45), T RA1 represents the temperature difference T−T 1 by the area 2πd.
It is weighted by r and averaged, and has a proportional relationship completely corresponding to equation (31). The loss rate S 1 * / S 1 is R 1 2
Therefore, when the value of S 1 * / S 1 is set to a constant level and an external specification value is given, the value of the radius R 1 of the inner pipe becomes R 1 = ((S 1 * / S 1 ) (8T A1 / b) 1/2 = R 0 ((11/6) (S 1 * / S 1 ) (T A1 / T RA ) (κ 1 * / κ) / h) 1/2 = R 0 ((11 / 6) (T RA1 / T RA ) (κ 1 * / κ) / h) 1/2 (46) As a result, the flow rate of the fluid passing through one pressure-resistant circular pipe 10 is also determined, and the number N 1 of the inner tube that is necessary to ensure that the flow rate F is also N 1 = F / (W a πR 1 2) is determined as (47).

【0038】さて前記金属部分の熱伝導率κ1 と開孔に
よる伝熱疎外効果を加味した有効熱伝導率κ1 の関係
であるが、多数の円孔32を穿たれた薄板30内の2次
元熱伝導が厳密にはコーシー・リーマン方程式に従うこ
とに着目すると、無限に広がる平面状の薄板に正方格子
状に無数の円孔が穿たれた場合の熱伝導は楕円関数の一
種に支配されることを示すことができ、これにより隣接
する円孔の中心間隔が2mである時 β=R0 /m (48) と置くとκ1 とκ1 の比を κ1 /κ1 =(1−β2 )/(1+β2 ) (49) と表現することができる。このβは薄板30の開口率h
の関数 β=(4h/π)0.5 (50) であるので結局 κ1 /κ1 =(1−4h/π)/(1+4h/π) (51) が得られる。この式(51)はこの熱伝導問題に対する
厳密解の高精度な近似である。
The relationship between the thermal conductivity κ 1 of the metal part and the effective thermal conductivity κ 1 * in consideration of the heat transfer alienation effect due to the opening is shown in FIG. Focusing on the fact that the two-dimensional heat conduction strictly obeys the Cauchy-Riemann equation, the heat conduction when an infinite number of circular holes are drilled in a square lattice in a flat thin plate that extends infinitely is governed by a kind of elliptic function. can indicate Rukoto, thereby the β = R 0 / m (48 ) and placing the kappa 1 * and kappa 1 ratio when the central interval is 2m adjacent circular hole κ 1 * / κ 1 = (1−β 2 ) / (1 + β 2 ) (49) This β is the aperture ratio h of the thin plate 30
Since β = (4h / π) 0.5 (50), κ 1 * / κ 1 = (1-4 h / π) / (1 + 4 h / π) (51) is obtained. Equation (51) is a high-precision approximation of an exact solution to this heat conduction problem.

【0039】以上は円孔型の熱交換器についてであった
が、2X0 の微小間隔を隔てて向かい合う細溝型の熱交
換器については、円孔型の場合に対応して次の諸関係が
成り立つ。先ず式(1)から式(4)迄に対応する流速
分布は (u,v,w)=(0,0,w(x)) (1) w(x)=(3/2)wA (1−(x/X0 2 ) (2) wA =−Pz 0 2 /(3η)=−ZPz /(3η) (3) L=X0 2 /Z (4) の諸式で表現され、円孔の場合の式(10)から式(3
7)迄に対応する温度分布は T(x,z)=Tz (z)+Tx (x) (12) Tx =(175 /136 )TXA(1−(6/5)(x/X0 2 +(1/5)(x/X0 4 ) (14) TXA=(17/105 )Pz z 0 4 /(aη) (15) と表現され、円管の場合の式(19)から式(37)迄
に対応する諸表現は L=X0 2 /Z=((105 /17)aηTXA/(ZPz ZTz ))1/2 (19*) X0 =(ZL)=Z1/2 ((105 /17)aηTXA/(ZPz ZTz ))1/4 (20) LA =(35a/17)TXA/(ZTz ) (21) WA =((35/51)(a/η)(ZPz XA)/(ZTz ))1/2 (22) Z=X0 2 ((105 /17)aηTXA/(ZPz ZTz ))-1/2 (32) τ=Z/wA =X0 2 /(LA ) =X0 2 (17/35)(1/a)(ZTz /TXA) (34) V=Fτ/h=FX0 2 (17/35)ZTz /(ahTXA) (35) Re=wA (2X0 )ρ/η =X0 (140 aρ2 zPz XA1/2 (51η3 zTz -1/2 =X0 (140 κρzPz XA1/2 (51η3 p zTz -1/2 (37) となり、式(6)、(9)、(18)は平行平板型熱交
換器の場合もそのまま成り立つ。
The above description has been made with respect to the hole type heat exchanger. However, for the narrow groove type heat exchanger which faces at a minute interval of 2 × 0 , the following relations are made corresponding to the case of the hole type. Holds. First, the flow velocity distributions corresponding to Expressions (1) to (4) are (u, v, w) = (0, 0, w (x)) (1 * ) w (x) = (3/2) w A * (1- (x / X 0) 2) (2 *) w A * = -P z X 0 2 / (3η) = - ZP z L * / (3η) (3 *) L * = X 0 2 / Z (4 * ), and from equation (10) for a circular hole to equation (3)
Temperature distribution T which corresponds to up to 7) (x, z) = T z (z) + T x (x) (12 *) T x = (175/136) T XA (1- (6/5) (x / X 0) 2 + (1/5 ) (x / X 0) 4) (14 *) T XA = (17/105) P z T z X 0 4 / (aη) (15 *) and is expressed, various representation corresponding to up to equation (37) from equation (19) in the case of a circular tube is L * = X 0 2 / Z = ((105/17) aηT XA / (ZP z ZT z)) 1/2 ( 19 *) X 0 = (ZL *) = Z 1/2 ((105/17) aηT XA / (ZP z ZT z)) 1/4 (20 *) L * w A * = (35a / 17) T XA / (ZT z) (21 *) W A * = ((35/51) (a / η) (ZP z T XA) / (ZT z)) 1/2 (22 *) Z = X 0 2 ( (105/17) aηT XA / (ZP z ZT z )) -1/2 (32 * ) τ * = Z / w A * = X 0 2 / (L * w A *) = X 0 2 (17/35) (1 / a) (ZT z / T XA) (34 *) V = Fτ * / h = FX 0 2 (17/35) ZT z / (ahT XA ) (35 * ) Re = w A * (2X 0 ) ρ / η = X 0 (140 aρ 2 zP z T XA ) 1/2 (51η 3 zT z ) -1/2 = X 0 (140 κρzP z T XA ) 1/2 (51η 3 c p z T z ) -1/2 (37 * ), and the equations (6), (9) and (18) hold true in the case of a parallel plate type heat exchanger.

【0040】またエントロピー生成損失についても式
(28)−(31)に対応して s=κ(∇T)2 /T2 =κ(∂T/∂x)2 /TA 2 (28) S=2∫sdx=(70/17)TXA 2 /(TA 2 0 ) (29) S=2κ(∇T/T)=(2κ/TA )(∂T/∂x) (x=X0 にて) =(70/17)κTXA/(TA 0 ) (30) S/S=TXA/TA (31) が成り立つ。
Further formula (28) applies entropy production losses - (31) to the corresponding s * = κ (∇T) 2 / T 2 = κ (∂T / ∂x) 2 / T A 2 (28 * ) S * = 2∫s * dx = (70/17) T XA 2 / (T A 2 X 0) (29 *) S = 2κ (∇T / T) = (2κ / T A) (∂T / ∂x) (at x = X 0) = (70/17 ) κT XA / (T a X 0) (30 *) S * / S = T XA / T a (31 *) is satisfied.

【0041】上記の細溝型に対する係数値を円孔型のも
のと比較すると、その結果は円孔型より必ずしも有利と
は言えない。また細溝型には溝幅を一定に維持する機構
を必要とする等の欠点もあるが、構造が簡単であるとい
う利点もあり、本発明の下の一つの選択肢となる。
When the coefficient value for the above-mentioned narrow groove type is compared with that for the circular hole type, the result is not necessarily advantageous over the circular hole type. Although the narrow groove type has a drawback such as requiring a mechanism for maintaining a constant groove width, it also has an advantage of a simple structure, and is one of the options under the present invention.

【0042】なお、上述した例では、各薄板30の細孔
(円孔)32群の配置位置が揃っている場合について説
明したが、図6に示すように、隣接する薄板30の円孔
32の位置を+−z方向から直角方向にずらせても良
い。
In the above-described example, the case where the arrangement positions of the groups of the fine holes (circular holes) 32 of the thin plates 30 are described, but as shown in FIG. 6, the circular holes 32 of the adjacent thin plates 30 are arranged. May be shifted in the direction perpendicular to the + -z direction.

【0043】すなわち、+−z方向から見て孔、溝の位
置が一致していると、孔、溝の中央部を流れる流体は熱
交換を十分に行うことなくすり抜ける傾向を生じるが、
+−z方向から見た孔、溝の位置をずらせることによっ
て、この傾向を軽減することができる。式(16)で定
義した熱拡散率aと式(34)で定義した滞在時間τに
対して熱拡散距離Dが D=(aτ)1/2 と定義されるが、Dが細孔の直径よりも小さい場合に引
き続くn枚の薄板を1サイクルとして細孔の位置をずら
せると、薄板1枚当たりのDはn-1/2倍に減少するが、
枚数がn枚になるのでn枚分のDはn1-1/2 =n1/2
となり、細孔の直径を1/nにしたのと同じ効果が得ら
れる。
That is, if the positions of the holes and grooves match when viewed from the + -z direction, the fluid flowing through the center of the holes and grooves tends to pass through without performing sufficient heat exchange.
This tendency can be reduced by shifting the positions of the holes and grooves as viewed from the + -z direction. The thermal diffusion distance D is defined as D = (aτ) 1/2 with respect to the thermal diffusivity a defined by the equation (16) and the residence time τ defined by the equation (34), where D is the diameter of the pore. When the position of the pores is shifted by taking the subsequent n sheets as one cycle when the diameter is smaller than the above, D per one sheet is reduced by n -1/2 times,
Since the number of sheets becomes n, D for n sheets becomes n 1-1 / 2 = n 1/2 times, and the same effect as when the diameter of the pores is reduced to 1 / n can be obtained.

【0044】図7は本発明の一実施例の原子力発電プラ
ント400の構成を示すものである。この原子力発電プ
ラント400は、上述した構成の熱交換器200を具備
し、作業流体として用いるヘリウムガスが炉心の冷却と
ガスタービンの駆動の両機能を兼ね備える。
FIG. 7 shows the configuration of a nuclear power plant 400 according to one embodiment of the present invention. The nuclear power plant 400 includes the heat exchanger 200 having the above-described configuration, and the helium gas used as the working fluid has both functions of cooling the reactor core and driving the gas turbine.

【0045】なお、図7において、210は炉心、21
5はガスタービン、220は発電機、225は再生熱交
換器、230は前置冷却器、232は冷却水、235は
第1段圧縮機、240は中間冷却器、245は第2段圧
縮機である。また、同図において、点線で囲まれた部位
は作業流体が熱的エネルギー或いは機械的エネルギーの
授受を行う場所、つまり熱機械要素を示しており、矢印
つき破線は熱的結合(熱の授受)を、矢印つき一点鎖線
は機械的結合(機械的エネルギーの授受)を示してい
る。
In FIG. 7, reference numeral 210 denotes a core, 21
5 is a gas turbine, 220 is a generator, 225 is a regenerative heat exchanger, 230 is a pre-cooler, 232 is cooling water, 235 is a first stage compressor, 240 is an intermediate cooler, and 245 is a second stage compressor. It is. Further, in the same figure, a portion surrounded by a dotted line indicates a place where the working fluid exchanges thermal energy or mechanical energy, that is, a thermomechanical element, and a broken line with an arrow indicates a thermal coupling (exchange of heat). , And a dashed line with an arrow indicates mechanical coupling (transfer of mechanical energy).

【0046】元来2つの異なる温度の熱源を用いて作動
する熱機関或いはポンプの熱効率は作業流体の内外を通
じてエントロピーの生成が起こらない場合に理論値、つ
まり理論上可能な最高値、に達するが、実用的な原動機
の熱効率をこの理論値に近づける最良の方法の一つは、
原動機の熱力学サイクルをエリクソンサイクルと呼ばれ
るサイクルに近づけることである。
The thermal efficiency of a heat engine or pump, which originally operates using heat sources of two different temperatures, reaches a theoretical value, ie the highest theoretically possible value, when no entropy is generated through the working fluid. One of the best ways to bring the thermal efficiency of a practical motor closer to this theoretical value is
This is to bring the thermodynamic cycle of the prime mover closer to a cycle called the Ericsson cycle.

【0047】エリクソンサイクルは2個の等温過程と2
個の等圧過程から成り、この2つの等圧過程は熱交換過
程である(機械工学便覧参照)。また、この等温過程
は、中間冷却付きの多段圧縮、つまり断熱圧縮と冷却の
組み合わせを多段に重ねることによって、圧縮中の温度
変化を小さくして模すことができ、同様な方法で近似的
な等温膨脹を行うこともできる。
The Ericsson cycle consists of two isothermal processes and two
The two equal pressure processes are heat exchange processes (see Mechanical Engineering Handbook). In addition, this isothermal process can be simulated by reducing the temperature change during compression by multi-stage compression with intermediate cooling, that is, by stacking a combination of adiabatic compression and cooling in multiple stages. Isothermal expansion can also be performed.

【0048】このような近似的エリクソンサイクルは製
氷機、工業用蒸気発生装置、火力発電、原子力発電など
多くの用途に用いることができるが、図7の原子力発電
プラント400はこのような近似的エリクソンサイクル
の一例であり、近似の手段として上記の中間冷却付き2
段圧縮と再生熱交換を行っている。このようなエリクソ
ンサイクルの近似手段にはそれぞれ熱交換器を必要とす
るが、これらに本発明による容積当たり能力の大きい熱
交換器200を使用することができる。
Such an approximate Ericsson cycle can be used in many applications such as an ice machine, an industrial steam generator, a thermal power plant, and a nuclear power plant. The nuclear power plant 400 shown in FIG. This is an example of a cycle, in which the above-mentioned intermediate cooling 2
Stage compression and regeneration heat exchange are performed. Each of the approximating means of the Ericsson cycle requires a heat exchanger, and the heat exchanger 200 having a large capacity per volume according to the present invention can be used for these.

【0049】ガスタービン原子力発電方式は、現在の火
力発電・原子力発電の大部分で用いられているランキン
サイクルに基づく蒸気タービンシステムの設備費が極め
て高く、熱効率が低いことを回避し、低設備費で熱効率
の高い発電を可能にするものとして有望視されており、
この方式の概要については、米国ゼネラルアトミクス社
の提案(原子力工業、40、12、p31)とこの方式
に対する日本原子力研究所の田中利幸の評論(原子力工
業、41、1、p43)を参照することができる。
In the gas turbine nuclear power generation system, the equipment cost of the steam turbine system based on the Rankine cycle used in most of the present thermal power generation and nuclear power generation is extremely high, and it is possible to avoid low thermal efficiency and to reduce the equipment cost. It is promising as one that enables power generation with high thermal efficiency in
For an overview of this method, see the proposal of General Atomics, Inc. of the United States (Nuclear Industry, 40, 12, p31) and the review of this method by Toshiyuki Tanaka of the Japan Atomic Energy Research Institute (Nuclear Industry, 41, 1, p43). Can be.

【0050】図8は、このガスタービン原子力発電方式
の熱力学サイクルを(P,v)線図、つまり(圧力−比
容積)線図、に表現したものである。このサイクルは通
常の再生ガスタービンサイクルの断熱圧縮行程が中間冷
却付きの断熱二段圧縮に置き換わったものであるが、細
部は次の通りである。
FIG. 8 shows a thermodynamic cycle of the gas turbine nuclear power generation system in a (P, v) diagram, that is, a (pressure-specific volume) diagram. In this cycle, the adiabatic compression stroke of a normal regenerative gas turbine cycle is replaced by adiabatic two-stage compression with intermediate cooling. The details are as follows.

【0051】まずAB間でヘリウムガスは原子炉の炉心
210を通過し核燃料から熱の供給を受ける。BCがガ
スタービン215による膨脹行程であり、CD間は再生
熱交換器225での放熱であり、この熱がHA間の加熱
に使われる。DE間は前置冷却器230であってヘリウ
ムガスは低温熱源である水に放熱する。EFとGHはそ
れぞれ一段目および二段目の圧縮であって、その中間の
FGが中間冷却器240における水による中間冷却であ
り、HAの再生熱交換器225による加熱でサイクルが
一周を終わる。
First, the helium gas passes between the ABs and passes through the core 210 of the nuclear reactor, and receives heat supply from nuclear fuel. BC is an expansion stroke by the gas turbine 215, and the heat between the CDs is the heat radiation in the regenerative heat exchanger 225, and this heat is used for heating between the HAs. Between the DEs, the precooler 230 radiates the helium gas to water, which is a low-temperature heat source. EF and GH are the first-stage and second-stage compression, respectively, and the intermediate FG is intermediate cooling with water in the intercooler 240, and the cycle ends with heating of the HA by the regenerative heat exchanger 225.

【0052】このサイクルの熱効率はサイクルが近似等
温過程と等圧過程のみから成るものと仮定するとT
サイクル上各点の絶対温度として サイクル熱効率=1−(TD −TE +TF −TG )/
(TB −TA )=59% と計算されるが、ゼネラルアトミック社は各種損失を考
慮して48%の熱効率が達成可能であるとしている。因に
このサイクルの最高温度TB =1123Kと最低温度T
E =303Kの間のカルノーサイクルの熱効率は カルノーサイクル熱効率=1−TE /TB =73% である。
[0052] cycle thermal efficiency = 1- (T D -T E + T F -T as the absolute temperature of the thermal efficiency cycle approximate isothermal and isobaric process cycles on the T i Assuming comprising only the points of the cycle G ) /
(T B -T A) = 59 % and is calculated, General Atomic Company is a 48% thermal efficiency in consideration of various losses are achievable. Incidentally, the maximum temperature T B of this cycle = 1123 K and the minimum temperature T
E = thermal efficiency of the Carnot cycle between 303K is Carnot cycle thermal efficiency = 1-T E / T B = 73%.

【0053】さて本発明による熱交換器は図8のCD間
の再生熱交換器225、DE間の前置冷却器230、並
びにFG間の中間冷却器240の3箇所に用いることが
できる。ゼネラルアトミクス社提案のプラントでは、再
生熱交換器にプレートフィン型のものが使われている
が、本発明による熱交換器の採用によって後述のように
再生熱交換器の容積を約6分の1に切り下げることが可
能となり、中間冷却器、前置冷却器についても同様の効
果が得られる。
Now, the heat exchanger according to the present invention can be used in three places of the regenerative heat exchanger 225 between the CDs, the pre-cooler 230 between the DEs, and the intercooler 240 between the FGs in FIG. In the plant proposed by General Atomics, a plate fin type heat exchanger is used, but the use of the heat exchanger according to the present invention reduces the volume of the heat exchanger by about 1/6 as described later. And the same effect can be obtained for the intercooler and the precooler.

【0054】再生熱交換器225の要目は式(4)−
(47)及び図8中に示したC,D,H,Aの諸点の温
度圧力条件を用いて次のように算出される。ただし、圧
力損失ZPz と孔内温度差TRAは外部仕様として与えた
ものである。また数値はH、A点に相当する高圧側に対
するものを[ ]の外側に、C,D点に相当する低圧側
のものを[ ]の内側に記す。
The essential point of the regenerative heat exchanger 225 is the formula (4)-
It is calculated as follows using the temperature and pressure conditions of (47) and various points C, D, H, and A shown in FIG. However, the pressure loss ZP z and borehole temperature difference T RA are those given as external specification. Numerical values for the high-pressure side corresponding to points H and A are written outside [], and those for the low-pressure side corresponding to points C and D are written inside [].

【0055】TA =584 K [584 ] PA =7.16MPa [2.60] ZTz =398 deg [398 ] ρ=5.90Kgm-3 [2.14] Cp =5196Jkg-1-1 [5196] κ=2.5 ×10-12 -1 [2.5 ×10-1] η=3.09×10-5Pas [3.09×10-5] G=668 Kgs-1 [668 ] F=G/ρ=113 m3 -1 [312 ] TRA=5.0 deg [5.0 ] ZPz =1.70×105 Pa [1.70×105 ] S/S=TRA/TA =0.00856 Sη /S=1.39×10-2=1.39% [3.84] a=8.15×10-62 -1 [2.25×10-5] aη=2.52×10-10 N [6.95×10-10 ] L=2.55×10-8m [4.23×10-8] LwA =4.47×10-72 -1 [1.23×10-6] wA =17.9ms-1 [29.1] R1 =1.03×10-2m [1.35×10-2] N1 =1.88×104 [1.88×104 ] を得る。ここで孔半径を R0 =2.3 ×10-4m [3.0 ×10-4] に設定すると Z=2.13m [2.13] Z/(2R0 )=4630 [3550] τ=0.119 s [0.0732] V=13.4m3 [22.8] N=0.380 ×108 [0.380 ×108 ] Re=1570<2000 [1210<2000] となる。上のVの値が示す通り、本発明による熱交換器
をこの原子力発電プラントに用いた場合再生熱交換器の
容積は高圧側低圧側の合計として、13.4+22.8=36.2m
3 であるが、ゼネラルアトミクス社の提案による再生熱
交換器の容積は約200 m3 と推定され、本発明の使用に
よって約 6分の 1の容積で済むことになり、プラントの
小型化に大きく貢献する。
T A = 584 K [584] P A = 7.16 MPa [2.60] ZT z = 398 deg [398] ρ = 5.90 Kgm -3 [2.14] C p = 5196 Jkg -1 K -1 [5196] κ = 2.5 × 10 −1 m 2 s −1 [2.5 × 10 −1 ] η = 3.09 × 10 -5 Pas [3.09 × 10 -5 ] G = 668 Kgs −1 [668] F = G / ρ = 113 m 3 s -1 [312] T RA = 5.0 deg [5.0] ZP z = 1.70 × 10 5 Pa [1.70 × 10 5 ] S * / S = T RA / T A = 0.00856 S η * / S = 1.39 × 10 − 2 = 1.39% [3.84] a = 8.15 x 10 -6 m 2 s -1 [2.25 x 10 -5 ] aη = 2.52 x 10 -10 N [6.95 x 10 -10 ] L = 2.55 x 10 -8 m [ 4.23 × 10 -8] Lw A = 4.47 × 10 -7 m 2 s -1 [1.23 × 10 -6] w A = 17.9ms -1 [29.1] R 1 = 1.03 × 10 -2 m [1.35 × 10 - 2 ] N 1 = 1.88 × 10 4 [1.88 × 10 4 ] is obtained. Here, if the hole radius is set to R 0 = 2.3 × 10 −4 m [3.0 × 10 −4 ], Z = 2.13 m [2.13] Z / (2R 0 ) = 4630 [3550] τ = 0.119 s [0.0732] V = 13.4 m 3 [22.8] N = 0.380 × 10 8 [0.380 × 10 8 ] Re = 1570 <2000 [1210 <2000] As indicated by the above value of V, when the heat exchanger according to the present invention is used in this nuclear power plant, the volume of the regenerative heat exchanger is 13.4 + 22.8 = 36.2 m as a sum of the high pressure side and the low pressure side.
Is a 3, the volume of the regenerative heat exchanger proposed by General Atomikusu Inc. estimated to be about 200 m 3, it would be requires only one volume of about 6 minutes by the use of the present invention, largely on the size of the plant To contribute.

【0056】次に図8のDE間に相当する前置冷却器2
30、つまりヘリウムガスが低温熱源である水に熱を放
出するための熱交換器、の要目は以下のように算出され
る。但しZPz とTRAは外部仕様として与えたものであ
る。水側の数値は[]内に記した。
Next, the pre-cooler 2 corresponding to between DE in FIG.
The essentials of the heat exchanger 30, that is, the heat exchanger for releasing heat to water, which is a low-temperature heat source of helium gas, are calculated as follows. However ZP z and T RA are those given as external specification. The numerical value on the water side is shown in [].

【0057】TA =346 K [346 ] PA =2.5 ×106 Pa [1×105 ] ZTz =79K [79] ρ=3.48Kgm-3 [976 ] Cp =5196Jkg-1-1 [4191] κ=1.7 ×10-1Wm-1-1 [0.673 ] η=2.21×10-5Pas [4.04×10-4] F=192 m3 -1 [0.848 ] TRA=5K [5] ZPz =1×105 Pa [1×105 ] S/S=TRA/TA =0.0145 [0.0145] Sη /S=0.0125 [0.0629] a=9.40×10-62 -1 [1.65×10-7] L=6.78×10-8m [3.84×10-8] LwA =2.60×10-6 [4.56×10-8] wA =38.3ms-1 [1.19] R1 =1.26×10-2m[4.72×10-3] N1 =1.00×104 [1.02×104 ] R0 =3.0 ×10-4m [5.38×10-4] Z=1.33m [1.33] Z/(2RO )=2220 [1240] τ=3.47×10-2s [1.12] V=6.67m3 [1.66×10-2] N=1.77×107 [4.29×106 ] Re=3620>2000 [1320<2000] となる。T A = 346 K [346] P A = 2.5 × 10 6 Pa [1 × 10 5 ] ZT z = 79 K [79] ρ = 3.48 Kgm -3 [976] C p = 5196 Jkg -1 K -1 [4191] κ = 1.7 × 10 -1 Wm -1 k -1 [0.673] η = 2.21 × 10 -5 Pas [4.04 × 10 -4 ] F = 192 m 3 s -1 [0.848] T RA = 5K [ 5] ZP z = 1 × 10 5 Pa [1 × 10 5 ] S * / S = T RA / T A = 0.0145 [0.0145] S η * / S = 0.0125 [0.0629] a = 9.40 × 10 −6 m 2 s -1 [1.65 x 10 -7 ] L = 6.78 x 10 -8 m [3.84 x 10 -8 ] Lw A = 2.60 x 10 -6 [4.56 x 10 -8 ] w A = 38.3 ms -1 [1.19] R 1 = 1.26 × 10 −2 m [4.72 × 10 −3 ] N 1 = 1.00 × 10 4 [1.02 × 10 4 ] R 0 = 3.0 × 10 −4 m [5.38 × 10 −4 ] Z = 1.33 m [ 1.33] Z / (2R O ) = 2220 [1240] τ = 3.47 × 10 −2 s [1.12] V = 6.67 m 3 [1.66 × 10 −2 ] N = 1.77 × 10 7 [4.29 × 10 6 ] Re = 3620> 2000 [1320 <2000] .

【0058】次はヘリウムガスの2段圧縮の中間冷却器
240、つまり図8に示すサイクル図のFGに相当する
熱交換器に本発明を適用する場合の仕様は同様の計算に
よって下記の通りとなる。
Next, the specifications when the present invention is applied to the intercooler 240 for two-stage compression of helium gas, that is, the heat exchanger corresponding to FG in the cycle diagram shown in FIG. Become.

【0059】TA =345 K [345 ] PA =4.25×105 Pa[1×105 ] ZTz =178 K[178 ] ρ=5.93Kgm-3 [976 ] Cp =5196JKg-1-1 [4191] κ=0.17Wm-1-1 [0.662 ] η=2.21×10-5Pas [3.94×10-2] F=113 m3 -1 [0.851 ] TRA=3K [3] ZPz =0.5 ×105 Pa [0.1 ×105 ] S/S=TRA/TA =0.0087 [0.0087] Sη /S=0.0239 [0.00477 ] a=5.52×10-62 -1 [1.62×10-7] L=6.13×10-8m [4.43×10-7] LwA =1.06×10-6 [3.12×10-8] wA =17.3ms-1 [0.0704] R1 =6.70×10-3m [9.06×10-3] N1 =4.63×104 [6.23×106 ] R0 =2.0 ×10-4m [5.38×10-4] Z=0.653 m [0.653 ] Z/(2RO )=1630 [607 ] τ=4.57×10-2s [9.28] V=6.09m3 [11.3] N=5.20×107 [1.33×107 ] Re=1860<2000 [461 <2000] 本発明による熱交換器200を、上に記した仕様値に従
って、上記ガスタービン原子力発電方式の、再生熱交換
器225、前置熱交換器230、中間冷却器240の3
箇所に用いることにより、熱交換器の容積を従来のプラ
ントの数分の一とすることができる。
[0059] T A = 345 K [345] P A = 4.25 × 10 5 Pa [1 × 10 5] ZT z = 178 K [178] ρ = 5.93Kgm -3 [976] C p = 5196JKg -1 K - 1 [4191] κ = 0.17 Wm −1 K −1 [0.662] η = 2.21 × 10 −5 Pas [3.94 × 10 −2 ] F = 113 m 3 s −1 [0.851] T RA = 3K [3] ZP z = 0.5 × 10 5 Pa [0.1 × 10 5 ] S * / S = T RA / T A = 0.0087 [0.0087] S η * / S = 0.0239 [0.00477] a = 5.52 × 10 −6 m 2 s −1 [1.62 × 10 −7 ] L = 6.13 × 10 −8 m [4.43 × 10 −7 ] Lw A = 1.06 × 10 −6 [3.12 × 10 −8 ] w A = 17.3 ms −1 [0.0704] R 1 = 6.70 × 10 -3 m [9.06 × 10 -3 ] N 1 = 4.63 × 10 4 [6.23 × 10 6 ] R 0 = 2.0 × 10 -4 m [5.38 × 10 -4 ] Z = 0.653 m [0.653] Z / (2R O) = 1630 [ 607] τ = 4.57 × 10 -2 s [9.28] V = 6.09m 3 [11.3] N = 5.20 × 10 7 [1.33 × 10 7] Re = 1860 <2000 [461 <2000 ] In the present invention In accordance with the above-mentioned specification values, the heat exchanger 200 according to the above-described gas turbine nuclear power generation system has a regenerative heat exchanger 225, a pre-heat exchanger 230, and an intercooler 240.
By using the heat exchanger at a location, the volume of the heat exchanger can be reduced to a fraction of that of a conventional plant.

【0060】[0060]

【発明の効果】以上説明したように、本発明によれば、
従来達成が困難とされていた装置容積当たりの熱交換能
力が極めて大きな熱交換器及び熱機械を提供することが
できる。
As described above, according to the present invention,
It is possible to provide a heat exchanger and a heat machine having extremely large heat exchange capacity per unit volume, which has been conventionally difficult to achieve.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例の熱交換器の要部構成を示す
図。
FIG. 1 is a diagram showing a main configuration of a heat exchanger according to an embodiment of the present invention.

【図2】図1の熱交換器の横断面構成を示す図。FIG. 2 is a diagram showing a cross-sectional configuration of the heat exchanger of FIG.

【図3】本発明の他の実施例の熱交換器の要部構成を示
す図。
FIG. 3 is a diagram illustrating a main configuration of a heat exchanger according to another embodiment of the present invention.

【図4】図3の熱交換器の横断面構成を示す図。FIG. 4 is a diagram showing a cross-sectional configuration of the heat exchanger of FIG. 3;

【図5】本発明の他の実施例の熱交換器の要部構成を示
す図。
FIG. 5 is a diagram showing a main configuration of a heat exchanger according to another embodiment of the present invention.

【図6】本発明の他の実施例の熱交換器の要部構成を示
す図。
FIG. 6 is a diagram showing a main configuration of a heat exchanger according to another embodiment of the present invention.

【図7】本発明の一実施例の原子力発電プラントの構成
を示す。
FIG. 7 shows a configuration of a nuclear power plant according to one embodiment of the present invention.

【図8】図7の原子力発電プラントの熱力学サイクルを
示す図。
FIG. 8 is a diagram showing a thermodynamic cycle of the nuclear power plant of FIG. 7;

【図9】従来の多管式熱交換器の要部構成を示す図。FIG. 9 is a diagram showing a configuration of a main part of a conventional multi-tube heat exchanger.

【図10】図9の多管式熱交換器の横断面構成を示す
図。
FIG. 10 is a diagram showing a cross-sectional configuration of the multi-tube heat exchanger of FIG. 9;

【図11】従来の他の多管式熱交換器の要部構成を示す
図。
FIG. 11 is a diagram showing a configuration of a main part of another conventional multi-tube heat exchanger.

【図12】図10の多管式熱交換器の横断面構成を示す
図。
FIG. 12 is a diagram showing a cross-sectional configuration of the multi-tube heat exchanger of FIG. 10;

【符号の説明】 10………耐圧管 11………耐圧管の内側の空間 13………耐圧管の外側で耐圧管の内側の空間 15………薄い環状の耐圧管 20………耐圧管 30………薄板 31………円環状の溝 32………細孔 34………薄板を隔てる間隙 100………熱交換器 F1………流体1 F2………流体2 P1………流体1の圧力 P2………流体2の圧力 200………ヘリウムガスタービン原子力発電方式に用
いる熱交換器 210………炉心 215………ガスタービン 220………発電機 225………再生熱交換器交換器 230………前置冷却器 232………冷却水 235………第1段圧縮機 240………中間冷却器 245………第2段圧縮機 400………ヘリウムガスタービン原子力発電方式
[Description of Signs] 10: Pressure-resistant tube 11: Space inside pressure-resistant tube 13: Space outside pressure-resistant tube and inside pressure-resistant tube 15: Thin annular pressure-resistant tube 20: Pressure-resistant Tube 30 Thin plate 31 Annular groove 32 Fine pore 34 Gap separating thin plate 100 Heat exchanger F1 Fluid 1 F2 Fluid 2 P1 ... pressure of fluid 1 P2 ... pressure of fluid 2 200 ... heat exchanger 210 used for helium gas turbine nuclear power generation system ... core 215 ... gas turbine 220 ... generator 225 ... regeneration Heat exchanger 230 230 Precooler 232 Cooling water 235 First stage compressor 240 Intercooler 245 Second stage compressor 400 Helium gas Turbine nuclear power system

───────────────────────────────────────────────────── フロントページの続き (71)出願人 592073101 日本アイ・ビー・エム株式会社 東京都港区六本木3丁目2番12号 (71)出願人 000004237 日本電気株式会社 東京都港区芝五丁目7番1号 (72)発明者 後藤 英一 神奈川県藤沢市辻堂東海岸3−9−305 (72)発明者 加瀬 晋 東京都町田市広袴町710−67 (72)発明者 丁 懐東 埼玉県和光市広沢2番1号 理化学研究所 内 ──────────────────────────────────────────────────続 き Continuation of the front page (71) Applicant 592073101 IBM Japan, Ltd. 3-2-1-12 Roppongi, Minato-ku, Tokyo (71) Applicant 000004237 NEC Corporation 5-7-1 Shiba, Minato-ku, Tokyo No. 1 (72) Inventor Eiichi Goto 3-9-305, Tsujido East Coast, Fujisawa-shi, Kanagawa Prefecture (72) Inventor Susumu Kase 710-67, Hirohakamacho, Machida-shi, Tokyo 2-1 Hirosawa, Ichino RIKEN

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 互いに熱を交換する2つの流体を、当該
2流体間の圧力差に耐える材質で作られた耐圧壁で分離
し、 当該2流体は互いに逆方向に対向して流し、 当該2流体の内、少なくとも一方の流体中にあって、前
記耐圧壁に略接触し、当該流体の流れる方向と直角方向
に広がる高熱伝導率材質の薄板を配し、 当該薄板には前記流体が通過することによって当該流体
と薄板の間の熱抵抗を減少させる細孔群又は溝群を穿設
し、 当該薄板を、前記流体の流れ方向に僅少な間隙を設けて
複数並設して流体の流れ方向への熱伝導を減少せしめる
とともに、前記細孔群又は溝群内の流体圧力を均一なら
しめたことを特徴とする熱交換器。
1. Two fluids that exchange heat with each other are separated by a pressure-resistant wall made of a material that can withstand a pressure difference between the two fluids, and the two fluids flow in opposite directions to each other. Among the fluids, a thin plate of a material having a high thermal conductivity that is substantially in contact with the pressure-resistant wall and extends in a direction perpendicular to the direction in which the fluid flows is disposed in at least one of the fluids, and the fluid passes through the thin plate In this way, a group of pores or grooves is formed to reduce the thermal resistance between the fluid and the thin plate, and a plurality of the thin plates are arranged side by side with a small gap in the flow direction of the fluid to form a flow direction of the fluid. A heat exchanger that reduces heat conduction to the pores and the fluid pressure in the groups of pores or grooves.
【請求項2】 前記耐圧壁が、前記2流体の内一方の流
体を内側に流す少なくとも1以上の耐圧管であって、他
方の流体を内側に流す耐圧管の内部に配置された耐圧管
の管壁によって構成された請求項1記載の熱交換器。
2. The pressure-resistant tube, wherein the pressure-resistant wall is at least one pressure-resistant tube through which one of the two fluids flows inward and the pressure-resistant tube through which the other fluid flows inward. The heat exchanger according to claim 1, wherein the heat exchanger is constituted by a tube wall.
【請求項3】 前記耐圧壁が、断面形状が閉曲線状であ
って前記僅少な間隙程度の高さを有する部材を各前記薄
板の間に配設して構成された請求項2記載の熱交換器。
3. The heat exchanger according to claim 2, wherein the pressure-resistant wall is formed by disposing a member having a closed curve in cross section and having a height of the small gap between the thin plates. vessel.
【請求項4】 隣接する前記薄板の細孔又は溝の少なく
とも一部が、互いにずれた位置に配置されるよう構成さ
れた請求項1〜3記載の熱交換器。
4. The heat exchanger according to claim 1, wherein at least a part of the pores or grooves of the adjacent thin plates are arranged at positions shifted from each other.
【請求項5】 各々略一定の温度の高低2熱源との間に
作業ガスを熱的に接触せしめ、当該作業ガスに等温圧
縮、等温膨脹と等圧熱交換を行わしめることにより、エ
ントロピー生成損失のないエリクソンサイクルを近似的
に実現せしめる熱機械であって、請求項1乃至4記載の
熱交換器を具備したことを特徴とする熱機械。
5. An entropy generation loss by bringing a working gas into thermal contact with two high and low heat sources, each having a substantially constant temperature, and performing an isothermal compression, an isothermal expansion and an isobaric heat exchange on the working gas. A heat machine for approximately realizing an Ericsson cycle without any heat, comprising the heat exchanger according to any one of claims 1 to 4.
JP8018595A 1995-04-05 1995-04-05 Heat exchanger and heat machine Withdrawn JPH08278090A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8018595A JPH08278090A (en) 1995-04-05 1995-04-05 Heat exchanger and heat machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8018595A JPH08278090A (en) 1995-04-05 1995-04-05 Heat exchanger and heat machine

Publications (1)

Publication Number Publication Date
JPH08278090A true JPH08278090A (en) 1996-10-22

Family

ID=13711316

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8018595A Withdrawn JPH08278090A (en) 1995-04-05 1995-04-05 Heat exchanger and heat machine

Country Status (1)

Country Link
JP (1) JPH08278090A (en)

Similar Documents

Publication Publication Date Title
Zohuri Compact heat exchangers
Pradeep Mohan Kumar et al. Computational analysis and optimization of spiral plate heat exchanger
US4676305A (en) Microtube-strip heat exchanger
San et al. Entropy generation in convective heat transfer and isothermal convective mass transfer
US10077944B2 (en) Combined chamber wall and heat exchanger
Bartel et al. Comparative analysis of compact heat exchangers for application as the intermediate heat exchanger for advanced nuclear reactors
Walker Cryocoolers: Part 2: Applications
US5339640A (en) Heat exchanger for a thermoacoustic heat pump
Lian et al. Thermal and mechanical performance of a hybrid printed circuit heat exchanger used for supercritical carbon dioxide Brayton cycle
Chen et al. Thermal efficiency maximization for H-and X-shaped heat exchangers based on constructal theory
Feng et al. Constructal design for disc-shaped heat exchanger with maximum thermal efficiency
Lee et al. Development of a compact thermoelectric generator consisting of printed circuit heat exchangers
US4928755A (en) Microtube strip surface exchanger
Natesan et al. Preliminary issues associated with the next generation nuclear plant intermediate heat exchanger design
USRE33528E (en) Microtube-strip heat exchanger
Chang et al. Design and optimization of an annular air-hydrogen precooler for advanced space launchers engines
Vesely et al. Design of experimental loop with supercritical carbon dioxide
Gheith et al. Stirling engines
Davletbaev et al. Experimental investigation of the heat exchange intensity
Ravindran et al. Modeling a printed circuit heat exchanger with relap5-3d for the next generation nuclear plant
JPH08278090A (en) Heat exchanger and heat machine
US3294161A (en) Heat exchangers
Wood et al. Free-piston Stirling power conversion unit for fission surface power, phase I final report
Fan et al. Design of compact heat exchangers for transfer intensification
Zohuri et al. Heat exchangers

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20020702