JPH08273124A - Spin valve film - Google Patents

Spin valve film

Info

Publication number
JPH08273124A
JPH08273124A JP9772595A JP9772595A JPH08273124A JP H08273124 A JPH08273124 A JP H08273124A JP 9772595 A JP9772595 A JP 9772595A JP 9772595 A JP9772595 A JP 9772595A JP H08273124 A JPH08273124 A JP H08273124A
Authority
JP
Japan
Prior art keywords
layer
film
magnetic layer
magnetic
spin valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9772595A
Other languages
Japanese (ja)
Inventor
Shuji Tanogami
修二 田ノ上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP9772595A priority Critical patent/JPH08273124A/en
Publication of JPH08273124A publication Critical patent/JPH08273124A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To increase the variation of the magnetic resistance of a spin valve film for a magnetoresistance effect element made of a laminated film with a four-layered film consisting of a 1st magnetic layer, a nonmagnetic layer, a 2nd magnetic layer and a magnetization fixing layer as the basic structure and to reduce hysteresis due to coercive force in a low magnetic field. CONSTITUTION: When the 1st magnetic layer is made of a Co-NiFe multilayered film, a high variation of magnetic resistance and low coercive force can be attained. When the 2nd magnetic layer is also made of a Co-NiFe multilayered film or is made of a Co layer, such effects are stably produced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、高密度磁気記録装置
用磁気ディスク装置または磁気エンコーダ装置等に用い
られるスピンバルブ型磁気抵抗効果素子を構成している
スピンバルブ膜の改良に係り、磁性層に特定の積層構造
からなるCo層とNiFeとの多層膜を用いることによ
り、磁気抵抗変化率の向上と低磁場での保磁力に起因す
るヒステリシスの低減を達成したスピンバルブ膜に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement of a spin valve film forming a spin valve type magnetoresistive effect element used in a magnetic disk device for a high density magnetic recording device, a magnetic encoder device or the like. The present invention relates to a spin valve film that achieves an improvement in magnetoresistance change rate and a reduction in hysteresis due to coercive force in a low magnetic field by using a multilayer film of a Co layer and NiFe having a specific laminated structure.

【0002】[0002]

【従来の技術】磁気抵抗効果は、所謂パーマロイ(Ni
Fe)等の薄膜において、磁化方向とセンス電流の方向
とがなす角度によって抵抗値が変化することを利用する
もので、磁束そのものを感知するため、従来の誘導型ヘ
ッドに代わるものとして期待されている。しかし、Ni
Feを用いた磁気抵抗効果素子の磁気抵抗変化率(MR
比)は高々2%程度であり、更なる記録密度の向上のた
めにはMR比を向上させ、磁気抵抗効果素子の感度を高
める必要がある。
2. Description of the Related Art The magnetoresistive effect is the so-called permalloy (Ni
It utilizes the fact that the resistance value changes depending on the angle formed by the magnetization direction and the direction of the sense current in a thin film such as Fe). Since it senses the magnetic flux itself, it is expected to replace the conventional inductive head. There is. However, Ni
Magnetoresistance change rate (MR) of a magnetoresistance effect element using Fe
The ratio) is at most about 2%, and it is necessary to improve the MR ratio and the sensitivity of the magnetoresistive effect element in order to further improve the recording density.

【0003】かかる磁気抵抗効果素子において、特開平
4−358310号公報により開示されているようなス
ピンバルブ型磁気抵抗効果素子を使用することによっ
て、感度を高めることができる。スピンバルブ型磁気抵
抗効果素子では、第1磁性層/非磁性層/第2磁性層/
磁化固定層の4層構造が基本となっており、第2磁性層
は磁化固定層により磁化の向きを固定されており、第1
磁性層は外部からの信号磁場によって磁化の向きを変化
させ、2つの強磁性金属層の磁化がなす角度に依存して
電気抵抗の変化が生じ、電気抵抗の変化を検出するため
に素子端部に形成された1対の電極によって再生信号が
検出される。
In such a magnetoresistive effect element, the sensitivity can be increased by using a spin valve type magnetoresistive effect element as disclosed in Japanese Patent Laid-Open No. 4-358310. In the spin valve magnetoresistive effect element, the first magnetic layer / nonmagnetic layer / second magnetic layer /
The four-layer structure of the magnetization fixed layer is basically used, and the magnetization direction of the second magnetic layer is fixed by the magnetization fixed layer.
The magnetic layer changes the direction of magnetization by a signal magnetic field from the outside, and the electric resistance changes depending on the angle formed by the magnetizations of the two ferromagnetic metal layers. The element end portion is detected to detect the change in electric resistance. The reproduction signal is detected by the pair of electrodes formed on the substrate.

【0004】また、磁気抵抗効果膜は薄くなると磁気抵
抗効果が減少するため、例えばDieny等の「J.
Appl. Phys., vol. 69 no.
8,p4774〜4779 (1991)」には、Fe
MnをNiFe膜の磁化固定膜として利用し、非磁性C
uをはさんだもう片方のフリーなNiFe膜との磁化の
向きにより、磁気抵抗効果が変化することを使って、大
きな磁気抵抗効果を得ようとする試みがある。
Further, since the magnetoresistive effect decreases as the magnetoresistive effect film becomes thinner, see, for example, “J.
Appl. Phys. , Vol. 69 no.
8, p 4774-4779 (1991) ”, Fe
Mn is used as the magnetization fixed film of the NiFe film, and non-magnetic C
There is an attempt to obtain a large magnetoresistive effect by utilizing the fact that the magnetoresistive effect changes depending on the direction of magnetization with the other free NiFe film sandwiching u.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、NiF
e膜を磁性層に用いた場合は、低磁場での保磁力に起因
するヒステリシスは小さいが、磁気抵抗変化率は4%程
度であり、更に高い磁気抵抗変化率が望まれている。ま
た、Coを磁性層に用いた場合は磁気抵抗変化は8%程
度と大きくなるが、低磁場での保磁力に起因するヒステ
リシスが20Oe程度と大きくなり、磁気抵抗効果型ヘ
ッドとして利用するには大きな問題となっている。
However, NiF
When the e film is used for the magnetic layer, the hysteresis due to the coercive force in a low magnetic field is small, but the magnetoresistance change rate is about 4%, and a higher magnetoresistance change rate is desired. Further, when Co is used for the magnetic layer, the change in magnetoresistance is as large as about 8%, but the hysteresis due to the coercive force in a low magnetic field is as large as about 20 Oe, so that it can be used as a magnetoresistive head. It's a big problem.

【0006】この発明は、上述のごとく、第1磁性層/
非磁性層/第2磁性層/磁化固定層の4層膜を基本構造
とする積層膜からなる磁気抵抗効果素子用スピンバルブ
膜の現状に鑑み、磁気抵抗変化率の向上と低磁場での保
磁力に起因するヒステリシスの低減を達成したスピンバ
ルブ膜の提供を目的としている。
The present invention, as described above, includes the first magnetic layer /
In view of the present state of the spin valve film for a magnetoresistive effect element, which is composed of a laminated film having a four-layered film of a non-magnetic layer / second magnetic layer / magnetization fixed layer as a basic structure, improvement of the magnetoresistive change rate and protection in a low magnetic field are considered. It is an object of the present invention to provide a spin valve film that achieves a reduction in hysteresis due to magnetic force.

【0007】[0007]

【課題を解決するための手段】発明者は、磁気抵抗変化
率の向上と低磁場での保磁力の低減を目的にスピンバル
ブ膜の積層構造について種々検討したところ、少なくと
も第1磁性層をCo層とNiFe層の多層膜にすること
により、磁気抵抗変化はCo層を用いたスピンバルブ膜
程度と高く、低磁場での保磁力はNiFe層を用いたス
ピンバルブ膜程度になることを知見し、この発明を完成
した。
The inventor has made various studies on the laminated structure of a spin valve film for the purpose of improving the magnetoresistance change rate and reducing the coercive force in a low magnetic field. As a result, at least the first magnetic layer is made of Co. It was found that, by forming a multilayer film of a NiFe layer and a NiFe layer, the magnetoresistance change is as high as that of a spin valve film using a Co layer, and the coercive force in a low magnetic field is about the same as a spin valve film using a NiFe layer. , Completed this invention.

【0008】すなわち、この発明は、第1磁性層/非磁
性層/第2磁性層/磁化固定層の4層膜を基本構造とす
る積層膜からなる磁気抵抗効果素子用スピンバルブ膜に
おいて、第1磁性層、第2磁性層のいずれもがCo層と
NiFeとの多層膜から構成され、各多層膜中の各Co
層の厚みが3Å〜8ÅでかつCo総膜厚が12Å以上で
あることを特徴とするスピンバルブ膜である。
That is, the present invention provides a spin valve film for a magnetoresistive effect element comprising a laminated film having a four-layer film of a first magnetic layer / a non-magnetic layer / a second magnetic layer / a magnetization fixed layer as a basic structure. Each of the first magnetic layer and the second magnetic layer is composed of a multilayer film of a Co layer and NiFe.
A spin valve film having a layer thickness of 3Å to 8Å and a total Co film thickness of 12Å or more.

【0009】また、この発明は、第1磁性層/非磁性層
/第2磁性層/磁化固定層の4層膜を基本構造とする積
層膜からなる磁気抵抗効果素子用スピンバルブ膜におい
て、第1磁性層がCo層とNiFeとの多層膜から構成
され、この多層膜中の各Co層の厚みが3Å〜8Åでか
つCo総膜厚が12Å以上であり、第2磁性層がCo層
のみで構成されることを特徴とするスピンバルブ膜であ
る。
Further, the present invention provides a spin valve film for a magnetoresistive effect element comprising a laminated film having a four-layer film of a first magnetic layer / nonmagnetic layer / second magnetic layer / magnetization pinned layer as a basic structure. One magnetic layer is composed of a multilayer film of a Co layer and NiFe, and each Co layer in the multilayer film has a thickness of 3Å to 8Å and a total Co film thickness of 12Å or more, and the second magnetic layer is a Co layer only. The spin valve film is characterized in that

【0010】[0010]

【作用】この発明によるスピンバルブ膜の作用をCoと
NiFeの多層膜の構成とCo膜厚及びCo層膜厚の限
定理由とともに説明する。この発明の第1磁性層/非磁
性層/第2磁性層/磁化固定層の4層膜を基本構造とす
る積層膜において、第1磁性層をCoとNiFe多層膜
から構成することにより、高磁気抵抗変化と低保磁力を
図ることが可能となり、更に同時に第2磁性層もCoと
NiFe多層膜から構成するか、あるいは第2磁性層を
Co層とすることにより、安定的にかかる効果が得られ
る。
The operation of the spin valve film according to the present invention will be described together with the structure of the multilayer film of Co and NiFe and the reasons for limiting the Co film thickness and the Co layer film thickness. In the laminated film having a four-layer film of the first magnetic layer / non-magnetic layer / second magnetic layer / magnetization pinned layer of the present invention as a basic structure, by forming the first magnetic layer from a Co and NiFe multilayer film, A change in magnetic resistance and a low coercive force can be achieved, and at the same time, a stable effect can be obtained by forming the second magnetic layer from a Co and NiFe multilayer film, or by forming the second magnetic layer as a Co layer. can get.

【0011】第1磁性層と第2磁性層、あるいは第1磁
性層のいずれの磁性層がCo層とNiFeとの多層膜か
ら構成される場合も、各Co層の厚みが3Å未満である
とCo原子層数は2層程度であり、ポーラスな部分も多
く、磁気抵抗変化率を向上させる効果が少なく、逆に8
Åを越えると磁気抵抗変化率の向上効果は高いが、C軸
配向した結晶磁気異方性が現れるためヒステリシスが大
きくなり好ましくないため、多層膜中の各Co層の厚み
は3Å〜8Åに限定する。
Regardless of which of the first magnetic layer and the second magnetic layer or the magnetic layer of the first magnetic layer is composed of a multilayer film of a Co layer and NiFe, the thickness of each Co layer is less than 3Å. The number of Co atomic layers is about two layers, and there are many porous portions, and there is little effect of improving the magnetoresistance change rate.
If it exceeds Å, the effect of improving the magnetoresistive change rate is high, but the crystal magnetic anisotropy oriented in the C-axis appears and the hysteresis becomes large, which is not preferable. To do.

【0012】また、第1磁性層と第2磁性層あるいは第
1磁性層のみの各多層膜中のCoの総膜厚は、12Å未
満では得られる磁気抵抗変化率が不安定で、Co層の薄
い層をNiFe/Cu間に挿入する場合も、安定した磁
気抵抗変化率を得るためには、Coの総膜厚を12Å以
上にする必要がある。
If the total film thickness of Co in each of the first magnetic layer and the second magnetic layer or only the first magnetic layer is less than 12 Å, the obtained magnetoresistive change rate is unstable and the Co layer is Even when a thin layer is inserted between NiFe / Cu, the total film thickness of Co must be 12 Å or more in order to obtain a stable magnetoresistance change rate.

【0013】この発明において、第1磁性層をCoとN
iFeの多層膜、第2磁性層をCo層で構成する場合、
第2磁性層のCo層の厚みは、磁化固定層との交換相互
作用磁場の大きさを考慮して、20Å〜40Åが好まし
い。また、非磁性層としては電気抵抗の低いCuもしく
はNiFe、Coとの反応性の低いTaが良好である。
磁化固定層としては、交換相互作用磁界が大きいFeM
nもしくは耐食性に優れたNiO等の反強磁性体が良好
である。
In the present invention, the first magnetic layer is made of Co and N.
When the iFe multilayer film and the second magnetic layer are composed of a Co layer,
The thickness of the Co layer of the second magnetic layer is preferably 20Å to 40Å in consideration of the magnitude of the exchange interaction magnetic field with the magnetization fixed layer. Further, as the non-magnetic layer, Cu, which has low electric resistance, or Ni, which has low reactivity with NiFe and Co, is preferable.
As the magnetization fixed layer, FeM having a large exchange interaction magnetic field
Antiferromagnetic materials such as n or NiO having excellent corrosion resistance are preferable.

【0014】[0014]

【実施例】【Example】

実施例1 2インチ平方のガラス基板上に、第1磁性層(90Å)
/Cu(25Å)/第2磁性層(36Å)/FeMn
(100Å)の積層構成のスピンバルブ膜の作製に際
し、第1磁性層と第2磁性層がNiFeもしくはCoで
あるもの、CoとNiFeの多層膜の組み合わせである
ものをそれぞれRFスパッタ装置を用いて成膜した。ス
パッタは一方向磁場中で500W、Arガス圧1mTo
rrで行った。
Example 1 A first magnetic layer (90Å) was formed on a glass substrate having a size of 2 inches.
/ Cu (25Å) / second magnetic layer (36Å) / FeMn
When manufacturing a spin valve film having a (100 Å) laminated structure, an RF sputtering apparatus was used for each of the first magnetic layer and the second magnetic layer of NiFe or Co, and the combination of Co and NiFe multilayer films. A film was formed. Sputtering is 500 W in a unidirectional magnetic field, Ar gas pressure is 1 mTo
performed at rr.

【0015】得られた種々のスピンバルブ膜の磁気抵抗
変化率と第1磁性層の保磁力に起因するヒステリシスを
±50Oeの範囲で4端子法にて測定した結果を、第1
磁性層と第2磁性層の構成とともに表1に示す。Coと
NiFeの多層膜では、磁気抵抗変化率が高くかつヒス
テリシスは小さく、特性が良好であること、またその組
み合わせとして第1磁性層と第2磁性層を同時に多層膜
にするか、または第1磁性層に多層膜、第2磁性層はC
o層にする組み合わせのみが良好であることが分かる。
The results obtained by measuring the magnetoresistance change rate of various obtained spin valve films and the hysteresis due to the coercive force of the first magnetic layer in the range of ± 50 Oe by the four-terminal method are shown in Table 1.
Table 1 shows the configurations of the magnetic layer and the second magnetic layer. The multilayer film of Co and NiFe has a high magnetoresistance change rate, a small hysteresis, and good characteristics, and as a combination thereof, the first magnetic layer and the second magnetic layer are simultaneously formed into a multilayer film, or The magnetic layer is a multilayer film, and the second magnetic layer is C
It can be seen that only the combination of the o layers is good.

【0016】実施例2 2インチ平方のガラス基板上に実施例1と同様条件のR
Fスパッタ装置を用いて、第1磁性層/Cu(26Å)
/第2磁性層/FeMn(100Å)の積層構造で、第
1磁性層と第2磁性層が多層膜、第1磁性層が多層膜で
第2磁性層がCo層からなる2種のスピンバルブ膜の作
製に際し、多層膜の各Co厚みを種々変化させて成膜し
た。得られた種々のスピンバルブ膜の磁気抵抗変化率と
第1磁性層の保磁力に起因するヒステリシスを±50O
eの範囲で4端子法にて測定した結果を、第1磁性層と
第2磁性層の構成とともに表2に示す。
Example 2 R under the same conditions as in Example 1 on a 2-inch square glass substrate.
1st magnetic layer / Cu (26Å)
/ Second magnetic layer / FeMn (100 Å) laminated structure, two kinds of spin valves in which the first magnetic layer and the second magnetic layer are multilayer films, the first magnetic layer is a multilayer film and the second magnetic layer is a Co layer When forming the film, the Co thickness of the multilayer film was changed variously. The hysteresis resulting from the magnetoresistance change rate of the various spin valve films and the coercive force of the first magnetic layer was ± 50 O
Table 2 shows the results of measurement by the 4-terminal method in the range of e together with the configurations of the first magnetic layer and the second magnetic layer.

【0017】多層膜中の各Co膜厚が3Å未満のスピン
バルブ膜ではヒステリシスは小さいが磁気抵抗変化率の
変化も小さく、多層化メリットが小さく、また、多層膜
のCo膜厚が8Åを越えるスピンバルブ膜では、磁気抵
抗変化率の変化は大きいが、ヒステリシスも大きくな
り、多層化のメリットが小さく、多層膜中の各Co膜1
層当たりのCo膜層が3Å〜8Åのスピンバルブ膜は、
磁気抵抗変化率の変化が大きく、ヒステリシスは小さ
く、特性が良好であることを確認した。
In a spin valve film having a Co film thickness of less than 3Å in the multilayer film, the hysteresis is small, but the change in magnetoresistance change is small, and the merit of multilayering is small, and the Co film thickness of the multilayer film exceeds 8Å. In the spin valve film, the change in the magnetoresistance change rate is large, but the hysteresis is also large, and the merit of multilayering is small.
The spin valve film having a Co film layer of 3Å to 8Å per layer is
It was confirmed that the change in the magnetoresistance change was large, the hysteresis was small, and the characteristics were good.

【0018】実施例3 2インチ平方のガラス基板上に、積層数nの[NiFe
(10Å)/Co(4Å)]/Cu(2Å)/Co(3
5Å)/NiO(250Å)の積層構造と、積層数nの
[NiFe(24Å)/Co(4Å)]/Cu(26
Å)/Co(35Å)/NiO(250Å)の積層構造
からなる2種のスピンバルブ膜の製造に際して、多層膜
中のCoの積層数nを1から4として、実施例1と同様
条件のRFスパッタ装置を用いて成膜し、多層膜におけ
るCo総膜厚の影響について検討した。
EXAMPLE 3 [NiFe having a stacking number of n was formed on a 2-inch square glass substrate.
(10Å) / Co (4Å)] / Cu (2Å) / Co (3
5Å) / NiO (250Å) laminated structure and [NiFe (24Å) / Co (4Å)] / Cu (26
In manufacturing two kinds of spin valve films having a laminated structure of Å) / Co (35Å) / NiO (250Å), the number n of Co layers in the multilayer film was set to 1 to 4 and RF under the same conditions as in Example 1 was used. Film formation was performed using a sputtering device, and the effect of the total Co film thickness in the multilayer film was examined.

【0019】得られた種々のスピンバルブ膜の磁気抵抗
変化率と第1磁性層の保磁力に起因するヒステリシスを
±50Oeの範囲で4端子法にて測定した結果を、第1
磁性層と第2磁性層の構成とともに表3に示す。いずれ
の積層構成において、n≦2では磁気抵抗変化率は小さ
く、n=3以上で磁気抵抗変化率は安定している。この
ことは多層膜のCo総膜厚が12Å未満のスピンバルブ
膜では磁気抵抗変化率は不安定であることを示してお
り、Co層の薄い層をNiFe/Cu間に挿入する場合
も、安定した磁気抵抗変化率を得るためには、Co層を
厚くせざるをえず、保磁力が大きくなるため、この発明
の磁性層の多層化により、高磁気抵抗変化率と低保磁力
の目的が達成される。
The results obtained by measuring the magnetoresistance change rate of various obtained spin valve films and the hysteresis due to the coercive force of the first magnetic layer in the range of ± 50 Oe by the four-terminal method are shown in Table 1.
Table 3 shows the configurations of the magnetic layer and the second magnetic layer. In any of the laminated structures, the magnetic resistance change rate is small when n ≦ 2, and the magnetic resistance change rate is stable when n = 3 or more. This indicates that the magnetoresistance change rate is unstable in a spin valve film having a total Co film thickness of less than 12 Å, and is stable even when a thin Co layer is inserted between NiFe / Cu. In order to obtain the above-mentioned magnetoresistive change rate, the Co layer must be thickened, and the coercive force becomes large. Therefore, the multi-layered magnetic layer of the present invention aims at high magnetoresistive change rate and low coercive force. To be achieved.

【0020】[0020]

【表1】 [Table 1]

【0021】[0021]

【表2】 [Table 2]

【0022】[0022]

【表3】 [Table 3]

【0023】[0023]

【発明の効果】この発明は、第1磁性層/非磁性層/第
2磁性層/磁化固定層の4層膜を基本構造とするスピン
バルブ積層膜において、実施例に明らかなように第1磁
性層をCoとNiFe多層膜から構成することにより、
高磁気抵抗変化と低保磁力を図ることが可能となり、更
に同時に第2磁性層もCoとNiFe多層膜から構成す
るか、あるいは第2磁性層をCo層とすることにより、
安定的にかかる効果が得られる。
The present invention is a spin valve laminated film having a four-layer film of a first magnetic layer / a non-magnetic layer / a second magnetic layer / a magnetization fixed layer as a basic structure. By forming the magnetic layer from a Co and NiFe multilayer film,
It becomes possible to achieve a high magnetic resistance change and a low coercive force, and at the same time, the second magnetic layer is also composed of a Co and NiFe multilayer film, or the second magnetic layer is a Co layer.
A stable effect can be obtained.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 第1磁性層/非磁性層/第2磁性層/磁
化固定層の4層膜を基本構造とする積層膜からなる磁気
抵抗効果素子用スピンバルブ膜において、第1磁性層、
第2磁性層のいずれもがCo層とNiFeとの多層膜か
ら構成され、各多層膜中の各Co層の厚みが3Å〜8Å
でかつCo総膜厚が12Å以上であることを特徴とする
スピンバルブ膜。
1. A spin valve film for a magnetoresistive effect element comprising a laminated film having a four-layer film of a first magnetic layer / a non-magnetic layer / a second magnetic layer / a magnetization fixed layer as a basic structure, the first magnetic layer,
Each of the second magnetic layers is composed of a multilayer film of a Co layer and NiFe, and the thickness of each Co layer in each multilayer film is 3Å to 8Å
And a total Co film thickness of 12 Å or more.
【請求項2】 第1磁性層/非磁性層/第2磁性層/磁
化固定層の4層膜を基本構造とする積層膜からなる磁気
抵抗効果素子用スピンバルブ膜において、第1磁性層が
Co層とNiFeとの多層膜から構成され、この多層膜
中の各Co層の厚みが3Å〜8ÅでかつCo総膜厚が1
2Å以上であり、第2磁性層がCo層のみで構成される
ことを特徴とするスピンバルブ膜。
2. A spin valve film for a magnetoresistive element, comprising a laminated film having a four-layer film of a first magnetic layer / a non-magnetic layer / a second magnetic layer / a magnetization fixed layer as a basic structure, wherein the first magnetic layer is It is composed of a multilayer film of a Co layer and NiFe, and each Co layer in the multilayer film has a thickness of 3Å to 8Å and a total Co film thickness of 1
A spin valve film having a thickness of 2 Å or more, wherein the second magnetic layer is composed of only a Co layer.
JP9772595A 1995-03-29 1995-03-29 Spin valve film Pending JPH08273124A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9772595A JPH08273124A (en) 1995-03-29 1995-03-29 Spin valve film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9772595A JPH08273124A (en) 1995-03-29 1995-03-29 Spin valve film

Publications (1)

Publication Number Publication Date
JPH08273124A true JPH08273124A (en) 1996-10-18

Family

ID=14199871

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9772595A Pending JPH08273124A (en) 1995-03-29 1995-03-29 Spin valve film

Country Status (1)

Country Link
JP (1) JPH08273124A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6594884B2 (en) 1999-06-25 2003-07-22 International Business Machines Corporation Method of making a multilayered pinned layer structure for improved coupling field and GMR for spin valve

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6594884B2 (en) 1999-06-25 2003-07-22 International Business Machines Corporation Method of making a multilayered pinned layer structure for improved coupling field and GMR for spin valve

Similar Documents

Publication Publication Date Title
JP3447468B2 (en) Magnetoresistive element, method of manufacturing the same, and magnetic head using the same
US6340520B1 (en) Giant magnetoresistive material film, method of producing the same magnetic head using the same
JP2690623B2 (en) Magnetoresistance effect element
JP2654316B2 (en) Magnetoresistive sensor
US6295186B1 (en) Spin-valve magnetoresistive Sensor including a first antiferromagnetic layer for increasing a coercive force and a second antiferromagnetic layer for imposing a longitudinal bias
KR100249976B1 (en) Magnetoresistive device and the method
JP3137580B2 (en) Magnetic multilayer film, magnetoresistive element and magnetic transducer
KR100275983B1 (en) Exchange coupling membrane, magnetoresistive element using this exchange membrane and thin film magnetic head using magnetoresistance effect element
JP2901501B2 (en) Magnetic multilayer film, method of manufacturing the same, and magnetoresistive element
US20060061914A1 (en) Magnetoresistive element with oxide magnetic layers and metal magnetic films deposited thereon
EP0814519B1 (en) Magnetoresistive effect device, process for fabricating the same, and magnetic head produced using the same
US6083632A (en) Magnetoresistive effect film and method of manufacture thereof
JP3694440B2 (en) Method for manufacturing exchange coupling film, method for manufacturing magnetoresistive effect element using exchange coupling film, and method for manufacturing thin film magnetic head using magnetoresistance effect element
JP3670928B2 (en) Exchange coupling film, magnetoresistive element using the exchange coupling film, and thin film magnetic head using the magnetoresistive element
JP3831514B2 (en) Magnetoresistive film and magnetoresistive head
JP3177184B2 (en) Magnetoresistive element, magnetic head and magnetic recording / reproducing apparatus using the same
JPH10188235A (en) Magneto-resistive film and its production
EP0560350B1 (en) Magneto-resistance effect element
JP2924819B2 (en) Magnetoresistive film and method of manufacturing the same
JPH04280483A (en) Magnetic resistant effect material and manufacture thereof
EP0620572B1 (en) Element having magnetoresistive effect
JP3242279B2 (en) Giant magnetoresistive material film and method of adjusting magnetization of magnetoresistive material film
JPH0936455A (en) Magnetoresistive effect element
JPH08273124A (en) Spin valve film
JP3243092B2 (en) Thin film magnetic head