JPH08271435A - Method for detecting push-in scratch of wheel rim for automobile - Google Patents

Method for detecting push-in scratch of wheel rim for automobile

Info

Publication number
JPH08271435A
JPH08271435A JP7075520A JP7552095A JPH08271435A JP H08271435 A JPH08271435 A JP H08271435A JP 7075520 A JP7075520 A JP 7075520A JP 7552095 A JP7552095 A JP 7552095A JP H08271435 A JPH08271435 A JP H08271435A
Authority
JP
Japan
Prior art keywords
detection area
rim
edge
detection
wheel rim
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7075520A
Other languages
Japanese (ja)
Inventor
Noriya Murata
宣也 村田
Shingo Tsukui
慎吾 津久井
Yugo Takeuchi
勇吾 竹内
Akihiko Yamada
秋彦 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Topy Industries Ltd
Original Assignee
Topy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Topy Industries Ltd filed Critical Topy Industries Ltd
Priority to JP7075520A priority Critical patent/JPH08271435A/en
Publication of JPH08271435A publication Critical patent/JPH08271435A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Image Processing (AREA)
  • Image Analysis (AREA)

Abstract

PURPOSE: To detect a push-in scratch accurately while discriminating automatically from disturbance, e.g. a flaw, by irradiating the surface of a wheel rim of automobile obliquely from the opposite sides in the axial direction of rim, picking up the image of the surface of rim from the direction perpendicular to the axis of rim by means of a CCD camera, and processing the image where the edge of scratch exhibits high illuminance by means of a CPU. CONSTITUTION: A wheel rim 1 is irradiated, on the surface with light obliquely from the opposite sides in the axial direction of rim. Inner and outer circumferential surfaces of the rim are irradiated with light emitted from two light sources 6 respectively. Since the rim is irradiated obliquely, only the edge 3 of a push-in scratch 2 is rendered conspicuous in terms of luminance or density. Since the rim is irradiated with light from the opposite sides, the edge 3 on an arc is rendered conspicuous. Image of the rim surface is then picked up by means of a CCD camera from the direction perpendicular to the axis of rim and the image is processed by means of a CPU according to a detection algorithm. Since the CPU detects only the pull-in scratch while discriminating from disturbance, detection is automated and high speed processing is realized without requiring any skill.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は自動車用ホイールリムの
押込み傷の検出方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for detecting indentation damage on a wheel rim for an automobile.

【0002】[0002]

【従来の技術】自動車用ディスクホイールはリムとディ
スクを溶接接合したものからなる。リムは、鋼板を丸め
て端部を突き合わせ溶接することにより円筒状体とな
し、それを多段ロールでリム形に成形することにより作
製される。突き合わせ溶接するときに巻き鋼板の端部を
チャックで把持し、突き合わせ線に沿ってフラッシュバ
ット溶接を適用するが、この場合チャックに溶接時の異
物が付着しやすく、異物を付着したチャックで巻き鋼板
の端部を把持すると、リムに押込み(凹み)傷がつく。
この押込み傷は、通常のひっかき傷と異なり、ホイール
の最終製造工程の塗装において、塗装ムラ、塗装不良を
生じやすい。また、押込み傷は外観上好ましくない。さ
らに、押込み傷がビードシート部(タイヤとの接面)に
あるとエアもれの原因となる。このため、従来、リム製
造後、ディスクとの溶接接合前に、目視判定による外観
検査が行われている。
2. Description of the Related Art A disc wheel for an automobile comprises a rim and a disc welded and joined together. The rim is manufactured by rolling a steel sheet and butt-welding the ends to form a cylindrical body, which is then formed into a rim shape by a multistage roll. When butt welding, the end of the rolled steel plate is gripped by a chuck, and flash butt welding is applied along the butt line.In this case, foreign matter during welding easily adheres to the chuck, and the chucked steel sheet adheres the foreign matter. If you grip the end of the, the rim will be pushed (dented) and scratched.
Unlike ordinary scratches, the indentation scratches are likely to cause coating unevenness and coating defects in the coating of the final wheel manufacturing process. In addition, indentation scratches are not desirable in appearance. Further, if the indentation is on the bead seat portion (contact surface with the tire), air leakage may occur. For this reason, conventionally, a visual inspection is performed by visual judgment after manufacturing the rim and before welding and joining with the disc.

【0003】[0003]

【発明が解決しようとする課題】しかし、従来の目視判
定にはつぎの問題がある。 ラインスピードが速く、全数検査であるため、検査
員の作業負荷が高く、複数の人員を要す。また、目視に
て判定するため、傷の部位、大きさ、形状等の違いによ
り、見落しを生じる可能性が有り、検査員には高スキル
が要求される。 汎用のCCDカメラを用いた画像処理ソフトを利用
する方法では、押込み傷は溶接工程でのチャック等によ
り発生するため、検査箇所には溶接部の熱影響部(色ム
ラ)やひっかき傷があり、それらノイズと区別して押込
み傷を検出するのは困難である。また、リムの曲率、内
外両側の検査となると、押込み傷を確実に検査するのは
困難である。 その他各種センサーを使用する方法では、測定ピッ
チ、不感帯、付帯設備、測定時間、コスト等の問題があ
り、現状では検査員に頼るしかない。 本発明の目的は、自動的に傷の検出が可能で、しかも溶
接部の熱影響部(色ムラ)やひっかき傷等の外乱(ノイ
ズ)と区別して押込み傷を高精度に検出する自動車用ホ
イールリムの押込み傷検出方法を提供することにある。
However, the conventional visual judgment has the following problems. Since the line speed is high and 100% inspection is required, the workload of the inspectors is high and requires multiple personnel. In addition, since the judgment is made by visual inspection, there is a possibility that it may be overlooked due to differences in the wound site, size, shape, etc., and high skill is required for the inspector. In the method that uses image processing software that uses a general-purpose CCD camera, indentation scratches are generated by chucks in the welding process, so there are heat-affected zones (color unevenness) and scratches in the welded portion at the inspection location. It is difficult to detect an indentation flaw by distinguishing it from those noises. Further, when inspecting the curvature of the rim and both inside and outside, it is difficult to reliably inspect the indentation damage. Other methods using various sensors have problems such as measurement pitch, dead zone, incidental equipment, measurement time, cost, etc., and currently only relying on an inspector. An object of the present invention is to provide an automobile wheel capable of automatically detecting scratches and accurately detecting indentation scratches by distinguishing them from disturbances (noise) such as heat-affected zones (color unevenness) and scratches of welded portions. It is to provide a method for detecting a rim indentation flaw.

【0004】[0004]

【課題を解決するための手段】上記本発明の目的を達成
する本発明の方法はつぎの通りである。自動車用ホイー
ルリムの表面にホイールリム軸方向両側から斜めに光を
あて、ホイールリム軸方向と直角方向からCCDカメラ
により傷のエッジが輝度大なホイールリム表面画像を取
り込む工程と、前記取り込んだホイールリム表面画像を
CPUにて画像処理する工程と、からなり、前記画像処
理工程は、画像をリム軸方向にn個、リム径方向にm個
の画素に分割してリム軸方向に隣接画素との相対濃度を
演算することを全画素について実行する工程と、前記画
像をリム軸方向にi個(ただし、i<n)、リム径方向
にj個(ただし、j<m)の画素を有する検出エリアに
分割し、演算を実行する1つの検出エリアを設定し、該
検出エリアについて検出エリア内エッジ密度を演算して
該検出エリア内エッジ密度がA%(ただし、Aは6〜1
0に設定された値)以上か否かを判定し、かつ前記検出
エリアについて検出エリア内エッジ縦横比率を演算して
該検出エリア内エッジ縦横比率がB(ただし、Bは0.
4〜0.8に設定された値)以上か否かを判定して、検
出エリア内エッジ密度がA%以上でかつ検出エリア内エ
ッジ縦横比率がB以上の検出エリアを選出し、前記選出
検出エリアのみについて、検出エリアをリム軸方向にi
´個(ただし、i´<i)、リム径方向にj個の画素を
有する複数の細分化検出エリアに分割し、該細分化検出
エリアの1つについて、細分化検出エリア内エッジ縦横
比率を演算して該細分化検出エリア内エッジ縦横比率が
C(ただし、Cは0.2〜0.4に設定されている)以
上のみのエッジを残し、かつ細分化検出エリア内エッジ
密度を演算して該細分化検出エリア内エッジ密度がD%
(ただし、Dは1〜5に設定されている)未満のエッジ
を除去する、ことを前記選出検出エリアの全細分化検出
エリアについて実行する工程と、前記工程の条件に合致
するエッジがある場合は該エッジは押込み傷のエッジで
あるとし、それ以外は外乱と判定する工程と、つぎの検
出エリアに移って前記検出エリア選出工程以後の工程を
実行することを、前記検出エリアの全部について繰り返
す工程と、からなる自動車用ホイールリムの押込み傷検
出方法。
The method of the present invention for achieving the above object of the present invention is as follows. The step of illuminating the surface of the wheel rim for automobiles obliquely from both sides in the axial direction of the wheel rim, and capturing the image of the wheel rim surface with a high brightness edge of a scratch by a CCD camera from a direction perpendicular to the axial direction of the wheel rim, and the captured wheel Image processing of the rim surface image by a CPU, wherein the image processing step divides the image into n pixels in the rim axis direction and m pixels in the rim radial direction to form adjacent pixels in the rim axis direction. Calculating the relative density of all the pixels, and the image has i (where i <n) pixels in the rim axis direction and j (where j <m) pixels in the rim radial direction. The detection area is divided into one detection area, and the detection area edge density is calculated for the detection area to obtain A% (where A is 6 to 1).
It is determined whether or not it is equal to or more than a value set to 0), and the edge aspect ratio in the detection area is calculated for the detection area, and the edge aspect ratio in the detection area is B (where B is 0.
(Value set to 4 to 0.8) or more, and a detection area having an edge density in the detection area of A% or more and an edge aspect ratio in the detection area of B or more is selected, and the selection detection is performed. For the area only, the detection area is i in the rim axis direction.
It is divided into a plurality of (where i ′ <i) and j subdivided detection areas having j pixels in the rim radial direction, and one of the subdivided detection areas has an edge aspect ratio within the subdivided detection area. The edge density in the subdivision detection area is calculated to leave only edges having a ratio of C or more (where C is set to 0.2 to 0.4), and the edge density in the subdivision detection area is calculated. The edge density in the subdivision detection area is D%
A step of removing edges less than (where D is set to 1 to 5) for all subdivision detection areas of the selection detection area, and there is an edge matching the conditions of the step It is assumed that the edge is an edge of an indentation, and otherwise, it is a disturbance, and the process of moving to the next detection area and executing the steps after the detection area selection step are repeated for all the detection areas. An indentation detection method for an automobile wheel rim, which comprises:

【0005】[0005]

【作用】上記本発明方法では、光をあてて押込み傷のエ
ッジを浮き立たせ、その画像をCCDカメラで取り込
み、コンピュータのCPUにて外乱と区別して押込み傷
を判定するので、その検出は目視によらず、自動的に行
われる。また、光をホイールリムの軸方向両側からあて
るようにしたので、ほぼ円形でかつある程度の大きさを
持つ押込み傷は上部エッジと下部のエッジの両方が同時
に浮き立ち、ほぼ直線に延びるひっかき傷との区別を容
易にさせる。また、画像処理工程において、リム軸方向
に隣接画素との相対濃度を演算するので、リム軸方向に
延びる溶接部の色ムラの影響を自動的に除去してリム軸
方向と直交または交差する方向の押込み傷エッジおよび
傷のある画素を選出できる。また、画像処理において、
画像を複数の検出エリアに分割し、検出エリア内エッジ
密度がA%以上のものでかつ検出エリア内エッジ縦横比
率がB以上の検出エリアをピックアップするようにした
ので、この段階で押込み傷と、押込み傷に似た平行な複
数本のひっかき傷とを選択的にピックアップできる。ま
た、画像処理において、上記でピックアップされた検出
エリアのみについて、さらに細分化して押込み傷とひっ
かき傷とを区別する演算を行うようにしたので、全検出
エリアについてその演算を行う場合に比べて、判定時間
を大幅に短縮でき、リアルタイムのオンライン検出が可
能になる。また、画像処理において、ピックアップした
検出エリアを細分化して、細分化検出エリアについて、
細分化検出エリア内エッジ縦横比率がC以上のエッジを
ピックアップするとともに細分化検出エリア内エッジ密
度がD%未満のエッジを除去するようにしたので、押込
み傷のエッジと平行ひっかき傷とを区別でき、押込み傷
のエッジのみを検出できる。かくして、外乱と区別され
た、押込み傷の高精度な検出が可能となる。
In the above-described method of the present invention, the edge of the indentation flaw is raised by applying light, the image is captured by the CCD camera, and the indentation injury is discriminated from the disturbance by the CPU of the computer. No matter what, it happens automatically. Also, since the light is directed from both sides in the axial direction of the wheel rim, both the upper edge and the lower edge of the indentation scratches that are almost circular and have a certain size float up at the same time, and scratches that extend almost in a straight line. Make it easy to distinguish. Further, in the image processing step, since the relative density with the adjacent pixel is calculated in the rim axis direction, the influence of the color unevenness of the weld portion extending in the rim axis direction is automatically removed, and the direction orthogonal to or intersecting with the rim axis direction. Indented scratch edges and scratched pixels can be selected. In image processing,
The image is divided into a plurality of detection areas, and the detection area whose edge density in the detection area is A% or more and whose edge aspect ratio in the detection area is B or more is picked up. You can selectively pick up multiple parallel scratches similar to indented scratches. Further, in the image processing, only the detection area picked up above is further subdivided so that the operation for distinguishing the indentation scratch and the scratch is performed, so compared to the case of performing the operation for all the detection areas, Judgment time can be greatly reduced and real-time online detection is possible. In the image processing, the picked-up detection area is subdivided, and the subdivided detection area is
Edges in the subdivision detection area The aspect ratio of C or more is picked up and the edges with the edge density in the subdivision detection area of less than D% are removed, so that the edge of the indentation and the parallel scratch can be distinguished. , Only the edge of indentation can be detected. Thus, it is possible to detect the indentation with high accuracy, which is distinguished from the disturbance.

【0006】[0006]

【実施例】図1〜図3は本発明の一実施例の方法の画像
取り込み工程を示す。図1に示すように、自動車用ホイ
ールリム1(製作途中の円筒状のもの)の表面にホイー
ルリム軸方向両側から斜めに光をあてる。6はビーム状
の光を出す光源であり、ホイールリム外周面に光をあて
る光源が2個、ホイールリム内周面に光をあてる光源が
2個設けられている。斜めの角度はリム表面から10〜
40°とされる。斜めに光をあてることにより、図2、
図3に示すように、押込み傷2のエッジ3のみが、輝度
または濃度上、他の部分に比べて浮き立つ。リム軸方向
両側から光をあてるため、図3にて円の上下の対向する
部位に、それぞれ円弧状のエッジ3が、合計2本以上浮
き立つ。このホイールリム表面をホイールリム軸方向と
直角方向からCCDカメラ4により撮像し画像を取り込
む。CCDカメラ4はホイールリム1の外側と内側に少
なくとも1個づつ(図では2個づつ)配設される。内外
表面を撮像するので、従来の目視では難しかったホイー
ルリム内面側の傷も検出できる。ついで、この像を、C
CDカメラ4に接続したコンピュータのCPUにて画像
処理する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIGS. 1 to 3 show an image capturing process of a method according to an embodiment of the present invention. As shown in FIG. 1, light is radiated obliquely from both sides in the axial direction of the wheel rim onto the surface of a vehicle wheel rim 1 (cylindrical one being manufactured). Reference numeral 6 denotes a light source that emits light in the form of a beam, and two light sources that illuminate the outer peripheral surface of the wheel rim and two light sources that illuminate the inner peripheral surface of the wheel rim are provided. The diagonal angle is 10 to 10 from the rim surface
It is set to 40 °. By shining light diagonally,
As shown in FIG. 3, only the edge 3 of the indentation scratch 2 stands out in comparison with other portions in terms of brightness or density. Since light is applied from both sides in the rim axis direction, a total of two or more arc-shaped edges 3 stand out at the upper and lower opposing portions of the circle in FIG. The surface of the wheel rim is picked up by the CCD camera 4 from the direction perpendicular to the axial direction of the wheel rim, and an image is captured. At least one CCD camera 4 (two in the figure) is arranged on the outer side and the inner side of the wheel rim 1. Since the inner and outer surfaces are imaged, it is possible to detect scratches on the inner surface side of the wheel rim, which were difficult with conventional visual inspection. Then, this image, C
Image processing is performed by the CPU of the computer connected to the CD camera 4.

【0007】CPUにおける画像処理は図4に示す検出
アルゴリズムに従って実行される。ステップ101で画
像の生データを入力する。ついで、ステップ102で、
画像をリム軸方向(画像の縦方向に対応)にn個、リム
径方向(画像の横方向に対応)にm個の画素に分割す
る。この場合nは480、mは512であるか、もしく
はそれ以上の画素数を有するものであることが望まし
い。そして、リム軸方向に隣接画素との相対濃度を演算
することを全画素について実行する。図5に示すよう
に、画素に、画像縦方向に(1、1)、(2、1)・・
・、画像横方向に(1、1)、(1、2)・・・の番号
を付すと、たとえば、(1、1)の画素の相対濃度は、
(1、1)の画素の濃度−(2、1)の画素の濃度の絶
対値として演算される。画像縦方向に隣接画素の相対濃
度を演算するため、ホイールリム軸方向に延びる溶接部
5の色ムラが自動的にキャンセルされ、色ムラによる外
乱(ノイズ)を除去できる。
Image processing in the CPU is executed according to the detection algorithm shown in FIG. In step 101, raw image data is input. Then, in step 102,
The image is divided into n pixels in the rim axis direction (corresponding to the vertical direction of the image) and m pixels in the rim radial direction (corresponding to the horizontal direction of the image). In this case, it is desirable that n is 480 and m is 512, or that it has more pixels. Then, the calculation of the relative density with respect to the adjacent pixels in the rim axis direction is executed for all the pixels. As shown in FIG. 5, the pixels are (1, 1), (2, 1), ...
When the numbers (1, 1), (1, 2), ... Are given in the horizontal direction of the image, the relative density of the pixel of (1, 1) is, for example,
The density of the pixel of (1, 1) -the absolute value of the density of the pixel of (2, 1). Since the relative densities of adjacent pixels are calculated in the vertical direction of the image, the color unevenness of the welded portion 5 extending in the wheel rim axial direction is automatically canceled, and the disturbance (noise) due to the color unevenness can be removed.

【0008】ついで、ステップ103で、ステップ10
2で画素に分割した画像を、リム軸方向にi個(ただ
し、i<n)、リム径方向にj個(ただし、j<m)の
画素を有する複数の検出エリアに分割する。iはたとえ
ば16で、jはたとえば16である。この場合、1つの
検出エリアはi×j個の画素をもつ。そして、演算を行
う1つの検出エリアを設定する。そして、この設定した
検出エリアに対し、つぎのステップ104からステップ
112までの演算を実行する。ステップ104では、検
出エリア内エッジ密度(検出エリア内のうちエッジがか
かる画素の総数の、検出エリア内画素総数の百分率)を
演算して、該検出エリア内エッジ密度が所定値A%(た
だし、Aは6〜10に設定された値で、たとえば8)以
上か否かを判定する。また、ステップ105では検出エ
リア内エッジ縦横比率(検出エリア内のうちエッジがあ
る複数の画素の群の縦方向長さYと横方向長さXの比、
図6、図7に示す)を演算して、該検出エリア内エッジ
密度が所定値B(ただし、Bは0.4〜0.8に設定さ
れた値で、たとえば0.6)以上か否かを判定する。そ
して、検出エリア内エッジ密度がA%以上でかつ検出エ
リア内エッジ縦横比率がB以上のものが、押込み傷また
はそれと類似の平行ひっかき傷がある検出エリアとして
選出される。たとえば、図6のようなひっかき傷は縦横
比率Y/Xが0.4以下のためはねられ、図7のような
押込み傷および図8に示すような平行ひっかき傷は縦横
比率Y/Xが0.6以上であるから押込み傷またはそれ
に類似の傷と判断される。
Then, in step 103, step 10
The image divided into pixels in 2 is divided into a plurality of detection areas having i (where i <n) pixels in the rim axis direction and j (where j <m) pixels in the rim radial direction. For example, i is 16 and j is 16. In this case, one detection area has i × j pixels. Then, one detection area for calculation is set. Then, for the set detection area, the calculation from the next step 104 to step 112 is executed. In step 104, the edge density in the detection area (percentage of the total number of pixels in the detection area out of the total number of pixels in the detection area) is calculated, and the edge density in the detection area is a predetermined value A% (however, A is a value set to 6 to 10, and it is determined whether it is 8) or more, for example. In step 105, the edge aspect ratio in the detection area (the ratio of the vertical length Y to the horizontal length X of a group of a plurality of pixels having an edge in the detection area,
6 and 7) to calculate whether the edge density in the detection area is a predetermined value B (where B is a value set to 0.4 to 0.8, for example, 0.6) or more. To determine. An edge density in the detection area of A% or more and an edge aspect ratio in the detection area of B or more are selected as a detection area having an indentation scratch or a parallel scratch similar thereto. For example, a scratch as shown in FIG. 6 is splashed because the aspect ratio Y / X is 0.4 or less, and an indentation as shown in FIG. 7 and a parallel scratch as shown in FIG. 8 have an aspect ratio Y / X. Since it is 0.6 or more, it is judged to be an indentation scratch or a similar scratch.

【0009】ついで、ステップ104、105で検出エ
リア内密度がA%でかつ検出エリア内エッジ密度がA%
以上、検出エリア内エッジ縦横比率がB以上の検出エリ
アが選出されない場合はステップ110に飛び、選出さ
れた場合は、その選出検出エリアのみについて、ステッ
プ106〜108に進んで、押込み傷と平行ひっかき傷
等の外乱とを区別する演算を実行する。ステップ106
では、図9に示すように、検出エリアを、リム軸方向
(縦方向)に複数(たとえば4)に分割して(リム径方
向はそのまま)、リム軸方向にi´個(ただし、i´<
i、i´はたとえば4)、リム径方向にj個の画素を有
する、複数の細分化検出エリアに分割する。ついで、ス
テップ107で、細分化検出エリアの1つについて、細
分化検出エリア内エッジ縦横比率を演算して、該細分化
検出エリア内エッジ縦横比率がC(ただし、Cは0.2
〜0.4、たとえば0.3)のみのエッジを残す(C以
下はひっかき傷として捨てる)。ついで、ステップ10
8で、細分化検出エリア内エッジ密度を演算して、該細
分化検出エリア内エッジ密度がD%(ただし、Dは1〜
5、たとえば2)未満のエッジは、ひっかき傷として捨
てる。上記ステップ106〜108を、選出検出エリア
の全細分化検出エリア(上記例では4つのエリア)につ
いて実行し、これによって選出検出エリア内の傷のうち
押込み傷に類似の傷を除去し、押込み傷だけを選出す
る。ついでステップ109で、検出エリア内エッジ縦横
比率を再度演算して該比率がB(たとえば、0.6)以
上を確認する。ステップ109はとばしてもよい。
Next, in steps 104 and 105, the density in the detection area is A% and the edge density in the detection area is A%.
As described above, if the detection area with the edge aspect ratio in the detection area of B or more is not selected, the process jumps to step 110. If the detection area is selected, the process proceeds to steps 106 to 108 for only the selected detection area, and parallel scratches with indentation scratches are made. An operation for distinguishing from a disturbance such as a scratch is executed. Step 106
Then, as shown in FIG. 9, the detection area is divided into a plurality (for example, 4) in the rim axis direction (longitudinal direction) (the rim radial direction is unchanged), and i ′ pieces (however, i ′ are arranged in the rim axis direction). <
i and i ′ are, for example, 4), and are divided into a plurality of subdivided detection areas having j pixels in the rim radial direction. Next, in step 107, the edge aspect ratio in the subdivision detection area is calculated for one of the subdivision detection areas, and the edge aspect ratio in the subdivision detection area is C (where C is 0.2).
Leave only edges of ~ 0.4, eg 0.3) (C and below are discarded as scratches). Then, step 10
In step 8, the edge density in the subdivision detection area is calculated, and the edge density in the subdivision detection area is D% (where D is 1 to
Edges less than 5, eg 2) are discarded as scratches. The above steps 106 to 108 are executed for all subdivided detection areas (four areas in the above example) of the selection detection area, and thereby, among the scratches in the selection detection area, the scratches similar to the indentation scratches are removed, and the indentation scratches are removed. Only elect. Then, in step 109, the edge aspect ratio in the detection area is recalculated to confirm that the aspect ratio is B (eg, 0.6) or more. Step 109 may be skipped.

【0010】ついで、ステップ110にて、ステップ1
03〜109の工程の条件に合致するエッジがあるか否
かを判定し(ある場合は、フラグic=0)、ある場合
はステップ111でそのエッジは押込み傷のエッジと
し、ない場合はステップ112で外乱(ノイズ)とす
る。ついで、ステップ113で、ステップ103で設定
した検出エリアからつぎの検出エリアに移って該つぎの
検出エリアを新たに設定検出エリアとしてステップ10
3〜113を実行することを、検出エリアの全数につい
て繰り返す。全数の検出エリアについての押込み傷の判
定が終了すると、そのホイールリムの押込み傷の判定が
終了し、つぎのホイールリムの判定に移る。
Then, in step 110, step 1
It is determined whether or not there is an edge that matches the process conditions of 03 to 109 (if there is, flag ic = 0), and if there is, the edge is taken as the edge of the indentation scratch, and if not, step 112. To be a disturbance (noise). Next, in step 113, the detection area set in step 103 is moved to the next detection area, and the next detection area is newly set as the set detection area in step 10
Performing 3 to 113 is repeated for all the detection areas. When the determination of the indentation damage on all the detection areas is completed, the determination of the indentation damage of the wheel rim is completed, and the process proceeds to the determination of the next wheel rim.

【0011】[0011]

【発明の効果】本発明によれば、光をあてて傷のエッジ
を浮き立たせ、その画像をCCDカメラで取り込み、C
PUにて外乱と区別して押込み傷のみを検出するので、
検出は目視によらず自動化され、スキルを要さず、かつ
高速(たとえば、1秒以内)処理が可能である。また、
光をホイールリム軸方向両側からあてるので、押込み傷
の上部エッジと下部エッジの両方を同時に読みとること
ができ、エッジの縦横比率が大となり、縦横比率の小な
ひっかき傷との区別を容易にしている。また、画像処理
工程において、リム軸方向に隣接画素との相対濃度を演
算するので、溶接部の色ムラの外乱を自動的に除去でき
る。また、検出エリア内エッジ密度がA%以上、検出エ
リア内エッジ縦横比率がB以上の検出エリアを選出する
ので、押込み傷とそれに類似の傷のみをピックアップで
きる。また、ピックアップした検出エリアをさらに細分
化して検討するので、押込み傷をひっかき傷とを区別で
きる。かくして、外乱を受けずに高精度に押込み傷を検
出できる。
According to the present invention, the edge of the scratch is highlighted by shining light, and the image is captured by the CCD camera, and the C
Since only the indentation is detected by the PU by distinguishing it from the disturbance,
The detection is automated without visual inspection, requires no skill, and can be processed at high speed (for example, within 1 second). Also,
Since the light is applied from both sides in the axial direction of the wheel rim, both the upper edge and the lower edge of the indentation can be read at the same time, the aspect ratio of the edge is large, and it is easy to distinguish from the scratch with a small aspect ratio. There is. Further, in the image processing step, since the relative density with respect to the adjacent pixel is calculated in the rim axis direction, the disturbance of the color unevenness of the welded portion can be automatically removed. Further, since the detection area having the edge density in the detection area of A% or more and the edge aspect ratio in the detection area of B or more is selected, only the indentation flaw and the flaw similar thereto can be picked up. Moreover, since the picked-up detection area is further subdivided and examined, the indentation can be distinguished from the scratch. Thus, the indentation can be detected with high accuracy without being disturbed.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明実施例の方法を実施する装置の斜視図で
ある。
1 is a perspective view of an apparatus for carrying out the method of an embodiment of the present invention.

【図2】検出エッジの断面図である。FIG. 2 is a sectional view of a detection edge.

【図3】検出エッジの正面図である。FIG. 3 is a front view of a detection edge.

【図4】検出アルゴリズムを示すフローチャートであ
る。
FIG. 4 is a flowchart showing a detection algorithm.

【図5】画像の正面図である。FIG. 5 is a front view of an image.

【図6】ひっかき傷の場合のワークの側面と検出エリア
の正面との関係図である。
FIG. 6 is a relationship diagram between a side surface of a work and a front surface of a detection area in the case of a scratch.

【図7】押込み傷の場合のワークの側面と検出エリアの
正面との関係図である。
FIG. 7 is a relationship diagram between a side surface of a work and a front surface of a detection area in the case of an indentation scratch.

【図8】平行ひっかき傷の場合のワークの側面と検出エ
リアの正面との関係図である。
FIG. 8 is a relationship diagram between a side surface of a work and a front surface of a detection area in the case of parallel scratches.

【図9】平行ひっかき傷の場合の、検出エリアを複数の
細分化検出エリアに分割した状態の正面図である。
FIG. 9 is a front view of a state in which a detection area is divided into a plurality of subdivided detection areas in the case of parallel scratches.

【符号の説明】[Explanation of symbols]

1 ホイールリム 2 押込み傷 3 エッジ 4 CCDカメラ 5 溶接部 6 光源 1 Wheel rim 2 Indentation scratch 3 Edge 4 CCD camera 5 Welding part 6 Light source

フロントページの続き (72)発明者 山田 秋彦 東京都千代田区四番町5番地9 トピー工 業株式会社内Front page continuation (72) Inventor Akihiko Yamada 9 Topy Kogyo Co., Ltd. 5-4 Yonbancho, Chiyoda-ku, Tokyo

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 自動車用ホイールリムの表面にホイール
リム軸方向両側から斜めに光をあて、ホイールリム軸方
向と直角方向からCCDカメラにより傷のエッジが輝度
大なホイールリム表面画像を取り込む工程と、 前記取り込んだホイールリム表面画像をCPUにて画像
処理する工程と、からなり、 前記画像処理工程は、 画像をリム軸方向にn個、リム径方向にm個の画素に分
割してリム軸方向に隣接画素との相対濃度を演算するこ
とを全画素について実行する工程と、 前記画像をリム軸方向にi個(ただし、i<n)、リム
径方向にj個(ただし、j<m)の画素を有する検出エ
リアに分割し、演算を実行する1つの検出エリアを設定
し、該検出エリアについて検出エリア内エッジ密度を演
算して該検出エリア内エッジ密度がA%(ただし、Aは
6〜10に設定された値)以上か否かを判定し、かつ前
記検出エリアについて検出エリア内エッジ縦横比率を演
算して該検出エリア内エッジ縦横比率がB(ただし、B
は0.4〜0.8に設定された値)以上か否かを判定し
て、検出エリア内エッジ密度がA%以上でかつ検出エリ
ア内エッジ縦横比率がB以上の検出エリアを選出し、 前記選出検出エリアのみについて、検出エリアをリム軸
方向にi´個(ただし、i´<i)、リム径方向にj個
の画素を有する複数の細分化検出エリアに分割し、該細
分化検出エリアの1つについて、細分化検出エリア内エ
ッジ縦横比率を演算して該細分化検出エリア内エッジ縦
横比率がC(ただし、Cは0.2〜0.4に設定されて
いる)以上のみのエッジを残し、かつ細分化検出エリア
内エッジ密度を演算して該細分化検出エリア内エッジ密
度がD%(ただし、Dは1〜5に設定されている)未満
のエッジを除去する、ことを前記選出検出エリアの全細
分化検出エリアについて実行する工程と、 前記工程の条件に合致するエッジがある場合は該エッジ
は押込み傷のエッジであるとし、それ以外は外乱と判定
する工程と、 つぎの検出エリアに移って前記検出エリア選出工程以後
の工程を実行することを、前記検出エリアの全部につい
て繰り返す工程と、からなる自動車用ホイールリムの押
込み傷検出方法。
1. A step of irradiating the surface of an automobile wheel rim diagonally from both sides in the axial direction of the wheel rim, and capturing a wheel rim surface image with a high brightness of a scratch edge by a CCD camera from a direction perpendicular to the axial direction of the wheel rim. Image processing of the captured wheel rim surface image with a CPU, wherein the image processing step divides the image into n pixels in the rim axis direction and m pixels in the rim radial direction to separate the rim axis. Calculating relative densities with respect to adjacent pixels in all directions, i images in the rim axis direction (where i <n) and j images in the rim radial direction (where j <m) ) Is divided into detection areas each having one pixel, and one detection area for performing calculation is set, and the edge density in the detection area is calculated for the detection area, and the edge density in the detection area is A% (only , A is determined whether or not the setting value) or more of the 6-10, and the detection area edge aspect ratios and calculates the detection area edge aspect ratio for the detection area B (however, B
Is a value set to 0.4 to 0.8) or more, and selects a detection area in which the edge density in the detection area is A% or more and the edge aspect ratio in the detection area is B or more, With respect to only the selected detection area, the detection area is divided into a plurality of subdivided detection areas having i ′ pixels (where i ′ <i) in the rim axis direction and j pixels in the rim radial direction, and the subdivided detection areas are detected. The edge aspect ratio within the subdivision detection area is calculated for one of the areas, and the edge aspect ratio within the subdivision detection area is C (where C is set to 0.2 to 0.4) or more. Leaving edges, and calculating the edge density in the subdivision detection area to remove edges whose edge density in the subdivision detection area is less than D% (where D is set to 1 to 5). The total subdivision detection area of the selection detection area Steps to be executed by the following, and if there is an edge that meets the conditions of the above step, the edge is considered to be the edge of the indentation, otherwise the step is determined to be disturbance, and the process moves to the next detection area and the detection area is selected. A method for detecting indentation damage of a wheel rim for an automobile, comprising: performing the steps after the step for all the detection areas.
JP7075520A 1995-03-31 1995-03-31 Method for detecting push-in scratch of wheel rim for automobile Pending JPH08271435A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7075520A JPH08271435A (en) 1995-03-31 1995-03-31 Method for detecting push-in scratch of wheel rim for automobile

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7075520A JPH08271435A (en) 1995-03-31 1995-03-31 Method for detecting push-in scratch of wheel rim for automobile

Publications (1)

Publication Number Publication Date
JPH08271435A true JPH08271435A (en) 1996-10-18

Family

ID=13578598

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7075520A Pending JPH08271435A (en) 1995-03-31 1995-03-31 Method for detecting push-in scratch of wheel rim for automobile

Country Status (1)

Country Link
JP (1) JPH08271435A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017130718A1 (en) * 2016-01-29 2017-08-03 富士フイルム株式会社 Crack detection device, and crack detection method and program
CN115290661A (en) * 2022-09-28 2022-11-04 江苏浚荣升新材料科技有限公司 Rubber ring defect identification method based on computer vision

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017130718A1 (en) * 2016-01-29 2017-08-03 富士フイルム株式会社 Crack detection device, and crack detection method and program
CN115290661A (en) * 2022-09-28 2022-11-04 江苏浚荣升新材料科技有限公司 Rubber ring defect identification method based on computer vision
CN115290661B (en) * 2022-09-28 2022-12-16 江苏浚荣升新材料科技有限公司 Rubber ring defect identification method based on computer vision

Similar Documents

Publication Publication Date Title
US9007458B2 (en) Method for monitoring the quality of the primer layer applied to a motor-vehicle body prior to painting
WO2007062563A1 (en) On-line automatic inspection method for detecting surface flaws of steel during the pretreatment of the ship steel
JP4893788B2 (en) Tube extraction inspection method and apparatus for heat exchanger
JP2007212283A (en) Visual inspection device and visual inspection method
JP6950811B2 (en) Metal plate surface defect detection method and equipment, and galvanized steel sheet manufacturing method
JP2000162146A (en) Surface inspecting device
JPH08285780A (en) Method for inspecting flaw on outer surface of steel pipe
JPH03140847A (en) Method for detecting shape of flaw part
JPH08271435A (en) Method for detecting push-in scratch of wheel rim for automobile
JP3224667B2 (en) Metal can end winding appearance inspection method and apparatus and image processing method
JP4697328B2 (en) Inspection method for heat exchanger core
CN111833350A (en) Machine vision detection method and system
JP4680659B2 (en) Product tire appearance inspection method and product tire appearance inspection auxiliary device
JP2001059717A (en) Surface defect inspection method
JP3160743B2 (en) LCD panel defect inspection equipment
JPH01165940A (en) Inspecting apparatus of surface defect
KR101713001B1 (en) Metal panel detecting appratus by processing image for method same
JP6249241B2 (en) Metal plate surface defect detection method
JP2001126064A (en) Method for detecting defect on metallic surface
JP4017585B2 (en) Paint surface inspection equipment
JP2002090305A (en) Surface defect inspection device
JPH01209307A (en) Method for inspecting surface configuration of welded portion
JPH03113352A (en) Flaw inspecting method for work such as rubber article
JP6576661B2 (en) Image processing device
JP2002022666A (en) Method and apparatus for inspecting spherical surface