JPH08277189A - Assesment of compost aging degree - Google Patents

Assesment of compost aging degree

Info

Publication number
JPH08277189A
JPH08277189A JP7610695A JP7610695A JPH08277189A JP H08277189 A JPH08277189 A JP H08277189A JP 7610695 A JP7610695 A JP 7610695A JP 7610695 A JP7610695 A JP 7610695A JP H08277189 A JPH08277189 A JP H08277189A
Authority
JP
Japan
Prior art keywords
compost
molecular weight
ratio
components
composting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7610695A
Other languages
Japanese (ja)
Inventor
Daizo Takeuchi
大造 武内
Tokio Iizuka
時男 飯塚
Nobuyuki Sato
信之 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP7610695A priority Critical patent/JPH08277189A/en
Publication of JPH08277189A publication Critical patent/JPH08277189A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/20Fertilizers of biological origin, e.g. guano or fertilizers made from animal corpses
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/40Bio-organic fraction processing; Production of fertilisers from the organic fraction of waste or refuse

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Fertilizers (AREA)

Abstract

PURPOSE: To establish a compost assessment standard in order to supply constant-quality composts with stable aging degree. CONSTITUTION: A compost is subjected to extraction with water, and the ultraviolet-absorbing components in the resultant extract are fractionatingly determined for every molecular weight to determine the rate of low-molecular weight components, and with this rate, the compost aging degree is assessed. It is preferable that the above low-molecular weight components is <=1500 in molecular weight.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、家庭で発生する生ご
み、都市ごみ、各種農水産廃棄物、および下水汚泥等の
有機性廃棄物から肥料化される堆肥(以下、コンポスト
と記す)の熟成度を評価する方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to compost (hereinafter referred to as compost) that is fertilized from organic waste such as raw garbage, municipal waste, various agricultural and marine wastes generated at home, and sewage sludge. The present invention relates to a method for evaluating maturity.

【0002】[0002]

【従来の技術】堆肥化(以下、コンポスト化と記す)す
る方法としては、水分調整材としてワラ、モミガラ、オ
ガクズ等の有機物やゼオライト、巨大気孔を有する多孔
性鉱物等の無機物を用いて通気性を確保し、好気性発酵
を行わせる方法および自然堆積する方法が従来から行わ
れている。また、好気性発酵を促進させるために、切り
返し等の公知の技術がある。
2. Description of the Related Art As a method for composting (hereinafter referred to as composting), organic substances such as straw, chaff, sawdust, etc., and inorganic substances such as zeolites and porous minerals with huge pores are used as a moisture control agent. A method for ensuring aerobic fermentation and carrying out aerobic fermentation and a method for natural deposition have been conventionally used. In addition, there are known techniques such as turning back in order to promote aerobic fermentation.

【0003】しかし、水分調整材として有機物を使用し
た場合は炭素/窒素比率(C/N比)が高く、難分解質
であるセルロース質やリグニン質が多いため完熟堆肥化
には長期間を要する。水分調整材として難分解物質を含
まない無機物質、例えばゼオライトを用いる場合、酸化
アルミニウムが土壌のリン酸分を吸着するという問題と
共に、強制的な好気性発酵のみでは発酵しにくい有機物
が残存した中熟発酵物しか得られず、完熟発酵物を得る
ために、得られた中熟発酵物をさらに長期間自然堆積す
る必要が生じる。
However, when an organic substance is used as the water content adjusting material, the carbon / nitrogen ratio (C / N ratio) is high, and there are many cellulosic substances and lignin substances, which are hardly decomposable substances, and therefore, it takes a long time to complete the ripe compost. . Inorganic substances that do not contain difficult-to-decompose substances as water content modifiers, for example, when using zeolite, with the problem that aluminum oxide adsorbs the phosphate content of soil, organic substances that are difficult to ferment by forced aerobic fermentation alone remained Only a mature fermented product can be obtained, and in order to obtain a fully matured fermented product, it is necessary to naturally deposit the obtained middle-aged fermented product for a longer period of time.

【0004】また、自然堆積によるコンポスト化方法で
は、完熟した発酵物を得るのに多量の時間を要すると共
に、自然堆積によって空気に触れ易い表面近傍と中心部
や下部等の場所とでは、発酵の程度が不均一になるとい
う問題がある。さらに、いずれの水分調整材を用いても
有機質廃棄物中には比較的発酵し易い物質と発酵しにく
い物質とがあり、後者の発酵しにくい有機物を発酵、分
解させるには長時間かかるという問題がある。
Further, in the method of composting by natural deposition, it takes a lot of time to obtain a fully fermented fermented product, and the fermentation is carried out in the vicinity of the surface, which is easily exposed to air due to natural deposition, and the places such as the central part and the lower part. There is a problem that the degree becomes uneven. Furthermore, there is a substance that is relatively easy to ferment and a substance that is difficult to ferment in organic waste regardless of which moisture control material is used, and it takes a long time to ferment and decompose the latter hard to ferment organic matter. There is.

【0005】このため、各種廃棄物処理装置、生ごみ処
理装置、生ごみの高速発酵処理装置、有機質廃棄物の堆
肥化方法、土壌改良材、余剰汚泥の有効利用などの技術
が提案されているが、これらの技術は高速発酵方法や装
置および発酵の促進方法を提案するものであり、これら
の問題を解決するために重要となるコンポストを評価す
る適切な指標が見出されていなかったのが実情である。
For this reason, various waste treatment devices, food waste treatment devices, high-speed fermentation treatment devices for food waste, methods for composting organic waste, soil conditioners, effective use of excess sludge, etc. have been proposed. However, these technologies propose a high-speed fermentation method and a device and a method for promoting fermentation, and an appropriate index for evaluating compost, which is important for solving these problems, has not been found. It's a reality.

【0006】また、これら高速発酵法で調製、生産され
たコンポストは、一部、乾燥、減容、除臭などにより、
取扱いは容易となるが、未だ未発酵の成分、すなわち、
土壌微生物に利用されやすい成分が多く残っているた
め、畑など土壌に施用した際、二次発酵による発熱によ
って植物、作物の根の発根、伸張に影響をおよぼし植
物、作物の生育が阻害され、収穫も低下することが懸念
される。
The compost prepared and produced by these high-speed fermentation methods is partially dried, reduced in volume, deodorized, etc.
Easy to handle, but still unfermented ingredients:
Since many components that are easily utilized by soil microorganisms remain, when applied to soil such as fields, the heat generated by secondary fermentation affects the rooting and elongation of roots of plants and crops, which inhibits the growth of plants and crops. However, it is feared that the yield will decrease.

【0007】以上述べたように、コンポスト化には長期
間を要し、品質の安定したコンポストを生産する上から
も、またコンポスト化の技術開発の上からも、コンポス
トの熟成度を判断する管理項目が必要不可欠であるが、
未だ信頼性の高い本質的な評価技術は提案されていな
い。すなわち、従来は、コンポスト化時に熟成度がどこ
まで進んでいるか判定が困難で、その終点は明確でな
く、熟成度の判定には経験と熟練が必要であった。
As described above, the composting requires a long period of time, and is a management for judging the maturity of the compost from the viewpoint of producing compost of stable quality and from the technical development of the composting. Items are essential,
A reliable and essential evaluation technique has not been proposed yet. That is, in the past, it was difficult to determine how much the maturity had progressed during composting, the end point was not clear, and experience and skill were required to determine the maturity.

【0008】熟成度の評価指標として、農産コンポスト
の腐熟度を示す指標として従来使用されてきた、外観、
臭い、水分、熟成期間、色調、熟成期間中の温度履歴な
どの経験や感に基づく定性的な指標は、実際の場で使用
される簡便な指標であるが、コンポストそのものの熟成
度を定量的に評価する方法ではない。コンポストの熟成
度の他の評価方法としては、炭素・窒素比率(C/N
比)、腐熟成分量、円形濾紙クロマトグラフによる評
価、幼植物に対する発芽試験、生育試験等が行われてき
ている。これらの内で直接に植物、作物への影響を測定
する幼植物に対する発芽試験、生育試験を除いては、い
ずれの評価方法も、その原料によって測定値が大きく変
動し定量的な指標となっていない。また、発芽試験、生
育試験は植物への影響を評価するもので、コンポストそ
のものを短時間に定量的に評価する方法ではない。
The appearance, which has been conventionally used as an index for evaluating the maturity of agricultural compost, is used as an index for evaluating the maturity.
Although qualitative indicators based on experience and feeling such as odor, water, aging period, color tone, and temperature history during aging period are simple indicators used in actual situations, the aging degree of the compost itself can be quantitatively determined. Not a way to evaluate. As another method of evaluating the maturity of compost, the carbon / nitrogen ratio (C / N
Ratio), amount of ripening components, evaluation by circular filter paper chromatograph, germination test for young plants, growth test and the like. Of these evaluation methods, except for the germination test and growth test for young plants, which directly measure the effects on plants and crops, the measured values fluctuate greatly depending on the raw materials, and they are quantitative indicators. Absent. In addition, the germination test and the growth test evaluate the effects on plants, and do not quantitatively evaluate the compost itself in a short time.

【0009】従来の農産廃棄物コンポストでは、C/N
比と熟成度とは高い相関性が提唱され、C/N比がコン
ポスト評価指標として認められてきた。しかし、最近の
都市ごみコンポストのように各種有機性廃棄物が原料と
して使用されるようになると、原料によってC/N比は
大きく変動し、C/N比とコンポスト熟成度の相関関係
が小さくなっている。そのため、当該分野ではコンポス
ト熟成度を評価するためには各々、原料毎にC/N比お
よび評価指標をきめることが必要とされている。
In the conventional agricultural waste compost, C / N is used.
A high correlation between the ratio and the maturity has been proposed, and the C / N ratio has been accepted as a compost evaluation index. However, when various organic wastes are used as a raw material like the recent municipal solid waste compost, the C / N ratio changes greatly depending on the raw material, and the correlation between the C / N ratio and the compost maturity becomes small. ing. Therefore, in this field, in order to evaluate the compost maturity, it is necessary to determine the C / N ratio and the evaluation index for each raw material.

【0010】特に、近年のようにセルロース系物質を多
く含む都市ごみなど各種有機性廃棄物を原料とするコン
ポストが出現するにいたって、従来の評価指標ではコン
ポストの正確な熟成度を示すことは難しく、原料に相応
したコンポスト熟成度の評価指標を決めることが強く望
まれている。
In particular, as composts made from various organic wastes such as municipal solid wastes containing a large amount of cellulosic materials have emerged as in recent years, the conventional evaluation index does not show an accurate maturity of composts. It is difficult and it is strongly desired to determine the evaluation index of compost maturity corresponding to the raw material.

【0011】[0011]

【発明が解決しようとする課題】本発明は、前記問題点
を解決し、熟成度の安定した一定品質の堆肥(コンポス
ト)を供給するためのコンポストの評価方法を設定し提
供することにある。
SUMMARY OF THE INVENTION It is an object of the present invention to solve the above problems and set and provide a compost evaluation method for supplying a compost of a constant quality with a stable ripening degree.

【0012】[0012]

【課題を解決するための手段】本発明は、堆肥を溶媒に
より抽出処理し、得られた抽出液中の紫外スペクトル部
に吸収を有する成分を分子量毎に分画定量し、低分子量
成分の比率を求め、該比率により堆肥の熟成度を評価す
ることを特徴とする堆肥の熟成度評価方法であり、また
本発明は、前記低分子量成分が分子量1500以下であるこ
とが好ましい。
Means for Solving the Problems The present invention is a method of extracting compost from a solvent, fractionating and quantifying the components having absorption in the ultraviolet spectrum in the obtained extract, and determining the ratio of low molecular weight components. Is obtained and the maturity of the compost is evaluated by the ratio, and in the present invention, it is preferable that the low molecular weight component has a molecular weight of 1500 or less.

【0013】なお、本発明における紫外スペクトル部と
は、 190〜350 nmの波長域を意味する。
The ultraviolet spectrum portion in the present invention means a wavelength range of 190 to 350 nm.

【0014】[0014]

【作用】本発明は、家庭で発生する生ごみ、都市ごみ、
各種農水産廃棄物、および下水汚泥等の有機質廃棄物か
ら肥料化される堆肥に適用され、堆肥化の原料、堆肥化
途中の堆肥および最終の堆肥等の全てに適用される。コ
ンポストの熟成および生ごみの消滅は、第一段階として
原材料中の水等の溶媒に溶解し微生物に利用されやすい
グルコースなどの糖類やグルタミン酸などのアミノ酸な
ど低分子量成分が微生物により分解、利用され、続いて
第二段階としてセルロース、ヘミセルロースなどの高分
子量成分が徐々に分解、利用されることによって腐植成
分などを生成しながら進行する。
The function of the present invention is to dispose of domestic garbage, municipal waste,
It is applied to compost that is fertilized from various agricultural and marine wastes and organic wastes such as sewage sludge, and is also applied to all raw materials for composting, compost in the process of composting, and final compost. The aging of compost and the disappearance of food waste, as a first step, the low molecular weight components such as sugars such as glucose and amino acids such as glutamic acid that are easily dissolved in a solvent such as water in the raw materials and used by microorganisms are decomposed and used by the microorganisms, Then, as a second step, a high molecular weight component such as cellulose or hemicellulose is gradually decomposed and utilized to generate a humus component and the like.

【0015】ここで重要なことは、糖質成分のグルコー
スやシュークロースなどの低分子糖類は、微生物に利用
されやすく短時間の内に菌体成分やエネルギーとして利
用され消失し、その後にセルロース、ヘミセルロース、
リグニン等の高分子の難分解性物質が徐々に分解されて
コンポスト中に供給されるため、前記低分子糖類の測定
値はコンポストの熟成度を正確には表していない。その
ため、熟成度とは相関性が低く、コンポストの熟成度の
評価指標としては好ましくない。
It is important to note that low molecular weight sugars such as glucose and sucrose, which are sugar components, are easily utilized by microorganisms and disappear as cell components and energy within a short period of time. Hemicellulose,
The measured value of the low-molecular-weight saccharide does not accurately represent the maturity of compost, because a high-molecular-weight persistent substance such as lignin is gradually decomposed and supplied into compost. Therefore, it has a low correlation with the maturity and is not preferable as an evaluation index of the maturity of compost.

【0016】一方、タンパク質、アミノ酸、核酸等紫外
部吸光をもつ成分は、前記糖類とは異なり、徐々に分解
されていくため、コンポストの熟成度および消滅度との
相関性が高く、コンポスト熟成度および/またはコンポ
ストの指標として好ましい。本発明に用いられる溶媒と
しては、水、エタノール、メタノール等のアルコール、
アセトン等の有機溶媒またはこれらの混合液が好まし
い。
On the other hand, components such as proteins, amino acids, and nucleic acids that have ultraviolet absorption are gradually decomposed unlike the above-mentioned saccharides, and therefore have a high correlation with the maturity and disappearance of the compost, and the maturity of the compost is high. And / or as an index of compost. The solvent used in the present invention, water, ethanol, alcohol such as methanol,
An organic solvent such as acetone or a mixed solution thereof is preferable.

【0017】本発明においては、有機質廃棄物のコンポ
スト化過程において、紫外スペクトル部に吸収を持つ低
分子量成分の比率を指標とすることにより、高度の熟練
と経験を必要とすることなく誰でも迅速、簡便に短時間
で定量的に熟成・発酵中のコンポストの熟成度を求める
ことが可能となった。本発明方法により、コンポスト完
了時点を明確に決めることが可能となったため、本発明
方法を製造工程管理、品質管理、製品検査に利用するこ
とにより、安定した一定品質のコンポストが供給できる
ようになった。
In the present invention, in the process of composting organic waste, by using the ratio of the low molecular weight component having absorption in the ultraviolet spectrum as an index, anyone can quickly obtain it without requiring high skill and experience. It has become possible to easily and quantitatively determine the maturity of compost during aging and fermentation in a short time. Since the method of the present invention makes it possible to clearly determine the completion point of composting, by using the method of the present invention for manufacturing process control, quality control, and product inspection, it becomes possible to supply stable compost of constant quality. It was

【0018】例えば、土壌に施用した際に、二次発酵熱
によって作物に影響をおよぼさない良いコンポストの評
価指標として、低分子量成分の比率が5%以下、好まし
くは2%以下と定量的に規定が可能となる。
For example, when applied to soil, the ratio of low molecular weight components is 5% or less, preferably 2% or less, as a good compost evaluation index that does not affect the crop by secondary fermentation heat. Can be specified.

【0019】[0019]

【実施例】以下に実施例に基づいて本発明を具体的に説
明する。 (実施例1)都市生ごみ処理プラント(2トン/日能
力)でコンポスト化(熟成)処理中の処理物 500gをコ
ンポスト化経過日数毎に採取し、十分に均一混合した
後、10gを 300ml三角フラスコに秤量した。これに蒸留
水 200mlを加えて室温で10分間、ロータリーシェーカー
(200rpm)で水溶性成分を振盪抽出した。振盪後、抽出
液を濾過し、高速液体クロマトグラフィーで下記分析条
件下で分子量分画によるGPC(Gel-Permeation Chrom
atograph)法による分析を行った。
EXAMPLES The present invention will be specifically described below based on examples. (Example 1) 500 g of a treated product under composting (aging) treatment in an urban garbage treatment plant (2 tons / day capacity) was sampled at each elapsed days of composting and sufficiently mixed, and then 10 g was added to a 300 ml triangle. Weighed into a flask. 200 ml of distilled water was added to this, and the water-soluble component was extracted by shaking with a rotary shaker (200 rpm) for 10 minutes at room temperature. After shaking, the extract was filtered and subjected to GPC (Gel-Permeation Chrom
atograph) method.

【0020】〔GPC分析条件〕 液体クロマトグラフィー:島津LC−10AD 検出器:UV 280nm 移動溶媒:蒸留水 1ml/min キャリアーガス:ヘリウムHe カラム:アサヒパックGS−310 7.6mm ×500mm 平均粒子径 9± 0.5μm(合成高分子系) サンプル量:10μl サンプル濾過:0.45μmフィルター(セルロースアセテ
ート製) 前記処理物のコンポスト化経過日数に対応するゲルクロ
マトグラムパターンを図3〜図6に示す。
[GPC analysis conditions] Liquid chromatography: Shimadzu LC-10AD Detector: UV 280 nm Mobile solvent: Distilled water 1 ml / min Carrier gas: Helium He Column: Asahi Pack GS-310 7.6 mm x 500 mm Average particle size 9 ± 0.5 μm (synthetic polymer system) Sample amount: 10 μl Sample filtration: 0.45 μm filter (manufactured by cellulose acetate) FIGS. 3 to 6 show gel chromatogram patterns corresponding to the elapsed days of composting of the treated product.

【0021】検出されたクロマトグラムは、リテンショ
ンタイム(保持時間)18分前後で特徴的に分けられる。
なお、リテンションタイム18分前後に対応する成分の分
子量は、約1500であり、以下、リテンションタイムにか
えて近似の分子量で表現する。検出された全成分量に対
する分子量約1500以下の成分の合計量の比率を評価指標
とした。
The detected chromatograms are characteristically divided around a retention time (holding time) of about 18 minutes.
The molecular weight of the component corresponding to a retention time of about 18 minutes is about 1500, and will be expressed as an approximate molecular weight instead of the retention time. The ratio of the total amount of components having a molecular weight of about 1500 or less to the total amount of detected components was used as an evaluation index.

【0022】表1に、コンポスト化経過日数に対応する
分子量1500以下の成分の比率、炭素量、窒素量、および
炭素/窒素比率(C/N比)の測定値を示す。また、図
1および図2に分子量1500以下の成分の比率とコンポス
ト化経過日数との関係を示す。なお、図1は、図2のデ
ータを対数プロットしたものである。
Table 1 shows the measured values of the ratio of components having a molecular weight of 1500 or less, the amount of carbon, the amount of nitrogen, and the carbon / nitrogen ratio (C / N ratio) corresponding to the number of days after composting. 1 and 2 show the relationship between the ratio of components having a molecular weight of 1500 or less and the days after composting. Note that FIG. 1 is a logarithmic plot of the data of FIG.

【0023】図1、図2および表1に示される通り、分
子量1500以下の成分の比率とコンポスト化経過日数との
間には高い相関関係が認められ、一方C/N比とコンポ
スト化経過日数との相関関係は小さく、コンポストの熟
成度の指標としては、C/N比よりも、分子量1500以下
の成分の比率を用いる方が好ましいことが分かる。
As shown in FIGS. 1 and 2 and Table 1, a high correlation was observed between the ratio of components having a molecular weight of 1500 or less and the number of days of composting, while the C / N ratio and the number of days of composting were found. It can be seen that the correlation with is small and it is more preferable to use the ratio of the components having a molecular weight of 1500 or less than the C / N ratio as an index of the maturity of compost.

【0024】[0024]

【表1】 [Table 1]

【0025】(実施例2)実施例1と同様にコンポスト
化中の処理物を採取し三角フラスコに秤量し、同量の蒸
留水を加えて、10分間超音波処理を行い水溶性成分を抽
出した。抽出後は実施例1と同じく抽出液を濾過しGP
C分析を行った。結果を表2に示す。表2に示される通
り、超音波処理による抽出の場合も振盪抽出と同様の結
果を得た。
(Example 2) As in Example 1, the treated material under composting was sampled, weighed in an Erlenmeyer flask, the same amount of distilled water was added, and ultrasonic treatment was performed for 10 minutes to extract water-soluble components. did. After the extraction, the extract is filtered and GP
C analysis was performed. Table 2 shows the results. As shown in Table 2, in the case of extraction by ultrasonic treatment, the same result as in the shake extraction was obtained.

【0026】[0026]

【表2】 [Table 2]

【0027】(実施例3)実施例1と同量のコンポスト
を各種抽出条件下で処理し、実施例1と同様にGPC分
析を行った。結果を表3に示す。10分以上の抽出時間で
は分子量1500以下の成分の比率にバラツキはなかった。
Example 3 The same amount of compost as in Example 1 was treated under various extraction conditions, and GPC analysis was performed in the same manner as in Example 1. The results are shown in Table 3. When the extraction time was 10 minutes or more, there was no variation in the ratio of components having a molecular weight of 1500 or less.

【0028】[0028]

【表3】 [Table 3]

【0029】(実施例4)測定するサンプル量を 0.5
g、蒸留水を10mlとした以外は実施例と同様の条件で
処理して、実施例1と同様にGPC分析を行った。結果
を表4に示す。10分以上の抽出時間では、分子量1500以
下の成分の比率について実施例との差は認められなか
った。
(Embodiment 4) The sample amount to be measured is 0.5
g, and treated with the same conditions as in Example 1 except that distilled water was changed to 10 ml, and GPC analysis was performed in the same manner as in Example 1. The results are shown in Table 4. At an extraction time of 10 minutes or longer, no difference from Example 1 was observed in the ratio of components having a molecular weight of 1500 or less.

【0030】[0030]

【表4】 [Table 4]

【0031】(実施例5)実施例2でGPC測定したサ
ンプルを10℃で保存し、5日後に実施例2と同様にして
再測定した。結果を表5に示す。5日後でも分子量15
00以下の成分の比率に殆ど変化は認められなかった。
Example 5 The sample measured by GPC in Example 2 was stored at 10 ° C., and after 5 days, it was measured again in the same manner as in Example 2. The results are shown in Table 5. Molecular weight 15 even after 5 days
Almost no change was observed in the ratio of components of 00 or less.

【0032】[0032]

【表5】 [Table 5]

【0033】(実施例6)農水産廃棄物である農産コン
ポスト、下水汚泥である浄化センター・コンポスト、残
飯コンポスト等の各種コンポストおよびコンポスト基材
として使用するオガ粉各々について実施例1と同様に処
理して得られた水抽出物についてGPC法による分析を
行った。
Example 6 Various kinds of composts such as agricultural compost which is agricultural and marine waste, sewage sludge, purification centers and composts, leftover compost, and ogre powder used as a compost base are treated in the same manner as in Example 1. The water extract thus obtained was analyzed by the GPC method.

【0034】各々のゲルクロマトグラムパターンを図7
〜図12に、また分子量1500以下の成分の比率とC/N
比との関係を図13に示す。本発明の評価指標である低
分子量成分の比率は、従来法の評価指標であるC/N比
とも高い相関関係が認められた。以上述べたように、本
発明の評価指標である低分子量成分の比率は、コンポス
ト化経過日数およびC/N比のいずれとも高い相関関係
を有し、コンポストの熟成度の評価指標として有効であ
る。
The respective gel chromatogram patterns are shown in FIG.
~ Fig. 12 also shows the ratio of the components having a molecular weight of 1500 or less and C / N
The relationship with the ratio is shown in FIG. The ratio of the low molecular weight component, which is the evaluation index of the present invention, was highly correlated with the C / N ratio, which is the evaluation index of the conventional method. As described above, the ratio of the low molecular weight component, which is the evaluation index of the present invention, has a high correlation with both the days after composting and the C / N ratio, and is effective as an evaluation index of the maturity of compost. .

【0035】また、本発明方法によれば、サンプル量が
0.1 〜1.0gの少量でも簡易に測定評価が可能であるとい
う効果も有する。
Further, according to the method of the present invention, the sample amount is
It also has an effect that measurement and evaluation can be easily performed even with a small amount of 0.1 to 1.0 g.

【0036】[0036]

【発明の効果】本発明の堆肥の熟成度評価方法を用いる
ことにより、堆肥化の期間、堆肥品質など堆肥生産工程
の管理が可能となるため、堆肥の品質の安定化と安定供
給が可能となった。
EFFECT OF THE INVENTION By using the method for evaluating maturity of compost according to the present invention, the compost production process such as the composting period and the quality of compost can be managed, so that the quality of compost can be stabilized and a stable supply can be achieved. became.

【図面の簡単な説明】[Brief description of drawings]

【図1】コンポスト化経過日数と分子量1500以下の成分
の比率との関係を示すグラフ。
FIG. 1 is a graph showing the relationship between the days after composting and the ratio of components having a molecular weight of 1500 or less.

【図2】コンポスト化経過日数と分子量1500以下の成分
の比率との関係を示すグラフ。
FIG. 2 is a graph showing the relationship between the days after composting and the ratio of components having a molecular weight of 1500 or less.

【図3】都市生ごみ処理プラントのコンポストのコンポ
スト化経過日数とゲルクロマトグラムパターンを示すグ
ラフ。
FIG. 3 is a graph showing the days after composting and gel chromatogram patterns of compost in an urban garbage treatment plant.

【図4】都市生ごみ処理プラントのコンポストのコンポ
スト化経過日数とゲルクロマトグラムパターンを示すグ
ラフ。
FIG. 4 is a graph showing the number of days of composting and gel chromatogram pattern of compost in an urban garbage treatment plant.

【図5】都市生ごみ処理プラントのコンポストのコンポ
スト化経過日数とゲルクロマトグラムパターンを示すグ
ラフ。
FIG. 5 is a graph showing the days after composting and gel chromatogram patterns of compost in an urban food waste treatment plant.

【図6】都市生ごみ処理プラントのコンポストのコンポ
スト化経過日数とゲルクロマトグラムパターンを示すグ
ラフ。
FIG. 6 is a graph showing the days after composting and gel chromatogram patterns of compost in an urban garbage treatment plant.

【図7】(a)、(b)は残飯コンポストのゲルクロマ
トグラムパターンを示すグラフ。
7A and 7B are graphs showing gel chromatogram patterns of leftover compost.

【図8】(a)は魚(マグロ)アラ・コンポストのゲル
クロマトグラムパターン、(b)は残飯コンポストのゲ
ルクロマトグラムパターンを示すグラフ。
FIG. 8 (a) is a graph showing a gel chromatogram pattern of fish (tuna) ala compost, and FIG. 8 (b) is a graph showing a gel chromatogram pattern of residual rice compost.

【図9】(a)は牛フン・コンポストのゲルクロマトグ
ラムパターン、(b)は、し尿コンポストのゲルクロマ
トグラムパターンを示すグラフ。
FIG. 9A is a gel chromatogram pattern of bovine dung compost, and FIG. 9B is a graph showing a gel chromatogram pattern of human waste compost.

【図10】(a)は農産コンポストのゲルクロマトグラ
ムパターン、(b)は都市ごみコンポスト(熟成品)の
ゲルクロマトグラムパターンを示すグラフ。
FIG. 10A is a gel chromatogram pattern of agricultural compost, and FIG. 10B is a graph showing a gel chromatogram pattern of municipal solid waste compost (aged product).

【図11】浄化センター・コンポストのゲルクロマトグ
ラムパターンを示すグラフ。
FIG. 11 is a graph showing a gel chromatogram pattern of a purification center / compost.

【図12】オガ粉の水抽出物のゲルクロマトグラムパタ
ーンを示すグラフ。
FIG. 12 is a graph showing a gel chromatogram pattern of a water extract of ogre flour.

【図13】各種コンポストの分子量1500以下の成分の比
率とC/N比との関係を示すグラフ。
FIG. 13 is a graph showing the relationship between the ratio of components having a molecular weight of 1500 or less and the C / N ratio of various composts.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 堆肥を溶媒により抽出処理し、得られた
抽出液中の紫外スペクトル部に吸収を有する成分を分子
量毎に分画定量し、低分子量成分の比率を求め、該比率
により堆肥の熟成度を評価することを特徴とする堆肥の
熟成度評価方法。
1. A method of extracting compost with a solvent, fractionating and quantifying the components having absorption in the ultraviolet spectrum of the obtained extract for each molecular weight, obtaining the ratio of low molecular weight components, and calculating the ratio of the compost by the ratio. A method for evaluating maturity of compost, characterized by evaluating maturity.
【請求項2】 低分子量成分が分子量1500以下である請
求項1記載の堆肥の熟成度評価方法。
2. The method for evaluating maturity of compost according to claim 1, wherein the low molecular weight component has a molecular weight of 1500 or less.
JP7610695A 1995-03-31 1995-03-31 Assesment of compost aging degree Pending JPH08277189A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7610695A JPH08277189A (en) 1995-03-31 1995-03-31 Assesment of compost aging degree

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7610695A JPH08277189A (en) 1995-03-31 1995-03-31 Assesment of compost aging degree

Publications (1)

Publication Number Publication Date
JPH08277189A true JPH08277189A (en) 1996-10-22

Family

ID=13595650

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7610695A Pending JPH08277189A (en) 1995-03-31 1995-03-31 Assesment of compost aging degree

Country Status (1)

Country Link
JP (1) JPH08277189A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008051618A (en) * 2006-08-24 2008-03-06 National Agriculture & Food Research Organization Determination method for degree of compost decay, and solution for determination
CN103048276A (en) * 2012-12-14 2013-04-17 北京农业信息技术研究中心 Spectral index constructing method for detecting carbon nitrogen ratios of canopy leaves of crops
RU2709375C2 (en) * 2017-10-18 2019-12-17 Олег Николаевич Саулов Reagent-free method of producing liquid humic organic biopreparation for plant growing, livestock farming and poultry farming

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008051618A (en) * 2006-08-24 2008-03-06 National Agriculture & Food Research Organization Determination method for degree of compost decay, and solution for determination
CN103048276A (en) * 2012-12-14 2013-04-17 北京农业信息技术研究中心 Spectral index constructing method for detecting carbon nitrogen ratios of canopy leaves of crops
CN103048276B (en) * 2012-12-14 2014-09-03 北京农业信息技术研究中心 Spectral index constructing method for detecting carbon nitrogen ratios of canopy leaves of crops
RU2709375C2 (en) * 2017-10-18 2019-12-17 Олег Николаевич Саулов Reagent-free method of producing liquid humic organic biopreparation for plant growing, livestock farming and poultry farming

Similar Documents

Publication Publication Date Title
Zhang et al. Influence of bulking agents on physical, chemical, and microbiological properties during the two-stage composting of green waste
Riffaldi et al. Evaluation of compost maturity by means of chemical and microbial analyses
Sarathchandra et al. Soil microbial biomass: influence of simulated temperature changes on size, activity and nutrient-content
Zmora-Nahum et al. Physico-chemical properties of commercial composts varying in their source materials and country of origin
Brewer et al. Maturity and stability evaluation of composted yard trimmings
Michel Jr et al. Effects of turning frequency, leaves to grass mix ratio and windrow vs. pile configuration on the composting of yard trimmings
Zhang et al. Addition of seaweed and bentonite accelerates the two-stage composting of green waste
Iritani et al. Nitrogen release of vegetable crop residues during incubation as related to their chemical composition
Eggen et al. Stability indices for different composts
Liang et al. Maize root‐induced change in soil organic carbon pools
Veeken et al. Improving quality of composted biowaste to enhance disease suppressiveness of compost-amended, peat-based potting mixes
Adani et al. Composting and humification
Zaharah et al. Patterns of decomposition and nutrient release by fresh Gliricidia (Gliricidia sepium) leaves in an ultisol
Eriksen et al. Sulphur mineralisation in five Danish soils as measured by plant uptake in a pot experiment
Benesi et al. The effect of genotype, location and season on cassava starch extraction
Kütük et al. Effects of beer factory sludge on soil properties and growth of sugar beet (Beta vulgaris saccharifera L.)
Azim et al. Elucidation of functional chemical groups responsible of compost phytotoxicity using solid-state 13 C NMR spectroscopy under different initial C/N ratios
Kianirad et al. Effects of temperature treatment on corn cob composting and reducing of composting time: a comparative study
Cai et al. Sugarcane bagasse amendment improves the quality of green waste vermicompost and the growth of Eisenia fetida
Ball et al. Assessment of the potential of a novel newspaper/horse manure-based compost
Whitehead et al. Composition and decomposition of roots of ryegrass and red clover
JPH08277189A (en) Assesment of compost aging degree
Baca et al. Comparative use of cress seed germination and physiological parameters of Helianthus annuus L. to assess compost maturation
JP3698416B2 (en) Production method of artificial soil
Iannucci et al. Effects of the developmental stage at harvest on dry matter and chemical component partitioning in berseem