JPH08271418A - Infrared gas analyzer and cvd system - Google Patents

Infrared gas analyzer and cvd system

Info

Publication number
JPH08271418A
JPH08271418A JP35443395A JP35443395A JPH08271418A JP H08271418 A JPH08271418 A JP H08271418A JP 35443395 A JP35443395 A JP 35443395A JP 35443395 A JP35443395 A JP 35443395A JP H08271418 A JPH08271418 A JP H08271418A
Authority
JP
Japan
Prior art keywords
gas
infrared
space
light source
gas analyzer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP35443395A
Other languages
Japanese (ja)
Other versions
JP3299102B2 (en
Inventor
Naohito Shimizu
直仁 清水
Shigeyuki Akiyama
重之 秋山
Toshihiko Uno
敏彦 宇野
Koji Tominaga
浩二 富永
Hideji Takada
秀次 高田
Koichi Matsumoto
浩一 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Horiba Ltd
Original Assignee
Horiba Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Horiba Ltd filed Critical Horiba Ltd
Priority to JP35443395A priority Critical patent/JP3299102B2/en
Publication of JPH08271418A publication Critical patent/JPH08271418A/en
Application granted granted Critical
Publication of JP3299102B2 publication Critical patent/JP3299102B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE: To provide an infrared gas analyzer in which abnormal situation can be avoided by hermetically sealing the space for an infrared light source or an infrared detector using a retainer plate through which lead wires in a tubular body are passed while being sealed hermetically. CONSTITUTION: A cell block 1 is provided with a gas channel 1a and through holes 1b, 1c reaching the channel 1a at a predetermined angle (right angle) are made in the central part of the cell block 1. Tubular bodies 2, 3 are fitted in the holes and secured to the cell block 1 by means of screws. Double seal structure is employed for the channel 1a and the inner spaces 2g, 3g of the tubular bodies 2, 3 for receiving a light source 7 and a detector 8 so that poison gas or the like does not leak to the inner space or to the outside. Lead wires 11 for light source disposed in the space 2g of the tubular body 2 are passed through the retainer plate 5 and the gaps are sealed with fused glass. Similarly, lead wires 14 are passed through the retainer plate 6 of the other tubular body 3 and the gaps are also sealed with fused glass.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、液体及び固体金
属化合物の蒸気或いは種々の半導体用特殊材料ガス等を
半導体製造装置に供給する管路(インライン)の途中に
設置可能で且つ各成分ごとのガス濃度或いは流量を測定
し制御することのできる赤外線ガス分析計及び赤外線ガ
ス分析計を用いたCVD(Chemical Vapor Deposition
、以下CVDとする)装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention can be installed in the middle of a pipeline (inline) for supplying vapors of liquid and solid metal compounds or various special material gases for semiconductors to a semiconductor manufacturing apparatus, and for each component. Infrared gas analyzer capable of measuring and controlling gas concentration or flow rate and CVD (Chemical Vapor Deposition) using the infrared gas analyzer
, Hereinafter referred to as CVD) apparatus.

【0002】[0002]

【従来の技術】半導体製造装置におけるシリコンウェ−
ハ上への薄膜形成、酸化及びエッチング処理等の工程で
は半導体用特殊材料ガスを用いて所定の処理が行われ
る。各種の半導体用特殊材料ガス、例えばモノシラン
(SiH4)、ホスフィン(PH3 )、アルシン(AsH3)等
は、ガスボンベに充填され所定の成分ガス及び各成分濃
度を所定の流量で混合させてから半導体製造装置に供給
される。このような半導体用特殊材料ガスの中には極め
て有毒なもの、可燃性のもの等が使用されておりガス供
給装置で混合成分濃度や流量が管理されている。
2. Description of the Related Art Silicon wafers in semiconductor manufacturing equipment
In the steps such as thin film formation on the c, oxidation and etching treatment, a predetermined treatment is performed using a special material gas for semiconductor. Various special material gases for semiconductors, such as monosilane (SiH 4 ), phosphine (PH 3 ), arsine (AsH 3 ), etc., are filled in a gas cylinder and mixed with a predetermined component gas and each component concentration at a predetermined flow rate. Supplied to semiconductor manufacturing equipment. Among such special material gases for semiconductors, extremely toxic ones and flammable ones are used, and the concentration and flow rate of the mixed components are controlled by the gas supply device.

【0003】ガスボンベの半導体用特殊材料ガスの種類
や濃度等を測定する手段を備えたガス供給装置として
は、半導体製造装置やガスボンベ収納庫のガス配管系の
一部にサンプリング用の配管を設け、図4に示すような
短光路セルを有する赤外線ガス分析計を備えた装置があ
る。この赤外線ガス分析計はスペ−スセル41をショ−
トセル42に嵌め入れて空間43を形成しOリング44
でシ−ルするように構成され、ショ−トセル42に設け
られた流入管45よりガスを流入させ空間43を通過さ
せて排出管46より排出させるように構成されている。
そしてスペ−スセル41の一方には光源が配置され、シ
ョ−トセル42側には検出器が配置され、前記空間43
を通過するガスの種類や濃度等を測定、分析する。この
場合、スペ−スセル42の空間41aには窒素ガス(N
2 )やアルゴンガス(Ar)等のゼロガスが充填され、
また、これらのスペ−スセル41及びショ−トセル42
には赤外線を通すセル窓47、48がそれぞれ設けられ
ている。
As a gas supply device equipped with a means for measuring the type and concentration of a special material gas for semiconductors in a gas cylinder, a sampling pipe is provided in a part of a gas pipe system of a semiconductor manufacturing device or a gas cylinder storage box. There is an apparatus provided with an infrared gas analyzer having a short path cell as shown in FIG. This infrared gas analyzer is equipped with a space cell 41
The O-ring 44 is formed by fitting the to-cell 42 into the space 43.
The gas is introduced through the inflow pipe 45 provided in the short cell 42, passed through the space 43, and exhausted through the exhaust pipe 46.
A light source is arranged on one side of the space cell 41, and a detector is arranged on the side of the short cell 42.
Measure and analyze the type and concentration of the gas passing through. In this case, the space 41a of the space cell 42 contains nitrogen gas (N
2 ) or zero gas such as argon gas (Ar) is filled,
In addition, these space cells 41 and short cells 42
Are provided with cell windows 47 and 48 through which infrared rays pass.

【0004】近年、次世代の超高集積メモリデバイスと
して強誘電体薄膜や高誘電率常誘電体膜が用いられるよ
うになり、その成膜法として、スパッタ法、ゾル−ゲル
法、MOD(Metalorganic Decomposition)法、CVD
法等があるが、堆積速度が早い、ダメ−ジが少ない、組
成制御が容易である、等の点から特にCVD法の一種で
あるMOCVD法が注目されている。このCVD法は有
機金属原料ガスを基板に吹き付け、基板上で化学反応さ
せ薄膜を形成する方法であって、装置構成は出発原料で
ある液体及び固体の金属化合物をステンレス製容器など
に封入し、これを恒温槽等により一定温度に保持して蒸
気ガスを発生させ、該蒸気ガスを不活性ガス等のキャリ
ヤガスで反応室に供給する方式が用いられる。この場
合、キャリヤガスの流量はマスフロ−コントロ−ラによ
り制御される。
In recent years, ferroelectric thin films and high-dielectric-constant paraelectric films have come to be used as next-generation ultra-high-integrated memory devices, and sputtering methods, sol-gel methods, and MOD (Metalorganic) are used as film forming methods. Decomposition) method, CVD
The MOCVD method, which is a kind of the CVD method, has attracted attention because of its high deposition rate, little damage, easy composition control, and the like. This CVD method is a method of spraying an organometallic raw material gas onto a substrate and chemically reacting on the substrate to form a thin film. The apparatus configuration is such that a liquid or solid metal compound as a starting raw material is enclosed in a stainless steel container or the like, A method is used in which this is kept at a constant temperature in a constant temperature bath or the like to generate a vapor gas, and the vapor gas is supplied to the reaction chamber by a carrier gas such as an inert gas. In this case, the flow rate of the carrier gas is controlled by the mass flow controller.

【0005】[0005]

【発明が解決しようとする課題】ガスボンベの半導体用
特殊材料ガスの種類や濃度等を測定する従来の赤外線ガ
ス分析計を備えたガス供給装置では、短光路セルはガス
供給管路に直接配置されるものではなく、配管系にバイ
パス管路を設けて配置されるものであって、安全上及び
モニタ−項目(成分、濃度、流量等)のチェック機構が
不完全である。即ち、シ−ル部分に関しては接着及びゴ
ムOリングが用いられているため気密性が低く、また、
検出器自体へのガスリ−クに関する検知機構が無いため
リ−クが生じた場合検出器周囲へガスが流出し、また流
出した場合対処できないという欠点を有している。更
に、従来の装置ではガス流路に『溜まり部分』ができる
ためパ−ジ操作や無害化処理が必要となり事後処理が煩
雑であるという問題がある。
In a gas supply device equipped with a conventional infrared gas analyzer for measuring the type, concentration, etc. of a special material gas for semiconductors in a gas cylinder, a short optical path cell is arranged directly in a gas supply line. However, it is arranged by providing a bypass line in the piping system, and the check mechanism of safety and monitor items (component, concentration, flow rate, etc.) is incomplete. That is, since the seal and the rubber O-ring are used for the seal portion, the airtightness is low, and
Since there is no detection mechanism related to the gas leak to the detector itself, there is a drawback that when a leak occurs, the gas flows out to the surroundings of the detector, and when it leaks, it cannot be dealt with. Further, the conventional apparatus has a problem that a post operation is complicated because a purge operation and a detoxification process are required because a "reservoir part" is formed in the gas flow path.

【0006】また、CVD装置によりPLZT((P
b,La)(Zr,Ti)O3 )強誘電体薄膜などの複
合金属酸化物を作製する場合、その組成比を化学量論組
成にするために、各々の出発原料からの蒸気ガス量を制
御する方法として、各出発原料容器の温度とキャリヤガ
ス流量を適当に選択することにより行っている。しかし
ながら、有機金属である液体及び固体の多くの出発原料
はその蒸気圧の安定性に問題があり、安定した蒸気ガス
を再現性よく反応室に送り込むことが困難である。ま
た、容器内に封入した原料の量の確認は容器内を観察す
ることができないため薄膜等を作製後、組成分析、膜厚
測定等を行って調べなければならない。更に、液体原料
はバブリング等を行っていることが多く、この場合、液
量が減少していくことにより蒸気ガス量が変化してしま
うという問題がある。
Further, PLZT ((P
b, La) (Zr, Ti) O 3 ) When preparing a composite metal oxide such as a ferroelectric thin film, in order to make the composition ratio stoichiometric, the amount of vapor gas from each starting material is adjusted. As a control method, the temperature of each starting material container and the carrier gas flow rate are appropriately selected. However, many starting materials, which are organic metals such as liquids and solids, have a problem in stability of vapor pressure, and it is difficult to send a stable vapor gas into the reaction chamber with good reproducibility. Further, since it is not possible to observe the inside of the container in order to confirm the amount of the raw material sealed in the container, it is necessary to conduct composition analysis, film thickness measurement, etc. after forming a thin film or the like and examine it. Further, the liquid raw material is often subjected to bubbling or the like, and in this case, there is a problem that the amount of vapor gas changes due to the decrease in amount of liquid.

【0007】この発明は上記課題に着目してなされたも
のであり、気密性が高くガス供給管路(インライン)途
中に設置してガス成分、濃度、流量等を計測することが
可能であり、若しガス成分、濃度、流量等に異常が生じ
たり、検出器内部へガスリ−クが生じても直ちにこれを
検出して異常事態を回避することが可能な製作コストも
比較的安い赤外線ガス分析計を提供することを目的とし
ている。更に、この発明は、ガス流量と容器温度を制御
することにより蒸気ガス量を任意に制御することが可能
でPLZT或いはPZT等複合金属酸化物等の多元素化
合物の組成比を安定的に再現し、且つ精度よく成膜する
ことのできるCVD装置を提供することを目的としてい
る。
The present invention has been made in view of the above-mentioned problems, and it is possible to measure the gas component, the concentration, the flow rate, etc. by installing it in the middle of the gas supply pipeline (in-line) because of its high airtightness. Even if an abnormality occurs in the gas component, concentration, flow rate, etc., or a gas leak occurs inside the detector, it can be immediately detected and the abnormal situation can be avoided. The purpose is to provide a total. Further, according to the present invention, the vapor gas amount can be arbitrarily controlled by controlling the gas flow rate and the container temperature, and the composition ratio of a multi-element compound such as PLZT or PZT such as a complex metal oxide can be stably reproduced. It is an object of the present invention to provide a CVD apparatus capable of accurately forming a film.

【0008】[0008]

【課題を解決するための手段】即ち、この発明は上記す
る課題を解決するために、赤外線ガス分析計が、セル
ブロックにガス流路を設けると共に該ガス流路に対して
直角或いは所定角度両方向より穴を貫通穿設し、端部に
セル窓を固着し該セル窓内側に光源又は検出器を配置す
る空間を設けた筒体を、ガス流路にて前記セル窓が所定
測定セル長を有して対向するよう前記穴の両側より嵌め
入れ、前記筒体内の赤外線光源又は赤外線検出器用のリ
−ド線をハ−メチックシ−ルして通した押さえ板で前記
赤外線光源又は赤外線検出器用の空間を密封してなるこ
とを特徴とする。
SUMMARY OF THE INVENTION In order to solve the above problems, the present invention provides an infrared gas analyzer in which a gas flow path is provided in a cell block and the gas flow path is at a right angle or a predetermined angle in both directions. A cylindrical body having a through hole formed therein, a cell window fixed at the end, and a space for arranging a light source or a detector inside the cell window is provided in the gas flow path so that the cell window has a predetermined measurement cell length. It is fitted from both sides of the hole so as to face each other, and the infrared ray source or infrared ray detector for the infrared ray detector or infrared ray detector is provided with a pressing plate through which a lead wire for the infrared ray source or infrared ray detector in the cylindrical body is hermetically sealed. The feature is that the space is sealed.

【0009】また、前記筒体端部に設けたセル窓と光
源又は検出器を配置する空間との間にガスリ−ク検知用
空間を設けて、リ−ク時の信号の異常な増大を検出する
手段を設けてなることを特徴とする。
Further, a gas leak detecting space is provided between the cell window provided at the end of the cylindrical body and the space in which the light source or the detector is arranged to detect an abnormal increase in the signal during the leak. It is characterized in that it is provided with a means for doing.

【0010】更に、前記筒体のセル窓とは反対側の端
部にフランジを形成すると共に赤外線光源又は赤外線検
出器用の空間を密封する押さえ板を該フランジに固定
し、該フランジをメカニカルOリングでシ−ルしセルブ
ロックに固定してなることを特徴とする。
Furthermore, a flange is formed at the end of the cylinder opposite to the cell window, and a pressing plate for sealing the space for the infrared light source or the infrared detector is fixed to the flange, and the flange is mechanical O-ring. And is fixed to the cell block.

【0011】また、CDV装置が、薄膜形成用基板を
設置する反応室と、該反応室と管路で連結されたガス混
合室と、成膜用原料物質を充填し前記混合室に管路で連
結された容器を収容した恒温槽と、該ガス混合室と前記
各恒温槽に収容された容器を連結する管路に設置された
赤外線ガス分析計と、前記混合室にキャリヤガスを供給
する例えばガスボンベ等のガス供給装置と、前記原料物
質を充填した各容器とこれらの各容器にキャリヤガスを
供給する例えばガスボンベ等のガス供給装置と、前記混
合室とガス供給装置の管路途中及び前記原料物質を充填
した各容器とガス供給装置との管路途中に設置されたマ
スフロ−コントロ−ラと、前記赤外線ガス分析計からの
ガス成分毎の濃度或いは前記マスフロ−コントロ−ラか
らの流量の検出信号により前記恒温室の温度及び前記各
マスフロ−コントロ−ラのガス流量を制御する制御装置
と,を備えたことを特徴とする。
Further, the CDV apparatus comprises a reaction chamber in which a substrate for forming a thin film is placed, a gas mixing chamber connected to the reaction chamber by a pipe, a raw material for film formation is filled, and the mixing chamber is connected by a pipe. For example, a constant temperature bath containing the connected containers, an infrared gas analyzer installed in a pipe connecting the gas mixing chambers with the containers stored in the constant temperature baths, and a carrier gas supplied to the mixing chambers, for example. A gas supply device such as a gas cylinder, each container filled with the raw material and a gas supply device such as a gas cylinder for supplying a carrier gas to each of these containers, the mixing chamber and the conduit of the gas supply device, and the raw material A mass flow controller installed in the conduit between each container filled with a substance and a gas supply device, and detection of the concentration of each gas component from the infrared gas analyzer or the flow rate from the mass flow controller signal More the temperature of the thermostatic chamber and the respective mass flow - control - to a control device for controlling a gas flow rate of La, comprising the.

【0012】或いは、の手段としたCVD装置の赤
外線ガス分析計が若しくは若しくはの手段の赤外
線ガス分析計であることを特徴とする。
Alternatively, the infrared gas analyzer of the CVD apparatus as the above means is or is the infrared gas analyzer of the above means.

【0013】赤外線ガス分析計を上記乃至の手段と
すると、気密性を高くすることができるので実際にガス
を供給する管路にインラインガスモニタとして設置する
ことが可能となる。この赤外線ガス分析計は、例えば半
導体用ガス供給装置用の制御装置に接続して測定し分析
した情報を送信し、異常が生じた場合直ちに半導体用ガ
ス供給装置からのガス供給を停止するために用いること
ができる。特に、の手段により、この赤外線ガス分析
計自身にガスのリ−クが生じた場合もこれを感知してガ
ス供給を停止することが可能となる。
When the infrared gas analyzer is any of the above-mentioned means, since the airtightness can be enhanced, it can be installed as an in-line gas monitor in the pipeline for actually supplying the gas. This infrared gas analyzer, for example, is connected to a control device for a semiconductor gas supply device to transmit measured and analyzed information, and to immediately stop the gas supply from the semiconductor gas supply device when an abnormality occurs. Can be used. In particular, by the means, even when a gas leak occurs in the infrared gas analyzer itself, it is possible to detect the gas leak and stop the gas supply.

【0014】また、CVD装置を或いはの手段とす
ると、強誘電体薄膜作製に際し、反応室内へ出発原料の
蒸気ガスの量を安定的に供給することができる。これに
より特性の揃った強誘電体薄膜を再現性よく形成するこ
とが可能となる。
When a CVD apparatus is used as another means, the amount of vapor gas as a starting material can be stably supplied into the reaction chamber when the ferroelectric thin film is formed. This makes it possible to form a ferroelectric thin film having uniform characteristics with good reproducibility.

【0015】[0015]

【発明の実施の形態】以下、この発明の具体的実施例に
ついて図面を参照しながら説明する。図1はこの発明の
CVD装置の構成を示す図であって、特にPLZT
((Pb,La)(Zr,Ti)O3 )、以下単にPL
ZTとする)強誘電体薄膜を作製する場合を示す図であ
る。但し、この図はLa=0の場合、即ちPZTを作製
する場合の図であり、PLZTの場合図示しないが、更
にLa供給のための容器と恒温槽及び配管が必要とな
る。このCVD装置は、基板を設置する反応室21と、
ガス混合室22と、後述する原料物質を充填した容器2
3,24,25を収容した恒温槽26,27,28と、
前記反応室21とガス混合室22とを連結する管路31
と、該ガス混合室22と前記或いは後述する原料物質を
充填した容器23,24,25とを連結する管路32,
33,34と、キャリヤガスのアルゴン等不活性気体を
充填した図示しないガス供給装置のボンベと、前記原料
物質を充填した容器23,24,25とキャリヤガスの
不活性ガス例えばアルゴンを充填したガス供給装置のボ
ンベとを連結した管路35,36,37と、前記各管路
32,33,34に設置された赤外線ガス分析計20
と、前記各管路35,36,37及び前記ガス混合室2
2とキャリヤガスの不活性ガス例えばアルゴンを充填し
た図示しないボンベとを連結した管路38及び該管路3
8に設置したマスフロ−コントロ−ラ29と、前記赤外
線ガス分析計20でガスの成分毎の濃度或いはマスフロ
−コントロ−ラで流量を検出し、前記恒温室26,2
7,28の温度及び前記各マスフロ−コントロ−ラ29
のガス流量等を制御する制御装置(コンピュ−タ)30
と,で構成されている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Specific embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a diagram showing the structure of a CVD apparatus according to the present invention.
((Pb, La) (Zr, Ti) O 3 ), simply PL
It is a figure which shows the case where a ferroelectric thin film (ZT) is produced. However, this diagram is a diagram in the case of La = 0, that is, in the case of producing PZT, and although not shown in the case of PLZT, a container for supplying La, a constant temperature bath and piping are further required. This CVD apparatus includes a reaction chamber 21 in which a substrate is installed,
Gas mixing chamber 22 and container 2 filled with raw material described later
Constant temperature baths 26, 27, 28 containing 3, 24, 25,
Pipe line 31 connecting the reaction chamber 21 and the gas mixing chamber 22
And a pipe line 32 connecting the gas mixing chamber 22 and the containers 23, 24, 25 filled with the above-mentioned or later-described raw material.
33, 34, a cylinder of a gas supply device (not shown) filled with an inert gas such as argon as a carrier gas, containers 23, 24, 25 filled with the raw material and an inert gas as a carrier gas, for example, a gas filled with argon Pipe lines 35, 36, 37 connecting the cylinders of the supply device, and the infrared gas analyzer 20 installed in each of the pipe lines 32, 33, 34.
And each of the pipelines 35, 36, 37 and the gas mixing chamber 2
2 and a pipe 38, in which an inert gas as a carrier gas, for example, a cylinder (not shown) filled with argon, is connected, and the pipe 3
The mass flow controller 29 installed in No. 8 and the infrared gas analyzer 20 detect the concentration of each gas component or the mass flow controller to detect the flow rate.
7, 28 and each of the mass flow controllers 29
Control device (computer) 30 for controlling the gas flow rate of the
It consists of and.

【0016】前記反応室21には、例えば、MgO基板
或いはMgOに白金を配向させて作成した基板等が配置
される。前記恒温槽26内の容器23にはPbとして
〔Pb(C2 5 4 〕(液体)やPb(C11182
(固体)或いは(C2 5 3PbOCH2 C(C
3 5 (液体)が充填され、前記恒温槽27内の容器
24にはZrとして〔Zr(t−OC4 9 4 〕(液
体)或いはZr(C11182 4 (固体)が充填さ
れ、恒温槽28内の容器25にはTiとしてテトライソ
プロポキシチタン〔Ti(i−OC3 7 4 〕(液
体)或いはTi(C11193 2 (I−OC3 7
2 (固体)が充填されている。尚、PLZTの場合、図
1の配管に更にLaとして図示しない容器に〔La(i
−C3 7 5 43 〕(液体)或いはLa(C11
192 3 (固体)が充填されてAr等の不活性ガスに
よりガス混合室22へ供給される。出発原料をこれら液
体或いは固体の有機金属の中から適当に選択して各容器
に封入し、制御装置30により各恒温槽(26,27,
28)内を所定の一定温度となるように制御すると共
に、赤外線ガス分析計によりその成分、濃度、流量を検
出し、各マスフロ−コントロ−ラ29によりキャリヤガ
スの流量を所定の流量となるように制御する。
In the reaction chamber 21, for example, a MgO substrate or a substrate formed by orienting platinum on MgO is arranged. [Pb (C 2 H 5 ) 4 ] (liquid) or Pb (C 11 H 18 O 2 ) is used as Pb in the container 23 in the constant temperature bath 26.
(Solid) or (C 2 H 5 ) 3 PbOCH 2 C (C
H 3 ) 5 (liquid) is filled, and the container 24 in the constant temperature bath 27 is Zr [Zr (t-OC 4 H 9 ) 4 ] (liquid) or Zr (C 11 H 18 O 2 ) 4 ( solids) is filled, tetraisopropoxytitanium [Ti (i-OC 3 H 7 ) 4 ] as Ti the container 25 in the thermostatic chamber 28 (liquid) or Ti (C 11 H 19 O 3 ) 2 (I- OC 3 H 7 )
2 (solid) filled. In addition, in the case of PLZT, the pipe shown in FIG.
-C 3 H 7 C 5 H 4 ) 3 ] (liquid) or La (C 11 H
19 O 2 ) 3 (solid) is filled and supplied to the gas mixing chamber 22 with an inert gas such as Ar. The starting material is appropriately selected from these liquid or solid organic metals and sealed in each container, and the controller 30 controls each thermostat (26, 27,
28) The inside of the chamber is controlled so as to have a predetermined constant temperature, and the components, concentrations, and flow rates of the components are detected by an infrared gas analyzer, and the flow rate of the carrier gas becomes a predetermined flow rate by each mass flow controller 29. To control.

【0017】次に、上記構成としたCVD装置の配管途
中に設置した赤外線ガス分析計20の構成について詳細
に説明する。図2は前記配管(32,33,34)途中
に設置された赤外線ガス分析計20の構成の詳細を示す
断面図、図3は図2の赤外線ガス分析計の中央部の拡大
図である。セルブロック1にはガスボンベ等から供給さ
れるガスの流通するガス流路1aが設けられ両側には図
示しない配管継手等を連結できるよう雌ねじ部が設けら
れている。そして該セルブロック1の中央部には流路1
aに対して所定角度(直角)方向から該流路1aに達す
る穴1b、1cが貫通穿設され、これらの穴にはそれぞ
れフランジ2a及び3aを備えた筒体2及び3が嵌め込
まれ、これらのフランジ部2a、3aはボルト4により
セルブロック1にねじ止めされて固定されるが、この場
合後述するこれらの筒体2、3の空間2g、3gを密封
する押さえ板5、6と共に固定される。これらのフラン
ジ2a、3aを備えた筒体2及び3は同一形状、寸法に
製作しても良い。尚、フランジ2a、3aを設けること
なく筒体2、3に直接押さえ板5、6をセルブロック1
に固定して空間2c、3cを密封するようにしても良
い。
Next, the structure of the infrared gas analyzer 20 installed in the middle of the piping of the CVD apparatus having the above structure will be described in detail. 2 is a sectional view showing the details of the configuration of the infrared gas analyzer 20 installed in the middle of the pipes (32, 33, 34), and FIG. 3 is an enlarged view of the central portion of the infrared gas analyzer of FIG. The cell block 1 is provided with a gas flow path 1a through which gas supplied from a gas cylinder or the like flows, and female threads are provided on both sides so that a pipe joint or the like not shown can be connected. The flow path 1 is provided at the center of the cell block 1.
Holes 1b and 1c that reach the flow path 1a from a predetermined angle (right angle) direction to a are penetratingly formed, and cylindrical bodies 2 and 3 having flanges 2a and 3a are fitted into these holes, respectively. The flange portions 2a, 3a of the above are fixed by being screwed to the cell block 1 with bolts 4, but in this case, they are fixed together with the pressing plates 5, 6 for sealing the spaces 2g, 3g of these cylindrical bodies 2, 3 described later. It The cylindrical bodies 2 and 3 provided with these flanges 2a and 3a may be manufactured in the same shape and size. In addition, the pressing plates 5 and 6 are directly attached to the cylindrical bodies 2 and 3 without providing the flanges 2a and 3a.
Alternatively, the spaces 2c and 3c may be fixed to the above to seal the spaces 2c and 3c.

【0018】前記筒体2及び3の先端部の前記流路1a
に面する側には、それぞれ段部2b、3bを形成した穴
2c、3cと該段部2b、3bに連続したリ−ク検知用
空間2d、3dが形成されている。更に、これらのリ−
ク検知用空間2d、3dに続いて光源7や検出器8等を
配置する空間2e、3eが形成されるが、該空間2e、
3eの途中には段部2f、3fが形成されている。
The flow path 1a at the tips of the cylindrical bodies 2 and 3
Holes 2c and 3c in which stepped portions 2b and 3b are respectively formed and leak detecting spaces 2d and 3d which are continuous with the stepped portions 2b and 3b are formed on the side facing each other. In addition, these leads
The spaces 2e and 3e for arranging the light source 7, the detector 8 and the like are formed following the space 2d and 3d for detecting the space.
Steps 2f and 3f are formed in the middle of 3e.

【0019】前記筒体2、3の先端部に設けた段付の穴
2c、3cにはセル窓12及び13が固着される。これ
らのセル窓12及び13は赤外線を透過させる結晶材
料、例えばフッ化カルシウム、フッ化リチウム、二酸化
珪素、サファイヤ等が用いられる。これらの筒体2、3
の端部に設けるセル窓12、13は金属スパッタリング
により固着して取り付けられ、セルブロック1に設けた
流路1aに対向して配置される。この場合、所定のセル
長dをもって対向配置される。また、前記セルブロック
1とフランジ2aとの間、及びセルブロック1とフラン
ジ3aとの間はそれぞれメカニカルOリング9、9でシ
−ルされ、更に、光源7を配置する空間2eにおいて該
光源7を覆うキャップ7aと段部2fの間、検出器8を
配置する空間3eにおいて該検出器8を覆うキャップ8
aと段部3fの間はメカニカルOリング10、10でシ
−ルされる。このようにセルブロック1の流路1aと、
光源7や検出器8を配置する筒体2、3の内部空間2g
及び3gとはセル窓12、13が金属スパッタリングに
より取り付けられるので二重シ−ル構造となり有毒ガス
或いは爆発の危険性のあるガスが筒体2、3の光源7や
検出器8を配置した内部空間や外部へ漏洩しないような
タイトな構造となる。
The cell windows 12 and 13 are fixed to the stepped holes 2c and 3c provided at the tips of the cylindrical bodies 2 and 3, respectively. For these cell windows 12 and 13, a crystalline material that transmits infrared rays, for example, calcium fluoride, lithium fluoride, silicon dioxide, sapphire or the like is used. These cylinders 2, 3
The cell windows 12 and 13 provided at the ends of the cell block are fixedly attached by metal sputtering, and are arranged so as to face the channel 1a provided in the cell block 1. In this case, they are arranged facing each other with a predetermined cell length d. The mechanical O-rings 9 and 9 seal the space between the cell block 1 and the flange 2a and the space between the cell block 1 and the flange 3a, respectively. Between the cap 7a for covering the detector and the step portion 2f, the cap 8 for covering the detector 8 in the space 3e in which the detector 8 is arranged.
Mechanical O-rings 10 and 10 seal between a and the step portion 3f. In this way, the flow path 1a of the cell block 1
Internal space 2g of the cylinders 2 and 3 in which the light source 7 and the detector 8 are arranged
And 3g have a double seal structure because the cell windows 12 and 13 are attached by metal sputtering, and a poisonous gas or a gas with a risk of explosion is disposed inside the cylindrical bodies 2 and 3 in which the light source 7 and the detector 8 are arranged. It has a tight structure that does not leak to space or the outside.

【0020】前記一方の筒体2の空間2eには赤外線光
源7が配置され、他方の筒体3の空間3eには赤外線検
出器8が配置されるが、上記するようにこれらの筒体
2、3は全く同一形状、寸法に製作しても良いので一方
の側に赤外線光源7を配置し他方の側に赤外線検出器8
を配置するようにすれば良い。尚、赤外線検出器8を配
置する側の筒体3の空間3g内には測定ガスの吸収特性
に合致した波長を持つ干渉フィルタ(図示省略)が取り
付けられる。また、図示しないが、前記赤外線検出器8
で検出された信号は増幅して例えばガス供給制禦装置や
警報装置へ送信される。
An infrared light source 7 is arranged in the space 2e of the one cylindrical body 2 and an infrared detector 8 is arranged in the space 3e of the other cylindrical body 3, and these cylindrical bodies 2 are arranged as described above. Since 3 may be manufactured to have exactly the same shape and size, the infrared light source 7 is arranged on one side and the infrared detector 8 is arranged on the other side.
Should be arranged. An interference filter (not shown) having a wavelength matching the absorption characteristic of the measurement gas is attached in the space 3g of the cylindrical body 3 on the side where the infrared detector 8 is arranged. Although not shown, the infrared detector 8
The signal detected at is amplified and transmitted to, for example, a gas supply control device or an alarm device.

【0021】前記筒体2の空間2gに配置される光源用
のリ−ド線11は該筒体2上部のフランジ2aに固定す
る押さえ板5を通すが、該押さえ板5とリ−ド線11と
の間は融着ガラスで封止(ハ−メチックシ−ル)するこ
とにより気密性を高くしてある。同様に、赤外線検出器
用のリ−ド線14は他方の筒体3のフランジ3aに固定
する押さえ板6を通すが、該押さえ板6と該リ−ド線1
4との間もハ−メチックシ−ルしてある。このように、
光源7を配置する筒体2の内部空間2gや検出器8を配
置する筒体3の内部空間3g内部は、セル窓12、13
のスパッタリングによる固着、セルブロック1とフラン
ジ2a、3aの間のメカニカルOリング9,9及び筒体
2とキャップ7a、8aとの間のメカニカルOリング1
0,10、更に押さえ板5、6とリ−ド線11、14等
との間のハ−メチックシ−ル等の二重シ−ル構造により
耐圧性が980KPa、リ−ク規格1×10-11 atm
cc/sec以下とすることができる。
The lead wire 11 for the light source arranged in the space 2g of the cylindrical body 2 is passed through the pressing plate 5 which is fixed to the flange 2a on the upper side of the cylindrical body 2, and the pressing plate 5 and the lead wire are connected to each other. The space between 11 and 11 is sealed with hermetically sealed glass (hermetically sealed) to enhance airtightness. Similarly, the lead wire 14 for the infrared detector is passed through the holding plate 6 which is fixed to the flange 3a of the other tubular body 3, and the holding plate 6 and the lead wire 1
4 and 4 are also hermetically sealed. in this way,
Inside the inner space 2g of the cylindrical body 2 in which the light source 7 is arranged and the inner space 3g of the cylindrical body 3 in which the detector 8 is arranged, the cell windows 12, 13 are arranged.
Fixation by sputtering, mechanical O-rings 9 and 9 between the cell block 1 and the flanges 2a and 3a, and mechanical O-rings 1 between the cylindrical body 2 and the caps 7a and 8a.
0, 10, the double seal structure such as a hermetic seal between the pressing plates 5, 6 and the lead wires 11, 14 etc., the pressure resistance is 980 KPa, the leak standard is 1 × 10 −. 11 atm
It can be cc / sec or less.

【0022】次に、前記一方の筒体3の先端部の前記セ
ル窓13と赤外線検出器8との間に設けたガスリ−ク検
知用空間3dと該赤外線検出器8(キャップ8a)との
間隔は図3に示すように、例えば赤外線検出器8から1
mm程度としてある(他方の筒体2側に設けたガスリ−
ク検知用空間2dと光源7(キャップ7a)との間の間
隔も同様)。このガスリ−ク検知用空間3dは測定セル
長dに比べて1:1以上の空間距離とすることにより通
常の測定信号が2倍以上となり、ガスリ−ク時の検知信
号を増大させることができる。即ち、筒体3にガスリ−
ク検知用空間3dを設けることにより、若しガス流路1
aからセル窓13の隙間から検出器8側の空間3eへガ
スが漏れてきた場合、みかけのセル長が増加すると共に
出力信号が増大するので即座にガスのリ−クを検知する
ことができる(但し、必ずしもガスリ−ク検知用空間3
dは測定セル長dに比べて1:1以上とする必要はな
い)。
Next, the gas leak detecting space 3d provided between the infrared ray detector 8 and the cell window 13 at the tip of the one cylindrical body 3 and the infrared ray detector 8 (cap 8a). As shown in FIG. 3, the intervals are, for example, from infrared detectors 8 to 1
mm (a gas reel provided on the other cylinder 2 side)
(The same applies to the space between the space 2d for detecting black and the light source 7 (cap 7a)). The space 3d for gas leak detection has a spatial distance of 1: 1 or more as compared with the measurement cell length d, so that the normal measurement signal is doubled or more, and the detection signal at the time of gas leak can be increased. . That is, the gas is attached to the cylinder 3.
The gas flow path 1
When the gas leaks from the space a through the cell window 13 into the space 3e on the detector 8 side, the apparent cell length increases and the output signal increases, so that the gas leak can be detected immediately. (However, the gas leak detection space 3 is not always necessary.
d does not need to be 1: 1 or more compared with the measurement cell length d).

【0023】また、前記セル窓12とセル窓13との間
の『測定セル長d』を変更する場合には、図2に示すよ
うに、筒体2、3に設けたフランジ2a、3aの厚さT
1 、T2 を変更すれば良い。即ち、測定セル長dを短く
する場合にはフランジ2a、3aの厚さT1 、T2 を短
くし、逆に長くする場合にはフランジ2a、3aの厚さ
1 、T2 を長くすれば良い(ただし、筒体2とフラン
ジ2aとの全体の高さL1 、筒体3とフランジ3aとの
全体の高さL2 を一定とした場合である)。尚、前記セ
ルブロック1の穴1b、1cには雌ねじを形成すると共
に前記筒体2、3の外周回りには雄ねじを形成し、ねじ
による嵌め合いとしても良い。この場合、ねじの嵌め合
い長さを調整することにより測定セル長dを調整するこ
とができる。
Further, when the "measurement cell length d" between the cell windows 12 and 13 is changed, as shown in FIG. Thickness T
It suffices to change 1 and T 2 . That is, when the measurement cell length d is shortened, the thicknesses T 1 and T 2 of the flanges 2a and 3a are shortened, and conversely, when the measurement cell length d is lengthened, the thicknesses T 1 and T 2 of the flanges 2a and 3a can be lengthened. If it (provided that a case where the overall height L 1 of the cylindrical body 2 and the flange 2a, the whole of the cylindrical body 3 and the flange 3a of the height L 2 is constant). It should be noted that female holes may be formed in the holes 1b and 1c of the cell block 1 and male threads may be formed around the outer circumferences of the cylindrical bodies 2 and 3 for fitting by screws. In this case, the measuring cell length d can be adjusted by adjusting the fitting length of the screw.

【0024】前記赤外線ガス分析計20の構成は以上の
ようであり、気密性を高くすることができるので実際に
ガスを供給する管路にインラインガスモニタとして設置
することが可能である。即ち、図1に示す構成としたC
VD装置において、蒸気ガスはそのガス特有の赤外線吸
収スペクトルを有しているので、各管路に設置した赤外
線ガス分析計20でガス成分の種類や濃度或いは流量等
を同時に計測しモニタすることができる。そして成膜中
は各配管途中に設置された各赤外線ガス分析計20で蒸
気ガス濃度を把握し各マスフロ−コントロ−ラ29でガ
ス流量を制御する。こうして常に安定した蒸気ガス量を
制御することができる。
The configuration of the infrared gas analyzer 20 is as described above, and since the airtightness can be enhanced, it can be installed as an in-line gas monitor in the pipeline for actually supplying the gas. That is, C having the configuration shown in FIG.
In the VD apparatus, since the vapor gas has an infrared absorption spectrum peculiar to the gas, it is possible to simultaneously measure and monitor the type, concentration, flow rate, etc. of the gas component with the infrared gas analyzer 20 installed in each pipeline. it can. During the film formation, the vapor gas concentration is grasped by each infrared gas analyzer 20 installed in the middle of each pipe, and the gas flow rate is controlled by each mass flow controller 29. In this way, it is possible to constantly control the stable vapor gas amount.

【0025】また、上記構成としたCVD装置では、任
意の組成比の成膜を行う場合、その組成比に見合った蒸
気ガス量比になるよう、各配管途中に設置した赤外線ガ
ス分析計20で測定したガス濃度をもとに、各マスフロ
−コントロ−ラ29によるガス流量と容器(23,2
4,25)を収容した恒温槽(26,27,28)の温
度を制御し、蒸気ガス量比を精度よく制御することがで
きる。そしてこれら制御により反応室21内における成
膜条件(濃度、蒸気圧、温度、流量比等)を瞬時に選定
することができると共に、形成される薄膜の組成比の制
御性を飛躍的に向上させることができる。更に、成膜
中、配管途中に設置された赤外線ガス分析計20でガス
濃度の急激な減少を検出することにより各容器(23,
24,25)内の原料の有無を調べることが可能とな
る。或いは、赤外線ガス分析計20でガス濃度の急激な
増減を検出することによりマスフロ−コントロ−ラ29
の異常や赤外線ガス分析計20自体内部のガス漏れ等配
管上生じる異常を検出し、ガスの供給を停止することも
できる。
In addition, in the CVD apparatus having the above-described structure, when a film having an arbitrary composition ratio is formed, the infrared gas analyzer 20 installed in each pipe is arranged so that the vapor gas amount ratio corresponds to the composition ratio. Based on the measured gas concentration, the gas flow rate by each mass flow controller 29 and the container (23, 2
It is possible to control the temperature of the constant temperature bath (26, 27, 28) accommodating 4, 25) to control the vapor gas amount ratio with high accuracy. With these controls, the film forming conditions (concentration, vapor pressure, temperature, flow rate ratio, etc.) in the reaction chamber 21 can be instantly selected, and the controllability of the composition ratio of the thin film to be formed is dramatically improved. be able to. Further, during the film formation, the infrared gas analyzer 20 installed in the middle of the piping detects a rapid decrease in the gas concentration to detect each container (23,
24, 25), it becomes possible to check for the presence or absence of raw materials. Alternatively, the mass flow controller 29 can be used by detecting a rapid increase or decrease in gas concentration with the infrared gas analyzer 20.
It is also possible to stop the supply of gas by detecting an abnormality occurring on the piping such as a gas leakage inside the infrared gas analyzer 20 itself or a gas leak inside the infrared gas analyzer 20 itself.

【0026】この発明の実施例においては、原料蒸気ガ
ス或いは半導体用特殊材料ガスが赤外線に吸収帯を有す
る領域の検出器を備えた赤外線ガス分析計で説明した
が、赤外線ガス分析計の代わりに紫外線領域に吸収帯を
有する検出器を備えた紫外線ガス分析計を利用した場合
でもよい。また、この実施例で示した赤外線ガス分析計
は他の構成の赤外線ガス分析計であってもよく、更にC
VD装置は、薄膜堆積装置とした実施例で説明したが、
これに限らず粉体製造装置等としても利用することがで
きる。
In the embodiment of the present invention, the infrared gas analyzer provided with the detector in the region where the raw material vapor gas or the special material gas for semiconductor has an infrared absorption band has been described, but instead of the infrared gas analyzer. An ultraviolet gas analyzer provided with a detector having an absorption band in the ultraviolet region may be used. In addition, the infrared gas analyzer shown in this embodiment may be an infrared gas analyzer having another configuration, and C
Although the VD apparatus has been described in the embodiment as a thin film deposition apparatus,
Not limited to this, it can be used as a powder manufacturing apparatus or the like.

【0027】[0027]

【発明の効果】以上詳述したように、この発明の赤外線
ガス分析計によれば、気密性を高くしたガスリ−ク防止
機構を有する赤外線ガス分析計とすることができる。ま
た、分析計自身にガスリ−ク検知機構を備えているので
ガス分析計としての信頼性を向上させることができる。
更に、従来の赤外線分析計に比べてはるかに耐圧性があ
ることから実際にガスを供給する管路にインラインモニ
タとして設置することが可能となる。また、この発明の
CVD装置によれば、配管途中に設置された赤外線ガス
分析計によりガス濃度を測定し、ガス流量と容器温度を
制御することにより蒸気ガス量や半導体用特殊材料ガス
量を任意に制御することができる。更に、形成される薄
膜の複合金属酸化物等の多元素化合物の組成比を安定さ
せ且つ再現性よく作成することができる。また、任意の
組成比の成膜を行う場合、配管途中に設置された赤外線
ガス分析計によるガス濃度をもとに、組成比に見合った
蒸気ガス量となるよう、マスフロ−コントロ−ラと恒温
槽を制御し、瞬時にキヤリャガス流量及び容器温度条件
を選定することができ且つ精度よく成膜を行うことがで
きる。更にまた、配管途中の赤外線ガス分析計でガス濃
度を測定することにより、容器内の原料量を調べること
ができるだけでなく、蒸気ガスや半導体用特殊材料ガス
成分が予め定めた通りの成分や濃度や流量かどうかを常
に監視するために用いることができる。そして異常が生
じた場合にはこれを感知し光源電流を遮断したり、ガス
供給装置を停止させたり、警報装置を作動させることが
できる。また、赤外線ガス分析計の筒体等の一部構成要
素は同一形状、寸法に製作することができるので製作コ
ストも低減することができる。
As described in detail above, according to the infrared gas analyzer of the present invention, an infrared gas analyzer having a gas leak preventing mechanism with high airtightness can be obtained. Further, since the analyzer itself has the gas leak detection mechanism, the reliability as a gas analyzer can be improved.
Furthermore, since it has a much higher pressure resistance than the conventional infrared analyzer, it can be installed as an in-line monitor in the pipeline that actually supplies the gas. Further, according to the CVD apparatus of the present invention, the gas concentration is measured by an infrared gas analyzer installed in the middle of the pipe, and the vapor gas amount and the special material gas amount for semiconductor are arbitrarily controlled by controlling the gas flow rate and the container temperature. Can be controlled. Further, the composition ratio of the multi-element compound such as the composite metal oxide of the thin film to be formed can be stabilized and can be prepared with good reproducibility. In addition, when forming a film with an arbitrary composition ratio, based on the gas concentration by an infrared gas analyzer installed in the middle of the piping, the mass flow controller and constant temperature are adjusted so that the vapor gas amount matches the composition ratio. By controlling the bath, the carrier gas flow rate and the container temperature conditions can be instantly selected, and the film can be formed with high accuracy. Furthermore, by measuring the gas concentration with an infrared gas analyzer in the middle of the piping, it is possible to not only check the amount of raw material in the container, but also the vapor gas and the special material gas component for semiconductors, which have the predetermined components and concentrations. It can be used to constantly monitor whether or not the flow rate. When an abnormality occurs, it can be detected to shut off the light source current, stop the gas supply device, or activate the alarm device. Further, since some components such as the cylinder of the infrared gas analyzer can be manufactured in the same shape and size, the manufacturing cost can be reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の赤外線ガス分析計を備えたCVD装
置の構成を示す図である。
FIG. 1 is a diagram showing a configuration of a CVD apparatus equipped with an infrared gas analyzer of the present invention.

【図2】この発明の赤外線ガス分析計の実施例を示すも
のであって、該赤外線ガス分析計の構成の詳細を示す断
面図である。
FIG. 2 is a sectional view showing an embodiment of an infrared gas analyzer of the present invention and showing the details of the configuration of the infrared gas analyzer.

【図3】この発明の赤外線ガス分析計の実施例を示すも
のであって、図1の中央部の一部拡大図である。
FIG. 3 shows an embodiment of the infrared gas analyzer of the present invention, and is a partially enlarged view of the central portion of FIG. 1.

【図4】従来の赤外線ガス分析計の構成例を示す縦断面
図である。
FIG. 4 is a vertical cross-sectional view showing a configuration example of a conventional infrared gas analyzer.

【符号の説明】[Explanation of symbols]

20 赤外線ガス分析計 1 セルブロック 1a 流路 2、3 筒体 2d、3d ガスリ−ク検知用空間 5、6 押さえ板 7 光源 8 検出器 9、10 メカニカルOリング 11、14 リ−ド線 12、13 セル窓 21 反応室 22 混合室 23、24、25 原料容器 26、27、28 恒温槽 29 マスフロ−コントロ−ラ 30 制御装置 31乃至38 管路 20 Infrared gas analyzer 1 Cell block 1a Channel 2, 3 Cylindrical body 2d, 3d Gas leak detection space 5, 6 Holding plate 7 Light source 8 Detector 9, 10 Mechanical O-ring 11, 14 Lead wire 12, 13 Cell window 21 Reaction chamber 22 Mixing chamber 23, 24, 25 Raw material container 26, 27, 28 Constant temperature bath 29 Mass flow controller 30 Control device 31 to 38 Pipe line

───────────────────────────────────────────────────── フロントページの続き (72)発明者 富永 浩二 京都府京都市南区吉祥院宮の東町2番地 株式会社堀場製作所内 (72)発明者 高田 秀次 京都府京都市南区吉祥院宮の東町2番地 株式会社堀場製作所内 (72)発明者 松本 浩一 京都府京都市南区吉祥院宮の東町2番地 株式会社堀場製作所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Koji Tominaga, 2 Higashimachi, Kichijoin Miya, Minami-ku, Kyoto-shi, Kyoto Prefecture Horiba Seisakusho Co., Ltd. (72) Hideji Takada, 2 Higashi-machi, Kichijoin Miya, Minami-ku, Kyoto, Kyoto Inside the HORIBA, Ltd. (72) Inventor Koichi Matsumoto 2 Higashimachi, Kichijoin Miya, Minami-ku, Kyoto-shi, Kyoto Inside HORIBA, Ltd.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 セルブロックにガス流路を設けると共に
該ガス流路に対して直角或いは所定角度両方向より穴を
貫通穿設し、端部にセル窓を固着し該セル窓内側に光源
又は検出器を配置する空間を設けた筒体を、ガス流路に
て前記セル窓が所定測定セル長を有して対向するよう前
記穴の両側より嵌め入れ、前記筒体内の赤外線光源又は
赤外線検出器用のリ−ド線をハ−メチックシ−ルして通
した押さえ板で前記赤外線光源又は赤外線検出器用の空
間を密封してなる赤外線ガス分析計。
1. A cell block is provided with a gas flow path, holes are formed through the gas flow path at right angles or at a predetermined angle from both directions, and a cell window is fixed to an end portion of the cell window, and a light source or detection is provided inside the cell window. For the infrared light source or infrared detector in the cylinder, the cylinder provided with the space for arranging the container is fitted from both sides of the hole so that the cell window has a predetermined measurement cell length in the gas flow path and faces each other. An infrared gas analyzer in which the space for the infrared light source or the infrared detector is sealed with a pressing plate through which the lead wire is hermetically sealed.
【請求項2】 筒体端部に設けたセル窓と光源又は検出
器を配置する空間との間にガスリ−ク検知用空間を設け
て、リ−ク時の信号の異常な増大を検出する手段を設け
てなる請求項第1項記載の赤外線ガス分析計。
2. A gas leak detection space is provided between the cell window provided at the end of the cylindrical body and the space where the light source or the detector is arranged to detect an abnormal increase in the signal during the leak. The infrared gas analyzer according to claim 1, further comprising means.
【請求項3】 筒体のセル窓とは反対側の端部にフラン
ジを形成すると共に赤外線光源又は赤外線検出器用の空
間を密封する押さえ板を該フランジに固定し、該フラン
ジをメカニカルOリングでシ−ルしセルブロックに固定
してなる請求項第1項若しくは第2項記載の赤外線ガス
分析計。
3. A flange is formed at the end of the cylindrical body on the side opposite to the cell window, and a pressing plate for sealing a space for an infrared light source or an infrared detector is fixed to the flange, and the flange is a mechanical O-ring. The infrared gas analyzer according to claim 1, which is sealed and fixed to a cell block.
【請求項4】 薄膜形成用基板を設置する反応室と、該
反応室と管路で連結されたガス混合室と、成膜用原料物
質を充填し前記混合室に管路で連結された容器を収容し
た恒温槽と、該ガス混合室と前記各恒温槽に収容された
容器を連結する管路に設置された赤外線ガス分析計と、
前記混合室にキャリヤガスを供給する例えばガスボンベ
等のガス供給装置と、前記原料物質を充填した各容器と
これらの各容器にキャリヤガスを供給する例えばガスボ
ンベ等のガス供給装置と、前記混合室とガス供給装置の
管路途中及び前記原料物質を充填した各容器とガス供給
装置との管路途中に設置されたマスフロ−コントロ−ラ
と、前記赤外線ガス分析計からのガス成分毎の濃度或い
は前記各マスフロ−コントロ−ラからの流量の検出信号
により前記恒温室の温度及び前記各マスフロ−コントロ
−ラのガス流量を制御する制御装置と,を備えたことを
特徴とするCVD装置。
4. A reaction chamber in which a thin film forming substrate is placed, a gas mixing chamber connected to the reaction chamber by a pipe, and a container filled with a film-forming raw material and connected to the mixing chamber by a pipe. A thermostatic chamber containing, and an infrared gas analyzer installed in a conduit connecting the gas mixing chamber and the container accommodated in each thermostatic chamber,
A gas supply device such as a gas cylinder for supplying a carrier gas to the mixing chamber, each container filled with the raw material, a gas supply device such as a gas cylinder for supplying a carrier gas to each container, and the mixing chamber A mass flow controller installed in the conduit of the gas supply device and in the conduit of each container filled with the raw material and the gas supply device, and the concentration of each gas component from the infrared gas analyzer or the above A CVD apparatus comprising: a controller for controlling the temperature of the temperature-controlled room and the gas flow rate of each mass flow controller according to a flow rate detection signal from each mass flow controller.
【請求項5】 赤外線ガス分析計が請求項1若しくは請
求項2若しくは請求項3に記載の赤外線ガス分析計であ
ることを特徴とする請求項4に記載のCVD装置。
5. The CVD apparatus according to claim 4, wherein the infrared gas analyzer is the infrared gas analyzer according to claim 1, claim 2 or claim 3.
JP35443395A 1995-01-31 1995-12-29 Infrared gas analyzer for semiconductor special gas Expired - Fee Related JP3299102B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35443395A JP3299102B2 (en) 1995-01-31 1995-12-29 Infrared gas analyzer for semiconductor special gas

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP7-36221 1995-01-31
JP3622195 1995-01-31
JP35443395A JP3299102B2 (en) 1995-01-31 1995-12-29 Infrared gas analyzer for semiconductor special gas

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2001225966A Division JP4117407B2 (en) 1995-01-31 2001-07-26 CVD apparatus and film forming method using CVD apparatus

Publications (2)

Publication Number Publication Date
JPH08271418A true JPH08271418A (en) 1996-10-18
JP3299102B2 JP3299102B2 (en) 2002-07-08

Family

ID=26375263

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35443395A Expired - Fee Related JP3299102B2 (en) 1995-01-31 1995-12-29 Infrared gas analyzer for semiconductor special gas

Country Status (1)

Country Link
JP (1) JP3299102B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009500852A (en) * 2005-07-08 2009-01-08 エム ケー エス インストルメンツ インコーポレーテッド Sensor for monitoring and controlling pulse deposition
JP2010096631A (en) * 2008-10-16 2010-04-30 Yokogawa Electric Corp Laser type gas analyzer
WO2011101938A1 (en) * 2010-02-16 2011-08-25 日本電気株式会社 Infrared ray sensor, infrared ray detection device, and electronic apparatus
JP2012032381A (en) * 2010-06-28 2012-02-16 Horiba Ltd Optical measuring equipment
JP2013024780A (en) * 2011-07-22 2013-02-04 Horiba Advanced Techno Co Ltd Cell for optical measurement and optical analyzer
JP2014238391A (en) * 2013-05-09 2014-12-18 国立大学法人徳島大学 Raw material fluid concentration detector
JP2016099311A (en) * 2014-11-26 2016-05-30 横河電機株式会社 Sample measurement device
KR20200095569A (en) * 2017-12-29 2020-08-10 베리안 세미콘덕터 이큅먼트 어소시에이츠, 인크. Technologies for controlling precursors in chemical vapor deposition processes

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009500852A (en) * 2005-07-08 2009-01-08 エム ケー エス インストルメンツ インコーポレーテッド Sensor for monitoring and controlling pulse deposition
JP2010096631A (en) * 2008-10-16 2010-04-30 Yokogawa Electric Corp Laser type gas analyzer
US8921791B2 (en) 2010-02-16 2014-12-30 Nec Corporation Infrared ray sensor, infrared ray detection device, and electronic apparatus
WO2011101938A1 (en) * 2010-02-16 2011-08-25 日本電気株式会社 Infrared ray sensor, infrared ray detection device, and electronic apparatus
JP2012032381A (en) * 2010-06-28 2012-02-16 Horiba Ltd Optical measuring equipment
JP2013024780A (en) * 2011-07-22 2013-02-04 Horiba Advanced Techno Co Ltd Cell for optical measurement and optical analyzer
JP2014238391A (en) * 2013-05-09 2014-12-18 国立大学法人徳島大学 Raw material fluid concentration detector
JP2016099311A (en) * 2014-11-26 2016-05-30 横河電機株式会社 Sample measurement device
KR20200095569A (en) * 2017-12-29 2020-08-10 베리안 세미콘덕터 이큅먼트 어소시에이츠, 인크. Technologies for controlling precursors in chemical vapor deposition processes
CN111566792A (en) * 2017-12-29 2020-08-21 瓦里安半导体设备公司 Precursor control for chemical deposition processes
JP2021508768A (en) * 2017-12-29 2021-03-11 ヴァリアン セミコンダクター イクイップメント アソシエイツ インコーポレイテッド Techniques for controlling precursors in chemical vapor deposition processes
US11718914B2 (en) 2017-12-29 2023-08-08 Varian Semiconductor Equipment Associates, Inc. Techniques for controlling precursors in chemical deposition processes
CN111566792B (en) * 2017-12-29 2023-11-03 瓦里安半导体设备公司 Apparatus and method for controlling precursor flow

Also Published As

Publication number Publication date
JP3299102B2 (en) 2002-07-08

Similar Documents

Publication Publication Date Title
EP0768525B2 (en) Method of detecting a gas phase molecular species in the chamber effluent of a semiconductor processing chamber, and semiconductor processing system incorporating the same
US9666435B2 (en) Apparatus and process for integrated gas blending
JP3186262B2 (en) Method for manufacturing semiconductor device
US7735452B2 (en) Sensor for pulsed deposition monitoring and control
US5665608A (en) Method of aluminum oxide low pressure chemical vapor deposition (LPCVD) system-fourier transform infrared (FTIR) source chemical control
US6482266B1 (en) Metal organic chemical vapor deposition method and apparatus
US5425803A (en) Device for removing dissolved gas from a liquid
US6343239B1 (en) Transportation method for substrate wafers and transportation apparatus
TWI240600B (en) Apparatus and method for use of optical system with a plasma processing system
US7063097B2 (en) In-situ gas blending and dilution system for delivery of dilute gas at a predetermined concentration
US6442736B1 (en) Semiconductor processing system and method for controlling moisture level therein
EP1132504B1 (en) Thin film depositing process using an FTIR gas analyzer and a mixed gas supplying device
JP2918035B2 (en) Generator for low concentration calibration gas mixture
US20020152797A1 (en) Gas delivery apparatus and method for monitoring a gas phase species therein
US20060042544A1 (en) Film formation apparatus and method of using the same
US20110210142A1 (en) Diptube apparatus and delivery method
US20140053779A1 (en) Micro-balance sensor integrated with atomic layer deposition chamber
JPH08271418A (en) Infrared gas analyzer and cvd system
JP4117407B2 (en) CVD apparatus and film forming method using CVD apparatus
EP0607908A2 (en) Method and apparatus for sampling a reactive atmosphere into a vacuum chamber of an analyzer
JP3219184B2 (en) Organometallic supply and organometallic vapor phase epitaxy
JP2003286573A (en) Thin-film depositing method, apparatus therefor, mixed- gas feeding device used in thin-film depositing method, and infrared gas analyzer used in thin-film depositing method
TWI621193B (en) Processing chamber air detection system and operation method thereof
US5526122A (en) Method for determining the mass flow of gases on the basis of optical absorption and employment of said method
JP2001244202A (en) Method and device for manufacturing semiconductor

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110419

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110419

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110419

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees