JPH08276272A - Two-electrode gas shielded arc welding method of austenitic stainless steel - Google Patents

Two-electrode gas shielded arc welding method of austenitic stainless steel

Info

Publication number
JPH08276272A
JPH08276272A JP10163595A JP10163595A JPH08276272A JP H08276272 A JPH08276272 A JP H08276272A JP 10163595 A JP10163595 A JP 10163595A JP 10163595 A JP10163595 A JP 10163595A JP H08276272 A JPH08276272 A JP H08276272A
Authority
JP
Japan
Prior art keywords
stainless steel
austenitic stainless
electrode
arc welding
welding method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP10163595A
Other languages
Japanese (ja)
Inventor
Sohei Sato
荘平 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP10163595A priority Critical patent/JPH08276272A/en
Publication of JPH08276272A publication Critical patent/JPH08276272A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE: To improve the low temperature toughness while the corrosion resistance is secured by the simple heat treatment for a large sized welded structure hard to execute the solution heat treatment in a multi-layer weld zone of the austenitic stainless steel. CONSTITUTION: In the two-electrode gas shielded arc welding method of the austenitic stainless steel, the weld bead formed by a preceding electrode is heated up to 900-1200 deg.C by the heat generated by a succeeding electrode, and the heated state is kept for 0.5-3 seconds to realize the austenitic transformation.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、オーステナイト系ステ
ンレス鋼のアーク溶接法に関し、特に熱処理に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an arc welding method for austenitic stainless steel, and more particularly to heat treatment.

【0002】[0002]

【従来の技術】オーステナイト系ステンレス鋼の溶接に
おいて、溶接部の低温靱性を向上させる方法として溶体
化熱処理がある。溶体化熱処理は本来耐食性を向上させ
る目的で行うが、その理由は以下による。オーステナイ
ト系ステンレス鋼は500〜800℃の温度域で加熱す
ると、粒界にCr 炭化物(主にCr 236 )が析出し、
その近傍では、固溶Cr の濃度が低下してCr 欠乏層が
生じ、不働態皮膜を維持するのに不十分となり、その結
果耐食性を劣化させる。溶接で多層盛り溶接する場合
は、先行パスが後続パスの熱でちょうどこの温度域まで
加熱されることになり、Cr 炭化物が出やすくなる。
2. Description of the Related Art In welding austenitic stainless steel, solution heat treatment is known as a method for improving the low temperature toughness of the welded portion. The solution heat treatment is originally performed for the purpose of improving the corrosion resistance, and the reason is as follows. When austenitic stainless steel is heated in the temperature range of 500 to 800 ° C., Cr carbide (mainly Cr 23 C 6 ) precipitates at grain boundaries,
In the vicinity thereof, the concentration of solid solution Cr is lowered to form a Cr-deficient layer, which becomes insufficient to maintain the passive film, resulting in deterioration of corrosion resistance. In the case of multi-layer welding by welding, the preceding pass is heated to just this temperature range by the heat of the succeeding pass, and Cr carbides are easily generated.

【0003】そこで、1100℃程度の温度まで加熱し
てCr 炭化物を分解しCr 欠乏層を無くし、その後水で
急冷し500〜800℃の温度域をすばやく通過させる
ことで、再びCr 炭化物が析出するのを防ぎ耐食性を向
上させる。この熱処理が溶体化熱処理である。溶体化熱
処理は耐食性を向上させると同時に、初めに述べた通り
低温靱性を向上させる効果があるが、これには以下の理
由がある。
Therefore, by heating to a temperature of about 1100 ° C. to decompose the Cr carbide to eliminate the Cr deficient layer, and then rapidly cooling with water to quickly pass the temperature range of 500 to 800 ° C., the Cr carbide is precipitated again. To prevent corrosion and improve corrosion resistance. This heat treatment is a solution heat treatment. The solution heat treatment has the effect of improving the corrosion resistance and at the same time improving the low temperature toughness as described above. The reason is as follows.

【0004】308系(19Cr −10Ni )、316
系(17Cr −12Ni −2Mo )ステンレス鋼材の場
合、平衝状態ではまずδ相が初晶として晶出し、その後
γ相が包晶反応により晶出して(δ+γ)二相で凝固が
完了する。凝固後はδ相がγ相に変態し、室温ではγ単
相となる。この場合の相変化は次のようになる。 L→(L+δ)→(L+δ+γ)→(δ+γ)→γ
308 series (19Cr-10Ni), 316
In the case of a system (17Cr-12Ni-2Mo) stainless steel material, in the equilibrium state, the δ phase is first crystallized as a primary crystal, and then the γ phase is crystallized by a peritectic reaction to complete solidification in (δ + γ) two phases. After solidification, the δ phase transforms into the γ phase, and becomes the γ single phase at room temperature. The phase change in this case is as follows. L → (L + δ) → (L + δ + γ) → (δ + γ) → γ

【0005】溶接組織の場合、冷却速度が速いことと、
溶接材料が高Cr 設計にしているため、前述した相変化
と完全には一致せず、δ全部がγに変態することはでき
ず、δは若干残る。δが若干残ることは決して悪いこと
ではなく、溶接凝固時に発生する割れを防ぎ耐割れ性を
向上させるが、反面δが多く残れば残るほど低温靱性を
悪化させる。δ→γ変態は600〜1300℃程度の温
度域で行われるが、溶体化熱処理は1100℃付近の温
度まで加熱するために、ちょうどδがγに変態する時間
を与えられるので残留δは残らなくなる。したがって低
温靱性は向上する。
In the case of a welded structure, the cooling rate is high,
Since the welding material has a high Cr design, it does not completely match the phase change described above, and it is not possible to transform all δ into γ, and δ remains slightly. It is not a bad thing that a little δ remains, and it prevents cracks generated during weld solidification and improves the crack resistance, but on the other hand, the more δ remains, the worse the low temperature toughness becomes. The δ → γ transformation is carried out in the temperature range of about 600 to 1300 ° C., but the solution heat treatment heats up to a temperature near 1100 ° C., so that the time required for δ to transform into γ is given, and the residual δ does not remain. . Therefore, the low temperature toughness is improved.

【0006】以上説明してきたごとく、溶体化熱処理は
低温靱性を向上させるために非常に有効な手段である
が、非常に高温まで加熱しなければならないため熱処理
炉の使用は避けられず、大型の溶接構造物の場合、溶体
化熱処理ができない場合が多かった。
As described above, solution heat treatment is a very effective means for improving the low temperature toughness, but since it has to be heated to a very high temperature, the use of a heat treatment furnace is inevitable and a large size is required. In the case of welded structures, solution heat treatment was often not possible.

【0007】[0007]

【発明が解決しようとする課題】本発明は、オーステナ
イト系ステンレス鋼の多層盛り溶接部において、簡易的
な熱処理を行い、耐食性を確保しながら低温靱性を向上
させることを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to improve the low temperature toughness while ensuring corrosion resistance by performing a simple heat treatment in a multi-pass weld of austenitic stainless steel.

【0008】[0008]

【課題を解決するための手段】本発明は前記課題を解決
するものであって、オーステナイト系ステンレス鋼の二
電極ガスシールドアーク溶接法において、先行電極が形
成した溶接ビードを後行電極の発する熱により900〜
1200℃に加熱し、0.5〜3秒間保持してオーステ
ナイト変態を行うことを特徴とするオーステナイト系ス
テンレス鋼の二電極ガスシールドアーク溶接法である。
Means for Solving the Problems The present invention is to solve the above problems, and in the two-electrode gas shielded arc welding method of austenitic stainless steel, the welding bead formed by the leading electrode is heated by the trailing electrode. By 900 ~
It is a two-electrode gas shielded arc welding method for austenitic stainless steel, which comprises heating to 1200 ° C. and holding it for 0.5 to 3 seconds to perform austenite transformation.

【0009】[0009]

【作用】本発明は、TIG、MIG、プラズマの各溶接
法、またはこれらを組み合わせた溶接に効果があるが、
ここではTIG溶接について説明する。単電極で溶接し
た場合の1パス目の加熱状況を図2に示す。1パス目は
溶融温度まで到達しているため、ピーク温度は1500
℃程度である。しかしながら溶接による熱は溶接してい
る鋼板にどんどん逃げてしまうので、すぐに冷却され
る。その後、2パス目の熱により加熱されるが、ピーク
温度は700〜800℃程度でこれもすぐ冷却されるた
めδ→γ変態するには至らない。
The present invention is effective in the welding methods of TIG, MIG, and plasma, or welding combining these methods.
Here, TIG welding will be described. FIG. 2 shows the heating state of the first pass when welding with a single electrode. The peak temperature is 1500 because the first pass has reached the melting temperature.
It is about ℃. However, the heat generated by welding escapes more and more to the steel plate being welded, so that it is immediately cooled. After that, it is heated by the heat of the second pass, but the peak temperature is about 700 to 800 ° C. and this is also immediately cooled, so that the δ → γ transformation does not occur.

【0010】次に、本発明による二電極で溶接した場合
の1パス目の加熱状況を図1に示す。先行電極による加
熱状況は図2の場合と同じであるが、先行電極が通過し
た後、すぐに後行電極がやってくるので二電極によるト
ータルの加熱となり、非常に高い温度域、具体的には9
00〜1100℃近辺の加熱時間が長く、0.5〜3秒
保持することによりδ→γ変態を起こすことになる。し
たがって、組織の面から考えるとδ→γ変態が行われる
時間が長くとれるようになった。これによってδを減ら
すことができ、低温靱性を向上させることができる。
Next, FIG. 1 shows the heating condition of the first pass when welding with two electrodes according to the present invention. The heating condition by the leading electrode is the same as that in FIG. 2, but since the trailing electrode comes immediately after the leading electrode has passed, total heating by the two electrodes results in a very high temperature range, specifically 9
By heating for a long time around 00 to 1100 ° C. and holding for 0.5 to 3 seconds, the δ → γ transformation occurs. Therefore, from the viewpoint of the structure, the δ → γ transformation can be performed for a long time. As a result, δ can be reduced and the low temperature toughness can be improved.

【0011】また、Cr 炭化物については後行電極が通
過した後の冷却過程でCr 炭化物が析出する500〜8
00℃の温度域をすぐ通過してしまうためCr 炭化物の
析出は少ない。
Regarding Cr carbide, Cr carbide precipitates in the cooling process after passing through the trailing electrode 500 to 8
Since it passes through the temperature range of 00 ° C immediately, the precipitation of Cr carbide is small.

【0012】後行電極による2パス目においても、先行
電極による先行パスの温度で予熱をした状態になり、先
行パスほどでないにしろ単電極で溶接するよりもはるか
にδ→γ変態温度域での保持時間は長いため低温靱性は
向上する。
Even in the second pass by the trailing electrode, the state of preheating at the temperature of the preceding pass by the preceding electrode is maintained, and in the δ → γ transformation temperature range much more than welding by a single electrode, though not as much as the preceding pass. The long-term holding time improves the low temperature toughness.

【0013】[0013]

【実施例】実施例はTIG溶接を行い単電極のものと二
電極のものを比較した。比較項目は、JIS Z224
2のシャルピー衝撃試験を−196℃で行い、低温靱性
を比較し、また、Cr 炭化物析出による耐食性の劣化を
調べるため、JIS G0575の硫酸・硫酸銅腐食試
験を行い粒界腐食の状態を調査した。
EXAMPLE In the examples, TIG welding was performed to compare the single electrode type and the two electrode type. The comparison item is JIS Z224.
The Charpy impact test of No. 2 was conducted at -196 ° C to compare the low temperature toughness, and in order to examine the deterioration of the corrosion resistance due to the precipitation of Cr carbide, the sulfuric acid / copper sulfate corrosion test of JIS G0575 was conducted to investigate the state of intergranular corrosion. .

【0014】本実験において使用溶接ワイヤは308系
ステンレスワイヤであり、ワイヤの成分については表1
に示す。また溶接条件を表2に示す。なお、母材はSU
S304で板厚16mmを使用し、開先形状は図3に示
す。
The welding wire used in this experiment was a 308 series stainless wire, and the composition of the wire is shown in Table 1.
Shown in Table 2 shows the welding conditions. The base material is SU
A plate thickness of 16 mm is used in S304, and the groove shape is shown in FIG.

【0015】[0015]

【表1】 [Table 1]

【0016】[0016]

【表2】 [Table 2]

【0017】結果を表3に示す。なお表中の加熱温度
は、後行電極の熱による最大加熱温度とし、開先底面か
ら1.5mm下に熱電対を取付け測定した。以上の結
果、本発明A1は1パス目の加熱温度が本発明の下限値
に近い場合であり、吸収エネルギーは向上し、耐食性は
良好であった。本発明例A2は1パス目の加熱温度が本
発明の上限値に近い場合であり、これも吸収エネルギー
は向上し、耐食性は良好であった。
The results are shown in Table 3. The heating temperature in the table is the maximum heating temperature due to the heat of the trailing electrode, and a thermocouple was attached 1.5 mm below the groove bottom surface for measurement. As a result, the invention A1 was the case where the heating temperature in the first pass was close to the lower limit value of the invention, the absorbed energy was improved, and the corrosion resistance was good. Inventive Example A2 was the case where the heating temperature in the first pass was close to the upper limit of the present invention, and the absorbed energy was also improved and the corrosion resistance was good.

【0018】[0018]

【表3】 [Table 3]

【0019】比較例B1は通常の単電極溶接であり、吸
収エネルギーは80J程度である。しかし耐食性は良好
であった。比較例B2は1パス目の加熱温度が本発明の
最下限値を下回る場合であり、吸収エネルギーは余り向
上せず耐食性が劣化している。比較例B3は、1パス目
の加熱温度が本発明の最上限値を上回る場合であり、吸
収エネルギーの向上は見られないが耐食性は良好であっ
た。
Comparative example B1 is ordinary single electrode welding, and the absorbed energy is about 80J. However, the corrosion resistance was good. Comparative Example B2 is the case where the heating temperature in the first pass is below the lower limit of the present invention, the absorbed energy is not improved so much, and the corrosion resistance is deteriorated. In Comparative Example B3, the heating temperature in the first pass was higher than the maximum upper limit value of the present invention, and although the absorption energy was not improved, the corrosion resistance was good.

【0020】[0020]

【発明の効果】本発明によりオーステナイト系ステンレ
ス鋼の溶接部において、簡易的な溶体化熱処理を行い、
耐食性を確保しながら低温靱性を向上させることができ
る。
EFFECTS OF THE INVENTION According to the present invention, a simple solution heat treatment is performed on a welded portion of austenitic stainless steel,
It is possible to improve low temperature toughness while ensuring corrosion resistance.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による二電極で溶接した場合の1パス目
の加熱状況を示すグラフ
FIG. 1 is a graph showing the heating state of the first pass when welding with two electrodes according to the present invention.

【図2】単電極で溶接した場合の加熱状況を示すグラフFIG. 2 is a graph showing the heating situation when welding with a single electrode.

【図3】実施例における開先形状を示す図FIG. 3 is a diagram showing a groove shape in an example.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 オーステナイト系ステンレス鋼の二電極
ガスシールドアーク溶接法において、先行電極が形成し
た溶接ビードを後行電極の発する熱により900〜12
00℃に加熱し、0.5〜3秒間保持してオーステナイ
ト変態を行うことを特徴とするオーステナイト系ステン
レス鋼の二電極ガスシールドアーク溶接法。
1. In the two-electrode gas shielded arc welding method for austenitic stainless steel, the welding bead formed by the leading electrode is heated to 900 to 12 by the heat generated by the trailing electrode.
A two-electrode gas shield arc welding method for austenitic stainless steel, which comprises heating to 00 ° C. and holding for 0.5 to 3 seconds to perform austenite transformation.
JP10163595A 1995-04-04 1995-04-04 Two-electrode gas shielded arc welding method of austenitic stainless steel Withdrawn JPH08276272A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10163595A JPH08276272A (en) 1995-04-04 1995-04-04 Two-electrode gas shielded arc welding method of austenitic stainless steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10163595A JPH08276272A (en) 1995-04-04 1995-04-04 Two-electrode gas shielded arc welding method of austenitic stainless steel

Publications (1)

Publication Number Publication Date
JPH08276272A true JPH08276272A (en) 1996-10-22

Family

ID=14305863

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10163595A Withdrawn JPH08276272A (en) 1995-04-04 1995-04-04 Two-electrode gas shielded arc welding method of austenitic stainless steel

Country Status (1)

Country Link
JP (1) JPH08276272A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104999163A (en) * 2015-07-09 2015-10-28 安徽金阳金属结构工程有限公司 Welding process of steel structures under low-temperature environment

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104999163A (en) * 2015-07-09 2015-10-28 安徽金阳金属结构工程有限公司 Welding process of steel structures under low-temperature environment

Similar Documents

Publication Publication Date Title
CN101367157B (en) High-strength or ultra-high strong steel laser-electrical arc composite heat source welding method
Sathiya et al. Effect of shielding gases on microstructure and mechanical properties of super austenitic stainless steel by hybrid welding
Nilsson et al. Secondary austenite for mation and its relation to pitting corrosion in duplex stainless steel weld metal
Sathiya et al. Shielding gas effect on weld characteristics in arc-augmented laser welding process of super austenitic stainless steel
JP2008240096A (en) High strength welded steel pipe having weld metal excellent in low temperature crack resistance, and its manufacturing method
CN101337298A (en) Low-alloy high-strength steel welding process
US20150202710A1 (en) Method of welding structural steel and welded steel structure
CN108526750A (en) A kind of high-strength and high ductility high-nitrogen austenitic stainless steel welding wire and preparation method thereof
Sathiya et al. Microstructural characteristics on bead on plate welding of AISI 904 L super austenitic stainless steel using gas metal arc welding process
JP3454354B2 (en) Austenitic / ferritic duplex stainless steel welding material and method for welding high Cr steel using the same
CN111230264A (en) Welding method of MIG welding of 304L austenitic stainless steel
CN105925925A (en) Post-welded heat treatment method of fused salt corrosion-resistant nickel-based high temperature alloy welded structure part
Yurtisik et al. Characterization of duplex stainless steel weld metals obtained by hybrid plasma-gas metal arc welding
Hoang et al. A study on the changes in microstructure and mechanical properties of multi-pass welding between 316 stainless steel and low-carbon steel
Nagasaka et al. Comparison of impact property of Japanese and US reference heats of V-4Cr-4Ti after gas-tungsten-arc welding
CN108296638B (en) Method for improving strip steel welding quality of continuous galvanizing production line
JPH08276272A (en) Two-electrode gas shielded arc welding method of austenitic stainless steel
Schmigalla et al. Corrosion behavior of electron beam welded duplex stainless steels
JP4619635B2 (en) Welding method for high carbon steel
JP4948710B2 (en) Welding method of high-tensile thick plate
JP2002239722A (en) Lap fillet welding method for steel sheet excellent in fatigue strength of weld zone
JPH05132719A (en) Method for welding high carbon steel sheet or strip
Dolby Factors controlling HAZ and weld metal toughness in C-Mn steels
WO2022095341A1 (en) Laser welding and heat treatment method for high-strength steel
Yebaji et al. Effect of post-welding treatment on corrosion behavior of laser and gas tungsten arc-welded (Fe50Mn30Co10Cr10) 99C1 interstitial high-entropy alloy

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20020604