JPH0827361B2 - Exhaust gas treatment method for fusion reactor - Google Patents

Exhaust gas treatment method for fusion reactor

Info

Publication number
JPH0827361B2
JPH0827361B2 JP63106275A JP10627588A JPH0827361B2 JP H0827361 B2 JPH0827361 B2 JP H0827361B2 JP 63106275 A JP63106275 A JP 63106275A JP 10627588 A JP10627588 A JP 10627588A JP H0827361 B2 JPH0827361 B2 JP H0827361B2
Authority
JP
Japan
Prior art keywords
tritium
carbon monoxide
fusion reactor
exhaust gas
permeator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63106275A
Other languages
Japanese (ja)
Other versions
JPH01276094A (en
Inventor
浩 吉田
哲之 小西
エール・デー・ペンゾール
Original Assignee
日本原子力研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本原子力研究所 filed Critical 日本原子力研究所
Priority to JP63106275A priority Critical patent/JPH0827361B2/en
Publication of JPH01276094A publication Critical patent/JPH01276094A/en
Publication of JPH0827361B2 publication Critical patent/JPH0827361B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/10Nuclear fusion reactors

Landscapes

  • Catalysts (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、重水素・トリチウムを元素の形及び化学的
に結合した形で不純物として含む核融合炉の排出ガスを
処理し、重水素・トリチウムをこれらより分離し、再び
核融合炉の燃料サイクルへ還流せしめんとする方法に関
する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial field of application] The present invention treats exhaust gas from a fusion reactor containing deuterium / tritium as impurities in the form of elements and chemically bound to form deuterium / tritium. The present invention relates to a method for separating tritium from these and then returning the tritium to the fuel cycle of the fusion reactor again.

[従来の技術] 核融合炉の燃料サイクルにおいて、炉の排出ガスは主
として未反応の燃料である元素の形の重水素とトリチウ
ム、核融合反応生成物であるヘリウムの他、高々数%の
濃度の多くの種類の不純物ガスを含んでおり、その一部
は水素同位体を化学的に結合した形で含有する。これら
不純物のうち、一酸化炭素、メタン等の炭化水素は多
く、アンモニア、二酸化炭素、水蒸気は少ないものと予
想される。このように核融合炉排ガスはトリチウムを高
濃度で含むため直接大気へ放出することはできず、事前
にトリチウムを分離し、それを更に燃料として再利用す
ることが必要である。
[Prior Art] In the fuel cycle of a fusion reactor, the exhaust gas of the reactor is mainly deuterium and tritium in the form of unreacted fuel, helium which is a fusion reaction product, and a concentration of several percent at most. It contains many kinds of impurity gases, some of which contain hydrogen isotopes in a chemically bound form. Among these impurities, it is expected that there will be many hydrocarbons such as carbon monoxide and methane, and that there will be little ammonia, carbon dioxide, and water vapor. Since the fusion reactor exhaust gas contains tritium at a high concentration, it cannot be directly emitted to the atmosphere, and it is necessary to separate tritium in advance and reuse it as fuel.

従来、この目的のためにはいくつかの方法が提案され
ている。パラジウム膜と高温の金属ゲッターを組み合わ
せて用いる方法では、トリチウムはパラジウムで精製さ
れる一方、不純物は金属との反応により処理される。本
法の欠点は900度で使用されるゲッターにあり、材料の
耐熱性、高温に伴うトリチウムの透過、及び定期的に必
要とされるゲッターの交換に伴う危険な操作と廃棄物の
発生が問題である。高温ゲッター、酸素発生ベッド及び
触媒酸化反応器の組合わせも可能であるが、水素ガスの
形より数桁危険性の高いトリチウム水の発生、複雑なプ
ロセス構成、500度の酸素発生ベッドが問題である。即
ちこの温度では触媒の焼結、あるいは制御不能な酸素の
発生に伴う爆発の危険性が指摘される。酸素発生ベッ
ド、金属ゲッター、ニッケル触媒の組合わせも提案され
ているが、酸素発生ベッドの欠点は同様である。
Heretofore, several methods have been proposed for this purpose. In the method using a combination of a palladium film and a high temperature metal getter, tritium is purified with palladium, while impurities are treated by reaction with a metal. The drawback of this method is that the getter is used at 900 degrees, and the heat resistance of the material, the permeation of tritium due to the high temperature, and the dangerous operation and the generation of waste due to the regular replacement of the getter are problems. Is. A combination of a high temperature getter, an oxygen generation bed and a catalytic oxidation reactor is also possible, but problems such as generation of tritium water which is several orders of magnitude more dangerous than hydrogen gas, complicated process configuration, and oxygen generation bed of 500 degrees are problems. is there. That is, at this temperature, there is a risk of explosion due to sintering of the catalyst or generation of uncontrollable oxygen. Although combinations of oxygen evolution beds, metal getters and nickel catalysts have been proposed, the drawbacks of oxygen evolution beds are similar.

[発明が解決しようとする課題] 本発明はこれらの欠点のない、即ち最高温度450度以
下で、酸素発生ベッド又は外部からの酸素導入を必要と
せず、あるいは反応により消耗され、定期的に廃棄物を
発生する装置を用いず、トリチウムを水の形で分離しな
いことを特徴とする数段のプロセスにより核融合炉の排
ガスを処理する方法を実現せんとするものである。
[Problems to be Solved by the Invention] The present invention does not have these drawbacks, that is, at a maximum temperature of 450 ° C. or less, does not require oxygen introduction from the oxygen generation bed or externally, or is exhausted by the reaction, and is periodically discarded. It is intended to realize a method for treating exhaust gas of a fusion reactor by a multi-stage process characterized by not using a device for generating a substance and not separating tritium in the form of water.

[課題を解決するための手段] 本願発明者はこの目的達成のため、以下のプロセスを
考案した。
[Means for Solving the Problem] The present inventor has devised the following process in order to achieve this object.

(1)大部分の元素状重水素、トリチウムをパラジウム
−銀透過器により450度以下で分離し、同時に同透過器
内においてアンモニアを構成元素に分解せしめる。
(1) Most of elemental deuterium and tritium are separated by a palladium-silver permeator at 450 ° C. or lower, and at the same time, ammonia is decomposed into constituent elements in the permeator.

(2)残留するガスと一酸化炭素、窒素、炭化水素及び
水蒸気等の不純物に、一酸化炭素を加え、一酸化炭素/
水蒸気比率を1.5以上とする。
(2) Carbon monoxide is added to the residual gas and impurities such as carbon monoxide, nitrogen, hydrocarbons and water vapor to obtain carbon monoxide /
Set the water vapor ratio to 1.5 or more.

(3)水蒸気を150度から200度のCuO/Cr2O3/ZnO触媒上
で一酸化炭素と反応せしめ、水素と二酸化炭素を発生さ
せる。
(3) React steam with carbon monoxide on a CuO / Cr 2 O 3 / ZnO catalyst at 150 to 200 degrees to generate hydrogen and carbon dioxide.

(4)ガスを更にニッケル/酸化アルミニウム触媒を充
填したパラジウム/銀透過器に流通し、炭化水素を分解
して発生した水素同位体は(1)の水素同位体に合流せ
しめる一方、炭素元素として分離する。
(4) The gas is further passed through a palladium / silver permeator filled with a nickel / aluminum oxide catalyst, and the hydrogen isotope generated by decomposing the hydrocarbon is merged with the hydrogen isotope of (1), while as a carbon element. To separate.

(5)更に残留するガスは水素同位体を元素あるいは化
合物の形で含まないため大気中へ放出、あるいは(3)
の触媒上へ再循環する。
(5) Further, the remaining gas does not contain hydrogen isotopes in the form of elements or compounds, so it is released into the atmosphere, or (3)
Recycle over the catalyst.

[作用] ステップ(1)においてパラジウム/銀透過器は450
度ないしそれ以下で使用され、微量のアンモニアはパラ
ジウムの触媒作用により分解される。水素同位体の分圧
が高い場合、一酸化炭素による透過性能の低下を防ぐた
め透過器は、400度から500度で使用するのが望ましい。
[Operation] In step (1), the palladium / silver transmitter is 450
Used at low to low temperatures, traces of ammonia are decomposed by the catalytic action of palladium. When the partial pressure of hydrogen isotope is high, it is desirable to use the permeator at 400 to 500 degrees to prevent deterioration of permeation performance due to carbon monoxide.

次のステップでは水の形で結合された水素同位体は、
150度から200度で使用されるCuO/Cr2O3/ZnO触媒上でCO
+H2O→CO2+H2の反応により遊離される。100%の反応
率を得るためにCO/H2O比は少なくとも1.5が必要であ
り、場合により一酸化炭素の系内への添加が必要であ
る。
In the next step the hydrogen isotope bound in the form of water is
CO over CuO / Cr 2 O 3 / ZnO catalysts used at 150-200 degrees
It is released by the reaction of + H 2 O → CO 2 + H 2 . A CO / H 2 O ratio of at least 1.5 is necessary to obtain a reaction rate of 100%, and in some cases carbon monoxide needs to be added to the system.

ステップ(3)によりCuO/Cr2O3/ZnO触媒充填塔をで
るガスは主としてヘリウムであり、少量の炭化水素(メ
タン、エタン等)、窒素、一酸化炭素、二酸化炭素であ
る。炭化水素中の重水素、トリチウムを遊離せしめるた
め、この混合ガスはニッケル/酸化アルミニウム触媒を
充填したパラジウム/銀透過器を通過させ、炭化水素の
分解と水素同位体の分離を同時に行う。このプロセスで
は反応精製物である水素が系外に透過によって排出され
るため、高い反応率が達成される。炭素の付着による触
媒の活性低下を防ぐため、触媒は定期的に水素により再
生される。
The gas leaving the CuO / Cr 2 O 3 / ZnO catalyst packed column in step (3) is mainly helium, and a small amount of hydrocarbons (methane, ethane, etc.), nitrogen, carbon monoxide, and carbon dioxide. In order to release deuterium and tritium in hydrocarbons, this mixed gas is passed through a palladium / silver permeator filled with a nickel / aluminum oxide catalyst to simultaneously decompose hydrocarbons and separate hydrogen isotopes. In this process, hydrogen, which is a reaction refined product, is discharged out of the system by permeation, so that a high reaction rate is achieved. The catalyst is periodically regenerated with hydrogen to prevent the catalyst from degrading activity due to carbon deposition.

[発明の効果] 以上のプロセスにより、化合物の形の水素同位体は全
て分解、回収され、プロセスの出口ではトリチウムを含
まないガスが得られる。即ちトリチウムの除去は単純な
物理的あるいは触媒反応により行われ、固体廃棄物の発
生は伴わないという効果を奏する。またこのプロセスは
酸化反応によるトリチウム化合物の分解過程がないた
め、酸素発生ベッドや外部からの酸素添加は必要なく、
安全性にすぐれている。
[Effects of the Invention] Through the above process, all hydrogen isotopes in the form of compounds are decomposed and recovered, and a tritium-free gas is obtained at the exit of the process. That is, the removal of tritium is performed by a simple physical or catalytic reaction, and there is an effect that solid waste is not generated. In addition, since this process does not have a decomposition process of tritium compounds due to the oxidation reaction, there is no need to add oxygen from the oxygen generation bed or from the outside.
It has excellent safety.

[実 施 例] 実施例として本発明にかかるプロセスの実験結果を示
す。
[Example] An experimental result of the process according to the present invention will be shown as an example.

ステップ(4)の実験をHe/CH4混合ガスを用いて行っ
た。460度においてニッケル触媒10gを充填した透過器を
含む容量8.8のループに混合ガスを循環したところ、
メタンはガスクロの検出限界以下にまで分解され、4.2
分の半減期でメタン濃度は減少した。すべてのメタンを
分解したのちニッケル触媒は450度から550度で再生され
た。このサイクルは18回繰り返され、計2.2モルのメタ
ンが分解される一方、触媒の活性低下は見られなかっ
た。
The experiment of step (4) was performed using He / CH 4 mixed gas. When the mixed gas was circulated in a loop having a capacity of 8.8 including a permeator filled with 10 g of nickel catalyst at 460 degrees,
Methane was decomposed below the detection limit of gas chromatography, and 4.2
The methane concentration decreased with a half-life of minutes. After decomposing all methane, the nickel catalyst was regenerated at 450 to 550 degrees. This cycle was repeated 18 times, and a total of 2.2 mol of methane was decomposed, but no decrease in the activity of the catalyst was observed.

フロントページの続き (56)参考文献 特開 昭57−169696(JP,A)Continuation of front page (56) References JP-A-57-169696 (JP, A)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】重水素・トリチウムを元素の形及び化学的
に結合した形で不純物として含む核融合炉の排出ガスを
処理し、重水素・トリチウムを分離して再び核融合炉の
燃料サイクルへ還流せしめんとする方法において、 (1) 大部分の元素状重水素、トリチウムをパラジウ
ム−銀透過器により450度以下で分離し、同時に同透過
器内においてアンモニアを構成元素に分解せしめ、 (2) 残留するガスと一酸化炭素、窒素、炭化水素及
び水蒸気等の不純物に必要なら更に一酸化炭素を加え、
一酸化炭素/水蒸気比率を1.5以上とし、 (3) 水蒸気を150度から200度のCuO/Cr2O3/ZnO触媒
上で一酸化炭素と反応せしめ水素と二酸化炭素とを発生
させ、 (4) 更にニッケル/酸化アルミニウム触媒を充填し
たパラジウム/銀透過器に流通し、炭化水素を分解して
発生した水素同位体は(1)の水素同位体に合流せしめ
る一方、炭素を元素として分離するとともに、 (5) 更に残留する水素同位体を元素あるいは化合物
の形で含まないガスを大気中へ放出、あるいは(3)の
触媒上へ再循環する ことを特徴とする核融合炉排ガス処理プロセス。
1. A fusion reactor exhaust gas containing deuterium / tritium as an impurity in the form of elements and chemically bound, is treated, and the deuterium / tritium is separated to return to the fuel cycle of the fusion reactor. In the method of refluxing, (1) most of elemental deuterium and tritium are separated by a palladium-silver permeator at 450 ° C. or lower, and at the same time, ammonia is decomposed into constituent elements in the permeator, (2) ) Adding carbon monoxide to the residual gas and impurities such as carbon monoxide, nitrogen, hydrocarbons and water vapor, if necessary,
The carbon monoxide / steam ratio is set to 1.5 or more, and (3) steam is reacted with carbon monoxide on a CuO / Cr 2 O 3 / ZnO catalyst at 150 to 200 degrees to generate hydrogen and carbon dioxide, and (4) ) Further, the hydrogen isotope, which has been passed through a palladium / silver permeator filled with a nickel / aluminum oxide catalyst and decomposed hydrocarbons, is merged with the hydrogen isotope of (1), while separating carbon as an element. (5) A fusion reactor exhaust gas treatment process characterized in that a gas that does not contain residual hydrogen isotope in the form of an element or a compound is released into the atmosphere, or is recycled to the catalyst in (3).
JP63106275A 1988-04-28 1988-04-28 Exhaust gas treatment method for fusion reactor Expired - Fee Related JPH0827361B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63106275A JPH0827361B2 (en) 1988-04-28 1988-04-28 Exhaust gas treatment method for fusion reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63106275A JPH0827361B2 (en) 1988-04-28 1988-04-28 Exhaust gas treatment method for fusion reactor

Publications (2)

Publication Number Publication Date
JPH01276094A JPH01276094A (en) 1989-11-06
JPH0827361B2 true JPH0827361B2 (en) 1996-03-21

Family

ID=14429528

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63106275A Expired - Fee Related JPH0827361B2 (en) 1988-04-28 1988-04-28 Exhaust gas treatment method for fusion reactor

Country Status (1)

Country Link
JP (1) JPH0827361B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112037958B (en) * 2020-09-09 2022-09-23 中国工程物理研究院核物理与化学研究所 High-concentration tritium water treatment device

Also Published As

Publication number Publication date
JPH01276094A (en) 1989-11-06

Similar Documents

Publication Publication Date Title
US4774065A (en) Process and apparatus for decontaminating exhaust gas from a fusion reactor fuel cycle of exhaust gas components containing chemically bonded tritium and/or deuterium
Strongin et al. The effects of potassium on ammonia synthesis over iron single-crystal surfaces
US3535074A (en) Method and apparatus for purifying crude inert gases
KR100626713B1 (en) Process for nitrous oxide purification
WO1989004210A1 (en) Catalyst for decomposing ammonia
US4875945A (en) Process for cleaning the exhaust gas of a fusion reactor
US3850593A (en) Apparatus and process for the separation of inert gases from gas mixture containing carbon dioxide
Penzhorn et al. A catalytic plasma exhaust purification system
Stacy et al. Interaction of sulfur dioxide with active carbon
JPH0827361B2 (en) Exhaust gas treatment method for fusion reactor
US4242105A (en) Process for producing methane from gas streams containing carbon monoxide and hydrogen
US4331522A (en) Reprocessing of spent plasma
US3380800A (en) Removal of carbon monoxide from gas mixtures
US6206952B1 (en) Method of separating and selectively removing hydrogen contaminant from process streams
JPS62255894A (en) Method and device for decontaminating waste gas of fuel cycle of fusion reactor
US9364789B2 (en) Method for recovering hydrogen from hydrogen sulfide
NZ238670A (en) Production of alkylene oxides from alkenes at low conversion rates and high selectivity in which unreacted alkene is recycled and other waste products are collected
Penzhorn et al. Process to recover tritium from fusion fuel cycle impurities
CA1155794A (en) Removal of helium from deuterium/tritium using catalytic oxidation
JP3360353B2 (en) Method for treating volatile organic halogen compounds
US2726733A (en) Production of hydrogen cyanide
Rustamov et al. Radiolysis of mixtures of carbon dioxide and hydrogen sulfide
JP2529214B2 (en) Nitrogen oxide removal catalyst
JP2003149390A (en) Processing method for radioactivated graphite
EP2888197B1 (en) A method for recovering hydrogen from hydrogen sulfide

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees