JPH08274490A - Wave absorber - Google Patents

Wave absorber

Info

Publication number
JPH08274490A
JPH08274490A JP9422995A JP9422995A JPH08274490A JP H08274490 A JPH08274490 A JP H08274490A JP 9422995 A JP9422995 A JP 9422995A JP 9422995 A JP9422995 A JP 9422995A JP H08274490 A JPH08274490 A JP H08274490A
Authority
JP
Japan
Prior art keywords
wave
radio wave
absorber
wave absorber
base
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9422995A
Other languages
Japanese (ja)
Other versions
JP2993394B2 (en
Inventor
Hideaki Watanabe
秀明 渡辺
Fujirou Shimano
不二郎 島野
Kiyonobu Abe
精順 阿部
Yasuo Hashimoto
康雄 橋本
Kenichi Ichihara
謙一 市原
Takashi Tanaka
隆 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Steel Works Ltd
TDK Corp
Technical Research and Development Institute of Japan Defence Agency
Original Assignee
Japan Steel Works Ltd
TDK Corp
Technical Research and Development Institute of Japan Defence Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Steel Works Ltd, TDK Corp, Technical Research and Development Institute of Japan Defence Agency filed Critical Japan Steel Works Ltd
Priority to JP7094229A priority Critical patent/JP2993394B2/en
Publication of JPH08274490A publication Critical patent/JPH08274490A/en
Application granted granted Critical
Publication of JP2993394B2 publication Critical patent/JP2993394B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)

Abstract

PURPOSE: To provide a wave absorber which has an excellent absorbing characteristic against oblique incident waves irrespective of their directions of incidence and can be manufactured relatively easily. CONSTITUTION: A wave absorber is provided with a pedestal 10 made of a dielectric loss material and a plurality of pyramidal wave lead-in sections 15 composed of a dielectric loss material, are provided on the top faces 12 and 13 of the pedestal 10, and have nearly the same height. The pedestal 10 has a triangle pole-like shape and the three surfaces of the five surfaces constituting the triangle pole of the pedestal 10 except the two facing surfaces 11 are constituted of one bottom face 14 and two top faces 12 and 13. The wave lead-in sections 15, especially, are provided so that they can become nearly perpendicular to the bottom face 14 of the pedestal 10.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、電波吸収体、特に電波
暗室用の電波吸収体に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a radio wave absorber, and more particularly to a radio wave absorber for an anechoic chamber.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】電気通
信技術や移動通信の発達に伴い、評価設備としての電波
暗室の重要性が高まってきている。この種の電波暗室の
壁面には、垂直入射波が主として入射する部分と斜入射
波が主として入射する部分とがあり、特に斜入射波の入
射する部分には高性能な斜入射特性を有する電波吸収体
を設けることが要求される。
2. Description of the Related Art With the development of telecommunication technology and mobile communication, the importance of an anechoic chamber as an evaluation facility is increasing. On the wall surface of this type of anechoic chamber, there are a part where a vertical incident wave is mainly incident and a part where an oblique incident wave is mainly incident. In particular, the part where the oblique incident wave is incident has high-performance oblique incident characteristics. It is required to provide an absorber.

【0003】電波暗室用の電波吸収体としては、多くの
場合、誘電損失材料をくさび形状、四角錐形状に形成し
たものが用いられる。図9は、この種の最も一般的な電
波吸収体例を示す斜視図であり、平板状の基台90の上
面に四角錐形状の複数の電波導入部91が配列されてい
る。しかしながら、このような形状の電波吸収体は、垂
直入射波に対しては高い吸収特性(反射減衰量)を示す
ものの、斜入射波に対しては吸収特性(反射減衰量)が
低いという問題点を有している。
As a radio wave absorber for an anechoic chamber, a dielectric loss material formed in a wedge shape or a quadrangular pyramid shape is often used. FIG. 9 is a perspective view showing an example of the most common radio wave absorber of this type, in which a plurality of quadrangular pyramidal radio wave introducing portions 91 are arranged on the upper surface of a plate-shaped base 90. However, the radio wave absorber having such a shape has a high absorption characteristic (reflection attenuation amount) for vertically incident waves, but has a low absorption characteristic (reflection attenuation amount) for oblique incident waves. have.

【0004】このため、従来の電波暗室では、垂直入射
用電波吸収体の斜入射波が主として入射する部分の長さ
を垂直入射波が入射する部分の長さより長くすることに
よって、斜入射特性の確保を図っている。しかしながら
これは、全長の長い吸収体を使用することとなるので、
利用空間の有効容積が低下して電波暗室全体の容積を大
きくしなければならなくなり、その結果、電波暗室の製
造コストが高くなってしまう。
For this reason, in the conventional anechoic chamber, the length of the portion of the vertically incident electromagnetic wave absorber into which the oblique incident wave is mainly incident is made longer than the length of the portion into which the vertically incident wave is incident so that the oblique incident characteristic is improved. We are trying to secure it. However, since this means using a long-length absorber,
The effective volume of the use space is reduced, and the volume of the entire anechoic chamber must be increased. As a result, the manufacturing cost of the anechoic chamber is increased.

【0005】斜入射特性の改善を図るために、板状の磁
性損失材料の前面に横断面が正方形でありその面積が吸
収部材の厚さ方向に指数関数に類似の関数で増加する変
形四角錐形の誘電損失部材を設けた電波吸収体が提案さ
れている(特開昭58−19000号)。しかしながら
この吸収体は、そのような形状を有する変形四角錐形の
製造が難しいという問題点を有している。
In order to improve the oblique incidence characteristic, a deformed quadrangular pyramid having a square cross section in front of the plate-shaped magnetic loss material and the area of which increases in the thickness direction of the absorbing member by a function similar to an exponential function. A radio wave absorber provided with a dielectric loss member having a rectangular shape has been proposed (JP-A-58-19000). However, this absorber has a problem that it is difficult to manufacture a deformed quadrangular pyramid having such a shape.

【0006】また、くさび部分又は四角錐部分を多層化
して吸収体の高さ方向の誘電損失分布を指数関数的に変
化させた電波吸収体も提案されている(特開平2−25
0398号)。しかしながらこの吸収体は、誘電損失の
異なる数種類の材料を作る必要があり、さらに各層の形
状も直線的ではあるが複雑であるため、加工が容易では
ないという問題点を有している。
Further, a radio wave absorber has been proposed in which the wedge portion or the quadrangular pyramid portion is multi-layered to change the dielectric loss distribution in the height direction of the absorber exponentially (Japanese Patent Laid-Open No. 2-25).
No. 0398). However, this absorber has a problem that it is not easy to process because it is necessary to make several kinds of materials having different dielectric losses, and the shape of each layer is linear but complicated.

【0007】さらにまた、図10の斜視図に示すよう
に、頂角が約90°のくさび形状の台座部分100の2
つの斜面上に三角柱形状の電波導入部101を配列した
斜入射用吸収体が商品化されており、斜入射特性の改善
に大きな効果をあげている(特開昭59−129494
号)。しかしながらこの吸収体は、電波導入部101が
くさび形状であるため、入射波の電界がこの吸収体の底
面に平行となるTE波と磁界が平行となるTM波では吸
収特性が異なってしまい吸収特性に方向性を持つという
問題点を有している。
Furthermore, as shown in the perspective view of FIG. 10, 2 of the wedge-shaped pedestal portion 100 having an apex angle of about 90 °.
An oblique-incidence absorber having triangular prism-shaped radio wave introducing portions 101 arranged on two inclined surfaces has been commercialized, and has a great effect on improving the oblique-incidence characteristics (Japanese Patent Laid-Open No. 59-129494).
issue). However, in this absorber, since the electric wave introducing portion 101 has a wedge shape, the absorption characteristics differ between the TE wave in which the electric field of the incident wave is parallel to the bottom surface of the absorber and the TM wave in which the magnetic field is parallel to each other. It has the problem of being directional.

【0008】また、図11の斜視図及び図12の断面図
に示すように、基台110の上面111を斜面にすると
共にこの上面に対して垂直方向に起立する電波導入部1
12を設けた電波吸収体が提案されている(米国特許第
4496950号)。しかしながらこの吸収体は、両斜
面111に設けられた電波導入部112の起立方向が吸
収体の頂部において互いに大きく異なってしまうため、
この部分でインピーダンス変化が不連続となってしま
い、また、斜面に垂直に電波導入部を設けているため、
後述するように吸収特性に方向性を持つと共に反射減衰
量自体も低いという問題点を有している。
Further, as shown in the perspective view of FIG. 11 and the cross-sectional view of FIG. 12, the radio wave introducing section 1 is constructed such that the upper surface 111 of the base 110 is inclined and stands upright in a direction perpendicular to the upper surface.
A radio wave absorber provided with 12 has been proposed (US Pat. No. 4,496,950). However, in this absorber, the standing directions of the radio wave introducing portions 112 provided on both slopes 111 are significantly different from each other at the top of the absorber.
Impedance change becomes discontinuous at this part, and because the radio wave introduction part is provided perpendicular to the slope,
As will be described later, there is a problem in that the absorption characteristics have directivity and the return loss itself is low.

【0009】このように従来の電波吸収体はいずれもそ
の電波吸収性能面及び製造容易性の面で問題点を有して
おり、高性能な電波暗室を得るための斜入射用電波吸収
体として満足できるものではなかった。
As described above, all of the conventional electromagnetic wave absorbers have problems in terms of their electromagnetic wave absorption performance and easiness of manufacture, and they are used as oblique incidence electromagnetic wave absorbers for obtaining a high-performance anechoic chamber. I was not satisfied.

【0010】従って本発明は、斜入射波に対する吸収特
性が優れておりかつその吸収特性に方向性がなく、しか
も製造が比較的容易な電波吸収体を提供することを目的
としている。
Therefore, an object of the present invention is to provide a radio wave absorber which has excellent absorption characteristics for obliquely incident waves, has no direction in the absorption characteristics, and is relatively easy to manufacture.

【0011】[0011]

【課題を解決するための手段及び作用】本発明は、誘電
損失材料からなる基台と、誘電損失材料からなると共に
基台の上面に設けられており互いにほぼ等しい高さを有
する四角錐形状の複数の電波導入部とを備え、しかも基
台が三角柱形状であり、その基台の三角柱を構成する5
つの面のうちの対向する2つの面を除く3つの面が1つ
底面と2つの上述した上面で構成された電波吸収体に関
している。特に本発明によれば、電波導入部はその高さ
方向が基台の底面にほぼ垂直方向となるように設けられ
ている。
According to the present invention, a base made of a dielectric loss material and a quadrangular pyramid shape made of a dielectric loss material and provided on the upper surface of the base and having substantially equal heights to each other are provided. It has a plurality of radio wave introducing parts, and the base has a triangular prism shape, and forms the triangular prism of the base.
Three of the two surfaces, excluding two opposite surfaces, relate to a radio wave absorber having one bottom surface and two above-described top surfaces. Particularly according to the present invention, the radio wave introducing portion is provided so that the height direction thereof is substantially vertical to the bottom surface of the base.

【0012】三角柱形状の基台の2つの上面に電波導入
部が設けられており、吸収体全体がくさび形状となって
いる。このため、優れた散乱効果が得られるので吸収特
性が向上する。また、電波導入部が互いにほぼ等しい高
さを有する四角錐形状であるため、偏波による特性変化
が小さい。特に本発明では、電波導入部の高さ方向が基
台の底面にほぼ垂直な方向であるため、インピーダンス
変化が斜面上で連続となるのみならず、斜入射波に対す
る大きな吸収特性が得られ、しかも偏波による特性変化
もより一層小さくなる。
Radio wave introducing portions are provided on two upper surfaces of a triangular prism-shaped base, and the entire absorber has a wedge shape. Therefore, an excellent scattering effect is obtained, and the absorption characteristics are improved. Further, since the radio wave introducing portions are in the shape of a quadrangular pyramid having almost the same height, the characteristic change due to the polarization is small. In particular, in the present invention, since the height direction of the radio wave introducing portion is a direction substantially perpendicular to the bottom surface of the base, not only the impedance change becomes continuous on the slope, but also large absorption characteristics for oblique incident waves are obtained, Moreover, the characteristic change due to the polarized wave is further reduced.

【0013】[0013]

【実施例】以下実施例を用いて本発明を詳細に説明す
る。図1は本発明による電波吸収体の一実施例の構成を
概略的に示す側面図、図2はその正面図である。
The present invention will be described in detail below with reference to examples. 1 is a side view schematically showing the configuration of an embodiment of a radio wave absorber according to the present invention, and FIG. 2 is a front view thereof.

【0014】これらの図において、10は三角柱形状の
基台、11は基台10の対向する2つの面のうちの一方
の面、12及び13は基台10の2つの上面(斜面)、
14は基台10の底面をそれぞれ示している。上面12
及び13上には互いに同一の高さの四角錐形状(ピラミ
ッド形状)の複数の電波導入部15が基台10と一体と
なるように固着(本実施例では接着)されている。複数
の電波導入部15の各々は、その先端方向、即ちその高
さ方向が底面14にほぼ垂直方向となるように取り付け
られている。基台10の上面12及び13が互いになす
角度は、本実施例では約90°となっている。基台10
及び複数の電波導入部15からなる電波吸収体全体が略
くさび形状であることは、図からも明らかである。
In these figures, 10 is a triangular prism-shaped base, 11 is one of two facing surfaces of the base 10, 12 and 13 are two upper surfaces (slopes) of the base 10,
Reference numerals 14 denote bottom surfaces of the base 10. Top 12
A plurality of quadrangular pyramid-shaped (pyramid-shaped) radio wave introducing portions 15 having the same height are fixedly attached (adhered in this embodiment) on the bases 13 and 13 so as to be integrated with the base 10. Each of the plurality of radio wave introducing portions 15 is attached so that its tip direction, that is, its height direction is substantially perpendicular to the bottom surface 14. The angle between the upper surfaces 12 and 13 of the base 10 is about 90 ° in this embodiment. Base 10
Also, it is clear from the figure that the entire electromagnetic wave absorber including the plurality of electromagnetic wave introducing portions 15 has a substantially wedge shape.

【0015】基台10及び複数の電波導入部15は、本
実施例では同一の誘電損失材料で形成されている。しか
しながら、基台10と電波導入部15とを互いに異なる
誘電率の誘電損失材料で形成してもよい。
In this embodiment, the base 10 and the plurality of radio wave introducing portions 15 are made of the same dielectric loss material. However, the base 10 and the radio wave introducing portion 15 may be formed of dielectric loss materials having different permittivities.

【0016】本実施例では、誘電損失材料として、カー
ボン粉末を混入した発泡ポリエチレンが用いられてい
る。誘電損失材料としてはその他に、カーボン粉末を混
入した発泡ポリウレタン、カーボン液中に含浸した発泡
ポリウレタン、又は粒子の表面にカーボンをコーティン
グした発泡ポリスチロール等が適用可能である。
In this embodiment, foamed polyethylene mixed with carbon powder is used as the dielectric loss material. In addition, as the dielectric loss material, foamed polyurethane mixed with carbon powder, foamed polyurethane impregnated in a carbon liquid, or foamed polystyrene having the surface of particles coated with carbon can be applied.

【0017】本実施例における各部の寸法は、例えば以
下の通りである。基台10は、底面14が600mm×
600mm、高さが300mmの三角柱形状である。ま
た、各電波導入部15は、基台10の上面12及び13
に接合する部分が94mm×75mm、高さが200m
mの四角錐形状である。電波吸収体全体としての高さ
は、500mmである。
The dimensions of each part in this embodiment are as follows, for example. The base 10 has a bottom surface 14 of 600 mm ×
It has a triangular prism shape with a height of 600 mm and a height of 300 mm. In addition, each radio wave introducing unit 15 includes the upper surfaces 12 and 13 of the base 10.
94mm × 75mm, the height is 200m
It has a square pyramid shape of m. The height of the radio wave absorber as a whole is 500 mm.

【0018】図3は、底面14に対する電波導入部の設
置角度θと反射減衰量(電波吸収量)との関係をTE波
及びTM波別に示す特性図である。ただし、この特性
は、周波数2GHz、斜入射角度65°の入射波に対す
る吸収特性であり、電波導入部設置角度θは、図1に示
すように、電波導入部の高さ方向が底面に垂直である場
合にθ=0°となる。
FIG. 3 is a characteristic diagram showing the relationship between the installation angle θ of the radio wave introducing portion with respect to the bottom surface 14 and the return loss (radio wave absorption) for each TE wave and TM wave. However, this characteristic is an absorption characteristic with respect to an incident wave having a frequency of 2 GHz and an oblique incident angle of 65 °, and the radio wave introducing portion installation angle θ is set such that the height direction of the radio wave introducing portion is perpendicular to the bottom surface as shown in FIG. In some cases, θ = 0 °.

【0019】図3からも明らかのように、図11及び図
12の従来例のごとく電波導入部が基台の底面に対して
斜めに(基台の斜面に対して垂直に)起立している場合
は、その角度が増すにつれ反射減衰量が小さくなると共
にTE波及びTM波による方向性が生じてしまうが、本
発明のごとく電波導入部の高さ方向を基台10の底面1
4にほぼ垂直に(θ≒0°に)設定した場合は、TE波
及びTM波共に非常に優れた吸収特性(40dB以上)
となり、しかも偏波に応じた吸収特性の差がない。
As is clear from FIG. 3, as in the conventional example shown in FIGS. 11 and 12, the radio wave introducing portion stands upright with respect to the bottom surface of the base (perpendicular to the slope of the base). In this case, as the angle increases, the return loss decreases and the directivity due to the TE wave and the TM wave occurs. However, as in the present invention, the height direction of the radio wave introducing portion is set to the bottom surface 1 of the base 10.
When set almost vertically to 4 (θ ≈ 0 °), both TE and TM waves have excellent absorption characteristics (40 dB or more)
And there is no difference in absorption characteristics depending on the polarization.

【0020】図4は、斜入射角度65°の入射波を受け
た場合の本実施例の電波吸収体及び図9の電波吸収体に
おける周波数に対する反射減衰量の特性図である。実線
及び破線がそれぞれ本実施例の電波吸収体のTE波及び
TM波吸収特性を示しており、一点鎖線が図9の電波吸
収体のTM波吸収特性を示している。同図から明らかの
ように、本実施例の電波吸収体は、2〜4GHzにおい
て、従来の電波吸収体より10dB以上高い優れた反射
減衰量を有している。
FIG. 4 is a characteristic diagram of the return loss with respect to frequency in the radio wave absorber of this embodiment and the radio wave absorber of FIG. 9 when an incident wave with an oblique incident angle of 65 ° is received. The solid line and the broken line show the TE wave and TM wave absorption characteristics of the electromagnetic wave absorber of this embodiment, respectively, and the alternate long and short dash line shows the TM wave absorption characteristic of the electromagnetic wave absorber of FIG. As is clear from the figure, the electromagnetic wave absorber of the present embodiment has an excellent return loss of 10 dB or more higher than that of the conventional electromagnetic wave absorber at 2 to 4 GHz.

【0021】図5は本実施例による電波吸収体の2GH
zにおける入射波の角度に対する反射減衰量をTE波及
びTM波別に示す特性図であり、図6は図9に示した従
来の電波吸収体の2GHzにおける入射波の角度に対す
る反射減衰量をTE波及びTM波別に示す特性図であ
る。ただし、図6の特性は、図9の従来の電波吸収体を
本実施例と同じ誘電損失材料で形成し、電波吸収体全体
としての高さも500mmと本実施例と同じ高さにした
場合の特性である。
FIG. 5 shows 2 GHz of the electromagnetic wave absorber according to this embodiment.
FIG. 6 is a characteristic diagram showing the return loss with respect to the angle of the incident wave at z for each TE wave and the TM wave. FIG. 6 shows the return loss with respect to the angle of the incident wave at 2 GHz for the conventional electromagnetic wave absorber shown in FIG. It is a characteristic view shown for each and TM wave. However, the characteristic of FIG. 6 is that when the conventional electromagnetic wave absorber of FIG. 9 is formed of the same dielectric loss material as that of this embodiment and the height of the entire electromagnetic wave absorber is 500 mm, which is the same as that of this embodiment. It is a characteristic.

【0022】図5と図6との比較から明らかのように、
図9に示した従来の電波吸収体では入射波の角度が大き
くなるとTE波及びTM波共に電波吸収量が急激に低下
し斜入射特性が悪化しているが、本実施例の電波吸収体
によればTE波及びTM波のどちらの偏波入射に対して
も、40°〜65°の入射角度範囲において40dB以
上の電波吸収量が得られる。特に65°の入射角におい
ては、従来の電波吸収体に比して10dB以上の改善が
みられる。
As is clear from the comparison between FIG. 5 and FIG.
In the conventional electromagnetic wave absorber shown in FIG. 9, when the angle of the incident wave becomes large, the electromagnetic wave absorption amount of both TE wave and TM wave sharply decreases and the oblique incidence characteristic deteriorates. According to this, the radio wave absorption amount of 40 dB or more can be obtained in the incident angle range of 40 ° to 65 ° for both TE wave and TM wave polarization incidents. In particular, at an incident angle of 65 °, an improvement of 10 dB or more is observed as compared with the conventional electromagnetic wave absorber.

【0023】図7は図10に示した従来の電波吸収体の
2GHzにおける入射波の角度に対する反射減衰量をT
E波及びTM波別に示す特性図である。ただし、図7の
特性は、図10の従来の電波吸収体を本実施例と同じ誘
電損失材料で形成し、台座部分80は底面が600mm
×600mm、高さが300mmであり、電波導入部8
1はくさびの幅が75mm、高さが200mmであり、
電波吸収体全体としての高さが500mmと本実施例と
同じ高さにした場合の特性である。
FIG. 7 shows the return loss with respect to the angle of the incident wave at 2 GHz of the conventional electromagnetic wave absorber shown in FIG.
It is a characteristic view shown according to E wave and TM wave. However, the characteristic of FIG. 7 is that the conventional electromagnetic wave absorber of FIG. 10 is formed of the same dielectric loss material as in this embodiment, and the pedestal portion 80 has a bottom surface of 600 mm.
× 600 mm, height 300 mm, radio wave introducing unit 8
1 has a wedge width of 75 mm and a height of 200 mm,
This is a characteristic when the height of the radio wave absorber as a whole is 500 mm, which is the same as that of this embodiment.

【0024】図5と図7との比較から明らかのように、
図10に示した従来の電波吸収体ではTE波については
40°〜65°の入射角度範囲において40dB以上の
電波吸収量が得られるが、TM波については入射角度6
5°で35dB程度の低い電波吸収量となっており、偏
波に応じた方向性を有する吸収特性を示すが、これに対
して本実施例の電波吸収体によればTE波及びTM波の
どちらの偏波入射に対しても、40°〜65°の入射角
度範囲において40dB以上の電波吸収量が得られる。
As is clear from the comparison between FIG. 5 and FIG.
The conventional radio wave absorber shown in FIG. 10 can obtain a radio wave absorption amount of 40 dB or more in the incident angle range of 40 ° to 65 ° for TE waves, but the incident angle of 6 dB for TM waves.
At 5 °, the radio wave absorption amount is as low as about 35 dB, and exhibits absorption characteristics having directivity according to the polarization. On the other hand, the radio wave absorber according to the present embodiment allows TE waves and TM waves to be absorbed. With respect to both polarization incidents, a radio wave absorption amount of 40 dB or more can be obtained in the incident angle range of 40 ° to 65 °.

【0025】図8は図11及び図12に示した従来の電
波吸収体の2GHzにおける入射波の角度に対する反射
減衰量をTE波及びTM波別に示す特性図である。ただ
し、図8の特性は、図11及び図12の従来の電波吸収
体を本実施例と同じ誘電損失材料で形成し、基台110
は底面が600mm×600mm、高さが300mmで
あり、電波導入部112は四角錐の幅が75mm、高さ
が141mmであり、電波吸収体全体としての高さが5
00mmと本実施例と同じ高さにした場合の特性であ
る。
FIG. 8 is a characteristic diagram showing the return loss for the TE wave and the TM wave with respect to the angle of the incident wave at 2 GHz of the conventional electromagnetic wave absorber shown in FIGS. 11 and 12. However, the characteristic of FIG. 8 is that the conventional electromagnetic wave absorber of FIGS. 11 and 12 is formed of the same dielectric loss material as that of the present embodiment, and the base 110
Has a bottom surface of 600 mm × 600 mm and a height of 300 mm, and the radio wave introducing portion 112 has a quadrangular pyramid width of 75 mm and a height of 141 mm, and the total height of the radio wave absorber is 5.
This is a characteristic when the height is set to 00 mm and is the same as that of this embodiment.

【0026】図5と図8との比較から明らかのように、
図11及び図12に示した従来の電波吸収体ではTE波
については40°〜65°の入射角度範囲において40
dB以上の電波吸収量が得られるが、TM波については
入射角度65°で30dB程度の低い電波吸収量となる
など、偏波に応じた方向性を有する吸収特性となってい
るが、これに対して本実施例の電波吸収体によればTE
波及びTM波のどちらの偏波入射に対しても、40°〜
65°の入射角度範囲において40dB以上の電波吸収
量が得られる。
As is clear from the comparison between FIG. 5 and FIG.
In the conventional electromagnetic wave absorbers shown in FIGS. 11 and 12, the TE wave is 40 in the incident angle range of 40 ° to 65 °.
Although the electromagnetic wave absorption amount of dB or more can be obtained, the absorption property of the TM wave has a directivity according to the polarization, such as a low electromagnetic wave absorption amount of about 30 dB at an incident angle of 65 °. On the other hand, according to the electromagnetic wave absorber of this embodiment, TE
40 ° for both polarized waves of TM wave and TM wave
A radio wave absorption amount of 40 dB or more is obtained in the incident angle range of 65 °.

【0027】以上述べたように、本実施例の電波吸収体
は、斜入射波に対して良好な電波吸収特性が得られるの
で、電波暗室内の斜入射特性を必要とする壁面に装着す
ることにより電波暗室の性能を大幅に高めることができ
る。また、直線的な形状であり、全体を1種類の材料で
形成可能であることから製造も容易となる。しかも、電
波暗室用として広く用いられている四角錐形状の電波吸
収体と比較して、より低い高さで高性能な特性を実現で
きるので空間の有効利用が可能となり、電波暗室の外形
寸法を小型化してコストの低減化を図ることができる。
As described above, since the radio wave absorber of this embodiment can obtain good radio wave absorption characteristics for oblique incident waves, it should be mounted on a wall surface in the radio wave darkroom that requires oblique incidence characteristics. This can greatly improve the performance of the anechoic chamber. In addition, since it has a linear shape and can be formed of one kind of material as a whole, it is easy to manufacture. Moreover, as compared with the quadrangular pyramid-shaped electromagnetic wave absorber that is widely used for anechoic chambers, it is possible to realize high-performance characteristics at a lower height, which enables effective use of space and reduces the external dimensions of anechoic chambers. The size can be reduced and the cost can be reduced.

【0028】本発明の他の実施例として、基台10及び
電波導入部15の形状は前述の実施例と同様にし、各部
の寸法について、基台10の底面14を600mm×6
00mm、高さを250mmとし、電波導入部15の基
台10の上面12及び13に接合する部分を94mm×
75mm、高さを250mmとし、電波吸収体全体とし
ての高さを500mmとした電波吸収体を作成した。こ
の場合も、前述の実施例とほぼ同様に、図3〜図5に示
すごとき特性、即ち2〜4GHzの斜入射角度65°の
入射波について従来の電波吸収体より10dB以上高い
電波吸収量、及びTE波及びTM波のどちらの偏波入射
に対しても40°〜65°の入射角度範囲において40
dB以上の電波吸収量が得られた。
As another embodiment of the present invention, the shapes of the base 10 and the radio wave introducing portion 15 are the same as those in the above-mentioned embodiment, and the bottom surface 14 of the base 10 is 600 mm × 6 in size of each portion.
The height of the radio wave introducing portion 15 is set to 00 mm, the height is 250 mm, and the portion to be joined to the upper surfaces 12 and 13 of the base 10 is 94 mm ×
A radio wave absorber having a height of 75 mm and a height of 250 mm and a height of the radio wave absorber as a whole of 500 mm was prepared. Also in this case, the characteristics as shown in FIGS. 3 to 5, that is, the radio wave absorption amount higher than the conventional radio wave absorber by 10 dB or more for the incident wave with the oblique incidence angle of 65 ° of 2 to 4 GHz, is similar to the above-described embodiment. And 40 ° in the incident angle range of 40 ° to 65 ° for both TE wave and TM wave polarization incidents.
A radio wave absorption amount of dB or more was obtained.

【0029】また、さらに他の実施例として、基台10
の上面12及び13が互いになす角度を約100°と
し、他の構成が前述の実施例と同じ電波吸収体を作成し
たが、この場合にも、前述の実施例とほぼ同様の良好な
電波吸収特性が得られた。
As yet another embodiment, the base 10
The angle between the upper surfaces 12 and 13 of the above is set to about 100 °, and a radio wave absorber having the same structure as that of the above-described embodiment is produced in other configurations. In this case as well, good radio wave absorption similar to that of the above-described embodiment is obtained. The characteristics were obtained.

【0030】以上述べた実施例は全て本発明を例示的に
示すものであって限定的に示すものではなく、本発明は
他の種々の変形態様及び変更態様で実施することができ
る。従って本発明の範囲は特許請求の範囲及びその均等
範囲によってのみ規定されるものである。
The embodiments described above are merely illustrative of the present invention and are not restrictive, and the present invention can be implemented in various other modified modes and modified modes. Therefore, the scope of the present invention is defined only by the claims and their equivalents.

【0031】[0031]

【発明の効果】以上詳細に説明したように本発明によれ
ば、三角柱形状の基台の上面に設けられる互いにほぼ等
しい高さを有する四角錐形状の複数の電波導入部は、そ
の高さ方向が基台の底面にほぼ垂直な方向となるように
設けられているので、インピーダンス変化が斜面上で連
続となりしかも非常に優れた斜入射吸収特性が得られる
のみならず、偏波による特性変化がより一層小さくな
る。もちろん、製造が比較的容易である。
As described in detail above, according to the present invention, a plurality of quadrangular pyramid-shaped radio wave introducing portions provided on the upper surface of a triangular prism-shaped base and having substantially the same height are provided in the height direction. Is installed so that it is in a direction almost perpendicular to the bottom surface of the base, the impedance change is continuous on the slope, and not only excellent grazing incidence absorption characteristics are obtained, but also the characteristics change due to polarization. It becomes even smaller. Of course, it is relatively easy to manufacture.

【0032】また、三角柱形状の基台の2つの上面に電
波導入部が設けられており、吸収体全体がくさび形状と
なっているので、優れた散乱効果が得られるので吸収特
性が向上する。しかも、電波導入部が互いにほぼ等しい
高さを有する四角錐形状であるため、この点からも偏波
による特性変化が小さくなる。
Further, since the radio wave introducing portions are provided on the two upper surfaces of the triangular prism-shaped base and the entire absorber has a wedge shape, an excellent scattering effect can be obtained, so that the absorption characteristics are improved. Moreover, since the radio wave introducing portions are in the shape of a quadrangular pyramid having almost the same height, the characteristic change due to the polarization is small also from this point.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例としての電波吸収体の構成を
概略的に示す側面図である。
FIG. 1 is a side view schematically showing a configuration of a radio wave absorber as one embodiment of the present invention.

【図2】図1の電波吸収体の正面図である。FIG. 2 is a front view of the radio wave absorber of FIG.

【図3】底面に対する電波導入部の設置角度と反射減衰
量との関係をTE波及びTM波別に示す特性図である。
FIG. 3 is a characteristic diagram showing the relationship between the installation angle of the radio wave introducing portion with respect to the bottom surface and the return loss for each TE wave and TM wave.

【図4】図1の電波吸収体及び図9の電波吸収体におけ
る周波数に対する反射減衰量をTE波及びTM波別に示
す特性図である。
FIG. 4 is a characteristic diagram showing return loss with respect to frequency for the TE wave and the TM wave in the radio wave absorber of FIG. 1 and the radio wave absorber of FIG. 9.

【図5】図1の電波吸収体における入射波の角度に対す
る反射減衰量をTE波及びTM波別に示す特性図であ
る。
5 is a characteristic diagram showing the return loss with respect to the angle of the incident wave in the radio wave absorber of FIG. 1 for each TE wave and TM wave.

【図6】図9に示す従来の電波吸収体における入射波の
角度に対する反射減衰量をTE波及びTM波別に示す特
性図である。
FIG. 6 is a characteristic diagram showing the return loss with respect to the angle of the incident wave in the conventional radio wave absorber shown in FIG. 9 for each TE wave and TM wave.

【図7】図10に示す従来の電波吸収体における入射波
の角度に対する反射減衰量をTE波及びTM波別に示す
特性図である。
FIG. 7 is a characteristic diagram showing the return loss with respect to the angle of the incident wave in the conventional electromagnetic wave absorber shown in FIG. 10 for each TE wave and TM wave.

【図8】図11及び図12に示す従来の電波吸収体にお
ける入射波の角度に対する反射減衰量をTE波及びTM
波別に示す特性図である。
FIG. 8 shows the return loss with respect to the angle of an incident wave in the conventional electromagnetic wave absorber shown in FIGS.
It is a characteristic view shown according to a wave.

【図9】従来の電波吸収体の一例を示す斜視図である。FIG. 9 is a perspective view showing an example of a conventional radio wave absorber.

【図10】従来の電波吸収体の一例を示す斜視図であ
る。
FIG. 10 is a perspective view showing an example of a conventional radio wave absorber.

【図11】従来の電波吸収体の一例を示す斜視図であ
る。
FIG. 11 is a perspective view showing an example of a conventional radio wave absorber.

【図12】図11の電波吸収体の断面図である。12 is a cross-sectional view of the radio wave absorber of FIG.

【符号の説明】[Explanation of symbols]

10 基台 11 対向する面 12、13 上面 14 底面 15 電波導入部 10 Base 11 Faces 12 and 13 Top 13 Bottom 14 Radio Wave Introducing Section

───────────────────────────────────────────────────── フロントページの続き (72)発明者 橋本 康雄 東京都中央区日本橋一丁目13番1号 ティ ーディーケイ株式会社内 (72)発明者 市原 謙一 東京都中央区日本橋一丁目13番1号 ティ ーディーケイ株式会社内 (72)発明者 田中 隆 東京都中央区日本橋一丁目13番1号 ティ ーディーケイ株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yasuo Hashimoto 1-13-1, Nihonbashi, Chuo-ku, Tokyo TDC Corporation (72) Inventor Kenichi Ichihara 1-1-13, Nihonbashi, Chuo-ku, Tokyo TDC Co., Ltd. (72) Inventor Takashi Tanaka 1-13-1 Nihonbashi, Chuo-ku, Tokyo TDC Inc.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 誘電損失材料からなる基台と、誘電損失
材料からなると共に前記基台の上面に設けられており互
いにほぼ等しい高さを有する四角錐形状の複数の電波導
入部とを備えており、前記基台が三角柱形状であり、該
基台の三角柱を構成する5つの面のうちの対向する2つ
の面を除く3つの面が1つの底面と2つの前記上面で構
成された電波吸収体において、前記電波導入部はその高
さ方向が該基台の前記底面にほぼ垂直方向となるように
設けられていることを特徴とする電波吸収体。
1. A pedestal made of a dielectric loss material, and a plurality of quadrangular pyramid-shaped radio wave introducing portions made of a dielectric loss material and provided on an upper surface of the pedestal and having substantially equal heights to each other. And the base has a triangular prism shape, and three of the five surfaces forming the triangular prism of the base except two facing surfaces are one bottom surface and two top surfaces for absorbing electromagnetic waves. In the body, the radio wave absorber is provided such that its height direction is substantially vertical to the bottom surface of the base.
JP7094229A 1995-03-29 1995-03-29 Radio wave absorber Expired - Lifetime JP2993394B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7094229A JP2993394B2 (en) 1995-03-29 1995-03-29 Radio wave absorber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7094229A JP2993394B2 (en) 1995-03-29 1995-03-29 Radio wave absorber

Publications (2)

Publication Number Publication Date
JPH08274490A true JPH08274490A (en) 1996-10-18
JP2993394B2 JP2993394B2 (en) 1999-12-20

Family

ID=14104485

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7094229A Expired - Lifetime JP2993394B2 (en) 1995-03-29 1995-03-29 Radio wave absorber

Country Status (1)

Country Link
JP (1) JP2993394B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015164230A (en) * 2014-01-28 2015-09-10 株式会社リケン Electromagnetic wave absorber
JP6837728B1 (en) * 2019-12-24 2021-03-03 株式会社巴コーポレーション Radio wave antireflection device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015164230A (en) * 2014-01-28 2015-09-10 株式会社リケン Electromagnetic wave absorber
JP6837728B1 (en) * 2019-12-24 2021-03-03 株式会社巴コーポレーション Radio wave antireflection device
JP2021101442A (en) * 2019-12-24 2021-07-08 株式会社巴コーポレーション Radio wave reflection prevention device

Also Published As

Publication number Publication date
JP2993394B2 (en) 1999-12-20

Similar Documents

Publication Publication Date Title
US5081455A (en) Electromagnetic wave absorber
US5208599A (en) Serrated electromagnetic absorber
US5844518A (en) Thermoplastic syntactic foam waffle absorber
US4725475A (en) Multi-octave thick dielectric radome wall
US5780785A (en) Acoustic absorption device and an assembly of such devices
JP3030453B2 (en) Broadband radio wave absorber
US6359581B2 (en) Electromagnetic wave abosrber
CN110137691B (en) Ultra-wideband wave absorber based on periodic magnetic material
KR0158081B1 (en) Complex broadband electromagnetic wave absorber
US4480256A (en) Microwave absorber
JPH08274490A (en) Wave absorber
JP2660647B2 (en) Radio wave absorber
JP6103249B2 (en) Radio wave absorber and anechoic chamber
JP2681450B2 (en) Broadband radio wave absorber
JPH01158797A (en) Movable radio-wave absorber
JPH08274491A (en) Wave absorber
CN112909570B (en) Three-dimensional broadband wave-absorbing metamaterial integrating multiple absorption mechanisms
CN215579081U (en) Single-layer broadband frequency selective wave absorber with trap wave band
JPH0215356Y2 (en)
JPH0212897A (en) Radio wave absorber
JP4422980B2 (en) Radio wave absorber
JPH06334382A (en) Wave absorber
CN118099767A (en) Wave absorbing structure
JPH10135682A (en) Multilayered radio wave absorber
JPH07302993A (en) Porous ferrite radio-wave absorber

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990921

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071022

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081022

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091022

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101022

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111022

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121022

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121022

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131022

Year of fee payment: 14

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term