JPH0827561A - Inorganic micropored film and its production - Google Patents

Inorganic micropored film and its production

Info

Publication number
JPH0827561A
JPH0827561A JP18532094A JP18532094A JPH0827561A JP H0827561 A JPH0827561 A JP H0827561A JP 18532094 A JP18532094 A JP 18532094A JP 18532094 A JP18532094 A JP 18532094A JP H0827561 A JPH0827561 A JP H0827561A
Authority
JP
Japan
Prior art keywords
film
inorganic
substrate
microporous membrane
inorganic microporous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18532094A
Other languages
Japanese (ja)
Other versions
JP3806152B2 (en
Inventor
Shozo Kawazoe
昭造 河添
Kazuyuki Yakura
和幸 矢倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Priority to JP18532094A priority Critical patent/JP3806152B2/en
Publication of JPH0827561A publication Critical patent/JPH0827561A/en
Application granted granted Critical
Publication of JP3806152B2 publication Critical patent/JP3806152B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To produce an inorganic micropored film functioning as a surface treated layer for improving the hydrophilic properties of the surface of a substrate and for improving the adhesive properties of various layers such as an adhesive layer and a mold releasing layer provided on the substrate as an inorganic micropored film with a substrate or a single substance inorganic micropored film without a substrate. CONSTITUTION:The surface of a substrate 2 is provided with an inorganic micropored film 1 having ultrafine pores 3 with 0.1nm to 10mum average pore size piercing through the front and rear faces 1a and 1b linearly and with almost the same diameter to constitute an inorganic micropored film having a substrate, or, instead of the substrate 2, a releasable substrate is used to constitute a single substance inorganic micropored film without a substrate.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、金属硫化物、金属酸
化物、金属などの無機質材料からなる微孔膜と、この無
機質微孔膜の製法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a microporous membrane made of an inorganic material such as a metal sulfide, a metal oxide or a metal, and a method for producing the inorganic microporous membrane.

【0002】[0002]

【従来の技術】従来より、限外ろ過用などのセラミツク
多孔膜は公知である。しかし、この種の多孔膜は、孔径
が通常数十μm以上と大きく、また、製法上の理由によ
り厚さ方向の縦断面において蛇行した孔形状となつた
り、孔径が表裏面や厚さ方向の横断面において不規則に
変化するものがほとんどである。このため、多孔膜とし
ての性能が一定せず、用途的に制約が多かつた。
2. Description of the Related Art Conventionally, ceramic porous membranes for ultrafiltration have been known. However, this type of porous membrane has a large pore size of usually several tens of μm or more, and also has a meandering pore shape in the longitudinal cross section in the thickness direction due to the manufacturing method, and the pore size has a front and back surface or a thickness direction. Most of them change irregularly in the cross section. For this reason, the performance as a porous film was not constant, and there were many restrictions in use.

【0003】[0003]

【発明が解決しようとする課題】この発明は、このよう
な事情にてらして、基材付きの無機質微孔膜や、基材の
ない単体の無機質微孔膜として、分離膜、偏光膜、触媒
担持フイルム、着色フイルム、電極材、回路板などの幅
広い用途に利用でき、また、とくに基材付きの無機質微
孔膜として、基材表面の親水性を改良したり、基材上に
設ける接着剤層、離型層などの各種層の接着性を改良す
るための表面処理層として機能する無機質微孔膜を提供
することを目的としている。
In view of the above circumstances, the present invention provides a separation membrane, a polarizing membrane, a catalyst as an inorganic microporous membrane with a base material or a single inorganic microporous membrane without a base material. It can be used in a wide range of applications such as carrier films, colored films, electrode materials, circuit boards, etc. Also, as an inorganic microporous film with a substrate, it is an adhesive that improves the hydrophilicity of the substrate surface or is provided on the substrate. An object of the present invention is to provide an inorganic microporous membrane that functions as a surface treatment layer for improving the adhesiveness of various layers such as layers and release layers.

【0004】[0004]

【課題を解決するための手段】この発明者らは、上記の
目的に対し、鋭意検討した結果、基材または剥離性基材
上に、特定孔形状の超微細孔を有する無機質微孔膜を設
けて、基材のない単体の無機質微孔膜や、基材付きの無
機質微孔膜とすることにより、上記の目的をすべて達成
できることを知り、この発明を完成するに至つた。
Means for Solving the Problems The inventors of the present invention have made extensive studies as to the above-mentioned object, and as a result, have found that an inorganic microporous membrane having ultrafine pores of a specific pore shape is formed on a substrate or a releasable substrate. It was found that all of the above-mentioned objects can be achieved by providing a single inorganic microporous membrane without a base material or an inorganic microporous membrane with a base material, and completed the present invention.

【0005】すなわち、この発明の第1は、表裏面に直
線的にかつ略同径で貫通する平均孔径が0.1nm〜1
0μmの超微細孔を有することを特徴とする無機質微孔
膜に係るものである。また、この発明の第2は、基材上
に、表裏面に直線的にかつ略同径で貫通する平均孔径が
0.1nm〜10μmの超微細孔を有する無機質微孔膜
を設けたことを特徴とする基材付きの無機質微孔膜に係
るものである。さらに、この発明の第3は、これら無機
質微孔膜の製法に係る発明として、剥離性または非剥離
性の基材上に、無機質材料を斜め蒸着して、表裏面に直
線的にかつ略同径で貫通する平均孔径が0.1nm〜1
0μmの超微細孔を有する無機質微孔膜を設けることを
特徴とする無機質微孔膜の製法に係るものである。
That is, the first aspect of the present invention is that the average hole diameter penetrating the front and back surfaces linearly and with substantially the same diameter is 0.1 nm to 1
The present invention relates to an inorganic microporous membrane having ultrafine pores of 0 μm. In addition, a second aspect of the present invention is that an inorganic microporous membrane having ultrafine pores having an average pore diameter of 0.1 nm to 10 μm linearly penetrating the front and back surfaces and having substantially the same diameter is provided on a substrate. The present invention relates to a featured inorganic microporous membrane with a substrate. Furthermore, a third aspect of the present invention is an invention relating to a method for producing these inorganic microporous membranes, in which an inorganic material is obliquely vapor-deposited on a releasable or non-releasable substrate, and the front and back surfaces are linearly and substantially the same. The average pore size penetrating by diameter is 0.1 nm to 1
The present invention relates to a method for producing an inorganic microporous membrane, which comprises providing an inorganic microporous membrane having 0 μm ultrafine pores.

【0006】[0006]

【発明の構成・作用】以下、この発明の無機質微孔膜と
その製法について、図1および図2を用いて説明する。
図1は、基材付きの無機質微孔膜の一例を示したもので
あり、(A)は断面図、(B)は上記(A)におけるB
部分の拡大断面図、(C)は平面図、(D)は上記
(C)におけるD部分の拡大平面図である。
The structure and operation of the present invention will be described below with reference to FIGS. 1 and 2 for an inorganic microporous membrane and a method for producing the same.
FIG. 1 shows an example of an inorganic microporous membrane with a substrate, (A) is a cross-sectional view, (B) is B in (A) above.
An enlarged sectional view of a portion, (C) is a plan view, and (D) is an enlarged plan view of a D portion in the above (C).

【0007】図1において、1は基材2上に設けられた
無機質微孔膜で、この微孔膜2は、表面1aおよび裏面
1bに直線的にかつ略同径で貫通する、つまり、従来の
ように厚さ方向の縦断面において蛇行したり、孔径が厚
さ方向の横断面において不規則に変化することなく、表
面1a側の孔形状が裏面1b側にほぼそのままの形状で
貫通する、平均孔径が0.1nm〜10μm、好ましく
は1nm〜5μm、さらに好ましくは10nm〜1μm
の超微細孔3を多数個有している。
In FIG. 1, reference numeral 1 denotes an inorganic microporous film provided on a substrate 2. The microporous film 2 penetrates the front surface 1a and the back surface 1b linearly and with substantially the same diameter, that is, in the conventional case. As described above, the hole shape on the front surface 1a side penetrates to the back surface 1b side with almost the same shape without meandering in the vertical cross section in the thickness direction and without irregularity in the hole diameter in the horizontal cross section in the thickness direction. The average pore size is 0.1 nm to 10 μm, preferably 1 nm to 5 μm, and more preferably 10 nm to 1 μm.
It has a large number of ultrafine holes 3 of.

【0008】また、とくにこの例では、多数個の超微細
孔3が表裏面1a,1bに対し傾斜して貫通しており、
その傾斜角度αは40〜85度である。さらに、この超
微細孔3は、面方向に細長い形状を有し、一般には、T
D方向(幅方向)の孔径kがMD方向(長手方向)の孔
径tより長い、通常k/tが1.1〜20倍、好ましく
は5〜15倍となる細長い形状を有しており、したがつ
て、この場合、前記の平均孔径は、上記TD方向の孔径
kの平均値を意味している。
Further, in particular, in this example, a large number of ultrafine holes 3 penetrate through the front and back surfaces 1a and 1b while being inclined,
The inclination angle α is 40 to 85 degrees. Further, the ultra-fine holes 3 have a shape elongated in the plane direction, and are generally T
It has an elongated shape in which the hole diameter k in the D direction (width direction) is longer than the hole diameter t in the MD direction (longitudinal direction), and usually k / t is 1.1 to 20 times, preferably 5 to 15 times, Therefore, in this case, the average pore diameter means the average value of the pore diameter k in the TD direction.

【0009】このような超微細孔3を有する無機質微孔
膜1の表面空孔率、つまり、〔孔面積/処理膜表面積〕
×100(%)として表される空孔率は、超微細孔3の
大きさや数に応じて、通常0.5〜99%という広い範
囲で適宜設定することができる。超微細孔3の個数とし
ては、一般に、1〜30個/0.5μm角、好ましくは
5〜20個/0.5μm角であるのがよいが、これにと
くに限定されない。また、この微孔膜1の膜厚として
は、一般に、5nm〜100μmの範囲、好ましくは2
0nm〜1μmの範囲で決めることができる。
Surface porosity of the inorganic microporous membrane 1 having such ultrafine pores 3, that is, [pore area / treated membrane surface area]
The porosity expressed as × 100 (%) can be appropriately set within a wide range of usually 0.5 to 99% depending on the size and number of the ultrafine holes 3. The number of ultrafine holes 3 is generally 1 to 30 holes / 0.5 μm square, preferably 5 to 20 holes / 0.5 μm square, but is not particularly limited thereto. The thickness of the microporous membrane 1 is generally in the range of 5 nm to 100 μm, preferably 2
It can be determined in the range of 0 nm to 1 μm.

【0010】無機質微孔膜1の材質には、ZnSをはじ
めとする金属硫化物、TiO2 、Ta2 5 、Zr
2 、SiO、SiO2 、Al2 3 、SnO2 、In
2 3 、MgOなどの金属酸化物、MgF2 などの金属
フツ化物、In、Sn、Cu、Ni、Al、Pt、Ag
などの金属が挙げられ、これらの無機質材料の中から、
用途目的に応じて、その1種を単独でまたは2種以上を
混合してあるいは2層以上の多層膜として使用すること
ができる。
As the material of the inorganic microporous film 1, metal sulfides such as ZnS, TiO 2 , Ta 2 O 5 and Zr are used.
O 2 , SiO, SiO 2 , Al 2 O 3 , SnO 2 , In
2 O 3 , metal oxide such as MgO, metal fluoride such as MgF 2 , In, Sn, Cu, Ni, Al, Pt, Ag
Metals such as, among these inorganic materials,
Depending on the purpose of use, one type thereof may be used alone, or two or more types may be mixed or used as a multilayer film having two or more layers.

【0011】無機質微孔膜1を設ける基材2としては、
たとえば、プラスチツク製のフイルム状物や板状物、ガ
ラス板、金属板、セラミツク板などの各種基材のほか、
織物、不織布などの多孔性基材を、用途目的に応じて、
適宜選択使用することができる。プラスチツク製のフイ
ルム状物や板状物の素材には、たとえば、ポリエチレン
テレフタレ―ト、ポリイミド、ポリエ―テルサルフオ
ン、ポリエ―テルエ―テルケトン、ポリカ―ボネ―ト、
ポリプロピレン、ポリエチレン、ポリアクリル、セルロ
―スプロピオネ―ト、ポリテトラフルオロエチレンをは
じめとするフツ素系樹脂などを挙げることができる。
As the base material 2 on which the inorganic microporous membrane 1 is provided,
For example, in addition to various base materials such as plastic film and plate, glass plate, metal plate, ceramic plate,
Depending on the purpose of use, porous substrates such as woven and non-woven fabrics can be
It can be appropriately selected and used. The material for plastic film or plate is, for example, polyethylene terephthalate, polyimide, polyether sulfone, polyether ether ketone, polycarbonate,
Examples thereof include fluorine-based resins such as polypropylene, polyethylene, polyacrylic, cellulose propionate, and polytetrafluoroethylene.

【0012】これらの各種基材、とくにプラスチツク製
のフイルム状物や板状物などでは、表面にあらかじめプ
ラズマ(スパツタ)処理、コロナ放電、紫外線照射、火
炎、電子線照射、化成,酸化などのエツチング処理や、
有機物の下塗り処理を施し、この上に設けられる無機質
微孔膜の基材に対する密着性を向上させたものであつて
もよい。また、無機質微孔膜を設ける前に、必要に応じ
て溶剤洗浄や超音波洗浄などにより、除塵清浄化したも
のであつてもよい。
In the case of these various base materials, especially film-like materials or plate-like materials made of plastic, the surface is previously subjected to plasma (sputtering) treatment, corona discharge, ultraviolet irradiation, flame, electron beam irradiation, chemical conversion, etching, etc. Processing,
An undercoating treatment of an organic substance may be applied to improve the adhesion of the inorganic microporous film provided thereon to the substrate. In addition, before the inorganic microporous membrane is provided, it may be dust-cleaned by solvent cleaning or ultrasonic cleaning, if necessary.

【0013】図2は、このように構成される基材付きの
無機質微孔膜の製法例を示したものである。基材2がプ
ラスチツクフイルムなどの可撓性のものでは、半径rの
半円状ホルダ4の周面に沿つて走行する基材2上に、上
記周面の一点Aにおいて、接線Zに対し入射角Rの角度
にて、蒸発源5の無機質材料を電子ビ―ム加熱法などの
加熱により、シヤツタ部材6を介して、所定の真空度で
斜め蒸着する。また、基材2が非可撓性のものでは、上
記同様の半円状ホルダ4の周面にこの基材2を固定し、
これに、蒸発源5とシヤツタ部材6とを相対移動させ
て、上記の入射角Rを一定に保ちながら、蒸発源5の無
機質材料をシヤツタ部材6を介して、上記同様に斜め蒸
着することができる。
FIG. 2 shows an example of a method for producing an inorganic microporous membrane with a substrate having such a structure. When the base material 2 is a flexible one such as a plastic film, the base material 2 traveling along the peripheral surface of the semicircular holder 4 having a radius r is incident on the tangent line Z at a point A on the peripheral surface. At an angle of R, the inorganic material of the evaporation source 5 is obliquely vapor-deposited through the shutter member 6 at a predetermined vacuum degree by heating by an electron beam heating method or the like. When the base material 2 is inflexible, the base material 2 is fixed to the peripheral surface of the semicircular holder 4 similar to the above,
Further, the evaporation source 5 and the shutter member 6 are moved relative to each other, and the inorganic material of the evaporation source 5 can be obliquely vapor-deposited via the shutter member 6 in the same manner as described above while keeping the incident angle R constant. it can.

【0014】この斜め蒸着において、上記の入射角Rは
通常60度以下、好ましくは0.5〜50度とするのが
よい。このように斜め蒸着すると、基材2の表面に微細
な凹凸部が存在するため、凸部分での蒸着方向に対し影
となる部分には無機質材料が蒸着せず、これが蒸着膜の
孔部を構成して、表裏面に直線的にかつ略同径で貫通す
る超微細孔3が形成される。また、このように形成され
る超微細孔3は表裏面に対して傾斜して貫通しており、
さらに、面方向の孔形状としては、TD方向(幅方向)
の孔径kがMD方向(長手方向)の孔径tより長くな
る。
In the oblique vapor deposition, the incident angle R is usually 60 degrees or less, preferably 0.5 to 50 degrees. When oblique vapor deposition is performed in this manner, since fine irregularities are present on the surface of the base material 2, the inorganic material is not vapor-deposited on the portion of the convex portion that is shaded with respect to the vapor deposition direction, and this forms a hole in the vapor deposition film. As a result, the ultrafine holes 3 are formed on the front and back surfaces so as to penetrate linearly and with substantially the same diameter. Further, the ultra-fine holes 3 formed in this way penetrate through while being inclined with respect to the front and back surfaces,
Further, as the hole shape in the surface direction, the TD direction (width direction)
The hole diameter k is larger than the hole diameter t in the MD direction (longitudinal direction).

【0015】ここで、超微細孔3の平均孔径(TD方向
の孔径kの平均値)、表裏面に対する傾斜角度α、表面
空孔率、TD方向の孔径k/MD方向の孔径tの比や、
孔の個数などについては、基材表面の凹凸部の大きさ,
形状,方向性などに応じて、蒸着時の入射角Rなどを適
宜設定することにより、いずれも、前記した特定範囲に
容易に調整することが可能である。また、膜厚について
は、蒸着するべき無機質材料に応じ、相対移動する基材
に対して、所定の蒸着速度および蒸着時間を設定するこ
とにより、容易に決めることができる。
Here, the average pore diameter of the ultrafine pores 3 (the average value of the pore diameter k in the TD direction), the inclination angle α with respect to the front and back surfaces, the surface porosity, the ratio of the pore diameter k in the TD direction / the pore diameter t in the MD direction, and ,
Regarding the number of holes, etc.,
Any of these can be easily adjusted to the above-described specific range by appropriately setting the incident angle R at the time of vapor deposition according to the shape, the directionality, and the like. Further, the film thickness can be easily determined by setting a predetermined vapor deposition rate and vapor deposition time with respect to the base material that moves relatively, depending on the inorganic material to be vapor deposited.

【0016】このようにして作製される基材付きの無機
質微孔膜は、この微孔膜が良好な親水性を有しているた
め、基材への親水性付与層として機能させることができ
る。たとえば、膜表面の水の接触角としては、高くとも
65度以下である。また、この基材上にさらに接着剤
層、離型層などの各種層を設ける際の接着性改良層とし
ても機能させることができる。接着性改良層としての機
能は、接着剤などが超微細孔に侵入し、かつこの侵入が
必要最小限に抑えられる、いわゆるアンカ―効果による
ものと推定される。
The inorganic microporous film with a substrate produced in this manner can function as a hydrophilicity-imparting layer for the substrate because the microporous film has good hydrophilicity. . For example, the contact angle of water on the film surface is at most 65 degrees. It can also function as an adhesion improving layer when various layers such as an adhesive layer and a release layer are further provided on this base material. It is presumed that the function as the adhesion improving layer is due to the so-called anchor effect in which the adhesive or the like penetrates into the ultrafine pores and the penetration is suppressed to the necessary minimum.

【0017】いずれにしても、これらの機能は、微孔膜
が前記の膜構造を有してかつ平均孔径が前記範囲にある
ことにより発現され、この要件を逸脱すると、上記機能
が十分に得られなくなる。また、これらの機能は、超微
細孔の表裏面に対する傾斜角度α、表面空孔率、TD方
向の孔径k/MD方向の孔径tの比や、孔の個数、膜厚
などが前記範囲にあることにより、より良く発現される
ものである。
In any case, these functions are exhibited when the microporous membrane has the above-mentioned membrane structure and the average pore diameter is within the above range, and if these requirements are deviated, the above functions are sufficiently obtained. I will not be able to. In addition, these functions include the inclination angle α of the ultrafine pores with respect to the front and back surfaces, the surface porosity, the ratio of the pore diameter k in the TD direction / the pore diameter t in the MD direction, the number of pores, and the film thickness within the above ranges. Therefore, it is better expressed.

【0018】基材への親水性付与層や接着性改良層とし
て機能させる具体的な例としては、たとえば、下記のa
〜eなどが挙げられる。 a)水溶性インクのはじきや剥がれを防ぐための印刷シ
―ト用表面処理 b)窓ガラス、温室、テント、ミラ―などにおける結露
による光の透過率や反射率の低下、水滴の落下などを防
ぐための表面処理 c)ポリカ―ボネ―ト、ポリエ―テルサルフオンなどの
無配向のフイルム上に感光(ホログラム)層としてゼラ
チン層(重クロム酸ゼラチン)を印刷または塗工法で形
成する際に、印刷または塗工時のゼラチン層のはじきや
剥がれを防止したり、その後の乾燥工程でのゼラチン層
の収縮による剥がれを防止するための表面処理
Specific examples of the function as a hydrophilicity-imparting layer or an adhesion-improving layer for a substrate include, for example, the following a.
-E etc. are mentioned. a) Surface treatment for printing sheets to prevent repellency and peeling of water-soluble ink b) Decrease in light transmittance and reflectance due to dew condensation on window glass, greenhouses, tents, mirrors, etc. Surface treatment to prevent c) Printing when a gelatin layer (dichromated gelatin) is printed or coated as a photosensitive (hologram) layer on a non-oriented film such as polycarbonate or polyether sulfone. Or surface treatment to prevent repellency and peeling of the gelatin layer during coating, and to prevent peeling due to shrinkage of the gelatin layer in the subsequent drying process.

【0019】d)感圧性接着テ―プなどにおいて非極性
プラスチツクフイルムなどからなる基材に対する接着剤
層の投錨性を高めて使用時または剥離時に基材と接着剤
層との間に剥離が生じるのを防ぐための表面処理 e)感圧性接着テ―プなどの基材背面に離型処理を施し
たり、離型フイルムなどの作製において基材表面に離型
処理を施すにあたり、基材と離型層との接着性を高めて
使用時離型層が剥離するのを防ぐための表面処理
D) In pressure-sensitive adhesive tape or the like, peeling occurs between the base material and the adhesive layer at the time of use or peeling by enhancing the anchoring property of the adhesive layer to the base material made of non-polar plastic film or the like. E) Surface treatment to prevent the release of the pressure-sensitive adhesive tape, etc. on the back surface of the base material, or when performing release processing on the base material surface in the production of release film etc. Surface treatment to improve the adhesion to the mold layer and prevent the release layer from peeling off during use

【0020】また、この発明では、上記の表面処理層と
しての機能のほか、無機質微孔膜自体の前記特殊な膜構
造に基づいて、さらにはその親水性や接着性などの特性
を加味して、基材付きの無機質微孔膜や、基材のない単
体の無機質微孔膜として、以下のf〜kの用途例にみら
れるように、分離膜、偏光膜、触媒担持フイルム、着色
フイルム、電極材、回路板などの幅広い用途に利用でき
る。ここで、基材のない単体の無機質微孔膜は、前記製
法において剥離性基材を用い、微孔膜の形成後に剥離除
去する方法にて作製できる。また、微孔膜の形成後に基
材を溶解除去するなどの方法にても作製することができ
る。
Further, in the present invention, in addition to the function as the surface treatment layer described above, based on the above-mentioned special film structure of the inorganic microporous film itself, further, in consideration of its properties such as hydrophilicity and adhesiveness. , As an inorganic microporous membrane with a base material or as a single inorganic microporous membrane without a base material, as seen in the application examples of f to k below, a separation membrane, a polarizing film, a catalyst-supporting film, a colored film, It can be used for a wide range of applications such as electrode materials and circuit boards. Here, a single inorganic microporous film having no base material can be produced by a method in which a releasable base material is used in the above-mentioned production method and the microporous film is peeled and removed after formation. It can also be produced by a method of dissolving and removing the base material after forming the microporous membrane.

【0021】f)孔の形状をオングストロ―ムオ―ダで
設定でき、かつその寸法精度を任意に設定できるため
に、気体分離(粒径サイズによる分離)膜として、また
表面および孔内面のすぐれた親水性を考慮した液体中で
の分離膜として、さらに無機質材料として金属または金
属酸化物を用いたときの導電化機能を考慮したイオン粒
子の分離膜として、利用できる。とくに、無機質材料と
してSiO2 、SiO、TiO2 、Al2 3 、ZrO
2 などの耐熱・耐薬品性にすぐれるものを選択使用する
ことにより、耐熱・耐薬品性を必要とする上記各分離膜
として利用できる。
F) Since the shape of the pores can be set by angstrom order and the dimensional accuracy thereof can be set arbitrarily, it is excellent as a gas separation (separation by particle size) membrane and on the inner surface of the pores. It can be used as a separation membrane in a liquid in consideration of hydrophilicity, and further as a separation membrane of ionic particles in consideration of a conductive function when a metal or a metal oxide is used as an inorganic material. In particular, as the inorganic material, SiO 2 , SiO, TiO 2 , Al 2 O 3 , ZrO
By selecting and using a material with excellent heat and chemical resistance such as 2, it can be used as each of the above separation membranes that require heat and chemical resistance.

【0022】g)超微細孔が面方向に細長い形状を有し
て、TD方向の孔径kがMD方向の孔径tより相当長
い、たとえばk/t=約10程度で、かつTD方向の孔
径kが光の波長程度である場合に、無機質材料として光
の屈折率の高いものを用いるか、この無機質材料層上に
さらに金属層を形成することにより、TD方向に振動す
る光は透過、MD方向に振動する光は反射させ、透過光
はTD方向に偏光し、反射光はMD方向に偏光する光の
ロス(吸収)のない偏光膜として、利用できる。〔な
お、従来の沃素、染料系の偏光膜においては、一方向に
のみ偏光し、これと垂直方向の光は吸収するため、光の
ロスが多い。また、反射機能がないため、反射板と組み
合わせて使用する必要がある。さらに、耐熱・耐薬品性
などの耐久性に劣つている。このような従来の偏光膜の
欠点は、上記この発明の無機質微孔膜によりすべて解消
される。〕
G) The ultrafine pores have an elongated shape in the plane direction, the pore diameter k in the TD direction is considerably longer than the pore diameter t in the MD direction, for example, k / t = about 10 and the pore diameter k in the TD direction. When the wavelength is about the wavelength of light, an inorganic material having a high refractive index of light is used, or a metal layer is further formed on the inorganic material layer, so that light oscillating in the TD direction is transmitted and MD direction is transmitted. It can be used as a polarizing film that reflects light that oscillates in the direction, polarizes transmitted light in the TD direction, and reflects light that is polarized in the MD direction without loss (absorption). [Note that the conventional iodine-dye-based polarizing film polarizes light only in one direction and absorbs light in the direction perpendicular thereto, so that there is much light loss. Also, since it has no reflection function, it must be used in combination with a reflection plate. Furthermore, it is inferior in durability such as heat resistance and chemical resistance. All of the drawbacks of the conventional polarizing film are eliminated by the inorganic microporous film of the present invention. ]

【0023】h)超微細孔の形状を制御することによ
り、とくにTD方向の孔径kがMD方向の孔径tより長
い、面方向に細長い形状を有する場合に、TD方向の孔
径kを制御することにより、TD方向の長さより波長の
短い光を選択偏光透過する偏光膜として、利用できる。
〔なお、従来の偏光膜には、光の選択偏光透過の機能は
なく、光を選択する場合、高価な光選択パスフイルタ―
が必要である。この欠点は、上記この発明の無機質微孔
膜により解消される。〕
H) Controlling the hole diameter k in the TD direction by controlling the shape of the ultrafine holes, particularly when the hole diameter k in the TD direction is longer than the hole diameter t in the MD direction and has an elongated shape in the plane direction. Thus, it can be used as a polarizing film that selectively transmits polarized light having a wavelength shorter than the length in the TD direction.
[Note that the conventional polarizing film does not have the function of selectively transmitting light through polarized light, and when selecting light, an expensive light selective pass filter is used.
is necessary. This drawback is overcome by the above-described inorganic microporous membrane of the present invention. ]

【0024】i)超微細孔内に触媒を担持させた触媒担
持フイルム、顔料,染料を担持させた耐擦傷性にすぐれ
る着色フイルムなどとして、利用できる。 j)多孔性プラスチツクフイルムや不織布上にニツケル
などの金属からなる無機質微孔膜を形成した電極材とし
て、利用できる。 k)セラミツク板上にSiO2 などからなる無機質微孔
膜を形成して、Cuメツキや蒸着層などの回路構成層の
接着性を向上させた高誘導率回路基板として、またポリ
エチレンやポリテトラフルオロエチレン板上にSiO2
などからなる無機質微孔膜を形成して、Cuメツキや蒸
着層などの回路構成層の接着性を向上させた低誘導率回
路基板として、利用できる。
I) It can be used as a catalyst-supporting film in which a catalyst is supported in ultrafine pores, a colored film in which a pigment and a dye are supported and which has excellent scratch resistance. j) It can be used as an electrode material in which an inorganic microporous film made of a metal such as nickel is formed on a porous plastic film or a non-woven fabric. k) As a high-inductivity circuit board in which an inorganic microporous film made of SiO 2 or the like is formed on a ceramic plate to improve the adhesion of circuit constituent layers such as Cu plating and a vapor deposition layer, and polyethylene or polytetrafluoro SiO 2 on ethylene plate
It can be used as a low-inductivity circuit substrate in which an inorganic microporous film made of, for example, is formed to improve the adhesiveness of circuit constituent layers such as Cu plating and vapor deposition layers.

【0025】この発明において、このような幅広い用途
を有する基材付きの無機質微孔膜、基材を持たない単体
としての無機質微孔膜などは、その使用形態などに応じ
て、前記の斜め蒸着による方法以外に、他のいかなる方
法で作製してもよい。要は、膜構造として、表裏面に直
線的にかつ略同径で貫通する平均孔径が0.1nm〜1
0μmの超微細孔を有するように、またより好適には、
超微細孔の表裏面に対する傾斜角度α、表面空孔率、T
D方向の孔径k/MD方向の孔径tの比や、孔の個数、
膜厚などが前記範囲に入るように、構成されておればよ
い。
In the present invention, the inorganic microporous membrane with a base material having such a wide range of applications, the inorganic microporous membrane as a single body without a base material, etc., can be formed by the above-mentioned oblique vapor deposition depending on the use form. In addition to the method described above, any other method may be used. In short, the membrane structure has an average pore diameter of 0.1 nm to 1 penetrating the front and back surfaces linearly and with substantially the same diameter.
With ultra fine pores of 0 μm, and more preferably,
Inclination angle α of front and back of ultrafine pores, surface porosity, T
The ratio of the hole diameter k in the D direction / the hole diameter t in the MD direction, the number of holes,
It may be configured so that the film thickness and the like fall within the above range.

【0026】[0026]

【発明の効果】以上のように、この発明によれば、基材
付きの無機質微孔膜や、基材のない単体の無機質微孔膜
として、分離膜や偏光膜などの幅広い用途に利用でき、
また、とくに基材付きの無機質微孔膜では、基材表面お
よび微細孔内面の親水性を改良したり、基材上に設ける
接着剤層、離型層などの接着性を高めるための表面処理
層として機能する実用性にすぐれた無機質微孔膜を提供
することができる。
As described above, according to the present invention, as an inorganic microporous membrane with a base material or a single inorganic microporous membrane without a base material, it can be used in a wide range of applications such as separation membranes and polarizing membranes. ,
In addition, especially for inorganic microporous membranes with a substrate, surface treatment to improve the hydrophilicity of the substrate surface and the inner surface of the micropores, or to enhance the adhesiveness of the adhesive layer, release layer, etc. provided on the substrate It is possible to provide an inorganic microporous membrane which functions as a layer and has excellent practicability.

【0027】[0027]

【実施例】つぎに、この発明の実施例として、基材付き
の無機質微孔膜であつて、とくに上記微孔膜に基材表面
の親水性や接着性などを改良するための表面処理層とし
て機能させる構成例について、より具体的に説明する。
EXAMPLES Next, as an example of the present invention, an inorganic microporous membrane with a substrate, especially a surface treatment layer for improving the hydrophilicity and adhesiveness of the substrate surface to the above microporous membrane An example of the configuration that causes the above-mentioned function will be described more specifically.

【0028】実施例1 図2に示す方法(半円状ホルダ4の半径r=200mm)
により、基材である厚さが75μmのポリエチレンテレ
フタレ―トフイルムの片面に、蒸発源5のSiO2 を電
子ビ―ム加熱法により、1〜3×10-4Torrの真空
度で、シヤツタ部材6を介して、蒸着入射角R=40度
で、斜め蒸着した。この蒸着により、基材上に、表裏面
に直線的にかつ略同径で貫通する超微細孔を有する、S
iO2 からなる膜厚が約100nmの透明な無機質微孔
膜が形成された。
Example 1 Method shown in FIG. 2 (radius r of semicircular holder 4 = 200 mm)
The SiO 2 of the evaporation source 5 is applied to one side of a polyethylene terephthalate film having a thickness of 75 μm, which is a base material, by an electron beam heating method at a vacuum degree of 1 to 3 × 10 −4 Torr to form a shutter member. 6 was obliquely deposited at an incident angle of vapor deposition R = 40 degrees. By this vapor deposition, on the substrate, there are superfine pores penetrating linearly and substantially the same diameter on the front and back surfaces.
thickness consisting iO 2 is transparent inorganic microporous film of about 100nm is formed.

【0029】この無機質微孔膜について、表面の電子走
査顕微鏡(TEM)観察を行つた。その結果、超微細孔
は、TD方向の孔径kがMD方向の孔径tより長くされ
た、面方向に細長い形状を有して、その平均孔径(TD
方向の孔径kの平均値)が100nm、TD方向の孔径
kとMD方向の孔径tとの比(k/t)が10、孔の個
数が約7個/0.5μm角、表面空孔率が3%であつ
た。また、断面のTEM観察により、この超微細孔は表
裏面に対し傾斜して貫通しており、その傾斜角度αは約
70度であることがわかつた。
The surface of this inorganic microporous membrane was observed with an electron scanning microscope (TEM). As a result, the ultra-fine pores have an elongated shape in the plane direction in which the pore diameter k in the TD direction is longer than the pore diameter t in the MD direction, and the average pore diameter (TD
Direction average pore diameter k) is 100 nm, the ratio (k / t) of the TD direction pore diameter k to the MD direction pore diameter t is 10, the number of pores is about 7 holes / 0.5 μm square, and the surface porosity is Was 3%. Further, it was found from TEM observation of the cross section that the ultra-fine pores penetrated obliquely with respect to the front and back surfaces, and the inclination angle α was about 70 degrees.

【0030】実施例2〜4 蒸着入射角Rを60度(実施例2)、3度(実施例
3)、1度(実施例4)に変更した以外は、実施例1と
同様にして、ポリエチレンテレフタレ―トフイルムから
なる基材上に、表裏面に直線的にかつ略同径で貫通する
超微細孔を有する、SiO2 からなる膜厚が約100n
mの無機質微孔膜を形成した。これらの無機質微孔膜の
表面および断面のTEM観察結果を、実施例1の前記結
果と合わせて、下記の表1に示した。
Examples 2 to 4 In the same manner as in Example 1 except that the vapor deposition incident angle R was changed to 60 degrees (Example 2), 3 degrees (Example 3) and 1 degree (Example 4), On a substrate made of polyethylene terephthalate film, ultra-fine holes penetrating linearly and substantially the same diameter on the front and back sides, and having a film thickness of about 100 n made of SiO 2.
m inorganic microporous membrane was formed. The results of TEM observation of the surface and cross section of these inorganic microporous membranes are shown in Table 1 below together with the results of Example 1.

【0031】[0031]

【表1】 [Table 1]

【0032】実施例5〜8 膜厚を5nm(実施例5)、10nm(実施例6)、3
0nm(実施例7)、3,000nm(実施例8)に変
更した以外は、実施例1と同様にして、ポリエチレンテ
レフタレ―トフイルムからなる基材上に、表裏面に直線
的にかつ略同径で貫通する超微細孔を有する、SiO2
からなる無機質微孔膜を形成した。これらの無機質微孔
膜について、その表面および断面のTEM観察結果は、
実施例1とほとんど同じであり、その平均孔径〔TD方
向の孔径kの平均値〕は、いずれも100nmであつ
た。
Examples 5 to 8 The film thickness is 5 nm (Example 5), 10 nm (Example 6), 3
In the same manner as in Example 1 except that the thickness was changed to 0 nm (Example 7) and 3,000 nm (Example 8), linearly and substantially the same on the front and back sides on a substrate made of polyethylene terephthalate film. SiO 2 with ultra-fine holes penetrating in diameter
To form an inorganic microporous membrane. The results of TEM observation of the surface and cross section of these inorganic microporous membranes are as follows.
Almost the same as in Example 1, and the average pore diameter [average value of the pore diameter k in the TD direction] was 100 nm.

【0033】実施例9 蒸発源としてSiOを用い、かつ蒸着入射角R=10度
とした以外は、実施例1と同様にして、ポリエチレンテ
レフタレ―トフイルムからなる基材上に、表裏面に直線
的にかつ略同径で貫通する超微細孔を有する、SiOか
らなる膜厚が約100nmの無機質微孔膜を形成した。
この微孔膜につき、表面および断面のTEM観察を行つ
た結果、平均孔径(TD方向の孔径kの平均値)が12
0nm、TD方向の孔径kとMD方向の孔径tとの比
(k/t)が3、孔の個数が25個/0.5μm角、表
面空孔率が5%、孔の傾斜角度αは55度であつた。
Example 9 As in Example 1, except that SiO was used as the evaporation source and the vapor deposition incident angle R was 10 degrees, a straight line was formed on the front and back sides on a substrate made of polyethylene terephthalate film. An inorganic microporous film having a film thickness of about 100 nm made of SiO and having ultrafine holes penetrating with substantially the same diameter was formed.
As a result of TEM observation of the surface and the cross section of this microporous membrane, the average pore diameter (average value of the pore diameter k in the TD direction) was 12
0 nm, the ratio (k / t) of the hole diameter k in the TD direction to the hole diameter t in the MD direction is 3, the number of holes is 25 / 0.5 μm square, the surface porosity is 5%, and the inclination angle α of the hole is It was 55 degrees.

【0034】比較例1 蒸着入射角Rを90度に変更した、つまり、斜め蒸着に
代えて直角に蒸着した以外は、実施例1と同様に真空蒸
着して、ポリエチレンテレフタレ―トフイルムからなる
基材上に、SiO2 からなる膜厚が約100nmの無機
質膜を形成した。この膜の表面および断面のTEM観察
結果では、膜の表面および断面に孔は全くみられず、表
面空孔率は0%であつた。
Comparative Example 1 A substrate made of polyethylene terephthalate film was vacuum-deposited in the same manner as in Example 1 except that the vapor deposition incident angle R was changed to 90 degrees, that is, the vapor deposition was performed at a right angle instead of the oblique vapor deposition. An inorganic film made of SiO 2 and having a thickness of about 100 nm was formed on the material. As a result of TEM observation of the surface and cross section of this film, no holes were found on the surface and cross section of the film, and the surface porosity was 0%.

【0035】以上の実施例1〜9の無機質微孔膜および
比較例1の無機質膜について、膜表面の水の接触角およ
びテ―プ剥離力を、下記の方法にて、測定した。これら
の結果を、後記の表2に示す。なお、同表には、基材
(ポリエチレンテレフタレ―トフイルム)自体の上記同
様の測定結果を、参考例1として、併記した。
With respect to the inorganic microporous membranes of Examples 1 to 9 and the inorganic membrane of Comparative Example 1, the contact angle of water on the membrane surface and the tape peeling force were measured by the following methods. The results are shown in Table 2 below. In addition, in the same table, the same measurement results as above for the substrate (polyethylene terephthalate film) itself are also shown as Reference Example 1.

【0036】<水の接触角>協和界面科学(株)製のC
ONTACT−ANGLE METER(形式CA−D
T)を用いて、膜表面(参考例1では基材表面)の水の
接触角〔θ〕を、測定した。
<Contact angle of water> C manufactured by Kyowa Interface Science Co., Ltd.
ONTACT-ANGLE METER (format CA-D
T) was used to measure the contact angle of water [θ] on the film surface (the surface of the base material in Reference Example 1).

【0037】<テ―プ剥離力>日東電工(株)製の感圧
性接着テ―プ(No.31B)の接着面を、膜表面(参
考例1では基材表面)に貼り合わせたのち、180度方
向に引き剥がしたときのテ―プ剥離力F(Kg/15mm
幅)を測定した。なお、表2中、>の記号は、180度
方向に引き剥がしたとき、接着剤層の凝集破壊を生じた
ことを示す。
<Tape Peeling Force> After the adhesive surface of the pressure-sensitive adhesive tape (No. 31B) manufactured by Nitto Denko Corporation was bonded to the film surface (the substrate surface in Reference Example 1), Tape peeling force F (Kg / 15mm) when peeled off in 180 degree direction
Width) was measured. In Table 2, the symbol> indicates that cohesive failure of the adhesive layer occurred when the adhesive layer was peeled off in the 180 degree direction.

【0038】[0038]

【表2】 [Table 2]

【0039】上記の表2の結果から明らかなように、こ
の発明の実施例1〜9の無機質微孔膜によれば、ポリエ
チレンテレフタレ―トフイルムからなる基材表面の親水
性と接着剤層の接着力を大きく向上できるものであるこ
とがわかる。
As is clear from the results of Table 2 above, according to the inorganic microporous membranes of Examples 1 to 9 of the present invention, the hydrophilicity of the surface of the base material made of polyethylene terephthalate film and the adhesive layer It can be seen that the adhesive strength can be greatly improved.

【0040】実施例10〜13 基材として、厚さが80μmのポリカ―ボネ―トフイル
ム(実施例10)、厚さが50μmのポリイミドフイル
ム(実施例11)、厚さが60μmのポリエチレンフイ
ルム(実施例12)、厚さが60μmのポリプロピレン
フイルム(実施例13)を用いた以外は、実施例1と同
様にして、上記の各基材上に、表裏面に直線的にかつ略
同径で貫通する超微細孔を有する、SiO2 からなる膜
厚が約100nmの無機質微孔膜を形成した。これらの
無機質微孔膜の表面および断面のTEM観察結果を、下
記の表3に示した。
Examples 10 to 13 As base materials, a polycarbonate film having a thickness of 80 μm (Example 10), a polyimide film having a thickness of 50 μm (Example 11), and a polyethylene film having a thickness of 60 μm (implementation) Example 12) In the same manner as in Example 1 except that a polypropylene film (Example 13) having a thickness of 60 μm was used, the above-mentioned base materials were linearly penetrated to the front and back surfaces with substantially the same diameter. An inorganic microporous film having a thickness of about 100 nm made of SiO 2 having ultrafine pores was formed. The results of TEM observation of the surface and cross section of these inorganic microporous membranes are shown in Table 3 below.

【0041】[0041]

【表3】 [Table 3]

【0042】比較例2〜5 蒸着入射角Rを90度に変更した、つまり、斜め蒸着に
代えて直角に蒸着した以外は、実施例10〜13と同様
にして、厚さが80μmのポリカ―ボネ―トフイルム
(比較例2)、厚さが50μmのポリイミドフイルム
(比較例3)、厚さが60μmのポリエチレンフイルム
(比較例4)、厚さが60μmのポリプロピレンフイル
ム(比較例5)の各基材上に、SiO2 からなる膜厚が
約100nmの無機質膜を形成した。これら膜の表面お
よび断面のTEM観察結果では、いずれも、膜の表面お
よび断面に孔は全くみられず、表面空孔率は0%であつ
た。
Comparative Examples 2 to 5 In the same manner as in Examples 10 to 13 except that the vapor deposition incident angle R was changed to 90 degrees, that is, the vapor deposition was performed at a right angle instead of the oblique vapor deposition, and the thickness was 80 μm. Base film (Comparative Example 2), polyimide film having a thickness of 50 μm (Comparative Example 3), polyethylene film having a thickness of 60 μm (Comparative Example 4), polypropylene film having a thickness of 60 μm (Comparative Example 5) An inorganic film made of SiO 2 and having a thickness of about 100 nm was formed on the material. As a result of TEM observation of the surface and cross section of these films, no pores were observed on the surface and cross section of the films, and the surface porosity was 0%.

【0043】以上の実施例10〜13の無機質微孔膜お
よび比較例2〜5の無機質膜について、膜表面の水の接
触角およびテ―プ剥離力を、前記と同様に測定した。こ
れらの結果を、下記の表4に示す。なお、同表には、基
材(ポリカ―ボネ―トフイルム、ポリイミドフイルム、
ポリエチレンフイルム、ポリプロピレンフイルム)自体
の上記同様の測定結果を、それぞれ参考例2〜5とし
て、併記した。
With respect to the inorganic microporous membranes of Examples 10 to 13 and the inorganic membranes of Comparative Examples 2 to 5, the contact angle of water on the membrane surface and the tape peeling force were measured in the same manner as above. The results are shown in Table 4 below. In addition, in the same table, the substrate (polycarbonate film, polyimide film,
The same measurement results as described above for the polyethylene film and the polypropylene film) themselves are also shown as Reference Examples 2 to 5, respectively.

【0044】[0044]

【表4】 [Table 4]

【0045】上記の表4の結果から明らかなように、こ
の発明の実施例10〜13の無機質微孔膜によれば、ポ
リカ―ボネ―トフイルム、ポリイミドフイルム、ポリエ
チレンフイルム、ポリプロピレンフイルムからなる各基
材表面の親水性と接着剤層の接着力を大きく向上できる
ものであることがわかる。
As is clear from the results of Table 4 above, according to the inorganic microporous membranes of Examples 10 to 13 of the present invention, each group consisting of polycarbonate film, polyimide film, polyethylene film and polypropylene film was used. It can be seen that the hydrophilicity of the material surface and the adhesive strength of the adhesive layer can be greatly improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の基材付きの無機質微孔膜の一例を示
したもので、(A)は断面図、(B)は上記(A)にお
けるB部分の拡大断面図、(C)は平面図、(D)は上
記(C)におけるD部分の拡大平面図である。
1 shows an example of an inorganic microporous membrane with a substrate of the present invention, (A) is a cross-sectional view, (B) is an enlarged cross-sectional view of portion B in (A) above, and (C) is A plan view, (D) is an enlarged plan view of a portion D in the above (C).

【図2】この発明の基材付きの無機質微孔膜の製法例を
示す説明図である。
FIG. 2 is an explanatory view showing an example of a method for producing an inorganic microporous film with a substrate of the present invention.

【符号の説明】[Explanation of symbols]

1 無機質微孔膜 1a 無機質微孔膜の表面 1b 無機質微孔膜の背面 2 基材 3 超微細孔 k 超微細孔のTD方向の孔径(平均孔径) t 超微細孔のMD方向の孔径 α 超微細孔の傾斜角度 4 半径rの半円状ホルダ 5 蒸発源(無機質材料) 6 シヤツタ部材 R 蒸着入射角 1 Inorganic Microporous Membrane 1a Surface of Inorganic Microporous Membrane 1b Backside of Inorganic Microporous Membrane 2 Substrate 3 Ultrafine Pores k Ultrafine Micropores TD Direction Pore Diameter (Average Pore Diameter) t Ultrafine Pore MD Direction Pore Diameter α Super Fine hole inclination angle 4 Semi-circular holder with radius r 5 Evaporation source (inorganic material) 6 Shatter member R Vapor deposition incident angle

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C23C 14/14 Z 8939−4K ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI technical display location C23C 14/14 Z 8939-4K

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 表裏面に直線的にかつ略同径で貫通する
平均孔径が0.1nm〜10μmの超微細孔を有するこ
とを特徴とする無機質微孔膜。
1. An inorganic microporous membrane, characterized in that it has ultrafine pores having an average pore diameter of 0.1 nm to 10 μm that linearly penetrate through the front and back surfaces and have substantially the same diameter.
【請求項2】 基材上に、表裏面に直線的にかつ略同径
で貫通する平均孔径が0.1nm〜10μmの超微細孔
を有する無機質微孔膜を設けたことを特徴とする基材付
きの無機質微孔膜。
2. A substrate comprising an inorganic microporous membrane having ultrafine pores having an average pore diameter of 0.1 nm to 10 μm linearly and substantially penetrating the front and back surfaces on a substrate. Inorganic microporous membrane with material.
【請求項3】 超微細孔が表裏面に対し傾斜して貫通し
ており、傾斜角度αが40〜85度である請求項1また
は請求項2に記載の無機質微孔膜。
3. The inorganic microporous membrane according to claim 1, wherein the ultrafine pores penetrate through the front and back surfaces with an inclination, and the inclination angle α is 40 to 85 degrees.
【請求項4】 超微細孔が面方向に細長い形状を有し、
TD方向(幅方向)の孔径kがMD方向(長手方向)の
孔径tより長く、TD方向の平均孔径が0.1nm〜1
0μmである請求項1〜3のいずれかに記載の無機質微
孔膜。
4. The ultrafine holes have a shape elongated in the plane direction,
The pore diameter k in the TD direction (width direction) is longer than the pore diameter t in the MD direction (longitudinal direction), and the average pore diameter in the TD direction is 0.1 nm to 1
It is 0 micrometer, The inorganic microporous film in any one of Claims 1-3.
【請求項5】 超微細孔の表面空孔率が0.5〜99%
の範囲にある請求項1〜4のいずれかに記載の無機質微
孔膜。
5. The surface porosity of ultrafine pores is 0.5 to 99%.
The inorganic microporous membrane according to any one of claims 1 to 4, which is in the range of.
【請求項6】 膜厚が5nm〜100μmの範囲にある
請求項1〜5のいずれかに記載の無機質微孔膜。
6. The inorganic microporous membrane according to claim 1, which has a thickness of 5 nm to 100 μm.
【請求項7】 表面の水の接触角が65度以下である請
求項1〜6のいずれかに記載の無機質微孔膜。
7. The inorganic microporous membrane according to claim 1, wherein the contact angle of water on the surface is 65 degrees or less.
【請求項8】 剥離性または非剥離性の基材上に、無機
質材料を斜め蒸着して、表裏面に直線的にかつ略同径で
貫通する平均孔径が0.1nm〜10μmの超微細孔を
有する無機質微孔膜を設けることを特徴とする無機質微
孔膜の製法。
8. An ultrafine pore having an average pore diameter of 0.1 nm to 10 μm which is formed by obliquely vapor-depositing an inorganic material on a peelable or non-peelable substrate and linearly penetrates the front and back surfaces with substantially the same diameter. A method for producing an inorganic microporous membrane, which comprises providing an inorganic microporous membrane having:
JP18532094A 1994-07-13 1994-07-13 Inorganic microporous membrane and its production method Expired - Lifetime JP3806152B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18532094A JP3806152B2 (en) 1994-07-13 1994-07-13 Inorganic microporous membrane and its production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18532094A JP3806152B2 (en) 1994-07-13 1994-07-13 Inorganic microporous membrane and its production method

Publications (2)

Publication Number Publication Date
JPH0827561A true JPH0827561A (en) 1996-01-30
JP3806152B2 JP3806152B2 (en) 2006-08-09

Family

ID=16168777

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18532094A Expired - Lifetime JP3806152B2 (en) 1994-07-13 1994-07-13 Inorganic microporous membrane and its production method

Country Status (1)

Country Link
JP (1) JP3806152B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008274409A (en) * 2007-03-30 2008-11-13 Fujifilm Corp Method for forming anti-fogging film
JP2009070890A (en) * 2007-09-11 2009-04-02 Nitto Denko Corp Method of cleaning substrate treatment apparatus
WO2009116335A1 (en) * 2008-03-19 2009-09-24 日東電工株式会社 Hydrophilic sheet and method of imparting ultrahigh hydrophilicity to substrate surface
JP2009228016A (en) * 2008-03-19 2009-10-08 Nitto Denko Corp Method for making surface of base material into super-hydrophilic state
JP2009226613A (en) * 2008-03-19 2009-10-08 Nitto Denko Corp Hydrophilic sheet
WO2011142392A1 (en) * 2010-05-12 2011-11-17 名阪真空工業株式会社 Transparent conductive substrate
WO2015029451A1 (en) * 2013-08-30 2015-03-05 日東電工株式会社 Waterproof breathable membrane, waterproof breathable component provided with same, waterproof breathable structure, and waterproof sound-permeable membrane

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008274409A (en) * 2007-03-30 2008-11-13 Fujifilm Corp Method for forming anti-fogging film
JP2009070890A (en) * 2007-09-11 2009-04-02 Nitto Denko Corp Method of cleaning substrate treatment apparatus
WO2009116335A1 (en) * 2008-03-19 2009-09-24 日東電工株式会社 Hydrophilic sheet and method of imparting ultrahigh hydrophilicity to substrate surface
JP2009228016A (en) * 2008-03-19 2009-10-08 Nitto Denko Corp Method for making surface of base material into super-hydrophilic state
JP2009226613A (en) * 2008-03-19 2009-10-08 Nitto Denko Corp Hydrophilic sheet
CN102026802A (en) * 2008-03-19 2011-04-20 日东电工株式会社 Hydrophilic sheet and method of imparting ultrahigh hydrophilicity to substrate surface
WO2011142392A1 (en) * 2010-05-12 2011-11-17 名阪真空工業株式会社 Transparent conductive substrate
CN102959642A (en) * 2010-05-12 2013-03-06 名阪真空工业株式会社 Transparent conductive substrate
US20130056050A1 (en) * 2010-05-12 2013-03-07 Meihan Shinku Kogyo Co., Ltd. Transparent conductive substrate
US8795786B2 (en) 2010-05-12 2014-08-05 Meihan Shinku Kogyo Co., Ltd. Transparent conductive substrate
JP5777611B2 (en) * 2010-05-12 2015-09-09 名阪真空工業株式会社 Transparent conductive substrate
WO2015029451A1 (en) * 2013-08-30 2015-03-05 日東電工株式会社 Waterproof breathable membrane, waterproof breathable component provided with same, waterproof breathable structure, and waterproof sound-permeable membrane
US11478760B2 (en) 2013-08-30 2022-10-25 Nitto Denko Corporation Waterproof gas-permeable membrane, waterproof gas-permeable member and waterproof gas-permeable structure including same, and waterproof sound-permeable membrane

Also Published As

Publication number Publication date
JP3806152B2 (en) 2006-08-09

Similar Documents

Publication Publication Date Title
TWI527702B (en) Transparent conductive film and manufacturing method thereof
TWI671203B (en) Blood glucose sensor strip and blood glucose sensor device
JP5286450B2 (en) Transparent structure and electrochromic device
JP2902456B2 (en) Inorganic polarizing thin film
US8206780B2 (en) Polymer composite photonic particles
WO2014084856A1 (en) Graphene membrane with size-tunable nanoscale pores
KR20110061628A (en) Method for manufacturing a submillimetric electrically conductive grid, and submillimetric electrically conductive grid
EP0641250A1 (en) Inorganic membrane for microfiltration, and a process for production of such an inorganic membrane.
EP2911772A1 (en) Nanosieve composite membrane
KR20120011839A (en) Method of forming metal oxide film, and metal oxide film
JPH0827561A (en) Inorganic micropored film and its production
JP2012163789A (en) Conductive element and manufacturing method thereof, wiring element, information input device, display device, and electronic apparatus
KR100464532B1 (en) Functional film
JP6266353B2 (en) Conductive material precursor and method for producing conductive material
JP2010257690A (en) Method for manufacturing pattern electrode, and pattern electrode
WO2014156889A1 (en) Multilayer film, film roll of same, light-transmitting conductive film obtained from same, and touch panel utilizing said light-transmitting conductive film
CN113167928A (en) Dielectric multilayer film, method for producing same, and optical member using same
JP2016148871A (en) Wire grid polarization plate for infrared ray, image sensor for infrared ray, and camera for infrared ray
JP5504495B2 (en) Method for manufacturing molded structure
CN111754857B (en) Double-sided display device using nano plasma and method of manufacturing the same
KR101314483B1 (en) Heating element for anti-glare
JP2004087904A (en) Manufacturing method of electromagnetic wave shield plate
Zuri et al. Film formation and crack development in plasma polymerized hexamethyldisiloxane
CN114477078B (en) Processing method and application of integrated cross-scale micro-nano column array
KR102689722B1 (en) Pellicle, exposure original plate, exposure apparatus, pellicle manufacturing method, and semiconductor device manufacturing method

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051011

A521 Written amendment

Effective date: 20051124

Free format text: JAPANESE INTERMEDIATE CODE: A523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060110

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060223

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20060509

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060512

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20120519

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120519

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20150519

EXPY Cancellation because of completion of term