JPH08277652A - Lead damper with axially moving mechanism - Google Patents

Lead damper with axially moving mechanism

Info

Publication number
JPH08277652A
JPH08277652A JP10488795A JP10488795A JPH08277652A JP H08277652 A JPH08277652 A JP H08277652A JP 10488795 A JP10488795 A JP 10488795A JP 10488795 A JP10488795 A JP 10488795A JP H08277652 A JPH08277652 A JP H08277652A
Authority
JP
Japan
Prior art keywords
lead
movement mechanism
plastic deformation
lead damper
damper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10488795A
Other languages
Japanese (ja)
Inventor
Shunichi Yamada
俊一 山田
Yasuo Takenaka
康夫 竹中
Tomohiko Arita
友彦 有田
Nobuyuki Miyagawa
信幸 宮川
Ikuo Shimoda
郁夫 下田
Masayoshi Ikenaga
雅良 池永
Mitsuru Miyazaki
充 宮崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kajima Corp
Oiles Industry Co Ltd
Original Assignee
Kajima Corp
Oiles Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kajima Corp, Oiles Industry Co Ltd filed Critical Kajima Corp
Priority to JP10488795A priority Critical patent/JPH08277652A/en
Publication of JPH08277652A publication Critical patent/JPH08277652A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To prevent the vertical stress fluctuation of a lead body and secure a pure shearing deformation by arranging a plastic deformation section made of the lead body on one side of a structure, and arranging a vertical shift mecha nism section allowing the vertical shift via the sliding between a piston body and a cylinder body on the other side. CONSTITUTION: An axial shift mechanism section 2 allowing the vertical shift via the sliding between a piston body 11 and a cylinder body 12 is arranged at the upper section of a plastic deformation section 1 mainly made of a lead body 4. When earthquake force is applied, upper and lower structures G, B are relatively displaced, then this lead damper D restricts the horizontal shift with the vertical shift mechanism section 2. A horizontal deformation is applied to the lead body 4 of the plastic deformation section 1 having small lateral rigidity, and the earthquake energy is absorbed. The displacement acceleration of the upper structure G is damped, and the relative displacement is suppressed for damping action. A large energy absorbing capability is obtained, the lead body 4 can be miniaturized, the expected energy absorption characteristic is exerted according to the design specification, and the standardization of designing can be attained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】A. 発明の目的 (1) 産業上の利用分野 この発明は、地震動等の強制振動力により相対的に変位
する構造物間、例えば、建物−基礎間、建物の層間、隣
接する建物棟間に介装され、構造物間の振動を鉛体のせ
ん断変形を利用して吸収する鉛ダンパに関する。
A. Object of the invention (1) Industrial field of use The present invention relates to structures which are relatively displaced by a forced vibration force such as earthquake motion, for example, between buildings and foundations, layers of buildings, and adjacent buildings. The present invention relates to a lead damper which is interposed between buildings and absorbs vibration between structures by utilizing shear deformation of a lead body.

【0002】(2) 従来の技術 この種の鉛ダンパは一般に、円柱状をなす鉛体を主体と
し、この鉛体の上下に上下端板が一体的に固着され、か
つ、この上下端板を介して上下部構造に介装設置されて
なる。しかして、上下部構造が強制振動力を受けて振動
すると、該鉛ダンパの鉛体が水平方向に塑性変形を受
け、この塑性変形に伴うエネルギー吸収をもって構造物
の振動が吸収されるものである。しかしながら、この鉛
体の塑性変形において、鉛体の上下面は拘束されたもの
となっており、鉛体の鉛直高さは実質的に変化しないも
のであるので、これに伴い上下の軸方向(以下、単に
「上下方向」という)への伸び縮みが強制されることに
なる。この結果、鉛体の内部応力が高まり、水平変位を
阻害するばかりでなく、純せん断変形がなされず、ひい
てはこの断面変動に伴う破断に至るものである。すなわ
ち、上下方向の伸縮に伴う応力変動により、当初の純せ
ん断変形を仮定して設計された履歴特性曲線からずれを
生じ、所定の性能が得られないものである。
(2) Prior Art This type of lead damper is generally composed mainly of a cylindrical lead body, and upper and lower end plates are integrally fixed above and below the lead body, and the upper and lower end plates are connected to each other. It is installed via the upper and lower structures. Then, when the upper and lower structures are vibrated by the forced vibration force, the lead body of the lead damper is horizontally plastically deformed, and the vibration of the structure is absorbed by the energy absorption accompanying the plastic deformation. . However, in this plastic deformation of the lead body, the upper and lower surfaces of the lead body are constrained, and the vertical height of the lead body does not substantially change. Hereinafter, the expansion and contraction in the "vertical direction" will be forced. As a result, the internal stress of the lead body is increased, which hinders horizontal displacement, and pure shear deformation is not performed, which eventually leads to fracture due to this cross-sectional variation. In other words, due to the stress fluctuation caused by the expansion and contraction in the vertical direction, a deviation occurs from the hysteresis characteristic curve designed assuming the initial pure shear deformation, and the predetermined performance cannot be obtained.

【0003】(3) 発明が解決しようとする問題点 本発明は上記実情に鑑みなされたものであって、この種
の鉛ダンパにおいて、上下方向への鉛体の応力の高まり
(変動)を抑え、鉛体の純せん断変形を保証し、これに
より長期にわたって当初の性能を保持し、しかも大きな
水平変形に対応することのできる鉛ダンパを得ることを
目的とする。本発明はこのため、鉛体の上下応力の高ま
り(変動)を回避する上下移動を許容する機構を組み込
んでこの目的を達成しようとするものである。
(3) Problems to be Solved by the Invention The present invention has been made in view of the above circumstances, and in this type of lead damper, the increase (fluctuation) in the vertical stress of the lead body is suppressed. The purpose of the present invention is to obtain a lead damper that guarantees pure shear deformation of the lead body, maintains the initial performance for a long period of time, and can cope with large horizontal deformation. Therefore, the present invention intends to achieve this object by incorporating a mechanism that allows vertical movement of the lead body to avoid an increase (variation) in vertical stress.

【0004】B.発明の構成 (1) 問題点を解決するための手段 本発明の軸方向移動機構付き鉛ダンパは具体的には次の
構成を採る。すなわち、互いに面方向に変位する2つの
構造物間に介装される鉛ダンパにおいて、前記一方の構
造物側に固定され、前記面方向への変形を受ける鉛体か
らなる塑性変形部を有し、該塑性変形部の前記他方の構
造物側の端部において、該他方の構造物側に向けてピス
トン体が突設され、前記他方の構造物側に固定され、前
記ピストン体をその内孔内に収容し、面に直交する軸方
向への移動のみ許容して拘束するシリンダ体を有する、
ことを特徴とする。更にまた、互いに面方向に変位する
2つの構造物間に介装される鉛ダンパにおいて、前記一
方の構造物側に固定され、前記面方向への変形を受ける
鉛体からなる塑性変形部を有し、該塑性変形部の前記他
方の構造物側の端部において、該他方の構造物側に向け
て内孔を有するシリンダ体が突設され、前記他方の構造
物側に固定され、前記シリンダ体の内孔に嵌挿されて前
記シリンダ体を面に直交する軸方向への移動のみ許容し
て拘束するピストン体を有する、ことを特徴とする。上
記構成において、ピストン体とシリンダ体とは軸方向移
動機構部を構成する。本鉛ダンパは縦置き・横置きのい
ずれの態様も採ることができる。従って、縦置きの態様
においては軸方向は上下方向を採る。また、面方向は一
軸方向も含む。
B. Configuration of the Invention (1) Means for Solving Problems The lead damper with an axial movement mechanism of the present invention specifically has the following configuration. That is, in a lead damper interposed between two structures that are displaced in the plane direction, the lead damper is fixed to the one structure side and has a plastically deformable portion made of a lead body that is deformed in the plane direction. At the end of the plastically deformable portion on the other structure side, a piston body is provided so as to project toward the other structure side and is fixed to the other structure side, and the piston body is provided with an inner hole thereof. Has a cylinder body that is housed inside and restrains by allowing only movement in the axial direction orthogonal to the surface,
It is characterized by the following. Furthermore, in a lead damper interposed between two structures that are displaced in the plane direction, a plastic deformation portion made of a lead body that is fixed to the one structure side and that is deformed in the plane direction is provided. At the end of the plastically deformable portion on the side of the other structure, a cylinder body having an inner hole toward the other side of the structure is projected, and is fixed to the side of the other structure. It is characterized in that it has a piston body which is inserted into the inner hole of the body and restrains the cylinder body by allowing only movement in the axial direction orthogonal to the plane. In the above configuration, the piston body and the cylinder body form an axial movement mechanism section. The lead damper can be installed vertically or horizontally. Therefore, in the vertical arrangement, the axial direction is the vertical direction. Further, the surface direction includes a uniaxial direction.

【0005】(2) 作用 地震力・その他の強制振動力が作用すると、2つの構造
物が互いに面方向に急激に相対変位する。本ダンパで
は、ピストン体とシリンダ体とからなる軸方向移動機構
部では面方向移動が拘束されたものとなっているので、
横剛性の小さな塑性変形部の鉛体が面方向への変形を受
ける。この鉛体の塑性変形により地震エネルギーが吸収
され、構造物間の変位加速度を減衰させるとともに相対
変位を抑制し、減衰作用をなす。この塑性変形部の鉛体
の変形において、当該塑性変形部に連設する軸方向移動
機構部では軸方向移動が許容されているので、鉛体の軸
変形応力を与えない。
(2) Action When a seismic force or other forced vibration force acts, the two structures are rapidly displaced relative to each other in the plane direction. In this damper, the plane movement is restricted in the axial movement mechanism portion including the piston body and the cylinder body.
The lead body in the plastically deformed portion with small lateral rigidity is deformed in the plane direction. Seismic energy is absorbed by the plastic deformation of the lead body, which damps displacement acceleration between structures and suppresses relative displacement, thereby providing a damping action. In the deformation of the lead body of the plastically deformable portion, the axially moving mechanism portion connected to the plastically deformable portion is allowed to move in the axial direction, so that the axial deformation stress of the lead body is not given.

【0006】(3) 実施例 本発明の軸方向移動機構付き鉛ダンパの実施例を図面に
基づいて説明する。 (第1実施例)図1及び図2はその一実施例(第1実施
例)として縦置き態様の上下移動機構付き鉛ダンパDを
示す。図において、Gは建築構造物としての上部構造、
Bは該上部構造Gを支持する基礎としての下部構造であ
る。本鉛ダンパDはこの上部構造Gと下部構造Bとの間
に介装され、上部構造Gに作用する振動を吸収する機能
を主体とするものであり、上部構造Gの荷重を支持する
機能はない。本実施例において、「上下」方向は本発明
の「軸」方向に相当する。
(3) Embodiment An embodiment of the lead damper with the axial movement mechanism of the present invention will be described with reference to the drawings. (First Embodiment) FIG. 1 and FIG. 2 show a lead damper D with a vertically moving mechanism in a vertical installation mode as one embodiment (first embodiment) thereof. In the figure, G is a superstructure as a building structure,
B is a lower structure as a base for supporting the upper structure G. The lead damper D is interposed between the upper structure G and the lower structure B, and mainly has a function of absorbing a vibration acting on the upper structure G, and has a function of supporting a load of the upper structure G. Absent. In this embodiment, the "up-down" direction corresponds to the "axial" direction of the present invention.

【0007】本実施例の上下移動装置付き鉛ダンパD
は、鉛体を主体とする塑性変形部1と、該塑性変形部1
の上部に配される上下移動機構部2とからなる。
Lead damper D with vertical movement device of this embodiment
Is a plastic deformation part 1 mainly composed of a lead body, and the plastic deformation part 1
And a vertical movement mechanism section 2 disposed on the upper part of the.

【0008】以下、各部の細部の構成を説明する。塑性変形部1 塑性変形部1は、鉛体4を上下の端板5,6をもって挟
着する構成を採る。 (鉛体4)鉛体4は、本実施例では中実の鼓状をなす
が、円柱状を除外するものではない。該鉛体4は純鉛の
他に、鉛合金あるいは鉛とその他の物質との混合物を含
む。また、本実施例では鼓状体の外側は露出されたもの
となっているが、変形を阻害しない範囲内で被覆を施さ
れることを妨げるものではない。純鉛は、密度(g/cm3)
が11.36、融点が327.4℃を示し、機械的性質
としては、弾性率13,631MPa、弾性限1.66M
Pa、引張強さ14MPa、伸び40〜50%、圧縮強さ4
9MPa、硬さ3〜7HBSを示す。このように、純鉛は
展延性に富み、容易に塑性変形を受ける。鉛体は塑性変
形する際に振動エネルギーを吸収し、熱エネルギーとし
て放出するとともに、再結晶化する。従って、繰り返し
起こる塑性変形に対しても、そのエネルギー吸収性能は
変化しない。 (上下端板5,6)上下端板5,6は、鋼板製よりな
り、鉛体4を一体的に固定保持する。上部端板5は上下
移動機構部2に連動し、そのピストン体11との固定に
供される。下部端板6は、円周方向に所定間隔をもって
穿設されたボルト挿通孔7をもって、下部構造Bとの固
定をなす。すなわち、該ボルト挿通孔7に下部構造Bに
植設されたアンカーボルト8が挿通され、ナット9をも
って締め付けて固定される。
The detailed structure of each part will be described below. Plastic Deformation Part 1 The plastic deformation part 1 has a structure in which the lead body 4 is sandwiched by the upper and lower end plates 5 and 6. (Lead body 4) The lead body 4 has a solid drum shape in the present embodiment, but a cylindrical shape is not excluded. The lead body 4 contains, in addition to pure lead, a lead alloy or a mixture of lead and other substances. In addition, although the outer side of the drum-shaped body is exposed in the present embodiment, it does not prevent that the coating is applied within a range that does not hinder the deformation. Pure lead has a density (g / cm 3 ).
Is 11.36, melting point is 327.4 ° C, and mechanical properties include elastic modulus of 13,631 MPa and elastic limit of 1.66M.
Pa, tensile strength 14MPa, elongation 40-50%, compressive strength 4
It shows 9 MPa and a hardness of 3 to 7 HBS. Thus, pure lead is highly malleable and easily undergoes plastic deformation. The lead body absorbs vibration energy during plastic deformation, releases it as heat energy, and recrystallizes. Therefore, the energy absorption performance does not change even with repeated plastic deformation. (Upper and Lower End Plates 5, 6) The upper and lower end plates 5, 6 are made of steel plates and integrally hold the lead body 4. The upper end plate 5 is interlocked with the vertical movement mechanism unit 2 and used for fixing the piston body 11. The lower end plate 6 is fixed to the lower structure B by means of bolt insertion holes 7 formed at predetermined intervals in the circumferential direction. That is, the anchor bolt 8 planted in the lower structure B is inserted into the bolt insertion hole 7 and is fixed by tightening the nut 9.

【0009】上下移動機構部2 上下移動機構部2は、塑性変形部1の上部端板5上に固
設された円筒状のピストン体11と、該ピストン体11
を所定の間隔をもって上下移動自在に収容する円筒状の
シリンダ体12と、これらのピストン体11とシリンダ
体12との間隙に設置され該間隙を保持するボール状の
転動子13とからなり、シリンダ体12は上部構造Gに
固定される。 (ピストン体11)ピストン体11は、本体が剛性の大
きな円筒体からなり、塑性変形部1の上部端板5上に固
定され、その外側には耐摩耗性の円筒状の支圧体14が
被嵌される。支圧体14の下端には外方へ延設される鍔
14aが形成される。ピストン体11の本体が充分に高
い剛性を有する場合には該支圧体14は省略されうる。 (シリンダ体12)シリンダ体12は、その円孔内にピ
ストン体11並びに転動子13を収容するとともに、そ
の円孔の内周にピストン体11と同様の耐摩耗性の円筒
状をなす支圧体15が嵌挿される。この支圧体15もシ
リンダ体12の本体が高い剛性を示す場合には省略され
うる。シリンダ体11の上面にはアンカー鋼棒17が固
設され、上部構造G中に埋設され、上部構造Gとの固定
をなす。 (転動子13)転動子13は高い剛性を示す鋼球よりな
り、ピストン体11とシリンダ体12との間隙に所要数
設置される。すなわち、転動子13は上下方向並びに円
周方向に適宜のスペーサ18(18a,18b)を介し
て転動自在に所定間隔をもって配される。下部にある転
動子13はピストン体11の鍔14aに支持される。転
動子13はピストン体11とシリンダ体12との支圧体
14,15に常時接する。この転動子13により、ピス
トン体11とシリンダ体12とは全水平方向において荷
重が伝達され、上下方向には運動自由となる。
Vertical moving mechanism 2 The vertical moving mechanism 2 includes a cylindrical piston body 11 fixedly mounted on the upper end plate 5 of the plastically deformable portion 1, and the piston body 11.
And a ball-shaped rolling element 13 installed in a gap between the piston body 11 and the cylinder body 12 and holding the gap. The cylinder body 12 is fixed to the upper structure G. (Piston body 11) The piston body 11 has a main body made of a highly rigid cylindrical body, is fixed on the upper end plate 5 of the plastically deformable portion 1, and has a wear-resistant cylindrical pressure bearing body 14 on the outside thereof. Be fitted. A flange 14 a is formed at the lower end of the pressure bearing body 14 and extends outward. If the body of the piston body 11 has a sufficiently high rigidity, the pressure bearing body 14 can be omitted. (Cylinder body 12) The cylinder body 12 accommodates the piston body 11 and the rolling elements 13 in its circular hole, and has the same wear-resistant cylindrical support as the piston body 11 on the inner circumference of the circular hole. The pressure body 15 is inserted. The pressure bearing body 15 may also be omitted when the main body of the cylinder body 12 exhibits high rigidity. An anchor steel rod 17 is fixedly mounted on the upper surface of the cylinder body 11 and is embedded in the upper structure G to fix it to the upper structure G. (Rolling element 13) The rolling element 13 is made of a steel ball having high rigidity, and is installed in a required number in the gap between the piston body 11 and the cylinder body 12. That is, the rolling elements 13 are arranged at predetermined intervals so as to be rollable in the vertical direction and the circumferential direction via the appropriate spacers 18 (18a, 18b). The lower rolling element 13 is supported by the collar 14a of the piston body 11. The rolling element 13 is always in contact with the pressure bearing bodies 14 and 15 of the piston body 11 and the cylinder body 12. By this rolling element 13, the load is transmitted between the piston body 11 and the cylinder body 12 in all horizontal directions, and the movement is free in the vertical direction.

【0010】図3は本上下移動機構付き鉛ダンパDの設
置の一例を示す。図において、Eは地盤であり、該地盤
E中に基礎杭Pが打設され、下部構造すなわち基礎Bは
この基礎杭Pの頭部に固定される。Sは基礎B上に設置
された支承であり、上部構造すなわち建築物Gの荷重は
該支承Sを介して地盤Eに伝達される。本鉛ダンパDは
この支承Sと併置される。
FIG. 3 shows an example of installation of the lead damper D with the vertical movement mechanism. In the figure, E is the ground, a foundation pile P is placed in the foundation E, and the substructure, that is, the foundation B is fixed to the head of the foundation pile P. S is a bearing installed on the foundation B, and the load of the superstructure, that is, the building G is transmitted to the ground E through the bearing S. The lead damper D is placed side by side with the bearing S.

【0011】(実施例の作用・効果)この実施例の上下
移動機構付き鉛ダンパDの作用を説明する(図4参
照)。常時においては、本上下移動機構付き鉛ダンパD
とは別に配された支承Sにより、上部構造Gの荷重は下
部構造Bに支持され、本鉛ダンパDには荷重は作用しな
い。そして、温度差に基づく上部構造の緩慢な伸縮変位
に対しては、塑性変形部1の鉛体4はその水平変位に追
従し、また、風荷重あるいは微弱地震力qに対しては、
塑性変形部1の鉛体4は初期弾性により抵抗し、水平方
向の変位を阻止する。この温度差に基づく水平変位に際
し、本鉛ダンパDの上下移動機構部2の機能により上下
移動が許容されたものとなっているので、塑性変形部1
に引張り抵抗が作用せず、鉛体4の異常な変形が防止さ
れる。
(Operation / Effect of Embodiment) The operation of the lead damper D with the vertical movement mechanism of this embodiment will be described (see FIG. 4). Always, this lead damper D with vertical movement mechanism
The load of the upper structure G is supported by the lower structure B by the bearing S arranged separately from the above, and the load does not act on the lead damper D. Then, with respect to the slow expansion and contraction displacement of the superstructure due to the temperature difference, the lead body 4 of the plastic deformation portion 1 follows the horizontal displacement, and with respect to the wind load or the weak seismic force q,
The lead body 4 of the plastically deformable portion 1 resists due to the initial elasticity and prevents displacement in the horizontal direction. In the horizontal displacement based on this temperature difference, since the vertical movement is allowed by the function of the vertical movement mechanism portion 2 of the lead damper D, the plastic deformation portion 1
No tensile resistance acts on the lead body 4, and abnormal deformation of the lead body 4 is prevented.

【0012】次に、地震力が作用したとき、強制振動力
Qに対して上下部構造G,Bが互いに水平方向に急激に
相対変位する。これに伴い、本鉛ダンパDでは上下移動
機構部2で水平方向移動が拘束されたものとなっている
ので、横剛性の小さな塑性変形部1の鉛体4が水平方向
への変形を受ける。この塑性変形部1の鉛体4の塑性変
形により地震エネルギーが吸収され、上部構造Gの変位
加速度を減衰させるとともに相対変位を抑制し、減衰作
用をなす。
Next, when the seismic force is applied, the upper and lower structures G and B are rapidly displaced relative to each other in the horizontal direction with respect to the forced vibration force Q. Along with this, in the lead damper D, the horizontal movement is restricted by the vertical movement mechanism portion 2, so that the lead body 4 of the plastic deformation portion 1 having a small lateral rigidity is deformed in the horizontal direction. Seismic energy is absorbed by the plastic deformation of the lead body 4 of the plastically deformed portion 1, and the displacement acceleration of the superstructure G is attenuated and the relative displacement is suppressed, thereby performing a damping action.

【0013】図4に基づいてこの挙動を説明する。すな
わち、上部構造Gがイ方向へ変位すると、本鉛ダンパD
も全体的にせん断変形力を受け、塑性変形部1の鉛体4
はせん断力による塑性変形を受ける。この塑性変形部1
の鉛体4の変形において、当該塑性変形部1に連動する
上下移動機構部2では上下動が許容されているので、こ
の塑性変形に伴う高さの変化分Δh=h1−h2が吸収
される。この結果、塑性変形部1に引張り抵抗が作用せ
ず、鉛体4に上下変形応力が作用せず、塑性変形部1の
鉛体4は純せん断変形を受けることになる。これによ
り、イ方向への変位が制動される。続いて、上部構造G
はイ方向と逆方向に変位するが、同様に塑性変形部1の
鉛体4の純せん断塑性変形により地震エネルギーを吸収
し、この変位を制動する。この変位は周期性をもって振
動し、塑性変形部1のエネルギー吸収作用により速やか
に該振動は減衰される。
This behavior will be described with reference to FIG. That is, when the superstructure G is displaced in the direction a, the lead damper D
Also receives shear deformation force as a whole, and the lead body 4 of the plastic deformation portion 1
Undergoes plastic deformation due to shear force. This plastic deformation part 1
In the deformation of the lead body 4, since the vertical movement mechanism unit 2 interlocking with the plastic deformation unit 1 is allowed to move up and down, the change in height Δh = h1-h2 due to the plastic deformation is absorbed. . As a result, tensile resistance does not act on the plastically deformable portion 1, vertical deformation stress does not act on the lead body 4, and the lead body 4 of the plastically deformable portion 1 undergoes pure shear deformation. As a result, the displacement in the direction a is braked. Then, superstructure G
Is displaced in the direction opposite to the direction a, but similarly, the pure shear plastic deformation of the lead body 4 of the plastic deformation portion 1 absorbs seismic energy and brakes this displacement. This displacement vibrates with periodicity, and the vibration is rapidly damped by the energy absorbing action of the plastically deformable portion 1.

【0014】本実施例の鉛ダンパDによれば、塑性変形
部1の鉛体4の塑性変形において、該鉛体4には上下変
形応力が作用せず、かつ純せん断変形を受け、一定容量
(断面)の鉛体について大きなエネルギー吸収能が得ら
れ、その結果、同一のエネルギー吸収能について従来の
ものよりも小型化が達成される。また、本鉛ダンパDの
鉛体4は断面縮小に伴うエネルギー吸収特性の低下がな
く、設計仕様に伴う所期のエネルギー吸収特性を発揮
し、設計の標準化が達成される。
According to the lead damper D of this embodiment, when the lead body 4 of the plastically deformable portion 1 is plastically deformed, no vertical deformation stress acts on the lead body 4, and the lead body 4 is subjected to pure shear deformation and has a constant capacity. A large energy absorption capacity is obtained for the lead body (in cross section), and as a result, a smaller size than the conventional one is achieved for the same energy absorption capacity. Further, the lead body 4 of the lead damper D does not deteriorate in energy absorption characteristics due to the reduction in cross section, exhibits desired energy absorption characteristics according to design specifications, and achieves standardization of design.

【0015】(第2実施例)先の実施例では塑性変形部
1の上位に上下移動機構部2を配したが、これを逆に配
した態様を採っても実質的にその機能に変わりはない。
図5は第2実施例の上下移動機構付き鉛ダンパD1を示
し、先の第1実施例と同等の部材については同一の符号
が付されている。すなわち、この鉛ダンパD1では、塑
性変形部1の下部端板6に上下移動機構部2のピストン
体11が固設され、また、転動子13はシリンダ体12
の支圧体15の鍔15aに支持される。この鍔15aは
格別必要なものではなく、また、他の部材・素材をもっ
て代替されうる。そして、上下移動機構部2のシリンダ
体12の底板を介して基礎Bのアンカーボルト8に固定
され、塑性変形部1の上部端板5の上面に植設されたア
ンカー鋼棒17を介して上部構造Gに固定される。な
お、20は防塵用カバーであって、塑性変形部1の下部
端板6の周縁に固設され、上下移動機構部2の上面を覆
う。
(Second Embodiment) In the previous embodiment, the vertical movement mechanism portion 2 is arranged above the plastic deformation portion 1, but the function is substantially the same even if the arrangement is reversed. Absent.
FIG. 5 shows a lead damper D1 with an up-and-down moving mechanism of the second embodiment, and the same members as those in the first embodiment are designated by the same reference numerals. That is, in this lead damper D1, the piston body 11 of the vertical movement mechanism portion 2 is fixedly mounted on the lower end plate 6 of the plastic deformation portion 1, and the rolling element 13 is the cylinder body 12
It is supported by the collar 15a of the bearing member 15. The collar 15a is not particularly necessary and can be replaced with other members and materials. Then, it is fixed to the anchor bolt 8 of the foundation B via the bottom plate of the cylinder body 12 of the vertical movement mechanism part 2, and the upper part is inserted via the anchor steel rod 17 planted on the upper surface of the upper end plate 5 of the plastically deformable part 1. It is fixed to structure G. A dustproof cover 20 is fixed to the peripheral edge of the lower end plate 6 of the plastically deformable portion 1 and covers the upper surface of the vertical movement mechanism portion 2.

【0016】(第3実施例)図6は本発明の上下移動機
構付き鉛ダンパの他の実施例(第3実施例)を示す。本
鉛ダンパD2は、その塑性変形部1は先の第1・第2実
施例に準じるが、上下移動機構部2において断面が矩形
とされ、ピストン体11とシリンダ体12とに介装され
る転動子13はローラが採用される。本鉛ダンパD2に
よれば、転動子13はローラ状を採ることにより、その
接点を大きく採ることができ、ボール状に比べて個数を
減少させることができる。
(Third Embodiment) FIG. 6 shows another embodiment (third embodiment) of the lead damper with a vertical movement mechanism according to the present invention. The lead damper D2 has a plastically deformable portion 1 according to the first and second embodiments described above, but has a rectangular cross section in the vertical movement mechanism portion 2 and is interposed between the piston body 11 and the cylinder body 12. A roller is adopted as the rolling element 13. According to the lead damper D2, since the rolling elements 13 are roller-shaped, the contact points can be made large, and the number can be reduced as compared with the ball-shaped rolling elements.

【0017】(第4実施例)図7は本発明の上下移動機
構付き鉛ダンパの更に他の実施例(第4実施例)を示
す。この鉛ダンパD3は、上下移動機構部2において、
ピストン体11とシリンダ体12とは滑り接触をなす。
すなわち、シリンダ体12の内周にすべり軸受体22が
嵌装され、ピストン体11の外周と滑り接触をなす。す
べり軸受体22は、例えば、銅合金あるは鋳鉄等の基材
の表面に固体潤滑材23を埋め込んだ構成を採る。
(Fourth Embodiment) FIG. 7 shows still another embodiment (fourth embodiment) of the lead damper with a vertical movement mechanism according to the present invention. This lead damper D3 is
The piston body 11 and the cylinder body 12 are in sliding contact.
That is, the sliding bearing body 22 is fitted on the inner circumference of the cylinder body 12 and makes sliding contact with the outer circumference of the piston body 11. The plain bearing body 22 has a structure in which a solid lubricant 23 is embedded in the surface of a base material such as a copper alloy or cast iron.

【0018】本発明は上記実施例に限定されるものでは
なく、本発明の基本的技術思想の範囲内で種々設計変更
が可能である。すなわち、以下の態様は本発明の技術的
範囲内に包含されるものである。 以上の実施例では、いずれも、上下移動機構部2に
おいてピストン体11が塑性変形部1に連動し、シリン
ダ体12が他の構造物に固定される態様を採るものであ
るが、これを逆にし、シリンダ体12を塑性変形部1に
連動させ、ピストン体11を他の構造物に固定する態様
を採ることができる。図8はこの態様の一例(第1態
様)を示し、第1実施例(図1)の変形態様を採る。す
なわち、塑性変形部1の上位に上下移動機構部2が配さ
れ、上下移動機構部2は円形をなし、ボール状の転動子
13を介する。 第2態様:第2実施例(図5)の変形を採り、上下移動
機構部2の上位に塑性変形部1が配され、上下移動機構
部2は円形をなし、ボール状の転動子13を介する。 第3態様:第3実施例(図6)の変形を採り、塑性変形
部1の上位に上下移動機構部2が配され、上下移動機構
部2は矩形をなし、ローラ状の転動子13を介する。 第4態様:第4実施例(図7)の変形を採り、塑性変形
部1の上位に上下移動機構部2が配され、上下移動機構
部2のピストン体とシリンダ体とはすべり面をもって接
する。 図例では上下移動機構部2は1つの塑性変形部1に
付き単数であるが、複数の上下移動機構部2を配しても
よい。
The present invention is not limited to the above embodiments, but various design changes can be made within the scope of the basic technical idea of the present invention. That is, the following aspects are included in the technical scope of the present invention. In each of the above embodiments, the piston body 11 is interlocked with the plastic deformation portion 1 in the vertical movement mechanism portion 2 and the cylinder body 12 is fixed to another structure, but this is reversed. Alternatively, the cylinder body 12 may be interlocked with the plastically deformable portion 1, and the piston body 11 may be fixed to another structure. FIG. 8 shows an example of this aspect (first aspect), which is a modification of the first embodiment (FIG. 1). That is, the vertical movement mechanism portion 2 is arranged above the plastic deformation portion 1, the vertical movement mechanism portion 2 has a circular shape, and the ball-shaped rolling element 13 is interposed therebetween. Second mode: By adopting the deformation of the second embodiment (FIG. 5), the plastic deformation portion 1 is arranged above the vertical movement mechanism portion 2, the vertical movement mechanism portion 2 has a circular shape, and the ball-shaped rolling element 13 Through. Third mode: By adopting the deformation of the third embodiment (FIG. 6), the vertical movement mechanism section 2 is arranged above the plastic deformation section 1, the vertical movement mechanism section 2 has a rectangular shape, and the roller-shaped rolling element 13 is provided. Through. Fourth mode: By adopting the deformation of the fourth embodiment (FIG. 7), the vertical movement mechanism unit 2 is arranged above the plastic deformation unit 1, and the piston body and the cylinder body of the vertical movement mechanism unit 2 are in contact with each other with a slip surface. . In the illustrated example, the vertical movement mechanism section 2 is singular per plastic deformation section 1, but a plurality of vertical movement mechanism sections 2 may be arranged.

【0019】本鉛ダンパDは図3に示す基礎と建物間へ
の適用例に限られるものではなく、建物層間あるいは建
物棟間へも適用されるものである。図9は本鉛ダンパD
の建物層間への適用例を示す。すなわち、図において、
Hは骨組構造を採る建物であって、Iは該建物H内に配
された壁体である。本鉛ダンパD(D1,D2,D3,
以下同様)はこの建物と壁体Iとの間に介装される。3
0,31はそれぞれ建物Hの梁材、柱材である。骨組構
造の建物Hは固有周期が大きく、強制振動力を受けて大
きく振れ、層間では大きな相対変位分が顕れる。一方、
壁体Iは固有周期が小さく、かつ振動幅は小さい。地震
動により、建物Hと壁体Iとの間に生ずる相対変位は本
鉛ダンパDにより吸収される。
The lead damper D is not limited to the application example between the foundation and the building shown in FIG. 3, but is also applied between building layers or between building buildings. Figure 9 shows the lead damper D
The following is an example of application to the building floor. That is, in the figure,
H is a building having a frame structure, and I is a wall body arranged in the building H. This lead damper D (D1, D2, D3
The same applies hereinafter) is interposed between this building and the wall I. Three
Reference numerals 0 and 31 are beam materials and column materials of the building H, respectively. The building H having a skeleton structure has a large natural period and shakes greatly due to the forced vibration force, and a large relative displacement is revealed between the layers. on the other hand,
The wall I has a small natural period and a small vibration width. The relative displacement generated between the building H and the wall body I due to the earthquake motion is absorbed by the lead damper D.

【0020】図10は本鉛ダンパDの建物棟間への適用
例を示す。すなわち、図において、J,Kは相隣れる建
物であって、それらの形状・高さよりそれぞれ振動特性
(固有周期、減衰性)が異なる。両建物J,K間には渡
り通路(図示せず)が設置される。しかして、これらの
両建物J,K間に、望ましくはこれらの建物の振動の腹
部において、腕部33,34が上下に交差して延設さ
れ、これらの間に本鉛ダンパDが介装される。
FIG. 10 shows an example of application of the lead damper D between building buildings. That is, in the figure, J and K are adjacent buildings, and their vibration characteristics (natural period, damping property) are different depending on their shapes and heights. A passageway (not shown) is installed between the two buildings J and K. Then, between these two buildings J and K, preferably, in the vibration abdomen of these buildings, the arm portions 33 and 34 are vertically extended to extend, and the lead damper D is interposed between them. To be done.

【0021】C. 発明の効果 本発明の軸方向移動機構付き鉛ダンパによれば、面方向
の強制振動力が作用したとき、塑性変形部の鉛体の面方
向変形に伴う軸方向移動分は軸方向移動機構部によって
逃がされるので、鉛体に軸方向の変形応力が生ぜず、純
せん断塑性変形を得ることができる。この結果、一定容
量(断面)の鉛体について大きなエネルギー吸収能が得
られ、同一のエネルギー吸収能について従来のものより
も小型化が達成される。また、本鉛ダンパの鉛体は断面
縮小に伴うエネルギー吸収特性の低下がなく、設計仕様
に伴う所期のエネルギー吸収特性を発揮し、設計の標準
化が達成される。
C. Effect of the Invention According to the lead damper with the axial movement mechanism of the present invention, when the forced vibration force in the surface direction acts, the axial movement amount due to the surface direction deformation of the lead body of the plastically deformed portion is reduced. Since the lead body is released by the axial movement mechanism, no deformation stress in the axial direction is generated in the lead body, and pure shear plastic deformation can be obtained. As a result, a large energy absorption capacity can be obtained for a lead body having a constant capacity (cross section), and a smaller size than the conventional one can be achieved for the same energy absorption capacity. In addition, the lead body of the lead damper does not deteriorate in energy absorption characteristics due to the reduction in cross-section, exhibits desired energy absorption characteristics according to design specifications, and achieves design standardization.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の軸方向移動機構付き鉛ダンパの一実施
例(第1実施例)の縦断面図(図2のI−I線断面
図)。
FIG. 1 is a vertical cross-sectional view (cross-sectional view taken along line I-I of FIG. 2) of an embodiment (first embodiment) of a lead damper with an axial movement mechanism according to the present invention.

【図2】図1のII−II線断面平面図。FIG. 2 is a cross-sectional plan view taken along the line II-II of FIG.

【図3】(a) 図は軸方向移動機構付き鉛ダンパの設置態
様を示す基礎部の縦断面図。(b) 図は(a) 図のIII-III
線断面図。
FIG. 3 (a) is a vertical cross-sectional view of a base portion showing an installation mode of a lead damper with an axial movement mechanism. (b) Figure is (a) III-III
FIG.

【図4】塑性変形部における鉛体の動作図。FIG. 4 is an operation diagram of a lead body in a plastically deformed portion.

【図5】本発明の軸方向移動機構付き鉛ダンパの他の実
施例(第2実施例)の縦断面図。
FIG. 5 is a vertical cross-sectional view of another embodiment (second embodiment) of the lead damper with the axial movement mechanism of the present invention.

【図6】(a) 図は本発明の軸方向移動機構付き鉛ダンパ
の更に他の実施例(第3実施例)の縦断面図。(b) 図は
(a) 図のVI-VI 線断面図。
FIG. 6 (a) is a longitudinal sectional view of still another embodiment (third embodiment) of the lead damper with the axial movement mechanism of the present invention. (b) The figure is
(a) Sectional view taken along the line VI-VI in the figure.

【図7】(a) 図は本発明の軸方向移動機構付き鉛ダンパ
の更に他の実施例(第4実施例)の縦断面図。(b) 図は
(a) のVII-VII 線断面図。
FIG. 7 (a) is a vertical cross-sectional view of still another embodiment (fourth embodiment) of the lead damper with the axial movement mechanism of the present invention. (b) The figure is
(a) VII-VII line sectional drawing.

【図8】本発明の軸方向移動機構付き鉛ダンパの変形態
様の縦断面図。
FIG. 8 is a vertical cross-sectional view of a modification of the lead damper with an axial movement mechanism of the present invention.

【図9】本発明の軸方向移動機構付き鉛ダンパの他の適
用例図。
FIG. 9 is a diagram showing another application example of the lead damper with an axial movement mechanism of the present invention.

【図10】本発明の軸方向移動機構付き鉛ダンパの更に
他の適用例図。
FIG. 10 is a view showing still another application example of the lead damper with the axial movement mechanism of the present invention.

【符号の説明】[Explanation of symbols]

D,D1,D2,D3,D4…軸方向(上下)移動機構
付き鉛ダンパ、G…上部構造、B…下部構造、S…支
承、1…塑性変形部、2…軸方向(上下)移動機構部、
4…鉛体、11…ピストン体、12…シリンダ体、13
…転動子
D, D1, D2, D3, D4 ... Lead damper with axial (up / down) moving mechanism, G ... Upper structure, B ... Lower structure, S ... Bearing, 1 ... Plastic deformation part, 2 ... Axial (up / down) moving mechanism Department,
4 ... Lead body, 11 ... Piston body, 12 ... Cylinder body, 13
… Rollers

───────────────────────────────────────────────────── フロントページの続き (72)発明者 有田 友彦 東京都港区元赤坂一丁目2番7号 鹿島建 設株式会社内 (72)発明者 宮川 信幸 東京都港区元赤坂一丁目2番7号 鹿島建 設株式会社内 (72)発明者 下田 郁夫 神奈川県藤沢市桐原町8番地 オイレス工 業株式会社藤沢事業場内 (72)発明者 池永 雅良 神奈川県藤沢市桐原町8番地 オイレス工 業株式会社藤沢事業場内 (72)発明者 宮崎 充 神奈川県藤沢市桐原町8番地 オイレス工 業株式会社藤沢事業場内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Tomohiko Arita 1-2-7 Moto-Akasaka, Minato-ku, Tokyo Kashima Construction Co., Ltd. (72) Inventor Nobuyuki Miyagawa 1-2-7 Moto-Akasaka, Minato-ku, Tokyo No. Kashima Construction Co., Ltd. (72) Ikuo Shimoda Inventor Ikuo Shimoda 8 Kirihara-cho, Fujisawa-shi, Kanagawa OILES Industrial Co., Ltd. Fujisawa Plant (72) Inventor Masayoshi Ikenaga 8 Kirihara-cho, Fujisawa-Kanagawa OILES ENGINEERING CO., LTD. Fujisawa Plant (72) Inventor Mitsuru Miyazaki 8 Kirihara Town, Fujisawa City, Kanagawa Prefecture OILES CORPORATION Fujisawa Plant

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】互いに面方向に変位する2つの構造物間に
介装される鉛ダンパにおいて、 前記一方の構造物側に固定され、前記面方向への変形を
受ける鉛体からなる塑性変形部を有し、 該塑性変形部の前記他方の構造物側の端部において、該
他方の構造物側に向けてピストン体が突設され、 前記他方の構造物側に固定され、前記ピストン体をその
内孔内に収容し、面に直交する軸方向への移動のみ許容
して拘束するシリンダ体を有する、ことを特徴とする軸
方向移動機構付き鉛ダンパ。
1. A lead damper interposed between two structures that are displaced in the plane direction, wherein a plastically deformable portion is fixed to the one structure side and is made of a lead body that is deformed in the plane direction. At the other structure side end of the plastically deformable portion, a piston body is projected toward the other structure side and is fixed to the other structure side, and the piston body is fixed to the other structure side. A lead damper with an axial movement mechanism, characterized in that it has a cylinder body that is housed in its inner hole and allows only movement in an axial direction orthogonal to a plane and restrains it.
【請求項2】互いに面方向に変位する2つの構造物間に
介装される鉛ダンパにおいて、 前記一方の構造物側に固定され、前記面方向への変形を
受ける鉛体からなる塑性変形部を有し、 該塑性変形部の前記他方の構造物側の端部において、該
他方の構造物側に向けて内孔を有するシリンダ体が突設
され、 前記他方の構造物側に固定され、前記シリンダ体の内孔
に嵌挿されて前記シリンダ体を面に直交する軸方向への
移動のみ許容して拘束するピストン体を有する、ことを
特徴とする軸方向移動機構付き鉛ダンパ。
2. A lead damper interposed between two structures that are displaced in the plane direction, wherein the plastic deformation portion is fixed to the one structure side and is made of a lead body that is deformed in the plane direction. A cylinder body having an inner hole toward the other structure side at the end of the plastic deformation portion on the other structure side, and fixed to the other structure side. A lead damper with an axial movement mechanism, comprising a piston body that is inserted into an inner hole of the cylinder body and restricts the cylinder body by allowing movement only in an axial direction orthogonal to a plane.
【請求項3】ピストン体とシリンダ体とは転動子を介し
て軸方向移動自在である請求項1又は2に記載の軸方向
移動機構付き鉛ダンパ。
3. The lead damper with an axial movement mechanism according to claim 1, wherein the piston body and the cylinder body are axially movable via rolling elements.
【請求項4】ピストン体とシリンダ体とは直接的に相接
して摺動自在である請求項1又は2に記載の軸方向移動
機構付き鉛ダンパ。
4. The lead damper with an axial movement mechanism according to claim 1, wherein the piston body and the cylinder body are in direct contact with each other and are slidable.
【請求項5】ピストン体は単数である請求項1又は2に
記載の軸方向移動機構付き鉛ダンパ。
5. The lead damper with an axial movement mechanism according to claim 1, wherein the number of piston bodies is one.
【請求項6】ピストン体は複数である請求項1又は2に
記載の軸方向移動機構付き鉛ダンパ。
6. A lead damper with an axial movement mechanism according to claim 1, wherein the piston body has a plurality of piston bodies.
JP10488795A 1995-04-05 1995-04-05 Lead damper with axially moving mechanism Pending JPH08277652A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10488795A JPH08277652A (en) 1995-04-05 1995-04-05 Lead damper with axially moving mechanism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10488795A JPH08277652A (en) 1995-04-05 1995-04-05 Lead damper with axially moving mechanism

Publications (1)

Publication Number Publication Date
JPH08277652A true JPH08277652A (en) 1996-10-22

Family

ID=14392694

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10488795A Pending JPH08277652A (en) 1995-04-05 1995-04-05 Lead damper with axially moving mechanism

Country Status (1)

Country Link
JP (1) JPH08277652A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007100777A (en) * 2005-10-03 2007-04-19 Sankyo Oilless Industry Inc Bearing structure for vibration damper
KR100760212B1 (en) * 2006-11-20 2007-09-20 매크로드 주식회사 A steel damper for horizontal force control of bridge
JP2008018774A (en) * 2006-07-11 2008-01-31 Railway Technical Res Inst Suspension device for trolley wire

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007100777A (en) * 2005-10-03 2007-04-19 Sankyo Oilless Industry Inc Bearing structure for vibration damper
JP2008018774A (en) * 2006-07-11 2008-01-31 Railway Technical Res Inst Suspension device for trolley wire
KR100760212B1 (en) * 2006-11-20 2007-09-20 매크로드 주식회사 A steel damper for horizontal force control of bridge

Similar Documents

Publication Publication Date Title
JP2010007859A (en) Isolation platform
JPH1136657A (en) Base isolation device
JP6275314B1 (en) Seismic reinforcement structure for bridges
JPH08277652A (en) Lead damper with axially moving mechanism
JP2014114837A (en) Base isolation structure
JPH08277653A (en) Lead damper with axial shift adjusting mechanism
JP6775305B2 (en) A friction damper device and a structure having a friction damper device
JP2009047290A (en) Omnidirectional vibration damper
JPH11293685A (en) Base isolation structure of construction
JP2018091035A (en) Attachment structure of building oil damper
JPH04343982A (en) Dynamic vibration reducer
JP4350619B2 (en) Seismic retrofit structure of building and seismic retrofit method
JP2008069595A (en) Aseismic response control damper installing structure
JPH08277654A (en) Lead damper with axial shift adjusting mechanism
JPH04154B2 (en)
JPH033723Y2 (en)
JPS5941215Y2 (en) Movable bearing with shock absorber
JP2002047827A (en) Base isolation structure
JP2927357B2 (en) Seismic isolation support device
JP3753264B2 (en) Building seismic isolation device
JP3845140B2 (en) Structure isolation device
JPS607373Y2 (en) Bridge support protection material
JP2907310B2 (en) Vibration isolation device
JP2000104420A (en) Base isolation structure
JP4209813B2 (en) Attenuator

Legal Events

Date Code Title Description
A977 Report on retrieval

Effective date: 20040624

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040706

A521 Written amendment

Effective date: 20040902

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Effective date: 20041102

Free format text: JAPANESE INTERMEDIATE CODE: A02