JPH08271098A - Refrigerating system - Google Patents

Refrigerating system

Info

Publication number
JPH08271098A
JPH08271098A JP7748895A JP7748895A JPH08271098A JP H08271098 A JPH08271098 A JP H08271098A JP 7748895 A JP7748895 A JP 7748895A JP 7748895 A JP7748895 A JP 7748895A JP H08271098 A JPH08271098 A JP H08271098A
Authority
JP
Japan
Prior art keywords
refrigerant
header
container
refrigeration system
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7748895A
Other languages
Japanese (ja)
Inventor
Toshikazu Sakai
寿和 境
Shigeru Sasabe
笹部  茂
Ichiro Kita
一朗 喜多
Akihiro Kino
章宏 城野
Takeshi Shimizu
武 清水
Masaaki Tanaka
正昭 田中
Minoru Yonemura
稔 米村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Refrigeration Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Refrigeration Co filed Critical Matsushita Refrigeration Co
Priority to JP7748895A priority Critical patent/JPH08271098A/en
Publication of JPH08271098A publication Critical patent/JPH08271098A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compressor (AREA)

Abstract

PURPOSE: To prevent an abnormal drop in suction pressure by a method wherein a header consists of a vessel to store liquid refrigerant, a refrigerant inlet pipe connected to the upper part of the vessel and a refrigerant outlet pipe inserted from below and a part of the outlet pipe is made up of a permeable membrane whose pours have diameters within a specified range. CONSTITUTION: A header 5 has such a construction that a refrigerant inlet pipe 10 is connected to the upper part of a vessel 11 and a refrigerant outlet pipe 9 is inserted into the vessel 11 from below. A hole is provided in a part of the refrigerant outlet pipe 9 and covered with a polytetrafluoroethylene-made permeable membrane 13 which has pours with diameters of 0.01-3μm and is supported by a porous resin 12. An evaporator is connected to the upper part of the inlet pipe 10 and a compressor is connected to the lower part of the outlet pipe 9 via a suction pipe 6. Thereby, an abnormal drop in suction pressure can be prevented and the specified refrigerating performance can be maintained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は冷媒と冷媒に相互溶解性
がない圧縮機の潤滑油を使用した冷凍システムに関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a refrigeration system using a refrigerant and a lubricating oil of a compressor which has no mutual solubility in the refrigerant.

【0002】[0002]

【従来の技術】近年、冷媒と冷媒に相互溶解性がない圧
縮機の潤滑油を使用した冷凍システムに関するものとし
ては、特開平5−157379号公報が挙げられる。
2. Description of the Related Art In recent years, JP-A-5-157379 discloses a refrigeration system using a lubricating oil of a compressor in which the refrigerant and the refrigerant have no mutual solubility.

【0003】以下、図面を参照しながら上記従来の冷凍
システムを説明する。図9(a)は従来の冷凍システム
の略図であり、図9(b)は従来の冷凍システムのヘッ
ダーの断面図である。図9(a)、図9(b)におい
て、1は冷媒ガスを圧縮する圧縮機、2は前記圧縮機か
ら吐出された冷媒ガスを凝縮する凝縮器、3は膨張機構
であるキャピラリチューブ、4は蒸発器、5は上方側に
蒸発器4の出口側からヘッダー5内に挿入され上方に延
びた吸入管、7は圧縮機内の摺動部を潤滑する冷凍機油
で、ハードアルキルベンゼン油、低温流動性の優れたソ
フトアルキルベンゼン油、ポリアルファオレフィン、パ
ラフィン系鉱油、ナフテン系鉱油等の冷凍機油を単独ま
たは混合したもので、ハイドロフルオロカーボンを主成
分としたHFC134a等の冷媒と相互溶解性の無いま
たは少ないものである。8はヘッダー5内に挿入された
吸入配管6の上方の側面に設けた油戻し孔である。
The conventional refrigeration system will be described below with reference to the drawings. FIG. 9 (a) is a schematic view of a conventional refrigeration system, and FIG. 9 (b) is a cross-sectional view of a header of the conventional refrigeration system. In FIGS. 9A and 9B, 1 is a compressor that compresses a refrigerant gas, 2 is a condenser that condenses the refrigerant gas discharged from the compressor, 3 is a capillary tube that is an expansion mechanism, and 4 Is an evaporator, 5 is an intake pipe extending upward from the outlet side of the evaporator 4 and extending upward into the header 5, and 7 is refrigerating machine oil that lubricates sliding parts in the compressor, such as hard alkylbenzene oil and low temperature fluid. Refrigerating machine oil such as soft alkylbenzene oil, polyalphaolefin, paraffinic mineral oil, naphthenic mineral oil, etc., which have excellent properties, are used alone or in combination, and have little or no mutual solubility with refrigerants such as HFC134a containing hydrofluorocarbon as a main component. It is a thing. Reference numeral 8 denotes an oil return hole provided on the upper side surface of the suction pipe 6 inserted into the header 5.

【0004】次に動作について説明する。圧縮機1より
吐出された冷媒は、凝縮器2で凝縮され、キャピラリチ
ューブ3にて減圧膨張し、蒸発器4で蒸発し、この蒸発
器4で蒸発しきれない冷媒は、ヘッダー5に貯留され、
気相分のみが、吸入配管6を経て圧縮機1に吸入され
る。このとき冷凍機油7は、冷媒とともに圧縮機1より
吐出され配管内を流動し、蒸発器4へ至る。
Next, the operation will be described. The refrigerant discharged from the compressor 1 is condensed in the condenser 2, expanded under reduced pressure in the capillary tube 3, evaporated in the evaporator 4, and the refrigerant that cannot be completely evaporated in the evaporator 4 is stored in the header 5. ,
Only the gas phase component is sucked into the compressor 1 through the suction pipe 6. At this time, the refrigerating machine oil 7 is discharged from the compressor 1 together with the refrigerant, flows in the pipe, and reaches the evaporator 4.

【0005】冷凍機油7は、蒸発気化する冷媒とともに
蒸発器4内を流動し、ヘッダー5にいたり、そこに貯留
される液冷媒とともにヘッダーに貯留される。ここで、
冷凍機油7は、二層分離し、液冷媒の上に冷凍機油7が
浮く形となる。
The refrigerating machine oil 7 flows in the evaporator 4 together with the refrigerant that evaporates and vaporizes, and enters the header 5 or is stored in the header together with the liquid refrigerant stored therein. here,
The refrigerating machine oil 7 is separated into two layers, and the refrigerating machine oil 7 floats on the liquid refrigerant.

【0006】この冷凍機油7の液面が、油戻し孔8に達
すると、冷凍機油7は、油戻し孔8より、吸入配管6に
吸入され圧縮機1に吸入される。
When the liquid level of the refrigerating machine oil 7 reaches the oil return hole 8, the refrigerating machine oil 7 is sucked into the suction pipe 6 through the oil return hole 8 and then into the compressor 1.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、上記従
来の構成では、ヘッダー5内に冷凍機油7が滞留し、上
部の冷凍機油7、下部の液冷媒に二層分離するため、特
にヘッダー5が低温になった場合、粘度が増加した冷凍
機油7によって液冷媒が封じ込められて、圧縮機1に戻
らなくなる可能性があった。この時、圧縮機1の吸入圧
力が低下し、所定の冷凍性能が得られなくなる。
However, in the above conventional structure, the refrigerating machine oil 7 stays in the header 5 and is separated into the upper refrigerating machine oil 7 and the lower liquid refrigerant into two layers. In this case, there is a possibility that the refrigerating machine oil 7 with increased viscosity may confine the liquid refrigerant and may not return to the compressor 1. At this time, the suction pressure of the compressor 1 is reduced, and a predetermined refrigeration performance cannot be obtained.

【0008】[0008]

【課題を解決するための手段】そこで本発明の冷凍サイ
クルは、圧縮機と、凝縮器と、膨張機構と、蒸発器と、
ヘッダーとを環状に接続し、冷媒と、冷媒に相互溶解性
がないまたは少ない冷凍機油とを備えた冷凍サイクルに
おいて、前記ヘッダーは、液冷媒を貯留する容器の上方
に冷媒の流入管を接続し、下方に冷媒の流出管を挿入し
た構造を持ち、かつ、前記流出管の一部を透過膜で形成
している。
Therefore, the refrigeration cycle of the present invention comprises a compressor, a condenser, an expansion mechanism, an evaporator, and
A header and an annular connection, in a refrigeration cycle comprising a refrigerant and a refrigerating machine oil having no or little mutual solubility in the refrigerant, the header connects a refrigerant inflow pipe above a container storing a liquid refrigerant. , Has a structure in which a refrigerant outflow pipe is inserted below, and a part of the outflow pipe is formed of a permeable membrane.

【0009】また、流入管の先端に多孔質フィルタを設
けた。また、容器内部の下方に吸着材を設置した。
Further, a porous filter is provided at the tip of the inflow pipe. In addition, an adsorbent was installed below the inside of the container.

【0010】また、圧縮機と、凝縮器と、膨張機構と、
蒸発器とヘッダーとを環状に接続し、冷媒と、冷媒に相
互溶解性がないまたは少ない冷凍機油とを備えた冷凍サ
イクルにおいて、前記ヘッダーは、液冷媒を貯留する容
器の上方に冷媒の流入管を接続し、側方に冷媒の流出管
を接続した構造を持ち、かつ、前記容器の下方がベロー
ズ状の構造を持つ。
Also, a compressor, a condenser, an expansion mechanism,
An evaporator and a header are connected in an annular shape, and in a refrigeration cycle provided with a refrigerant and a refrigerating machine oil having no or little mutual solubility in the refrigerant, the header is a refrigerant inflow pipe above a container for storing a liquid refrigerant. Has a structure in which a refrigerant outflow pipe is connected to the side, and the lower part of the container has a bellows-like structure.

【0011】また、圧縮機と、凝縮器と、膨張機構と、
蒸発器とヘッダーとを環状に接続し、冷媒と、冷媒に相
互溶解性がないまたは少ない冷凍機油とを備えた冷凍サ
イクルにおいて、前記ヘッダーは、液冷媒を貯留する容
器の上方に冷媒の流入管を接続し、側方に冷媒の流出管
を接続した構造を持ち、かつ、前記容器内部の下方にベ
ローズを設置した。
Further, a compressor, a condenser, an expansion mechanism,
An evaporator and a header are connected in an annular shape, and in a refrigeration cycle provided with a refrigerant and a refrigerating machine oil having no or little mutual solubility in the refrigerant, the header is a refrigerant inflow pipe above a container for storing a liquid refrigerant. And a structure in which a refrigerant outflow pipe was connected to the side, and a bellows was installed below the inside of the container.

【0012】[0012]

【作用】上記した構成により、本発明の冷凍システム
は、ヘッダー内部に貯留された液冷媒が高粘度の冷凍機
油により封じ込められ、冷凍システムの吸入圧力が低下
した時に、流出管の一部に設けられた透過膜を通して、
液冷媒を少しずつ圧縮機に戻すことで、吸入圧力の異常
な低下を防止することができる。
With the above-described structure, the refrigeration system of the present invention is provided in a part of the outflow pipe when the liquid refrigerant stored in the header is contained by the refrigerating machine oil of high viscosity and the suction pressure of the refrigeration system drops. Through the permeable membrane,
By returning the liquid refrigerant to the compressor little by little, it is possible to prevent an abnormal decrease in suction pressure.

【0013】また、ヘッダーの入口にフィルタを設ける
ことで、冷凍システム内に存在する配管加工油の残留物
等のコンタミ物質が透過膜を閉塞することを防止し、吸
入圧力低下時に少しずつ液冷媒を戻す透過膜の機能を安
定して発揮させることができる。
Further, by providing a filter at the inlet of the header, it is possible to prevent contaminants such as residues of piping processing oil existing in the refrigeration system from blocking the permeable membrane, and to gradually cool the liquid refrigerant when the suction pressure decreases. The function of the permeable membrane to restore the temperature can be stably exerted.

【0014】また、ヘッダー内部に吸着材を設置するこ
とで、冷凍システム内で発生する有機酸あるいは有機酸
金属塩等のイオン性のスラッジが透過膜を閉塞すること
を防止し、吸入圧力低下時に少しずつ液冷媒を戻す透過
膜の機能を安定して発揮させることができる。
Further, by installing an adsorbent inside the header, it is possible to prevent ionic sludge such as an organic acid or an organic acid metal salt generated in the refrigeration system from blocking the permeable membrane, and to reduce the suction pressure when the suction pressure decreases. The function of the permeable membrane that returns the liquid refrigerant little by little can be stably exhibited.

【0015】また、ヘッダーの下部をベローズ構造とす
ることにより、ヘッダー内部に貯留された液冷媒が高粘
度の冷凍機油により封じ込められ、冷凍システムの吸入
圧力が低下した時に、ベローズ部が縮みヘッダーの冷媒
貯留部の容積を減少させ、冷凍機油とともに液冷媒を少
しずつ圧縮機に戻すことで、液冷媒の吸入による潤滑性
の低下を抑制しながら、圧縮機の吸入圧力の異常な低下
を防止することができる。
Further, since the lower part of the header has a bellows structure, the liquid refrigerant stored inside the header is confined by the high-viscosity refrigerating machine oil, and when the suction pressure of the refrigeration system drops, the bellows part shrinks. By reducing the volume of the refrigerant reservoir and returning the liquid refrigerant to the compressor little by little along with the refrigerating machine oil, while suppressing the deterioration of lubricity due to the suction of the liquid refrigerant, it is possible to prevent an abnormal decrease in the suction pressure of the compressor. be able to.

【0016】また、ヘッダー内部にベローズ構造を有す
ることで、ベローズ部の機械強度を下げることができ、
肉厚を薄くすることで吸入圧力の変化に敏感に反応し
て、吸入圧力低下時に、ベローズ部がのびヘッダーの冷
媒貯留部の容積を減少させ、冷凍機油とともに液冷媒を
少しずつ圧縮機に戻すことで、液冷媒の吸入による潤滑
性の低下を抑制しながら、圧縮機の吸入圧力の異常な低
下を防止することができる。
Further, since the header has a bellows structure, the mechanical strength of the bellows can be lowered,
By reducing the wall thickness, it reacts sensitively to changes in suction pressure, and when the suction pressure drops, the bellows part expands and the volume of the refrigerant reservoir of the header is reduced, and the liquid refrigerant is gradually returned to the compressor along with the refrigeration oil. As a result, it is possible to prevent an abnormal decrease in the suction pressure of the compressor while suppressing a decrease in lubricity due to the suction of the liquid refrigerant.

【0017】[0017]

【実施例】本発明による冷凍システムの第1の実施例に
ついて、図面を参照しながら説明する。なお、従来と同
一構成については、同一符号を付して詳細な説明を省略
する。図1は、本発明の第1の実施例による冷凍システ
ムの略図であり、図2は同実施例のヘッダーの断面図で
ある。
DESCRIPTION OF THE PREFERRED EMBODIMENTS A first embodiment of the refrigeration system according to the present invention will be described with reference to the drawings. It should be noted that the same configurations as those of the conventional one are denoted by the same reference numerals and detailed description thereof will be omitted. FIG. 1 is a schematic view of a refrigeration system according to a first embodiment of the present invention, and FIG. 2 is a sectional view of a header of the same embodiment.

【0018】図1、図2において、ヘッダー5は、液冷
媒を貯留する容器11の上方に冷媒の流入管10を接続
し、下方に冷媒の流出管9を挿入した構造を持ち、流出
管9の一部に設けられた穴を多孔性樹脂12で支持され
た透過膜13が塞ぐように設置されている。この透過膜
13は気孔径0.3μmのポリテトラフルオロエチレン
製である。また、流入管10の上方に蒸発器4を接続
し、流出管9の下方に吸入管6を介して圧縮機1を接続
している。
In FIGS. 1 and 2, the header 5 has a structure in which a refrigerant inflow pipe 10 is connected to the upper side of a container 11 for storing a liquid refrigerant, and a refrigerant outflow pipe 9 is inserted in the lower side thereof. Is installed so that the permeable membrane 13 supported by the porous resin 12 closes the hole provided in a part of the. The permeable membrane 13 is made of polytetrafluoroethylene having a pore diameter of 0.3 μm. Further, the evaporator 4 is connected above the inflow pipe 10, and the compressor 1 is connected below the outflow pipe 9 via the suction pipe 6.

【0019】以上のように構成された冷凍システムにお
いて、以下その動作を説明する。冷凍機油7は、相互溶
解性のないHFC134a等のハイドロフルオロカーボ
ンを主体とした冷媒と二相分離し、かつ、冷媒より比重
が小さいため、ヘッダー5内に貯留された冷媒の上に浮
く。蒸発器4の出口付近では非常に温度が低いため冷凍
機油7は高粘度となり、ヘッダー5内に貯流された冷媒
は半密閉された状態となる。そして、冷凍システムが負
荷変動により冷媒不足となり、液冷媒を含まない乾いた
冷媒がヘッダー5に流入し始めると、圧縮機1の吸入作
用により蒸発器4から吸入管6の気相の冷媒圧力が低下
する。この時、ヘッダー5内で冷凍機油7に密閉された
液冷媒と、流出管9内の気相冷媒との間に圧力差が生ま
れ、ヘッダー5内の液冷媒が透過膜13とそれを支持す
る多孔性樹脂12を透過して流出管9に少しずつ流れ込
む。流出管9に入った微量の液冷媒は、蒸発しながら吸
入管6を通り、圧縮機1に吸入される。この結果、圧縮
機1の吸入圧力の低下を防止し、所定の冷凍性能を維持
することができる。
The operation of the refrigeration system configured as described above will be described below. The refrigerating machine oil 7 is separated into two phases with a refrigerant mainly composed of hydrofluorocarbon, such as HFC134a, which has no mutual solubility, and has a specific gravity smaller than that of the refrigerant, and thus floats above the refrigerant stored in the header 5. Since the temperature is extremely low near the outlet of the evaporator 4, the refrigerating machine oil 7 has a high viscosity, and the refrigerant stored in the header 5 is in a semi-sealed state. Then, when the refrigeration system runs out of refrigerant due to load fluctuations and a dry refrigerant containing no liquid refrigerant begins to flow into the header 5, the suction action of the compressor 1 causes the refrigerant pressure in the vapor phase from the evaporator 4 to the suction pipe 6 to rise. descend. At this time, a pressure difference is generated between the liquid refrigerant sealed in the refrigerating machine oil 7 in the header 5 and the gas phase refrigerant in the outflow pipe 9, and the liquid refrigerant in the header 5 supports the permeable membrane 13 and it. It permeates the porous resin 12 and gradually flows into the outflow pipe 9. A small amount of the liquid refrigerant that has entered the outflow pipe 9 passes through the suction pipe 6 while being evaporated, and is sucked into the compressor 1. As a result, it is possible to prevent the suction pressure of the compressor 1 from decreasing and maintain a predetermined refrigeration performance.

【0020】また、冷凍システムが冷媒過多となった場
合は、常に一定量の液冷媒がヘッダー5に流入するた
め、その一部が流出管9に直接流れ込み、冷媒圧力を一
定に保つ。
When the refrigeration system becomes overheated with refrigerant, a constant amount of liquid refrigerant always flows into the header 5, so that a part of it flows directly into the outflow pipe 9 to keep the refrigerant pressure constant.

【0021】この結果、ヘッダー5内の液冷媒と流出管
9の気相冷媒の間にはほとんど圧力差がなく、ヘッダー
5内の液冷媒は透過膜を通過できない。この結果、ヘッ
ダー5に流入する液冷媒の一部が貯留され続けること
で、冷媒過多の状態を緩和するとともに、大量の液冷媒
が圧縮機1へ吸入されて潤滑不足等の問題が生じること
を防止することができる。
As a result, there is almost no pressure difference between the liquid refrigerant in the header 5 and the vapor phase refrigerant in the outflow pipe 9, and the liquid refrigerant in the header 5 cannot pass through the permeable membrane. As a result, since a part of the liquid refrigerant flowing into the header 5 is continuously stored, the excessive refrigerant state is alleviated, and a large amount of the liquid refrigerant is sucked into the compressor 1 to cause problems such as insufficient lubrication. Can be prevented.

【0022】以上のように本実施例の冷凍システムは、
圧縮機1と、凝縮器2と、膨張機構3と、蒸発器4と、
ヘッダー5とを環状に接続し、冷媒と、冷媒に相互溶解
性がないまたは少ない冷凍機油7とを備えた冷凍サイク
ルにおいて、ヘッダー5は、液冷媒を貯留する容器11
の上方に冷媒の流入管10を接続し、下方に冷媒の流出
管9を挿入した構造を持ち、流出管9の一部に設けられ
た穴を多孔性樹脂12で支持された気孔径0.3μmの
ポリテトラフルオロエチレン製の透過膜13が塞ぐよう
に設置されていることから、冷凍システムが冷媒不足の
状態になった時に、ヘッダー5に貯留された液冷媒が透
過膜13を透過し、流出管9に流れ込むことで、圧縮機
1の吸入圧力の低下を防止し、所定の冷凍性能を維持す
ることができる。
As described above, the refrigeration system of this embodiment is
The compressor 1, the condenser 2, the expansion mechanism 3, the evaporator 4,
In the refrigeration cycle in which the header 5 is connected in an annular shape and the refrigerant and the refrigerating machine oil 7 having no or little mutual solubility in the refrigerant are provided, the header 5 is a container 11 for storing a liquid refrigerant.
Has a structure in which a refrigerant inflow pipe 10 is connected to the upper side and a refrigerant outflow pipe 9 is inserted to the lower side, and a hole provided in a part of the outflow pipe 9 has a pore diameter of 0. Since the permeable membrane 13 made of 3 μm polytetrafluoroethylene is installed so as to be blocked, when the refrigeration system is in a refrigerant shortage state, the liquid refrigerant stored in the header 5 permeates the permeable membrane 13, By flowing into the outflow pipe 9, it is possible to prevent a decrease in suction pressure of the compressor 1 and maintain a predetermined refrigeration performance.

【0023】なお、本実施例において、透過膜13は気
孔径0.3μmのポリテトラフルオロエチレン製とした
が、気孔径0.01〜3μmであればセルロース等の他
の素材を用いても同様の効果が期待できる。気孔径0.
01μm以下では液冷媒の透過速度が遅く、3μm以上
では液冷媒が重力で透過するため保持できない。
In this embodiment, the permeable membrane 13 is made of polytetrafluoroethylene having a pore size of 0.3 μm, but if the pore size is 0.01 to 3 μm, other materials such as cellulose may be used. The effect of can be expected. Pore size 0.
When the thickness is 01 μm or less, the liquid refrigerant has a low permeation rate, and when it is 3 μm or more, the liquid refrigerant permeates by gravity and cannot be held.

【0024】なお、本実施例において、透過膜13の強
度不足を補うため、多孔性樹脂12で透過膜13を支持
したが、冷媒の透過性能と保持性能を損なわないもので
あれば焼結材等を用いても同様の効果が期待できる。
In this embodiment, the porous resin 12 is used to support the permeable membrane 13 in order to compensate for the insufficient strength of the permeable membrane 13. However, a sintered material can be used as long as it does not impair the refrigerant permeation performance and retention performance. The same effect can be expected by using such as.

【0025】次に、本発明による冷凍システムの第2の
実施例について、図面を参照しながら説明する。なお、
第1の実施例と同一構成については、同一符号を付して
詳細な説明は省略する。
Next, a second embodiment of the refrigeration system according to the present invention will be described with reference to the drawings. In addition,
The same components as those in the first embodiment are designated by the same reference numerals and detailed description thereof will be omitted.

【0026】図3は、本発明の第2の実施例によるヘッ
ダーの断面図である。図3において、流入管10の下方
にホルダー14を介して気孔径5μmの多孔質フィルタ
ー15が接続されている。
FIG. 3 is a sectional view of a header according to the second embodiment of the present invention. In FIG. 3, a porous filter 15 having a pore diameter of 5 μm is connected below the inflow pipe 10 via a holder 14.

【0027】以上のように構成された冷凍システムにつ
いて、以下その動作を説明する。冷凍システム内に残留
する配管加工油や切削粉等のコンタミ物質が冷媒ととも
に流入管10を通りヘッダー5内に侵入した時に、コン
タミ物質が多孔質フィルター15に付着し、容器11内
に流入するのを防ぐ。この結果、透過膜13が冷凍シス
テム内のコンタミ物質によって閉塞して、冷媒の通過を
妨げることを防止する。
The operation of the refrigeration system configured as described above will be described below. When contaminants such as piping processing oil and cutting powder remaining in the refrigeration system enter the header 5 along with the refrigerant through the inflow pipe 10, the contaminants adhere to the porous filter 15 and flow into the container 11. prevent. As a result, the permeable membrane 13 is prevented from being blocked by the contaminants in the refrigeration system and obstructing the passage of the refrigerant.

【0028】以上のように本実施例の冷凍システムは、
圧縮機1と、凝縮器2と、膨張機構3と、蒸発器4と、
ヘッダー5とを環状に接続し、冷媒と、冷媒に相互溶解
性がないまたは少ない冷凍機油7とを備えた冷凍サイク
ルにおいて、ヘッダー5は、液冷媒を貯留する容器11
の上方に冷媒の流入管10を接続し、下方に冷媒の流出
管9を挿入した構造を持ち、流出管9の一部に設けられ
た穴を多孔性樹脂12で支持された透過膜13が塞ぐよ
うに設置されており、かつ、流入管10の下方にホルダ
ー14を介して気孔径5μmの多孔質フィルター15が
接続されていることから、冷凍システムが冷媒不足の状
態になった時に、ヘッダー5に貯留された液冷媒が透過
膜13を透過し、流出管9に流れ込むことで、圧縮機1
の吸入圧力の低下を防止し、所定の冷凍性能を維持する
ことができるとともに、冷凍システム内に残留するコン
タミ物質により透過膜13が閉塞することを防止でき、
その効果が長期間維持できる。
As described above, the refrigeration system of this embodiment is
The compressor 1, the condenser 2, the expansion mechanism 3, the evaporator 4,
In the refrigeration cycle in which the header 5 is connected in an annular shape and the refrigerant and the refrigerating machine oil 7 having no or little mutual solubility in the refrigerant are provided, the header 5 is a container 11 for storing a liquid refrigerant.
Has a structure in which a refrigerant inflow pipe 10 is connected above and a refrigerant outflow pipe 9 is inserted below, and a permeable membrane 13 in which a hole provided in a part of the outflow pipe 9 is supported by a porous resin 12 is formed. Since it is installed so as to be closed and the porous filter 15 having a pore diameter of 5 μm is connected to the lower part of the inflow pipe 10 via the holder 14, when the refrigeration system is in a refrigerant shortage state, the header The liquid refrigerant stored in 5 passes through the permeable membrane 13 and flows into the outflow pipe 9, whereby the compressor 1
It is possible to prevent the suction pressure from decreasing and maintain a predetermined refrigerating performance, and it is possible to prevent the permeable membrane 13 from being clogged by contaminants remaining in the refrigeration system.
The effect can be maintained for a long time.

【0029】なお、本実施例において、気孔径5μmの
多孔質フィルター15を用いたが、気孔径3〜30μm
であれば同様の効果が期待できる。気孔径3μm以下で
は気相冷媒および冷凍機油7の透過速度が遅く、30μ
m以上ではコンタミ物質が容易に通過するため効果が期
待できない。
In this embodiment, the porous filter 15 having a pore size of 5 μm is used, but the pore size is 3 to 30 μm.
If so, the same effect can be expected. When the pore diameter is 3 μm or less, the permeation rate of the vapor-phase refrigerant and the refrigerating machine oil 7 is low,
If it is more than m, no effect can be expected because contaminants easily pass through.

【0030】次に、本発明による冷凍システムの第3の
実施例について、図面を参照しながら説明する。なお、
第1の実施例と同一構成については、同一符号を付して
詳細な説明は省略する。
Next, a third embodiment of the refrigeration system according to the present invention will be described with reference to the drawings. In addition,
The same components as those in the first embodiment are designated by the same reference numerals and detailed description thereof will be omitted.

【0031】図4は、本発明の第3の実施例によるヘッ
ダーの断面図である。図4において、容器11の内部下
方に活性化アルミナからなる吸着材16を設置してい
る。
FIG. 4 is a sectional view of a header according to the third embodiment of the present invention. In FIG. 4, an adsorbent 16 made of activated alumina is installed below the inside of the container 11.

【0032】以上のように構成された冷凍システムにつ
いて、以下その動作を説明する。冷媒や冷凍機油7は長
期間の使用されると劣化して微量の酸性物質が生成され
る。この酸性物質が冷凍システム内の配管や圧縮機1の
部品を腐蝕して、カルボン酸塩等のイオン性物質が微量
に生成する。このイオン性物質が冷媒とともに流入管1
0を通りヘッダー5内に侵入した時に、イオン性物質が
吸着材16に吸着し、容器11内に貯留された冷媒内の
イオン性物質を除去する。この結果、透過膜13が冷凍
システム内のイオン性物質によって閉塞して、冷媒の通
過を妨げることを防止する。
The operation of the refrigeration system configured as described above will be described below. The refrigerant and the refrigerating machine oil 7 are deteriorated when used for a long period of time, and a trace amount of an acidic substance is generated. This acidic substance corrodes the piping in the refrigeration system and parts of the compressor 1, and a small amount of ionic substances such as carboxylates are produced. This ionic substance together with the refrigerant is the inflow pipe 1
When entering the header 5 through 0, the ionic substance is adsorbed by the adsorbent 16 and removes the ionic substance in the refrigerant stored in the container 11. As a result, the permeable membrane 13 is prevented from being blocked by the ionic substance in the refrigeration system and obstructing the passage of the refrigerant.

【0033】以上のように本実施例の冷凍システムは、
圧縮機1と、凝縮器2と、膨張機構3と、蒸発器4と、
ヘッダー5とを環状に接続し、冷媒と、冷媒に相互溶解
性がないまたは少ない冷凍機油7とを備えた冷凍サイク
ルにおいて、ヘッダー5は、液冷媒を貯留する容器11
の上方に冷媒の流入管10を接続し、下方に冷媒の流出
管9を挿入した構造を持ち、流出管9の一部に設けられ
た穴を多孔性樹脂12で支持された透過膜13が塞ぐよ
うに設置されており、かつ、容器11の内部下方に活性
化アルミナからなる吸着材16を設置していることか
ら、冷凍システムが冷媒不足の状態になった時に、ヘッ
ダー5に貯留された液冷媒が透過膜13を透過し、流出
管9に流れ込むことで、圧縮機1の吸入圧力の低下を防
止し、所定の冷凍性能を維持することができるととも
に、冷凍システム内で生成した微量のイオン性物質によ
り透過膜13が閉塞することを防止でき、その効果が長
期間維持できる。
As described above, the refrigeration system of this embodiment is
The compressor 1, the condenser 2, the expansion mechanism 3, the evaporator 4,
In the refrigeration cycle in which the header 5 is connected in an annular shape and the refrigerant and the refrigerating machine oil 7 having no or little mutual solubility in the refrigerant are provided, the header 5 is a container 11 for storing a liquid refrigerant.
Has a structure in which a refrigerant inflow pipe 10 is connected above and a refrigerant outflow pipe 9 is inserted below, and a permeable membrane 13 in which a hole provided in a part of the outflow pipe 9 is supported by a porous resin 12 is formed. Since the adsorbent 16 made of activated alumina is installed in the lower part of the container 11 so as to be closed, the adsorbent 16 is stored in the header 5 when the refrigeration system is in a refrigerant shortage state. Since the liquid refrigerant permeates the permeable membrane 13 and flows into the outflow pipe 9, it is possible to prevent the suction pressure of the compressor 1 from lowering, maintain a predetermined refrigeration performance, and to generate a small amount of the refrigeration system. It is possible to prevent the permeable membrane 13 from being blocked by the ionic substance and maintain its effect for a long time.

【0034】なお、本実施例において、活性化アルミナ
ならなる吸着材16を用いたが、表面がイオン性でかつ
多孔性のゼオライト等の吸着材であれば同様の効果が期
待できる。
In this embodiment, the adsorbent 16 made of activated alumina was used, but the same effect can be expected if the adsorbent is made of zeolite or the like, the surface of which is ionic and porous.

【0035】次に、本発明による冷凍システムの第4の
実施例について、図面を参照しながら説明する。なお、
第1の実施例と同一構成については、同一符号を付して
詳細な説明は省略する。
Next, a fourth embodiment of the refrigeration system according to the present invention will be described with reference to the drawings. In addition,
The same components as those in the first embodiment are designated by the same reference numerals and detailed description thereof will be omitted.

【0036】図5は、本発明の第4の実施例による冷凍
システムの略図であり、図6は同実施例のヘッダーの断
面図である。
FIG. 5 is a schematic diagram of a refrigeration system according to a fourth embodiment of the present invention, and FIG. 6 is a sectional view of a header of the same embodiment.

【0037】図5、図6において、ヘッダー5は、液冷
媒を貯留する容器18の上方に冷媒の流入管10を接続
し、側方に冷媒の流出管17を接続した構造を持ち、容
器18の下部にベローズ部18aを有している。
In FIGS. 5 and 6, the header 5 has a structure in which the refrigerant inflow pipe 10 is connected to the upper side of the container 18 for storing the liquid refrigerant, and the refrigerant outflow pipe 17 is connected to the side thereof. Has a bellows portion 18a at the bottom thereof.

【0038】以上のように構成された冷凍システムにお
いて、以下その動作を説明する。冷凍機油7は、相互溶
解性のないHFC134a等のハイドロフルオロカーボ
ンを主体とした冷媒と二相分離し、かつ、冷媒より比重
が小さいため、ヘッダー5内に貯留された冷媒の上に浮
く。蒸発器4の出口付近では非常に温度が低いため冷凍
機油7は高粘度となり、ヘッダー5内に貯流された冷媒
は半密閉された状態となる。そして、冷凍システムが負
荷変動により冷媒不足となり、液冷媒を含まない乾いた
冷媒がヘッダー5に流入し始めると、圧縮機1の吸入作
用により蒸発器4から吸入管6の気相の冷媒圧力が低下
する。この時、ヘッダー5内の気相冷媒の圧力と外気の
圧力との間でバランスをたもっていた容器18のベロー
ズ部18aが、ヘッダー5内の気相冷媒の圧力が低下し
た分だけ縮小し、容器18内に貯留された冷凍機油7と
液冷媒を押し上げる。そして、押し上げられた冷凍機油
7と液冷媒は容器18の側方に接続された流出管17と
流入管17に接続された吸入管6を通り、圧縮機1に吸
入される。この結果、圧縮機1の吸入圧力の低下を防止
し、所定の冷凍性能を維持することができるとともに、
液冷媒と同時の冷凍機油7を圧縮機1に吸入させること
で、液冷媒の流入による潤滑性の低下を防止することが
できる。
The operation of the refrigeration system configured as described above will be described below. The refrigerating machine oil 7 is separated into two phases with a refrigerant mainly composed of hydrofluorocarbon, such as HFC134a, which has no mutual solubility, and has a specific gravity smaller than that of the refrigerant, and thus floats above the refrigerant stored in the header 5. Since the temperature is extremely low near the outlet of the evaporator 4, the refrigerating machine oil 7 has a high viscosity, and the refrigerant stored in the header 5 is in a semi-sealed state. Then, when the refrigeration system runs out of refrigerant due to load fluctuations and a dry refrigerant containing no liquid refrigerant begins to flow into the header 5, the suction action of the compressor 1 causes the refrigerant pressure in the vapor phase from the evaporator 4 to the suction pipe 6 to rise. descend. At this time, the bellows portion 18a of the container 18, which had a balance between the pressure of the vapor-phase refrigerant in the header 5 and the pressure of the outside air, is reduced by the amount of decrease in the pressure of the vapor-phase refrigerant in the header 5, The refrigerator oil 7 and the liquid refrigerant stored in the container 18 are pushed up. Then, the pushed up refrigerating machine oil 7 and the liquid refrigerant pass through the outflow pipe 17 connected to the side of the container 18 and the suction pipe 6 connected to the inflow pipe 17, and are sucked into the compressor 1. As a result, it is possible to prevent the suction pressure of the compressor 1 from decreasing and maintain a predetermined refrigerating performance.
By sucking the refrigerating machine oil 7 at the same time as the liquid refrigerant into the compressor 1, it is possible to prevent deterioration of lubricity due to the inflow of the liquid refrigerant.

【0039】以上のように本実施例の冷凍システムは、
圧縮機1と、凝縮器2と、膨張機構3と、蒸発器4と、
ヘッダー5とを環状に接続し、冷媒と、冷媒に相互溶解
性がないまたは少ない冷凍機油7とを備えた冷凍サイク
ルにおいて、ヘッダー5は、液冷媒を貯留する容器18
の上方に冷媒の流入管10を接続し、側方に冷媒の流出
管17を接続した構造を持ち、容器18の下部にベロー
ズ部18aを有していることから、冷凍システムが冷媒
不足の状態になった時に、ヘッダー5に貯留された冷凍
機油7と液冷媒が押し上げられて、流出管17に流れ込
むことで、圧縮機1の吸入圧力の低下を防止し、所定の
冷凍性能を維持することができるとともに液冷媒の流入
による潤滑性の低下を防止することができる。
As described above, the refrigeration system of this embodiment is
The compressor 1, the condenser 2, the expansion mechanism 3, the evaporator 4,
In the refrigeration cycle in which the header 5 is connected in an annular shape and the refrigerant and the refrigerating machine oil 7 having no or little mutual solubility in the refrigerant are provided, the header 5 is a container 18 for storing a liquid refrigerant.
Has a structure in which the refrigerant inflow pipe 10 is connected to the upper side of the container and the refrigerant outflow pipe 17 is connected to the side thereof, and the bellows portion 18a is provided in the lower portion of the container 18, so that the refrigeration system is in a refrigerant insufficient state. At this time, the refrigerating machine oil 7 and the liquid refrigerant stored in the header 5 are pushed up and flow into the outflow pipe 17, thereby preventing the suction pressure of the compressor 1 from decreasing and maintaining a predetermined refrigerating performance. In addition, it is possible to prevent deterioration of lubricity due to the inflow of the liquid refrigerant.

【0040】次に、本発明による冷凍システムの第5の
実施例について、図面を参照しながら説明する。なお、
第4の実施例と同一構成については、同一符号を付して
詳細な説明は省略する。
Next, a fifth embodiment of the refrigeration system according to the present invention will be described with reference to the drawings. In addition,
The same components as those in the fourth embodiment are designated by the same reference numerals and detailed description thereof will be omitted.

【0041】図7は、本発明の第5の実施例による冷凍
システムの略図であり、図8は同実施例のヘッダーの断
面図である。
FIG. 7 is a schematic diagram of a refrigeration system according to a fifth embodiment of the present invention, and FIG. 8 is a sectional view of a header of the same embodiment.

【0042】図7、図8において、ヘッダー5は、液冷
媒を貯留する容器19の上方に冷媒の流入管10を接続
し、側方に冷媒の流出管17を接続した構造を持ち、容
器19の内部下方にベローズ20を固定している。ま
た、ベローズ20の内部には適正なヘッダー5内の気相
冷媒の圧力とバランスするように設定された圧力でガス
が封入されている。
In FIGS. 7 and 8, the header 5 has a structure in which the refrigerant inflow pipe 10 is connected to the upper side of the container 19 for storing the liquid refrigerant, and the refrigerant outflow pipe 17 is connected to the side thereof. The bellows 20 is fixed to the lower part inside. Further, the bellows 20 is filled with gas at a pressure set so as to balance with the pressure of the vapor phase refrigerant in the header 5 which is appropriate.

【0043】以上のように構成された冷凍システムにお
いて、以下その動作を説明する。冷凍機油7は、相互溶
解性のないHFC134a等のハイドロフルオロカーボ
ンを主体とした冷媒と二相分離し、かつ、冷媒より比重
が小さいため、ヘッダー5内に貯留された冷媒の上に浮
く。蒸発器4の出口付近では非常に温度が低いため冷凍
機油7は高粘度となり、ヘッダー5内に貯流された冷媒
は半密閉された状態となる。そして、冷凍システムが負
荷変動により冷媒不足となり、液冷媒を含まない乾いた
冷媒がヘッダー5に流入し始めると、圧縮機1の吸入作
用により蒸発器4から吸入管6の気相の冷媒圧力が低下
する。この時、ヘッダー5内の気相冷媒の圧力とバラン
スをたもっていた容器19内に固定されたベローズ20
が、ヘッダー5内の気相冷媒の圧力が低下した分だけ伸
長し、容器19内に貯留された冷凍機油7と液冷媒を押
し上げる。そして、押し上げられた冷凍機油7と液冷媒
は容器19の側方に接続された流出管17と流入管17
に接続された吸入管6を通り、圧縮機1に吸入される。
この結果、圧縮機1の吸入圧力の低下を防止し、所定の
冷凍性能を維持することができるとともに、液冷媒と同
時の冷凍機油7を圧縮機1に吸入させることで、液冷媒
の流入による潤滑性の低下を防止することができる。ま
た、ベローズ20内のガスの圧力は外気の圧力に関係な
く適正に設定することができるとともに、容器19の内
部に設置することで構造強度を下げて柔軟性を高めるこ
とができ、ヘッダー5内の微妙な圧力変化に追従でき
る。
The operation of the refrigeration system configured as described above will be described below. The refrigerating machine oil 7 is separated into two phases with a refrigerant mainly composed of hydrofluorocarbon, such as HFC134a, which has no mutual solubility, and has a specific gravity smaller than that of the refrigerant, and thus floats above the refrigerant stored in the header 5. Since the temperature is extremely low near the outlet of the evaporator 4, the refrigerating machine oil 7 has a high viscosity, and the refrigerant stored in the header 5 is in a semi-sealed state. Then, when the refrigeration system runs out of refrigerant due to load fluctuations and a dry refrigerant containing no liquid refrigerant begins to flow into the header 5, the suction action of the compressor 1 causes the refrigerant pressure in the vapor phase from the evaporator 4 to the suction pipe 6 to rise. descend. At this time, the bellows 20 fixed in the container 19 that was in balance with the pressure of the vapor phase refrigerant in the header 5
However, the pressure of the vapor-phase refrigerant in the header 5 expands by the amount of the decrease, and pushes up the refrigerating machine oil 7 and the liquid refrigerant stored in the container 19. The refrigerating machine oil 7 and the liquid refrigerant thus pushed up are connected to the side of the container 19 by an outflow pipe 17 and an inflow pipe 17.
Is sucked into the compressor 1 through the suction pipe 6 connected to the.
As a result, the suction pressure of the compressor 1 can be prevented from lowering and a predetermined refrigerating performance can be maintained. Further, by sucking the refrigerating machine oil 7 at the same time as the liquid refrigerant into the compressor 1, it is possible to prevent the liquid refrigerant from flowing in. It is possible to prevent deterioration of lubricity. Further, the pressure of the gas in the bellows 20 can be set appropriately regardless of the pressure of the outside air, and by installing it inside the container 19, the structural strength can be lowered and the flexibility can be increased, and the inside of the header 5 can be improved. It can follow the subtle pressure changes.

【0044】以上のように本実施例の冷凍システムは、
圧縮機1と、凝縮器2と、膨張機構3と、蒸発器4と、
ヘッダー5とを環状に接続し、冷媒と、冷媒に相互溶解
性がないまたは少ない冷凍機油7とを備えた冷凍サイク
ルにおいて、ヘッダー5は、液冷媒を貯留する容器19
の上方に冷媒の流入管10を接続し、側方に冷媒の流出
管17を接続した構造を持ち、容器19の内部下方にベ
ローズ20を固定していることから、冷凍システムが冷
媒不足の状態になった時に、ヘッダー5に貯留された冷
凍機油7と液冷媒が押し上げられて、流出管17に流れ
込むことで、圧縮機1の吸入圧力の低下を防止し、所定
の冷凍性能を維持することができるとともに液冷媒の流
入による潤滑性の低下を防止することができる。また、
ベローズ20は適正圧力付近の微妙な圧力変化にも追従
して、その効果を発揮できる。
As described above, the refrigeration system of this embodiment is
The compressor 1, the condenser 2, the expansion mechanism 3, the evaporator 4,
In the refrigeration cycle in which the header 5 is annularly connected and the refrigerant and the refrigerating machine oil 7 having little or no mutual solubility in the refrigerant, the header 5 is a container 19 for storing a liquid refrigerant.
Has a structure in which the refrigerant inflow pipe 10 is connected to the upper side of the container and the refrigerant outflow pipe 17 is connected to the side thereof, and the bellows 20 is fixed to the lower inside of the container 19, so that the refrigeration system is in a refrigerant insufficient state. At this time, the refrigerating machine oil 7 and the liquid refrigerant stored in the header 5 are pushed up and flow into the outflow pipe 17, thereby preventing the suction pressure of the compressor 1 from decreasing and maintaining a predetermined refrigerating performance. In addition, it is possible to prevent deterioration of lubricity due to the inflow of the liquid refrigerant. Also,
The bellows 20 can follow the slight pressure change near the appropriate pressure and exert its effect.

【0045】なお、本実施例において、流出管17を容
器19の側方設けたが、容器19の下方に流出管を挿入
しても同様の効果が得られる。また、容器19の下部に
ベローズ20を2個以上固定しても同様の効果が得られ
る。
In this embodiment, the outflow pipe 17 is provided on the side of the container 19, but the same effect can be obtained by inserting the outflow pipe below the container 19. The same effect can be obtained by fixing two or more bellows 20 to the lower portion of the container 19.

【0046】[0046]

【発明の効果】以上説明したように本発明は、圧縮機
と、凝縮器と、膨張機構と、蒸発器と、ヘッダーとを環
状に接続し、冷媒と、冷媒に相互溶解性がないまたは少
ない冷凍機油とを備えた冷凍サイクルにおいて、ヘッダ
ーは、液冷媒を貯留する容器の上方に冷媒の流入管を接
続し、下方に冷媒の流出管を挿入した構造を持ち、か
つ、前記流出管の一部を透過膜で形成していることか
ら、ヘッダー内部に貯留された液冷媒が高粘度の冷凍機
油により封じ込められ、冷凍システムの吸入圧力が低下
した時に、流出管の一部に設けられた透過膜を通して、
液冷媒を少しずつ圧縮機に戻すことで、吸入圧力の異常
な低下を防止することができ、所定の冷凍性能が維持で
きる。
As described above, according to the present invention, the compressor, the condenser, the expansion mechanism, the evaporator, and the header are connected in an annular shape, and the refrigerant and the refrigerant have no or little mutual solubility. In a refrigeration cycle including a refrigerating machine oil, the header has a structure in which a refrigerant inflow pipe is connected to an upper side of a container that stores a liquid refrigerant, and a refrigerant outflow pipe is inserted below, and one of the outflow pipes Since the part is made of a permeable membrane, the liquid refrigerant stored inside the header is confined by the refrigerating machine oil with high viscosity, and when the suction pressure of the refrigeration system drops, the permeation provided in a part of the outflow pipe Through the membrane,
By returning the liquid refrigerant to the compressor little by little, it is possible to prevent an abnormal decrease in suction pressure and maintain a predetermined refrigeration performance.

【0047】また、さらに流入管の先端に多孔質フィル
タを設けた構成であることから、冷凍システム内で発生
する有機酸あるいは有機酸金属塩等のイオン性のスラッ
ジが透過膜を閉塞することを防止し、吸入圧力低下時に
少しずつ液冷媒を戻す透過膜の機能を安定して発揮させ
ることができる。
Further, since the porous filter is provided at the tip of the inflow pipe, ionic sludge such as organic acid or organic acid metal salt generated in the refrigeration system may block the permeable membrane. Therefore, the function of the permeable membrane that prevents the liquid refrigerant from gradually returning when the suction pressure decreases can be stably exhibited.

【0048】また、さらに容器内部の下方に吸着材を設
置した構成であることから、冷凍システム内で発生する
有機酸あるいは有機酸金属塩等のイオン性のスラッジが
透過膜を閉塞することを防止し、吸入圧力低下時に少し
ずつ液冷媒を戻す透過膜の機能を安定して発揮させるこ
とができる。
Further, since the adsorbent is installed below the inside of the container, ionic sludge such as organic acid or organic acid metal salt generated in the refrigeration system is prevented from blocking the permeable membrane. However, the function of the permeable membrane that gradually returns the liquid refrigerant when the suction pressure decreases can be stably exhibited.

【0049】また、圧縮機と、凝縮器と、膨張機構と、
蒸発器とヘッダーとを環状に接続し、冷媒と、冷媒に相
互溶解性がないまたは少ない冷凍機油とを備えた冷凍サ
イクルにおいて、前記ヘッダーは、液冷媒を貯留する容
器の上方に冷媒の流入管を接続し、側方に冷媒の流出管
を接続した構造を持ち、かつ、前記容器の下方がベロー
ズ状の構造を持つことから、ヘッダー内部に貯留された
液冷媒が高粘度の冷凍機油により封じ込められ、冷凍シ
ステムの吸入圧力が低下した時に、ベローズ部が縮みヘ
ッダーの冷媒貯留部の容積を減少させ、冷凍機油ととも
に液冷媒を少しずつ圧縮機に戻すことで、液冷媒の吸入
による潤滑性の低下を抑制しながら、圧縮機の吸入圧力
の異常な低下を防止することができ、耐久性を維持しな
がら所定の冷凍性能が維持できる。
Further, a compressor, a condenser, an expansion mechanism,
An evaporator and a header are connected in an annular shape, and in a refrigeration cycle provided with a refrigerant and a refrigerating machine oil having no or little mutual solubility in the refrigerant, the header is a refrigerant inflow pipe above a container for storing a liquid refrigerant. Has a structure in which the refrigerant outflow pipe is connected to the side, and the lower part of the container has a bellows-like structure, so that the liquid refrigerant stored inside the header is confined by high-viscosity refrigeration oil. When the suction pressure of the refrigeration system drops, the bellows part shrinks to reduce the volume of the refrigerant storage part of the header, and the liquid refrigerant is gradually returned to the compressor along with the refrigeration oil, so that the lubricity due to the suction of the liquid refrigerant is reduced. It is possible to prevent an abnormal decrease in the suction pressure of the compressor while suppressing the decrease, and it is possible to maintain a predetermined refrigeration performance while maintaining durability.

【0050】また、圧縮機と、凝縮器と、膨張機構と、
蒸発器とヘッダーとを環状に接続し、冷媒と、冷媒に相
互溶解性がないまたは少ない冷凍機油とを備えた冷凍サ
イクルにおいて、前記ヘッダーは、液冷媒を貯留する容
器の上方に冷媒の流入管を接続し、側方に冷媒の流出管
を接続した構造を持ち、かつ、前記容器内部の下方にベ
ローズを設置した構成であることから、ベローズ部の機
械強度を下げることができ、肉厚を薄くすることで吸入
圧力の変化に敏感に反応して、吸入圧力低下時に、ベロ
ーズ部がのびヘッダーの冷媒貯留部の容積を減少させ、
冷凍機油とともに液冷媒を少しずつ圧縮機に戻すこと
で、液冷媒の吸入による潤滑性の低下を抑制しながら、
圧縮機の吸入圧力の異常な低下を防止することができ、
耐久性を維持しながら所定の冷凍性能が維持できる。
Also, a compressor, a condenser, an expansion mechanism,
An evaporator and a header are connected in an annular shape, and in a refrigeration cycle provided with a refrigerant and a refrigerating machine oil having no or little mutual solubility in the refrigerant, the header is a refrigerant inflow pipe above a container storing a liquid refrigerant. , And has a structure in which a refrigerant outflow pipe is connected to the side, and since the bellows is installed below the inside of the container, it is possible to reduce the mechanical strength of the bellows part and to reduce the wall thickness. By making it thin, it reacts sensitively to changes in suction pressure, and when the suction pressure drops, the bellows part extends and the volume of the refrigerant reservoir of the header is reduced,
By returning the liquid refrigerant to the compressor little by little with the refrigeration oil, while suppressing the deterioration of lubricity due to the suction of the liquid refrigerant,
It is possible to prevent abnormal reduction of the suction pressure of the compressor,
A predetermined refrigeration performance can be maintained while maintaining durability.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による冷凍システムの第1の実施例の冷
凍サイクル図
FIG. 1 is a refrigeration cycle diagram of a first embodiment of a refrigeration system according to the present invention.

【図2】同実施例のヘッダーの断面図FIG. 2 is a sectional view of the header of the same embodiment.

【図3】本発明による冷凍システムの第2の実施例のヘ
ッダーの断面図
FIG. 3 is a sectional view of a header of a second embodiment of the refrigeration system according to the present invention.

【図4】本発明による冷凍システムの第3の実施例のヘ
ッダーの断面図
FIG. 4 is a sectional view of a header of a third embodiment of the refrigeration system according to the present invention.

【図5】本発明による冷凍システムの第4の実施例の冷
凍サイクル図
FIG. 5 is a refrigeration cycle diagram of a fourth embodiment of the refrigeration system according to the present invention.

【図6】同実施例のヘッダーの断面図FIG. 6 is a sectional view of the header of the same embodiment.

【図7】本発明による冷凍システムの第5の実施例の冷
凍サイクル図
FIG. 7 is a refrigeration cycle diagram of a fifth embodiment of the refrigeration system according to the present invention.

【図8】同実施例のヘッダーの断面図FIG. 8 is a sectional view of the header of the same embodiment.

【図9】(a)は従来の冷凍システムの冷凍サイクル図 (b)は従来の冷凍システムのヘッダーの断面図9A is a refrigeration cycle diagram of a conventional refrigeration system, and FIG. 9B is a sectional view of a header of a conventional refrigeration system.

【符号の説明】[Explanation of symbols]

1 圧縮機 2 凝縮器 4 蒸発器 5 ヘッダー 6 吸入配管 7 冷凍機油 9 流出管 10 流出管 11 容器 13 透過膜 15 多孔質フィルター 16 吸着材 18 容器 18a ベローズ部 20 ベローズ 1 Compressor 2 Condenser 4 Evaporator 5 Header 6 Suction pipe 7 Refrigerator oil 9 Outflow pipe 10 Outflow pipe 11 Container 13 Permeable membrane 15 Porous filter 16 Adsorbent 18 Container 18a Bellows part 20 Bellows

フロントページの続き (72)発明者 城野 章宏 大阪府東大阪市高井田本通4丁目2番5号 松下冷機株式会社内 (72)発明者 清水 武 大阪府東大阪市高井田本通4丁目2番5号 松下冷機株式会社内 (72)発明者 田中 正昭 大阪府東大阪市高井田本通4丁目2番5号 松下冷機株式会社内 (72)発明者 米村 稔 大阪府東大阪市高井田本通4丁目2番5号 松下冷機株式会社内Front page continuation (72) Inventor Akihiro Jono 4-5, Takaida Hondori, Higashi-Osaka City, Osaka Prefecture Matsushita Refrigerator Co., Ltd. (72) Inventor Takeshi Shimizu 4-5-2 Takaida Hondori, Higashi Osaka, Osaka Prefecture No. Matsushita Refrigerator Co., Ltd. (72) Inventor Masaaki Tanaka 4-2-5 Takaidahondori, Higashiosaka-shi, Osaka Prefecture Matsushita Refrigerator Co., Ltd. (72) Minoru Yonemura 4-Chome Takaidamoto-dori, Higashi Osaka, Osaka Prefecture No. 5 inside Matsushita Cold Machinery Co., Ltd.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 圧縮機と、凝縮器と、膨張機構と、蒸発
器とヘッダーとを環状に接続し、冷媒と、冷媒に相互溶
解性がないまたは少ない冷凍機油とを備えた冷凍サイク
ルにおいて、前記ヘッダーは、液冷媒を貯留する容器の
上方に冷媒の流入管を接続し、下方に冷媒の流出管を挿
入した構造を持ち、かつ、前記流出管の一部を気孔径
0.01〜3μmの透過膜で形成されていることを特徴
とする冷凍システム。
1. A refrigeration cycle comprising a compressor, a condenser, an expansion mechanism, an evaporator and a header connected in an annular shape, and a refrigerant, and a refrigerating machine oil having no or little mutual solubility in the refrigerant, The header has a structure in which a refrigerant inflow pipe is connected to an upper portion of a container storing a liquid refrigerant, and a refrigerant outflow pipe is inserted in a lower portion, and a part of the outflow pipe has a pore diameter of 0.01 to 3 μm. A refrigeration system characterized by being formed of a permeable membrane of.
【請求項2】 流入管の先端に気孔径3〜30μmの多
孔質フィルタを接続した請求項1記載の冷凍システム。
2. The refrigeration system according to claim 1, wherein a porous filter having a pore diameter of 3 to 30 μm is connected to the tip of the inflow pipe.
【請求項3】 容器内部の下方にゼオライトあるいは活
性化アルミナからなる吸着材を設置したことを特徴とす
る請求項1記載の冷凍システム。
3. The refrigeration system according to claim 1, wherein an adsorbent made of zeolite or activated alumina is installed below the inside of the container.
【請求項4】 圧縮機と、凝縮器と、膨張機構と、蒸発
器とヘッダーとを環状に接続し、冷媒と、冷媒に相互溶
解性がないまたは少ない冷凍機油とを備えた冷凍サイク
ルにおいて、前記ヘッダーは、液冷媒を貯留する容器の
上方に冷媒の流入管を接続し、側方に冷媒の流出管を接
続した構造を持ち、かつ、前記容器の下方がベローズ状
の構造を持ち内部の圧力の変動によって内容積が変化す
ることを特徴とする冷凍システム。
4. A refrigeration cycle comprising a compressor, a condenser, an expansion mechanism, an evaporator and a header connected in an annular shape, and a refrigerant and a refrigerating machine oil having no or little mutual solubility in the refrigerant, The header has a structure in which a refrigerant inflow pipe is connected to an upper portion of a container that stores a liquid refrigerant, and a refrigerant outflow pipe is connected to a side portion, and a lower portion of the container has a bellows-like structure and has an internal structure. A refrigeration system characterized in that the internal volume changes due to pressure fluctuations.
【請求項5】 圧縮機と、凝縮器と、膨張機構と、蒸発
器とヘッダーとを環状に接続し、冷媒と、冷媒に相互溶
解性がないまたは少ない冷凍機油とを備えた冷凍サイク
ルにおいて、前記ヘッダーは、液冷媒を貯留する容器の
上方に冷媒の流入管を接続し、側方に冷媒の流出管を接
続した構造を持ち、かつ、前記容器内部の下方に内外の
圧力の変動によって内容積が変化するベローズを設置し
たことを特徴とする冷凍システム。
5. A refrigeration cycle comprising a compressor, a condenser, an expansion mechanism, an evaporator and a header connected annularly, and a refrigerant and refrigerating machine oil having no or little mutual solubility in the refrigerant, The header has a structure in which a refrigerant inflow pipe is connected to an upper side of a container that stores a liquid refrigerant, and a refrigerant outflow pipe is connected to a side thereof, and the contents are formed below the inside of the container by fluctuations of internal and external pressures. A refrigeration system characterized by the installation of bellows whose volume changes.
JP7748895A 1995-04-03 1995-04-03 Refrigerating system Pending JPH08271098A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7748895A JPH08271098A (en) 1995-04-03 1995-04-03 Refrigerating system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7748895A JPH08271098A (en) 1995-04-03 1995-04-03 Refrigerating system

Publications (1)

Publication Number Publication Date
JPH08271098A true JPH08271098A (en) 1996-10-18

Family

ID=13635380

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7748895A Pending JPH08271098A (en) 1995-04-03 1995-04-03 Refrigerating system

Country Status (1)

Country Link
JP (1) JPH08271098A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002250576A (en) * 2001-02-26 2002-09-06 Mitsubishi Electric Corp Refrigeration cycle device and its operation method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002250576A (en) * 2001-02-26 2002-09-06 Mitsubishi Electric Corp Refrigeration cycle device and its operation method
JP4554098B2 (en) * 2001-02-26 2010-09-29 三菱電機株式会社 Refrigeration cycle apparatus and operation method thereof

Similar Documents

Publication Publication Date Title
US5868001A (en) Suction accumulator with oil reservoir
EP0978693B1 (en) Refrigerating system using a refrigerant of defined specific volume
JPH0712411A (en) Refrigerating cycle and control method of ratio of composition of refrigerant for same
JP3104513B2 (en) accumulator
JPH06229634A (en) Freezer
JPH07174439A (en) Refrigerating cycle
US11199347B2 (en) Oil separation device and refrigeration cycle apparatus
JPH08271098A (en) Refrigerating system
CN101275786B (en) Refrigeration cycle apparatus
JP2015158317A (en) Air conditioning device
JP4472200B2 (en) Refrigeration / air-conditioning apparatus and operation method thereof
JP2006029684A (en) Oil separator and cryogenic device
Jacobson Ball Beating Lubrication in Refrigetation Compressors
JPH10246521A (en) Freezer, air conditioner and method for assembling refrigerant circuit
JPH1114200A (en) Accumulator
CN219390156U (en) Liquid accumulator for refrigeration equipment and refrigeration equipment
JP2009133566A (en) Gas-liquid separator
JP2008196731A (en) Refrigerating apparatus
JP2005172318A (en) Freezing air conditioning cycle device
US3204389A (en) Liquid separator
JP2006023009A (en) Air conditioner
JP3307004B2 (en) Refrigeration equipment
JP2010096440A (en) Heat pump device
JPH102623A (en) Refrigerator
JPH10259960A (en) Refrigerant circulation apparatus