JPH08275402A - Electromagnetic induction coil drive circuit - Google Patents

Electromagnetic induction coil drive circuit

Info

Publication number
JPH08275402A
JPH08275402A JP7071000A JP7100095A JPH08275402A JP H08275402 A JPH08275402 A JP H08275402A JP 7071000 A JP7071000 A JP 7071000A JP 7100095 A JP7100095 A JP 7100095A JP H08275402 A JPH08275402 A JP H08275402A
Authority
JP
Japan
Prior art keywords
electromagnetic induction
induction coil
switching element
circuit
drive circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP7071000A
Other languages
Japanese (ja)
Inventor
Minoru Takahashi
高橋実
Takashi Urano
浦野高志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP7071000A priority Critical patent/JPH08275402A/en
Publication of JPH08275402A publication Critical patent/JPH08275402A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE: To assure safe operations when an object such as coin is placed on an electromagnetic induction coil or there has been a change in input power by varying an oscillating frequency of an oscillating circuit for driving a semiconductor switching element and controlling the ON-time of the semiconductor switching element. CONSTITUTION: Frequency changes in response to the fluctuation in a voltage between drain and source of an FETQ2. Moreover, a differential effect is created by applying its output through an integrating circuit comprising a resistor R16, a diode D1, and a capacitor C6, and a control is so made that the OFF-time determined by an oscillating circuit becomes longer than the OFF-time of the FETQ2. Thus, if a metal object such as a coin is placed on an electromagnetic induction coil T1 at the side of a power sending portion 1, the voltage between the drain and source of the FETQ2 rises so that the ON-time of the FETQ2 is suppressed and the input power is reduced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、コードレス電話機、携
帯用機器等の電源として利用される2次電池(充電式電
池)を、電磁誘導で電力を伝送することにより非接触
(電気接続を伴わない)で充電するための電磁誘導コイ
ルの駆動回路、及び該駆動回路を用いてなる充電装置で
あって、コードレス電話機、携帯用機器等に組み込まれ
ている充電装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a secondary battery (rechargeable battery) used as a power source for a cordless telephone, a portable device, etc., by transmitting electric power by electromagnetic induction so as to be contactless (with electrical connection). The present invention relates to a drive circuit of an electromagnetic induction coil for charging in the case of a non-use) and a charging device using the drive circuit, the charging device being incorporated in a cordless telephone, a portable device or the like.

【0002】[0002]

【従来の技術】従来、電動歯ブラシ等で利用されていた
非接触型充電器は、スイッチングレギュレータ用の回路
を応用し、RCC回路(リンギング・チョーク・コンバ
ータ回路)やロイヤー発振回路で電磁誘導コイルを駆動
し、送電部側の電磁誘導コイルから受電部側の受電コイ
ルへ電磁誘導によって電力伝送を行っていた。そして、
商用交流電源の直接入力(AC100Vの場合、整流後
のDC114Vをそのまま使用)の場合において、高周
波での自励発振回路における安定動作が難しいので、前
記発振回路の発振周波数が30〜100kHzになるよ
うに、発振コイルとして用いられる電磁誘導コイルのイ
ンダクタンスを設定をしていた。
2. Description of the Related Art Non-contact type chargers that have been conventionally used in electric toothbrushes and the like apply a circuit for a switching regulator to an electromagnetic induction coil in an RCC circuit (ringing choke converter circuit) or a Royer oscillator circuit. The electric power is transmitted from the electromagnetic induction coil on the power transmitting unit side to the power receiving coil on the power receiving unit side by electromagnetic induction by driving. And
In the case of direct input of a commercial AC power supply (DC114V after rectification is used as it is in case of AC100V), it is difficult to stabilize the operation in the self-excited oscillation circuit at high frequency, so that the oscillation frequency of the oscillation circuit becomes 30 to 100 kHz In addition, the inductance of the electromagnetic induction coil used as the oscillation coil was set.

【0003】しかし、例えば、コードレス電話機等のよ
うに1バンド12.5kHzで多チャンネルの通話帯が
あるような機器に非接触型の充電器を組み込み、30〜
100kHzの発振周波数で非接触の充電を行うような
ときには、その通話信号に対して、発振周波数の高調波
が雑音として妨害を与えるという問題が発生する。
However, for example, a non-contact type charger is incorporated in a device such as a cordless telephone which has a multi-channel communication band at 12.5 kHz per band.
When contactless charging is performed at an oscillation frequency of 100 kHz, a problem arises that a harmonic of the oscillation frequency interferes with the call signal as noise.

【0004】以上のような高調波雑音の影響を避けるた
めには、発振周波数を上げる必要があるが、従来より高
周波発振回路として用いられてきたハートレー型、コル
ピッツ型発振回路は信号レベルでの応用が殆どであるた
め、原理的に安定したスイッチング動作ができないた
め、能動部品の損失が大きくなり、充電装置への応用を
考慮した場合には、効率の良い充電を期待することがで
きない。
In order to avoid the influence of the harmonic noise as described above, it is necessary to raise the oscillation frequency. However, the Hartley type and Colpitts type oscillation circuits which have been conventionally used as a high frequency oscillation circuit are applied at the signal level. However, in principle, stable switching operation cannot be performed, resulting in large loss of active components, and efficient charging cannot be expected in consideration of application to a charging device.

【0005】また、入力電圧の変動によって送電部側の
電磁誘導コイルから伝送されるエネルギーが大きくなる
と受電側の装置に内蔵された定電流回路の発熱が大きく
なり、この場合には、受電対象機器に損傷が生じる原因
となる可能性がある。特に、電話機に応用する場合にこ
の発熱は、著しく商品価値を下げることになる。
Further, when the energy transmitted from the electromagnetic induction coil on the power transmission section side increases due to the fluctuation of the input voltage, the constant current circuit built in the power receiving side apparatus generates a large amount of heat. May cause damage to the. Especially when applied to a telephone, this heat generation significantly reduces the commercial value.

【0006】このような問題を解決するため、特願平6
ー329271が提案されている。
In order to solve such a problem, Japanese Patent Application No.
-322971 has been proposed.

【0007】この提案においては、送電部側に、自励式
コルピッツ発振回路を構成して、高周波での発振を安定
して行うことを可能としており、この発振回路を駆動回
路として用いて送電部側の電磁誘導コイルを励磁するこ
とができる。そして、受電部側の電磁誘導コイルを励磁
することにより、受電部側の受電コイルである前記電磁
誘導コイルに対して、非接触で電力伝送することができ
る。このやり方では、高周波での発振が安定しているた
めに、その通話信号に対して発振周波数の高調波が雑音
として妨害を与えるという弊害がなくなる。
In this proposal, a self-excited Colpitts oscillator circuit is configured on the power transmission unit side to stably oscillate at high frequency, and the power transmission unit side is used by using this oscillation circuit as a drive circuit. The electromagnetic induction coil can be excited. Then, by exciting the electromagnetic induction coil on the power receiving unit side, power can be transmitted in a non-contact manner to the electromagnetic induction coil that is the power receiving coil on the power receiving unit side. In this method, since the oscillation at high frequency is stable, the harmonics of the oscillation frequency interfere with the call signal as noise.

【0008】また、その送電部側には入力電力調整回路
を組み込んであるために入力電圧の変動等による異常事
態が生じた場合でも入力電力がそれに応じて制限され、
例えば発熱による機器の損傷を抑さえることが可能にな
った。
Further, since the input power adjusting circuit is incorporated in the power transmitting unit side, the input power is limited accordingly even when an abnormal situation occurs due to fluctuation of the input voltage,
For example, it has become possible to suppress damage to equipment due to heat generation.

【0009】[0009]

【発明が解決しようとする課題】ところで、例えばコー
ドレス電話機の使用時のように受電部側の受電コイルが
送電部側の電磁誘導コイル上に置かれない場合に、誤っ
て硬貨等の金属が送電部側の電磁誘導コイル上に置かれ
たとすると、硬貨等の金属の内部に渦電流が発生して発
熱し、送電部に生じる異常発熱のために機器が損傷を受
けることがあり得る。
By the way, when the power receiving coil on the power receiving unit side is not placed on the electromagnetic induction coil on the power transmitting unit side, such as when using a cordless telephone, metal such as coins is erroneously transmitted. If placed on the electromagnetic induction coil on the side of the unit, an eddy current is generated inside a metal such as a coin to generate heat, and the device may be damaged due to abnormal heat generation in the power transmission unit.

【0010】しかしながら、従来の一般的なRCC回路
(リンギング・チョーク・コンバータ回路)、ロイヤー
発振回路、特願平6ー329271に提案されている発
振回路等では入力電力を十分に制限することができない
ため、機器等が受ける可能性のある損傷を防止すること
は困難である。
However, the input power cannot be sufficiently limited by the conventional general RCC circuit (ringing choke converter circuit), the Royer oscillator circuit, the oscillator circuit proposed in Japanese Patent Application No. 6-329271, and the like. Therefore, it is difficult to prevent possible damage to the device and the like.

【0011】そこで、本発明の目的は、送電部側の電磁
誘導コイル上に硬貨等の金属が置かれた場合でも安全に
動作し、かつ入力変動等によって入力電力の変化があっ
た場合でも安全に動作する、電磁誘導コイルの駆動回路
を提供することにある。
Therefore, an object of the present invention is to operate safely even when a metal such as a coin is placed on the electromagnetic induction coil on the side of the power transmission unit, and even if the input power changes due to input fluctuations or the like. It is to provide a drive circuit for an electromagnetic induction coil that operates in the above manner.

【0012】また、「電磁誘導で電力を伝送することに
より2次電池(充電式電池)を、非接触(電気接続を伴
わない)で充電するための充電装置」としてコードレス
電話機、携帯用機器等に組み込んだ場合でも、その通話
信号に対して発振周波数の高調波が雑音として妨害する
弊害がないという、この種の充電装置を提供することを
第2の目的とする。
Further, as a "charging device for charging a secondary battery (rechargeable battery) by non-contact (without electrical connection) by transmitting electric power by electromagnetic induction", a cordless telephone, a portable device, etc. It is a second object of the present invention to provide a charging device of this type in which harmonics of the oscillating frequency do not interfere as noise with respect to the call signal even when incorporated into the charging device.

【0013】[0013]

【課題を解決するための手段】上記の課題を解決する為
に本発明は、半導体スイッチング素子に送電部側の磁束
発生用電磁誘導コイルを接続し、該半導体スイッチング
素子の他端には波形成形回路を通じて発振回路を接続し
て半導体スイッチング素子にスイッチング動作を行わせ
るとともに、電磁誘導コイルと共振回路を構成するよ
う、コンデンサを等価的に電磁誘導コイルと並列接続し
てなる電磁誘導コイル駆動回路において、半導体スイッ
チング素子がOFFするときのスイッチング素子に発生
する電圧の尖頭値を検出し、発振によって発生したエネ
ルギーの一部を整流、平滑することによって得られた基
準電圧と比較することにより、半導体スイッチング素子
を駆動する発振回路の発振周波数を変化させ、半導体ス
イッチング素子のON時間を制御する構成としている。
In order to solve the above-mentioned problems, the present invention is to connect a magnetic flux generating electromagnetic induction coil on the power transmitting section side to a semiconductor switching element, and to form a waveform on the other end of the semiconductor switching element. In an electromagnetic induction coil drive circuit in which a capacitor is equivalently connected in parallel with an electromagnetic induction coil so that a semiconductor switching element performs a switching operation by connecting an oscillation circuit through the circuit and a resonant circuit is formed with the electromagnetic induction coil. By detecting the peak value of the voltage generated in the switching element when the semiconductor switching element is turned off and comparing it with the reference voltage obtained by rectifying and smoothing a part of the energy generated by the oscillation, the semiconductor The oscillation frequency of the oscillation circuit that drives the switching element is changed to It is configured to control the time.

【0014】更に本発明は、半導体スイッチング素子の
スイッチング動作において、スイッチング素子を駆動す
るパルスのON時間をスイッチング素子のON時間より
短くする構成となっている。
Further, according to the present invention, in the switching operation of the semiconductor switching element, the ON time of the pulse for driving the switching element is shorter than the ON time of the switching element.

【0015】更に本発明は、半導体スイッチング素子が
OFFするときの電圧の尖頭値を、受動素子を用いて検
出する。
Further, according to the present invention, the peak value of the voltage when the semiconductor switching element is turned off is detected by using the passive element.

【0016】[0016]

【作用】本発明の電磁誘導コイルの駆動回路および該駆
動回路を用いた充電装置において、送電部側では、外部
発振機によって電界効果トランジスタ(以下FETと呼
称する)等の半導体スイッチング素子をスイッチング動
作させる。そして、該FETに磁束発生用の電磁誘導コ
イルを直列に接続して、商用交流電源からの電力を該電
磁誘導コイルにより磁束に変換して受電部側へ送るよう
にする。ここでは、特に半導体スイッチング素子として
FETを用いた場合について説明を進めることにする。
In the drive circuit of the electromagnetic induction coil of the present invention and the charging device using the drive circuit, a semiconductor switching element such as a field effect transistor (hereinafter referred to as FET) is switched by an external oscillator on the power transmission section side. Let Then, an electromagnetic induction coil for generating a magnetic flux is connected in series to the FET so that the electric power from the commercial AC power source is converted into a magnetic flux by the electromagnetic induction coil and sent to the power receiving unit side. Here, the description will be advanced especially when a FET is used as a semiconductor switching element.

【0017】なお、FETのドレイン、ソース間にはコ
ンデンサが接続されており電磁誘導コイルと共に共振回
路を構成しているため、発振波形が正弦波に近い形に成
形されて、スプリアス雑音を小さくすることができる。
そのため、充電装置としてコードレス電話機、携帯用機
器等に組み込んだ場合でも、通話信号の中で発振周波数
の高調波が雑音として妨害するという弊害がない。
Since a capacitor is connected between the drain and source of the FET and constitutes a resonance circuit together with the electromagnetic induction coil, the oscillation waveform is shaped to be close to a sine wave, and spurious noise is reduced. be able to.
Therefore, even when the charging device is incorporated in a cordless telephone, a portable device, or the like, there is no adverse effect that harmonics of the oscillation frequency interfere as noise in the call signal.

【0018】以上のように構成された共振型の電磁誘導
コイル駆動回路では、FETのOFF時間が、電磁誘導
コイルのインダクタンスとFETのドレイン、ソース間
に接続されたコンデンサの容量によって構成される共振
回路の共振波形によって決定される。
In the resonance type electromagnetic induction coil drive circuit constructed as described above, the OFF time of the FET is a resonance formed by the inductance of the electromagnetic induction coil and the capacitance of the capacitor connected between the drain and source of the FET. Determined by the resonant waveform of the circuit.

【0019】送電部側の電磁誘導コイル上に硬貨等の金
属が置かれた場合でも安全に動作し、かつ入力変動等に
よって入力電力の変化があった場合でも安全に動作する
ためには、入力電力を抑さえるために、FETのON時
間を小さくして、この入力電力を小さくする必要があ
る。FETのON時間を小さくするためには、FETの
動作周波数を上げること、または電磁誘導コイルのイン
ダクタンスとFETのドレイン、ソース間に接続された
コンデンサの容量によって構成される共振回路の共振周
波数を上げることが必要である。
In order to operate safely even when a metal such as a coin is placed on the electromagnetic induction coil on the side of the power transmission unit and to operate safely even when the input power changes due to input fluctuations, etc. In order to suppress the power, it is necessary to reduce the ON time of the FET to reduce the input power. In order to reduce the ON time of the FET, increase the operating frequency of the FET, or increase the resonance frequency of the resonance circuit formed by the inductance of the electromagnetic induction coil and the capacitance of the capacitor connected between the drain and source of the FET. It is necessary.

【0020】ところで、前記の共振周波数を上げるため
には、電圧可変コンデンサを用いることが必要であり、
共振電流も大きいため制御は困難である。
By the way, in order to increase the resonance frequency, it is necessary to use a voltage variable capacitor,
Control is difficult because the resonance current is also large.

【0021】そこで、前記の異常状態になった場合に、
FETのドレイン、ソース間のOFF時における電圧が
上昇することに着目し、この部分の電圧と、発振によっ
て発生したエネルギーの一部を整流、平滑することによ
って得られた基準電圧を比較して、FETのドレイン、
ソース間電圧が上昇した場合にFET駆動用発振回路の
周波数を上昇させ、FETのON時間を小さくするよう
に制御して入力電力を抑さえる。
Therefore, when the above-mentioned abnormal state occurs,
Paying attention to the increase in the voltage between the drain and source of the FET when it is off, comparing the voltage of this part with the reference voltage obtained by rectifying and smoothing a part of the energy generated by the oscillation, FET drain,
When the source-to-source voltage rises, the frequency of the FET drive oscillation circuit is raised and the ON time of the FET is controlled to be small to suppress the input power.

【0022】しかし、既に述べたように、FETのOF
F時間は一定であるために、単純に周波数を上げただけ
では、ドレイン、ソース間電圧が残っている間にドレイ
ン電流が流れてしまい、FETの損失が大きくなって発
熱を生じる等の問題が起きる。また、FETの駆動波形
が歪むことによる高調波ノイズの発生にもつながる。
However, as already mentioned, the OF of the FET is
Since the F time is constant, if the frequency is simply increased, the drain current will flow while the voltage between the drain and the source remains, resulting in a large loss of the FET and heat generation. Get up. In addition, the driving waveform of the FET is distorted, which leads to generation of harmonic noise.

【0023】そこでこのような問題を解決する為、発振
回路での出力を微分回路に通し、必要に応じて波形成形
等を行って、FETを駆動するパルスのON時間をスイ
ッチング素子のON時間より短くなるように制御するこ
とが必要となる。
In order to solve such a problem, therefore, the output from the oscillation circuit is passed through a differentiating circuit, waveform shaping is performed as necessary, and the ON time of the pulse for driving the FET is determined from the ON time of the switching element. It is necessary to control it so that it becomes shorter.

【0024】[0024]

【実施例】次に、本発明に係る電磁誘導コイルの駆動回
路及び該駆動回路を用いた充電装置の実施例を図面にし
たがって説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, an embodiment of a drive circuit for an electromagnetic induction coil and a charging device using the drive circuit according to the present invention will be described with reference to the drawings.

【0025】図1は、電磁誘導コイルの駆動回路及び該
駆動回路を用いた充電装置の全体構成を示す回路図であ
る。この図1において、充電装置は送電部1とこれによ
り電磁誘導による電力伝送を受ける受電部2とからなっ
ている。
FIG. 1 is a circuit diagram showing an overall structure of a drive circuit for an electromagnetic induction coil and a charging device using the drive circuit. In FIG. 1, the charging device includes a power transmission unit 1 and a power reception unit 2 that receives electric power by electromagnetic induction.

【0026】図1に示すとおり、電磁誘導コイルT1に
はスイッチング動作して該電磁誘導コイルを駆動するF
ETQ2が接続されており、FETQ2のドレイン、ソ
ース間には、電磁誘導コイルT1と共振回路を構成する
コンデンサC1,C2が接続されて、電磁誘導コイルT
1に直接接続された商用交流電源からの電力を対応する
磁束に変換して受電部2側に送るようにされている。
As shown in FIG. 1, the electromagnetic induction coil T1 is driven by a switching operation F to drive the electromagnetic induction coil.
The ETQ2 is connected, and the electromagnetic induction coil T1 and the capacitors C1 and C2 that form a resonance circuit are connected between the drain and the source of the FETQ2, and the electromagnetic induction coil T1 is connected.
The power from the commercial AC power source directly connected to 1 is converted into a corresponding magnetic flux and sent to the power receiving unit 2 side.

【0027】一方、FETQ2のドレイン、ソース間に
接続された抵抗R7,R8によりFETQ2のドレイ
ン、ソース間電圧が取出され、ダイオードD2,コンデ
ンサC3,抵抗R9からなる整流部によって整流されて
からオペアンプIC2のプラス端子に加わるようにされ
る。オペアンプIC2のマイナス端子側には基準電圧が
入力されており、その差動増幅出力は、バリキャップダ
イオードD5、コンデンサC5、シュミットインバータ
IC3、抵抗R15によって構成される「電圧を感知し
て周波数を可変する発振回路3(以下VCOという)」
に入力される。このために、FETQ2のドレイン、ソ
ース間電圧の変動に応じて、周波数が変化することとな
る。更にその出力を抵抗R16、ダイオードD1、コン
デンサC6によって構成された積分回路を通しバッファ
IC1にて波形成形することで微分効果をもたせ、FE
TQ2のOFF時間より発振回路で決定されるOFF時
間が長くなるように制御している。
On the other hand, the voltage between the drain and the source of the FET Q2 is taken out by the resistors R7 and R8 connected between the drain and the source of the FET Q2, and is rectified by the rectifying section composed of the diode D2, the capacitor C3 and the resistor R9, and then the operational amplifier IC2. Is added to the positive terminal of. A reference voltage is input to the negative terminal side of the operational amplifier IC2, and its differential amplification output is composed of a varicap diode D5, a capacitor C5, a Schmitt inverter IC3, and a resistor R15. Oscillation circuit 3 (hereinafter referred to as VCO)
Is input to Therefore, the frequency changes in accordance with the change in the drain-source voltage of the FET Q2. Further, the output thereof is passed through an integrating circuit composed of a resistor R16, a diode D1 and a capacitor C6, and a waveform is shaped by the buffer IC1 so as to have a differential effect.
The OFF time determined by the oscillation circuit is controlled to be longer than the OFF time of TQ2.

【0028】したがって、送電部1側の電磁誘導コイル
T1上に硬貨等の金属が置かれた場合は、FETQ2の
ドレイン、ソース間電圧が上昇するために、このFET
Q2のON時間が抑さえられて、入力電力が小さくな
る。このために、硬貨等の金属に供給される電力も減少
して、当該硬貨等の金属が発熱することはなく発煙、発
火等の危険な状態になることはない。また、入力変動等
によって入力電力の変化があった場合でも同様に、FE
TQ2のドレイン、ソース間電圧が上昇するために入力
電力の増大が抑さえられ、安全に動作する。
Therefore, when a metal such as a coin is placed on the electromagnetic induction coil T1 on the power transmission section 1 side, the voltage between the drain and source of the FET Q2 rises, so this FET
The ON time of Q2 is suppressed and the input power becomes small. For this reason, the electric power supplied to the metal such as the coin is also reduced, and the metal such as the coin does not generate heat and does not cause a dangerous state such as smoking or ignition. In addition, even when the input power changes due to input fluctuations, the FE
Since the voltage between the drain and source of TQ2 rises, the increase in input power is suppressed and the device operates safely.

【0029】また、受電部2側は、特願平6ー3292
71でも説明されているものと同様に、電磁誘導コイル
T1によって送電された電力を受電コイルT2によって
受電し、この受電コイルT2の両端に発生した電圧を、
受電コイルT2のインダクタンスとコンデンサC8によ
って作られる共振回路により、共振回路によって得られ
るQの倍数だけ大きくした電圧を、ダイオードD7、コ
ンデンサC9からなる整流回路で整流し、その後定電流
回路を通して2次電池BATを充電する構成にされてい
る。
On the power receiving portion 2 side, Japanese Patent Application No. 6-3292
In the same manner as described in 71, the power transmitted by the electromagnetic induction coil T1 is received by the power receiving coil T2, and the voltage generated across the power receiving coil T2 is
The resonant circuit formed by the inductance of the power receiving coil T2 and the capacitor C8 rectifies the voltage increased by a multiple of Q obtained by the resonant circuit by the rectifier circuit including the diode D7 and the capacitor C9, and then the secondary battery through the constant current circuit. It is configured to charge the BAT.

【0030】これまでは、半導体スイッチング素子とし
てFETを用いた場合を例として説明したが、これに限
らずバイポーラ型トランジスタを用いることもできる。
また、本実施例において、VCO3にバリキャップダイ
オードとシュミットインバータからなる回路を用いた
が、図2に示すようにNANDゲートを用いてシュミッ
ト回路を構成してもよい。このように、VCOが構成で
きれば、どのような回路を用いても本発明にかかる電磁
誘導コイル駆動回路の動作は安定して動作する。さら
に、VCOを含めた帰還回路の利得が十分であれば、オ
ペアンプIC2を除いて、本発明にかかる電磁誘導コイ
ル駆動回路を構成することも可能であることは明らかで
ある。
Up to now, the case where the FET is used as the semiconductor switching element has been described as an example, but the invention is not limited to this, and a bipolar transistor can be used.
Further, in the present embodiment, the circuit including the varicap diode and the Schmitt inverter is used for the VCO 3, but the Schmitt circuit may be configured by using the NAND gate as shown in FIG. As described above, if the VCO can be configured, the operation of the electromagnetic induction coil drive circuit according to the present invention can be stably operated regardless of which circuit is used. Further, if the gain of the feedback circuit including the VCO is sufficient, it is obvious that the electromagnetic induction coil drive circuit according to the present invention can be configured except the operational amplifier IC2.

【0031】[0031]

【発明の効果】以上説明したように、本発明にかかる電
磁誘導コイルの駆動回路及び該駆動回路を用いた充電装
置は、送電部側の電磁誘導コイル上に硬貨等の金属が置
かれた場合でも安全に動作して発火、発煙等の危険を生
じることがなく、入力変動等によって入力電力に変化が
あった場合でも安全に動作することができる。。
As described above, the drive circuit for the electromagnetic induction coil and the charging device using the drive circuit according to the present invention are provided when a metal such as a coin is placed on the electromagnetic induction coil on the power transmission side. However, there is no danger of ignition and smoke due to safe operation, and safe operation is possible even when input power changes due to input fluctuations and the like. .

【0032】また、「電磁誘導で電力を伝送することに
より2次電池(充電式電池)を、非接触(電気接続を伴
わない)で充電するための充電装置」としてコードレス
電話機、携帯用機器等に組み込んだ場合でも、通話信号
の中に発振周波数の高調波が雑音として混入し妨害する
という弊害がない。
As a "charging device for non-contact (without electrical connection) charging of a secondary battery (rechargeable battery) by transmitting electric power by electromagnetic induction", a cordless telephone, a portable device, etc. Even if it is incorporated into, there is no harmful effect that harmonics of the oscillating frequency are mixed into the call signal as noise and interfere.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例にかかる電磁誘導コイルの駆動
回路及び該駆動回路を用いた充電装置の全体構成を示す
回路図。
FIG. 1 is a circuit diagram showing an overall structure of a drive circuit for an electromagnetic induction coil and a charging device using the drive circuit according to an embodiment of the present invention.

【図2】VCOの構成例FIG. 2 VCO configuration example

【符号の説明】[Explanation of symbols]

1. 本発明に係る非接触型電力伝送装置の実施例
における送電部 2. 本発明に係る非接触型電力伝送装置の実施例
における受電部 3. VCO部
1. 1. The power transmission section in the embodiment of the non-contact power transmission device according to the present invention. 2. The power receiving unit in the embodiment of the non-contact power transmission device according to the present invention. VCO department

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】送電部側から受電部側に非接触状態で電力
を伝送するための非接触型電力伝送装置の電磁誘導コイ
ル駆動回路において、半導体スイッチング素子に送電部
側の磁束発生用電磁誘導コイルを接続し、該半導体スイ
ッチング素子の他端には波形成形回路を通じて発振回路
を接続することにより半導体スイッチング素子にスイッ
チング動作を行わせるとともに、電磁誘導コイルと共振
回路を構成するようコンデンサを接続してなる電磁誘導
コイル駆動回路であって、半導体スイッチング素子がO
FFするときの電圧の尖頭値を検出し、半導体スイッチ
ング素子を駆動する発振回路の発振周波数を変化させ、
半導体スイッチング素子のON時間を制御することを特
徴とする電磁誘導コイル駆動回路。
1. In an electromagnetic induction coil drive circuit of a non-contact power transmission device for transmitting electric power from a power transmission unit side to a power reception unit side in a non-contact state, a magnetic flux generating electromagnetic induction on the power transmission unit side is applied to a semiconductor switching element. A coil is connected, and an oscillation circuit is connected to the other end of the semiconductor switching element through a waveform shaping circuit to cause the semiconductor switching element to perform a switching operation, and a capacitor is connected to form an electromagnetic induction coil and a resonance circuit. An electromagnetic induction coil drive circuit comprising:
The peak value of the voltage when FF is detected is detected, and the oscillation frequency of the oscillation circuit that drives the semiconductor switching element is changed.
An electromagnetic induction coil drive circuit characterized by controlling an ON time of a semiconductor switching element.
【請求項2】半導体スイッチング素子のスイッチング動
作において、スイッチング素子を駆動するパルスのON
時間をスイッチング素子のON時間より短くすることを
特徴とする請求項1記載の電磁誘導コイル駆動回路。
2. In a switching operation of a semiconductor switching element, a pulse for driving the switching element is turned on.
The electromagnetic induction coil drive circuit according to claim 1, wherein the time is shorter than the ON time of the switching element.
【請求項3】半導体スイッチング素子がOFFするとき
の電圧の尖頭値を、受動素子を用いて検出することを特
徴とする請求項1記載の電磁誘導コイル駆動回路。
3. The electromagnetic induction coil drive circuit according to claim 1, wherein the peak value of the voltage when the semiconductor switching element is turned off is detected by using a passive element.
JP7071000A 1995-03-29 1995-03-29 Electromagnetic induction coil drive circuit Withdrawn JPH08275402A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7071000A JPH08275402A (en) 1995-03-29 1995-03-29 Electromagnetic induction coil drive circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7071000A JPH08275402A (en) 1995-03-29 1995-03-29 Electromagnetic induction coil drive circuit

Publications (1)

Publication Number Publication Date
JPH08275402A true JPH08275402A (en) 1996-10-18

Family

ID=13447805

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7071000A Withdrawn JPH08275402A (en) 1995-03-29 1995-03-29 Electromagnetic induction coil drive circuit

Country Status (1)

Country Link
JP (1) JPH08275402A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001512634A (en) * 1997-01-16 2001-08-21 シュレフリング.ウンド.アパラテボー.ゲゼルシャフト.ミット.ベシュレンクテル.ハフツング Systems of contactless transmission of electrical energy or electrical signals

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001512634A (en) * 1997-01-16 2001-08-21 シュレフリング.ウンド.アパラテボー.ゲゼルシャフト.ミット.ベシュレンクテル.ハフツング Systems of contactless transmission of electrical energy or electrical signals

Similar Documents

Publication Publication Date Title
US7602142B2 (en) System for inductive power transfer
JP3247328B2 (en) Non-contact power transmission device
US20020057584A1 (en) Power supply arrangement and inductively coupled battery charger with wirelessly coupled control, and method for wirelessly controlling a power supply arrangement and an inductively coupled battery charger
EP0761036B1 (en) Self-oscillating dc to dc converter
KR101806592B1 (en) Apparatus for transmitting wireless power and method for transmitting wireless power
US5896278A (en) Non-contact electric power transmission apparatus
JP2803943B2 (en) Non-contact power supply
JP2000134830A (en) Electromagnetic induction type power supply unit
US9614396B1 (en) Multi-element portable wireless charging device and method
JPH1014124A (en) Noncontact power transmitter
JP2003284264A (en) Contactless power feeding system
JP2003250233A (en) Non-contact power transmission apparatus
US5864472A (en) Apparatus for controlling a multiresonant self-oscillating converter circuit
JP2673876B2 (en) Driving circuit for electromagnetic induction coil and charging device using the driving circuit
JPH0731064A (en) Non-contact type charger
JP2003047179A (en) Contactless electric power transmission device
JP2000245077A (en) Noncontact power transmission device
JPH09182304A (en) Non-contact charger
JPH08275402A (en) Electromagnetic induction coil drive circuit
JP3357233B2 (en) Non-contact power transmission device
KR102015439B1 (en) Wireless power transmission system and air cleaner comprising the same
KR101438883B1 (en) Apparatus for supplying power and apparatus for transmitting wireless power and method for controlling power
JPH11187582A (en) Electromagnetic induction power supply
JPH06339232A (en) Charger
KR102057999B1 (en) Apparatus for receiving wireless power and method for controlling power thereof

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20020604