JPH0827108A - Manufacture of heat-hardening compound and its intermediate - Google Patents

Manufacture of heat-hardening compound and its intermediate

Info

Publication number
JPH0827108A
JPH0827108A JP16694494A JP16694494A JPH0827108A JP H0827108 A JPH0827108 A JP H0827108A JP 16694494 A JP16694494 A JP 16694494A JP 16694494 A JP16694494 A JP 16694494A JP H0827108 A JPH0827108 A JP H0827108A
Authority
JP
Japan
Prior art keywords
compound
formula
general formula
hydrocarbon group
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16694494A
Other languages
Japanese (ja)
Inventor
Yasuhiro Hirano
泰弘 平野
Kazuo Takebe
和男 武部
Noriaki Saito
憲明 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP16694494A priority Critical patent/JPH0827108A/en
Publication of JPH0827108A publication Critical patent/JPH0827108A/en
Pending legal-status Critical Current

Links

Landscapes

  • Pyrrole Compounds (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Sealing Material Composition (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

PURPOSE:To obtain a bismaleimide compound by obtaining a bisphenol compound from isoprene and a phenolic compound, reacting the bisphenol compound with a nitrobenzene compound to obtain a dinitro compound, successively reducing the dinitro compound and finally reacting the reduced product with maleic anhydride. CONSTITUTION:A bisphenol compound of formula II (Q is a hydrocarbon derived from isoprene) is obtained by reacting isoprene with a phenolic compound of formula I [R1 and R2 are each a halogen, a (halogeno)hydrocarbon; c and d are each 0-4; c+d<=4]. A dinitro compound of formula IV is obtained by reacting the bisphenol compound with a nitrobenzene compound of formula III [X is F, Cl, Br, I or nitro; R1 and R2 are each a halogen or (halogeno)hydrocarbon; a and b are each 0-4; a+b<=4]. Successively, a diamino compound of formula V is obtained by reducing the dinitro compound. Finally, the objective bismaleimide is obtained by reacting the diamino compound of formula V with maleic anhydride. The bismaleimide compound has a low melting point, it is excellent in solubility in a widely used organic solvent, and it can produce a cured material having excellent heat resistance. Further, it is especially excellent in handleability and has wide applicability.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、特に、電子部品の封止
用材料や積層板として有用な熱硬化性化合物およびその
中間体の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thermosetting compound which is particularly useful as a sealing material for electronic parts and a laminate, and a method for producing an intermediate thereof.

【0002】[0002]

【従来の技術】従来、半導体等の電気・電子部品はエポ
キシ樹脂を用いて成形封止されているものが広く用いら
れてきた。このエポキシ樹脂は、ガラス、金属、セラミ
ックを用いたハーメチックシール方式に比較して経済的
に有利なために広く実用化されている。しかしながら、
近年電子部品の使用条件は厳しくなる傾向にある。例え
ば、実装方法が従来の挿入実装から表面実装へ移行する
のにともない、封止材料そのものが半田浴温度に曝され
る。その結果封止材料の耐熱性は重要な特性になってき
た。最近、高耐熱性を得る目的で熱硬化性のポリイミド
樹脂封止が提案されている。また、積層板等の電気・電
子部品に対しては耐熱性の向上を目的として樹脂成分へ
の熱硬化性のポリイミドの添加が提案されている。
2. Description of the Related Art Conventionally, electrical and electronic parts such as semiconductors, which are molded and sealed with epoxy resin, have been widely used. This epoxy resin has been widely put into practical use because it is economically advantageous as compared with the hermetic sealing method using glass, metal, or ceramic. However,
In recent years, the usage conditions of electronic parts have tended to become severe. For example, as the mounting method shifts from conventional insertion mounting to surface mounting, the sealing material itself is exposed to the solder bath temperature. As a result, the heat resistance of the sealing material has become an important characteristic. Recently, thermosetting polyimide resin encapsulation has been proposed for the purpose of obtaining high heat resistance. Further, addition of a thermosetting polyimide to a resin component has been proposed for the purpose of improving heat resistance for electric / electronic parts such as a laminated board.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、イミド
樹脂を用いて成形封止されている電子封止部品は耐熱性
に優れるものの、熱硬化性のイミド樹脂の持つ特性であ
る耐湿性面で大きな欠点を有している。N,N'- ジフェニ
ルメタンビスマレイミド等の化合物に疎水性基を導入す
ることで吸湿率を低減させることは可能であるが、この
様なマレイミド化合物は溶融粘度や融点が高いために、
十分な流れ性を確保しながら高性能化のための樹脂成分
を添加することが難しく、樹脂組成の自由度が小さいこ
とが問題となっている。一方、積層板の場合では樹脂成
分を溶剤に溶かしてワニス化し、基材に含浸させる工程
が必要であるが、通常熱硬化性ポリイミドは高融点、難
溶性の結晶であり、優れた物性を示すものの、作業性の
低いことが問題となっている。本発明の目的は、低融
点、低粘度であり、かつ、汎用溶媒に対する溶解性の高
いビスマレイミド化合物およびその中間体の製造方法を
提供することである。
However, although the electronic sealing component molded and sealed with the imide resin has excellent heat resistance, it has a major drawback in terms of moisture resistance which is a characteristic of the thermosetting imide resin. have. It is possible to reduce the moisture absorption rate by introducing a hydrophobic group into a compound such as N, N'-diphenylmethane bismaleimide, but since such a maleimide compound has a high melt viscosity and melting point,
It is difficult to add a resin component for high performance while ensuring sufficient flowability, and there is a problem that the degree of freedom of the resin composition is small. On the other hand, in the case of a laminated plate, a step of dissolving a resin component in a solvent to form a varnish and impregnating the base material is necessary, but a thermosetting polyimide is usually a high melting point, hardly soluble crystal and exhibits excellent physical properties. However, low workability is a problem. An object of the present invention is to provide a method for producing a bismaleimide compound having a low melting point and a low viscosity and having a high solubility in a general-purpose solvent and an intermediate thereof.

【0004】[0004]

【課題を解決するための手段】本発明者らは鋭意検討し
た結果、特定のビスマレイミド化合物が上記目的に適う
ことを見出し本発明を完成するに至った。即ち、本発明
は次の通りである。 (A)(1)イソプレンと一般式(4)
As a result of intensive studies, the present inventors have found that a specific bismaleimide compound is suitable for the above purpose and completed the present invention. That is, the present invention is as follows. (A) (1) Isoprene and general formula (4)

【0005】[0005]

【化7】 (式中、R1 、R2 はそれぞれハロゲン原子、炭素数1
〜6 の炭化水素基または炭素数1 〜6 の含ハロゲン炭化
水素基を表し、c、dはそれぞれ0 以上4 以下の整数で
c+d≦4 を満たす。)で表されるフェノール化合物の
1種または2種以上とを反応させて一般式(5)
[Chemical 7] (In the formula, R 1 and R 2 are a halogen atom and a carbon number 1 respectively.
Represents a hydrocarbon group having 1 to 6 carbon atoms or a halogen-containing hydrocarbon group having 1 to 6 carbon atoms, and c and d each are an integer of 0 or more and 4 or less and satisfy c + d ≦ 4. ) Is reacted with one or more phenol compounds represented by the general formula (5)

【0006】[0006]

【化8】 (式中、Qはイソプレンから誘導される炭化水素基を表
す。R1 、R2 、c、dの定義はそれぞれ一般式(4)
の場合と同じである。)で表されるビスフェノール化合
物を製造する工程、(2)前工程で得られたビスフェノ
ール化合物と一般式(6)
Embedded image (In the formula, Q represents a hydrocarbon group derived from isoprene. R 1 , R 2 , c, and d are defined by the general formula (4), respectively.
Is the same as in. ) A step of producing a bisphenol compound represented by the formula (2), the bisphenol compound obtained in the preceding step (2) and the general formula (6)

【0007】[0007]

【化9】 (式中、Xはフッ素、塩素、臭素、ヨウ素、ニトロ基を
示し、Ri 、Rj はそれぞれハロゲン原子、炭素数1 〜
6 の炭化水素基または炭素数1 〜6 の含ハロゲン炭化水
素基を表し、a、bはそれぞれ0 以上4 以下の整数でa
+b≦4 を満たす。)で表されるニトロベンゼン化合物
と反応させることにより一般式(3)
[Chemical 9] (In the formula, X represents a fluorine, chlorine, bromine, iodine or nitro group, R i and R j are a halogen atom and a carbon number of 1 to 1 respectively.
Represents a hydrocarbon group having 6 or a halogen-containing hydrocarbon group having 1 to 6 carbon atoms, and a and b each are an integer of 0 or more and 4 or less;
+ B ≦ 4 is satisfied. ) By reacting with a nitrobenzene compound represented by the general formula (3)

【0008】[0008]

【化10】 (式中、Q、R1 、R2 、Ri 、Rj 、a、b、c、d
の定義はそれぞれ一般式(4)、一般式(5)および一
般式(6)の場合と同じである。)で示されるジニトロ
化合物を製造する工程、を順次行うことを特徴とするジ
ニトロ化合物の製造方法。 (B)前項(A)記載の方法で得られたジニトロ化合物
を還元して一般式(2)
[Chemical 10] (Wherein, Q, R 1 , R 2 , R i , R j , a, b, c, d
Are the same as those in the general formula (4), the general formula (5) and the general formula (6), respectively. The manufacturing method of the dinitro compound characterized by performing sequentially the process of manufacturing the dinitro compound shown by these. (B) The dinitro compound obtained by the method described in the above item (A) is reduced to give the compound represented by the general formula (2):

【0009】[0009]

【化11】 (式中、Qはイソプレンから誘導される炭化水素基を表
す。R1 、R2 、Ri、Rj はそれぞれハロゲン原子、
炭素数1 〜6 の炭化水素基または炭素数1 〜6 の含ハロ
ゲン炭化水素基を表し、a、b、c、dはそれぞれ0 以
上4 以下の整数でa+b≦4 、c+d≦4 を満たす。)
で示されるジアミノ化合物を製造する方法。 (C)前項(B)記載の方法で得られたジアミノ化合物
と無水マレイン酸とを反応させて一般式(1)
[Chemical 11] (In the formula, Q represents a hydrocarbon group derived from isoprene. R 1 , R 2 , Ri, and R j are each a halogen atom,
It represents a hydrocarbon group having 1 to 6 carbon atoms or a halogen-containing hydrocarbon group having 1 to 6 carbon atoms, and a, b, c and d are each an integer of 0 or more and 4 or less, and satisfy a + b ≦ 4 and c + d ≦ 4. )
A method for producing a diamino compound represented by: (C) The diamino compound obtained by the method described in (B) above is reacted with maleic anhydride to give a compound represented by the general formula (1):

【0010】[0010]

【化12】 (式中、Qはイソプレンから誘導される炭化水素基を表
す。R1 、R2 、Ri 、Rj はそれぞれハロゲン原子、
炭素数1 〜6 の炭化水素基または炭素数1 〜6 の含ハロ
ゲン炭化水素基を表し、a、b、c、dはそれぞれ0 以
上4 以下の整数でa+b≦4 、c+d≦4 を満たす。)
で示されるビスマレイミド化合物を製造する方法。
[Chemical 12] (In the formula, Q represents a hydrocarbon group derived from isoprene. R 1 , R 2 , R i , and R j are each a halogen atom,
It represents a hydrocarbon group having 1 to 6 carbon atoms or a halogen-containing hydrocarbon group having 1 to 6 carbon atoms, and a, b, c and d are each an integer of 0 or more and 4 or less, and satisfy a + b ≦ 4 and c + d ≦ 4. )
A method for producing a bismaleimide compound represented by:

【0011】以下に本発明を詳細に説明する。イソプレ
ンと上記一般式(4)で表されるフェノール化合物の1
種または2種以上との反応については、ルイス酸、ブレ
ンステッド酸、ヘテロポリ酸、酸性イオン交換樹脂等の
触媒の存在下にオレフィン化合物とフェノール類とを反
応させる公知のFriedel-Crafts反応が用いられる。
The present invention will be described in detail below. 1 of isoprene and the phenolic compound represented by the above general formula (4)
Regarding the reaction with one kind or two or more kinds, a known Friedel-Crafts reaction in which an olefin compound and a phenol are reacted in the presence of a catalyst such as a Lewis acid, a Bronsted acid, a heteropolyacid or an acidic ion exchange resin is used. .

【0012】フェノール化合物の具体例としては、フェ
ノール、クレゾール、キシレノール、トリメチルフェノ
ール、エチルフェノール、プロピルフェノール、ブチル
フェノール、アミルフェノール、ヘキシルフェノール、
メチルプロピルフェノール、メチルブチルフェノール、
メチルフェキシルフェノール、クロロフェノール、クロ
ロクレゾール、クロロキシレノール、ブロモフェノー
ル、ブロモクレゾール、ブロモキシレノール等が挙げら
れるが、フェノール、クレゾール、キシレノール、メチ
ルブチルフェノールが好ましい。
Specific examples of the phenol compound include phenol, cresol, xylenol, trimethylphenol, ethylphenol, propylphenol, butylphenol, amylphenol, hexylphenol,
Methylpropylphenol, methylbutylphenol,
Examples thereof include methylphenylphenol, chlorophenol, chlorocresol, chloroxylenol, bromophenol, bromocresol, and bromoxylenol, with phenol, cresol, xylenol, and methylbutylphenol being preferred.

【0013】イソプレンとフェノール化合物との反応当
量比、反応温度、触媒の種類や量等の差により、反応系
でイソプレン以外にイソプレンの二量体、三量体・・・
等が生成し、これらとフェノール化合物が反応して一般
式(5)で示されるビスフェノール化合物が得られる。
一般式(5)において、Qは上記の様にしてイソプレン
から誘導される炭化水素基であり、5 の自然数倍(通常
1〜5倍)の炭素数を有する。
Depending on the reaction equivalence ratio between isoprene and the phenol compound, the reaction temperature, the type and amount of the catalyst, etc., in addition to isoprene, a dimer or trimer of isoprene ...
Etc. are produced, and these are reacted with the phenol compound to obtain the bisphenol compound represented by the general formula (5).
In the general formula (5), Q is a hydrocarbon group derived from isoprene as described above and has a natural number multiple of 5 (usually 1 to 5 times).

【0014】一般式(5)のビスフェノール化合物と、
一般式(6)のニトロベンゼン化合物を反応させること
により一般式(3)のジニトロ化合物を得ることができ
る。一般式(6)のニトロベンゼン化合物の具体例とし
ては、p-フルオロニトロベンゼン、p-クロロニトロベン
ゼン、p-ブロモクロロニトロベンゼン、p-ヨードニトロ
ベンゼン、m-ジニトロベンゼン、o-クロロニトロベンゼ
ン等が例示されるが、p-クロロニトロベンゼン、m-ジニ
トロベンゼンが好ましい。
A bisphenol compound of the general formula (5),
The dinitro compound of the general formula (3) can be obtained by reacting the nitrobenzene compound of the general formula (6). Specific examples of the nitrobenzene compound of the general formula (6) include p-fluoronitrobenzene, p-chloronitrobenzene, p-bromochloronitrobenzene, p-iodonitrobenzene, m-dinitrobenzene and o-chloronitrobenzene. , P-chloronitrobenzene and m-dinitrobenzene are preferred.

【0015】ニトロベンゼン化合物は通常ビスフェノー
ル化合物の水酸基1 モルに対し0.8倍モル以上1.4 倍モ
ル以下を使用し、好ましくは0.9 倍モル以上1.1 倍モル
以下の量が使用される。使用量が1.4 倍モルを超えると
未反応のニトロベンゼン誘導体モノマーが製品中に残存
しやすくなるため好ましくない。また使用量が低すぎる
と未反応の水酸基の割合が大きくなり、製品の吸湿性が
大きくなるので好ましくない。
The nitrobenzene compound is usually used in an amount of 0.8 times or more and 1.4 times or less, and preferably 0.9 times or more and 1.1 times or less, with respect to 1 mole of the hydroxyl group of the bisphenol compound. If the amount used exceeds 1.4 times, unreacted nitrobenzene derivative monomer is likely to remain in the product, which is not preferable. On the other hand, if the amount used is too low, the proportion of unreacted hydroxyl groups increases and the hygroscopicity of the product increases, which is not preferable.

【0016】カップリング反応に用いる塩基性化合物と
しては水酸化ナトリウム、水酸化カリウムの様な水酸化
アルカリ金属塩、炭酸ナトリウム、炭酸カリウムの様な
アルカリ金属炭酸塩、炭酸水素ナトリウム、炭酸水素カ
リウム等の炭酸水素アルカリ金属塩、ナトリウムメチラ
ート、カリウム-t- ブトキシド等のアルコキシド類、水
素化リチウム、水素化ナトリウム等の水素化物等が用い
られる。これらは単独で用いても良いが、二種以上を併
用しても問題はない。ジニトロベンゼン類では炭酸ナト
リウム、炭酸カリウムの様なアルカリ金属炭酸塩や炭酸
水素ナトリウム、炭酸水素カリウム等の炭酸水素アルカ
リ金属塩等の弱塩基化合物を用いることが爆発回避等安
全性の面から好ましい。
Examples of the basic compound used in the coupling reaction include alkali metal hydroxides such as sodium hydroxide and potassium hydroxide, alkali metal carbonates such as sodium carbonate and potassium carbonate, sodium hydrogen carbonate and potassium hydrogen carbonate. Alkali metal hydrogen carbonates, sodium methoxide, alkoxides such as potassium t-butoxide, hydrides such as lithium hydride and sodium hydride, and the like are used. These may be used alone, but there is no problem in using two or more kinds in combination. For dinitrobenzenes, it is preferable to use weak base compounds such as alkali metal carbonates such as sodium carbonate and potassium carbonate and alkali metal hydrogencarbonates such as sodium hydrogencarbonate and potassium hydrogencarbonate from the viewpoint of safety such as explosion avoidance.

【0017】カップリング反応には公知の触媒を用いる
ことが可能である。例えばOrg.Synth.,445, (Vol II)
に掲載されている方法で調製された活性銅粉あるいは銅
塩を用いることができる。四級アンモニウム塩や四級リ
ン塩、クラウンエーテル、ポリエチレングリコール等の
環状ポリエーテルや鎖状ポリエーテル、またその末端ア
ルキルエーテル等、含窒素環状ポリエーテルや含窒素鎖
状ポリエーテル、またその末端アルキルエーテル等の層
間移動触媒を用いることができる。これらは単独で用い
ても良いが、二種以上を併用しても問題はない。
A known catalyst can be used for the coupling reaction. Org.Synth., 445, (Vol II)
The active copper powder or copper salt prepared by the method described in can be used. Cyclic polyethers and chain polyethers such as quaternary ammonium salts, quaternary phosphorus salts, crown ethers and polyethylene glycols, and their terminal alkyl ethers, nitrogen-containing cyclic polyethers and nitrogen-containing chain polyethers, and their terminal alkyls. An interlayer transfer catalyst such as ether can be used. These may be used alone, but there is no problem in using two or more kinds in combination.

【0018】使用する溶媒としてはジメチルホルムアミ
ド、ジメチルスルホキシド、ジメチルアセトアミド、1
−メチル−2 −ピロリドン、スルホラン、1,3 −ジメチ
ル−2 −イミダゾリジノン等の非プロトン性溶媒が用い
られる。これらの溶媒の使用量は特に限定はないが通
常、原料に対し1 から10重量倍の溶媒を用いる。反応中
に水が生成する場合には系外に水を出すために、水と共
沸するトルエン、キシレン、クロロベンゼン等の炭化水
素、ハロゲン化炭化水素等を加えて共沸脱水を行なう手
法を併用しても良い。
The solvent used is dimethylformamide, dimethylsulfoxide, dimethylacetamide, 1
An aprotic solvent such as -methyl-2-pyrrolidone, sulfolane, 1,3-dimethyl-2-imidazolidinone is used. The amount of these solvents used is not particularly limited, but usually 1 to 10 times by weight of the solvent is used with respect to the raw materials. When water is produced during the reaction, a method of azeotropic dehydration is used to add water such as toluene, xylene, chlorobenzene, and other hydrocarbons that are azeotropic with water, halogenated hydrocarbons, etc. You may.

【0019】原料の仕込み方は全ての原料を予め反応釜
に仕込む方法、塩基成分のみを最後に少しづつ添加する
方法、予めフェノラート塩を調製しておいてからニトロ
ベンゼン化合物を徐々に添加する方法等が代表的であ
る。カップリング反応は 50 〜200 ℃までの間で一定温
度もしくは段階的に昇温して反応が終結するまでカップ
リング反応を継続する方法が一般的である。反応後、生
成した塩を濾過により除去する。以上の操作で一般式
(3)で表されるジニトロ化合物の溶液が得られる。
The raw materials may be charged by preliminarily charging all the raw materials into a reaction kettle, by adding only the base component little by little at the end, by gradually preparing a phenolate salt and then gradually adding a nitrobenzene compound. Is typical. The coupling reaction is generally carried out at a constant temperature or in a stepwise manner between 50 and 200 ° C. and the coupling reaction is continued until the reaction is completed. After the reaction, the formed salt is removed by filtration. A solution of the dinitro compound represented by the general formula (3) is obtained by the above operation.

【0020】次に上記ニトロ体の還元法を説明する。一
般式(3)で示されるジニトロ化合物からそれぞれ対応
する一般式(2)で示されるジアミノ化合物への還元は
触媒の存在下に水素を用いて行う。反応前に必要に応じ
て溶媒を濃縮しても良い。この時、ジニトロ化合物が非
プロトン性溶媒に溶けているか、あるいは完全に溶解し
なくても懸濁させた状態で反応を進めても良い。通常は
原料に対し1 〜30重量倍の溶媒が用いられる。使用され
る触媒はパラジウム、ニッケル、白金、コバルト、ロジ
ウム、ルテニウム、銅等の金属または担持触媒、ラネー
触媒を、ジニトロ化合物に対し金属として0.001 〜20重
量%、好ましくは0.05〜5 重量%用いる。触媒は予め溶
媒に懸濁させておくか、反応の進行に合わせて徐々に反
応系に加えても良い。また、触媒を非プロトン性溶媒に
水素雰囲気下に懸濁させておき、これにジニトロ化合物
の懸濁液もしくは溶液を滴下して反応を行っても良い。
触媒の担持には活性炭、金属酸化物、炭酸塩、硫酸塩等
が用いられるが具体的にはセライト、フロリジル、アル
ミナ、シリカゲル、シリカアルミナ、酸化マグネシウ
ム、酸化ジルコニウム、硫酸バリウム、炭酸マグネシウ
ム、炭酸バリウム等が用いられる。必要に応じてトリエ
チルアミン等のアミン類やキノリン、イソキノリン等の
含窒素芳香族類化合物を反応制御のため反応溶媒に対し
1 ppm 〜1 重量%加えることも可能である。反応条件に
ついては通常反応温度は0 〜200 ℃、圧力は常圧〜25気
圧の範囲であり好ましくは温度0 〜150 ℃、圧力は常圧
〜10気圧の範囲である。反応時間は通常4 〜24時間程度
である。
Next, a method for reducing the nitro compound will be described. Reduction of the dinitro compound represented by the general formula (3) to the corresponding diamino compound represented by the general formula (2) is carried out using hydrogen in the presence of a catalyst. If necessary, the solvent may be concentrated before the reaction. At this time, the dinitro compound may be dissolved in an aprotic solvent, or the reaction may be carried out in a suspended state even if it is not completely dissolved. Usually, the solvent is used in an amount of 1 to 30 times the weight of the raw material. The catalyst used is a metal such as palladium, nickel, platinum, cobalt, rhodium, ruthenium, or copper, or a supported catalyst, or a Raney catalyst, which is used in an amount of 0.001 to 20% by weight, preferably 0.05 to 5% by weight, based on the dinitro compound. The catalyst may be suspended in the solvent in advance, or may be gradually added to the reaction system as the reaction progresses. Alternatively, the catalyst may be suspended in an aprotic solvent in a hydrogen atmosphere, and a suspension or solution of the dinitro compound may be added dropwise thereto to carry out the reaction.
Activated carbon, metal oxides, carbonates, sulfates and the like are used for supporting the catalyst, and specifically, Celite, Florisil, alumina, silica gel, silica alumina, magnesium oxide, zirconium oxide, barium sulfate, magnesium carbonate, barium carbonate. Etc. are used. If necessary, amines such as triethylamine and nitrogen-containing aromatic compounds such as quinoline and isoquinoline may be added to the reaction solvent to control the reaction.
It is also possible to add 1 ppm to 1% by weight. Regarding the reaction conditions, the reaction temperature is usually 0 to 200 ° C., the pressure is normal pressure to 25 atm, preferably the temperature is 0 to 150 ° C., and the pressure is normal pressure to 10 atm. The reaction time is usually about 4 to 24 hours.

【0021】反応後、触媒を濾別する。使用した触媒は
そのまま、もしくは再生処理を施した後、再使用するこ
とが可能である。溶液中の水分を共沸脱水等の手法で除
いて、一般式(2)のジアミノ化合物溶液が得られる。
After the reaction, the catalyst is filtered off. The catalyst used can be reused as it is or after being subjected to a regeneration treatment. Water in the solution is removed by a method such as azeotropic dehydration to obtain a diamino compound solution of the general formula (2).

【0022】一般式(2)で表されるジアミノ化合物の
代表例を示すと次の通りである。2,3 −ビス〔4 −(4
−アミノフェノキシ)フェニル〕−2 −メチルブタン、
2,3 −ビス〔4 −(3 −アミノフェノキシ)フェニル〕
−2 −メチルブタン、2,3 −ビス〔4 −(4 −アミノフ
ェノキシ)−3 −メチルフェニル〕−2 −メチルブタ
ン、2,3 −ビス〔4 −(3 −アミノフェノキシ)−3 −
メチルフェニル〕−2 −メチルブタン、2,3 −ビス〔4
−(4 −アミノフェノキシ)−3, 5−ジメチルフェニ
ル〕−2 −メチルブタン、2,3 −ビス〔3 −(4 −アミ
ノフェノキシ)−3, 5−ジメチルフェニル〕−2 −メチ
ルブタン、2,3 −ビス〔4 −(4 −アミノフェノキシ)
−3 −ブチル−6 −メチルフェニル〕−2 −メチルブタ
ン、2,3−ビス〔4 −(3 −アミノフェノキシ)−3 −
ブチル−6 −メチルフェニル〕−2 −メチルブタン等が
あげられる。
Typical examples of the diamino compound represented by the general formula (2) are as follows. 2,3-Bis [4- (4
-Aminophenoxy) phenyl] -2-methylbutane,
2,3-bis [4- (3-aminophenoxy) phenyl]
-2-Methylbutane, 2,3-bis [4- (4-aminophenoxy) -3-methylphenyl] -2-methylbutane, 2,3-bis [4- (3-aminophenoxy) -3-
Methylphenyl] -2-methylbutane, 2,3-bis [4
-(4-Aminophenoxy) -3,5-dimethylphenyl] -2-methylbutane, 2,3-bis [3- (4-aminophenoxy) -3,5-dimethylphenyl] -2-methylbutane, 2,3 -Bis [4- (4-aminophenoxy)
-3-Butyl-6-methylphenyl] -2-methylbutane, 2,3-bis [4- (3-aminophenoxy) -3-
Butyl-6-methylphenyl] -2-methylbutane and the like.

【0023】本発明の一般式(1)で示されるマレイミ
ド化合物を合成する製造方法は、一般式(2)で示され
るジアミノ化合物と無水マレイン酸とのアミド酸を調製
し、続いて脱水閉環反応を行い、対応するマレイミド化
合物を得るものである。
The production method for synthesizing the maleimide compound represented by the general formula (1) of the present invention comprises preparing an amic acid of a diamino compound represented by the general formula (2) and maleic anhydride, followed by dehydration ring closure reaction. Is carried out to obtain the corresponding maleimide compound.

【0024】アミド酸の調製方法は一般式(2)で表さ
れるジアミノ化合物の有機性溶液と無水マレイン酸の溶
液を接触させる方法をとる。この時、無水マレイン酸は
ジアミノ化合物のアミノ基1当量に対し1〜1.5倍当
量を用いることが好ましい。1倍当量より少ないとアミ
ド酸とならないアミノ基が残存し、1.5倍より多く使
用しても特に多く用いたことによる利点は無く、逆に製
品中に未反応のマレイン酸が混入するので好ましくな
い。通常の添加方法は無水マレイン酸の有機性溶液にジ
アミノ化合物の溶液を連続、あるいは分割して仕込む。
添加に要する時間は副反応が顕著にならない範囲であれ
ば特に制限は無いが、通常 0.5〜6 時間程度である。反
応温度は-20 〜120 ℃の範囲で行われ、好ましくは室温
〜60℃の範囲である。温度が低すぎると反応の進行が遅
く、高すぎるとポリマー等の副生成物により目的物の純
度が下がる。
The amic acid is prepared by bringing an organic solution of the diamino compound represented by the general formula (2) into contact with a maleic anhydride solution. At this time, maleic anhydride is preferably used in an amount of 1 to 1.5 times equivalent to 1 equivalent of the amino group of the diamino compound. When it is less than 1 equivalent, amino groups that do not become amic acid remain, and even if it is used more than 1.5 times, there is no advantage due to being used in large amounts, and conversely unreacted maleic acid is mixed in the product. Not preferable. The usual addition method is to charge the organic solution of maleic anhydride with the solution of the diamino compound continuously or in a divided manner.
The time required for the addition is not particularly limited as long as the side reaction is not significant, but it is usually about 0.5 to 6 hours. The reaction temperature is -20 to 120 ° C, preferably room temperature to 60 ° C. If the temperature is too low, the reaction progresses slowly, and if it is too high, the purity of the target product is lowered due to by-products such as polymers.

【0025】無水マレイン酸を溶かす溶媒としては、ジ
メチルホルムアミド、ジメチルスルホキシド、ジメチル
アセトアミド、1 −メチル−2 −ピロリドン、スルホラ
ン、1,3 −ジメチル−2 −イミダゾリジノン等の非プロ
トン性極性溶媒類、ヘキサン、ヘプタン、デカン、シク
ロヘキサン等の脂肪族または脂環炭化水素類、トルエ
ン、キシレン等の炭化水素、1, 2−ジクロロエタン、ク
ロロベンゼン等のハロゲン化炭化水素等の一種もしくは
二種以上の混合溶媒を用いる。
As the solvent for dissolving maleic anhydride, aprotic polar solvents such as dimethylformamide, dimethylsulfoxide, dimethylacetamide, 1-methyl-2-pyrrolidone, sulfolane and 1,3-dimethyl-2-imidazolidinone are used. , One or more mixed solvents of aliphatic or alicyclic hydrocarbons such as hexane, heptane, decane and cyclohexane, hydrocarbons such as toluene and xylene, halogenated hydrocarbons such as 1,2-dichloroethane and chlorobenzene To use.

【0026】使用される溶剤の量は総量で無水マレイン
酸とジアミノ化合物との合計重量に対し、1〜10重量
倍であり、反応一回当たりの得量を考慮すると1〜5重
量倍が好ましい。反応はジアミノ化合物添加終了後、
0.5〜4時間程度で終了し、対応するアミド酸が得ら
れる。
The total amount of the solvent used is 1 to 10 times by weight the total weight of the maleic anhydride and the diamino compound. Considering the yield per reaction, it is preferably 1 to 5 times by weight. . After the addition of the diamino compound is completed,
After about 0.5 to 4 hours, the corresponding amic acid is obtained.

【0027】続いてアミド酸の脱水閉環反応を行いマレ
イミド化合物を製造する。一般にこの脱水閉環反応には
酢酸ナトリウムや酢酸コバルト、トリエチルアミン等の
触媒の存在下に無水酢酸を脱水剤として作用させる化学
閉環法と、酸性触媒の存在下に加熱して脱水させる熱閉
環法とがあるが、収率、製品純度が高く、反応後の製品
取り出し工程が容易な熱閉環法が好ましい。
Subsequently, a dehydration ring closure reaction of amic acid is carried out to produce a maleimide compound. In general, the dehydration ring closure reaction includes a chemical ring closure method in which acetic anhydride acts as a dehydrating agent in the presence of a catalyst such as sodium acetate, cobalt acetate, triethylamine and the like, and a thermal ring closure method in which it is dehydrated by heating in the presence of an acidic catalyst. However, the thermal cyclization method is preferable because the yield and product purity are high and the product removal step after the reaction is easy.

【0028】熱閉環法に使用する溶媒としては、アミド
酸化に用いたものと基本的に同じでよい。ジメチルホル
ムアミド、ジメチルスルホキシド、ジメチルアセトアミ
ド、1 −メチル−2 −ピロリドン、スルホラン、1,3 −
ジメチル−2 −イミダゾリジノン等の含酸素、含窒素溶
媒およびこれらの混合物が用いられる。イミド化反応時
に脱水閉環が起こるため水が生成する。系外にこの水を
出すために、水と共沸するヘキサン、ヘプタン、デカ
ン、シクロヘキサン等の脂肪族または脂環炭化水素類、
トルエン、キシレン等の炭化水素類、1, 2−ジクロロエ
タン、クロロベンゼン等のハロゲン化炭化水素類等の一
種もしくは二種以上の混合溶媒を用いて共沸脱水を行な
う手法を併用するのが一般的な方法である。これらの溶
媒の使用量は、原料に対し1から20重量倍、好ましく
は2から10重量倍の溶媒を用いるが、共沸脱水用の溶
媒は全溶媒中の90重量%以上であることが、脱水を容
易にすることから好ましい。
The solvent used in the thermal ring closure method may be basically the same as that used in the amide oxidation. Dimethylformamide, dimethylsulfoxide, dimethylacetamide, 1-methyl-2-pyrrolidone, sulfolane, 1,3-
Oxygen-containing and nitrogen-containing solvents such as dimethyl-2-imidazolidinone and mixtures thereof are used. Water is generated due to dehydration ring closure during the imidization reaction. Aliphatic or alicyclic hydrocarbons such as hexane, heptane, decane, and cyclohexane that are azeotropic with water in order to bring this water out of the system,
It is common to use a method of performing azeotropic dehydration using one or more mixed solvents of hydrocarbons such as toluene and xylene, halogenated hydrocarbons such as 1,2-dichloroethane and chlorobenzene. Is the way. The amount of these solvents used is 1 to 20 times by weight, preferably 2 to 10 times by weight, the amount of the solvent for azeotropic dehydration is 90% by weight or more based on the total amount of the solvent. It is preferable because it facilitates dehydration.

【0029】アミド酸の閉環に用いる酸性触媒としては
硫酸、塩酸、リン酸、ポリリン酸等の鉱酸類、p −トル
エンスルホン酸、メタンスルホン酸等の有機スルホン酸
類、トリクロロ酢酸、トリフルオロ酢酸等のハロゲン化
カルボン酸類、カチオン型イオン交換樹脂類、リンタン
グステン酸、リンモリブデン酸等のヘテロポリ酸類、シ
リカアルミナ等の固体酸が例示でき、なかでも硫酸、p
−トルエンスルホン酸、スルホン酸型イオン交換樹脂が
好ましい。ヘテロポリ酸を用いる場合にはあらかじめ触
媒を150〜200℃で処理して活性を高めて置くこと
が好ましい。これらの酸は活性炭、シリカゲル、シリカ
アルミナ、無機塩類に担持して使用しても良く、ジアミ
ノ化合物との塩の形で使用しても良い。これらの酸性触
媒の使用量は種類により左右されるが、原料のジアミノ
化合物と無水マレイン酸の合計重量に対し、均一系(濾
過により触媒を分離できない系)ならば0.1から10
重量%であり、不均一系(濾過により触媒を分離できる
系)ならば5から100重量%が使用される。使用量が
上記範囲より小さいと所望の触媒効果が得られず、上記
範囲より多く使用しても一定以上の成果が得られず、逆
に触媒の分離除去操作が煩雑となる。不均一系の触媒は
そのまま、もしくは触媒の特性に応じて公知の再生処理
を施した後に再使用することができる。
Examples of the acidic catalyst used for ring closure of amic acid include mineral acids such as sulfuric acid, hydrochloric acid, phosphoric acid and polyphosphoric acid, organic sulfonic acids such as p-toluenesulfonic acid and methanesulfonic acid, trichloroacetic acid and trifluoroacetic acid. Examples thereof include halogenated carboxylic acids, cation-type ion exchange resins, phosphotungstic acid, heteropolyacids such as phosphomolybdic acid, and solid acids such as silica-alumina. Among them, sulfuric acid, p
-Toluenesulfonic acid and sulfonic acid type ion exchange resins are preferred. When using a heteropolyacid, it is preferable to pretreat the catalyst at 150 to 200 ° C. to enhance the activity. These acids may be used by supporting them on activated carbon, silica gel, silica alumina, inorganic salts, or in the form of salts with diamino compounds. The amount of these acidic catalysts used depends on the type, but if the amount is a homogeneous system (system in which the catalyst cannot be separated by filtration), it is 0.1 to 10 relative to the total weight of the raw material diamino compound and maleic anhydride.
%, And 5 to 100% by weight is used for heterogeneous systems (systems in which the catalyst can be separated by filtration). If the amount used is less than the above range, the desired catalytic effect cannot be obtained, and even if it is used more than the above range, a certain result or more cannot be obtained, and on the contrary, the separation and removal operation of the catalyst becomes complicated. The heterogeneous catalyst can be reused as it is or after being subjected to a known regeneration treatment depending on the characteristics of the catalyst.

【0030】熱閉環反応は60〜200 ℃の範囲で行い、一
定温度で反応を行っても良いが、好ましくは二段階での
反応を行う。まず第一段階である予備閉環反応を行う。
予備反応の温度は、減圧還流下に60から120 ℃、好まし
くは80から110 ℃である。反応時間は0.1 から6 時間、
特に0.5 から2 時間である。反応中は閉環により生じた
水をDean−Stark 共沸脱水管等の装置を用いて系外へ分
離除去しながら行う。
The thermal cyclization reaction may be carried out in the range of 60 to 200 ° C. and the reaction may be carried out at a constant temperature, but the reaction is preferably carried out in two steps. First, the preliminary ring-closing reaction, which is the first step, is performed.
The temperature of the preliminary reaction is 60 to 120 ° C., preferably 80 to 110 ° C. under reduced pressure reflux. The reaction time is 0.1 to 6 hours,
Especially 0.5 to 2 hours. During the reaction, water generated by ring closure is separated and removed to the outside of the system by using a device such as Dean-Stark azeotropic dehydration tube.

【0031】予備閉環後、第二段階である本反応を行
う。共沸脱水を行いながら徐々に減圧から常圧に戻し12
0 ℃以上に昇温させ、共沸脱水を続ける。この時、連続
的に変化させても段階的に変化させても良い。また、操
作上、共沸脱水が短時間途絶えることが生じることもあ
るが、副反応を抑える意味で共沸脱水は継続して行う方
が好ましい。反応温度は120 ℃以上200 ℃以下が好まし
く、さらには120 ℃以上160 ℃以下が好ましい。120 ℃
以下では閉環反応時間を短縮させる意義が薄く、200 ℃
以上では不飽和イミドの重合により十分な純度の製品が
得られない。反応時間は通常1 〜6 時間程度である。
After the preliminary ring closure, the second step of the present reaction is carried out. Gradually return from reduced pressure to normal pressure while performing azeotropic dehydration 12
The temperature is raised to 0 ° C or higher and azeotropic dehydration is continued. At this time, it may be changed continuously or stepwise. Further, from the viewpoint of operation, the azeotropic dehydration may be interrupted for a short time, but it is preferable to continuously perform the azeotropic dehydration in order to suppress side reactions. The reaction temperature is preferably 120 ° C. or higher and 200 ° C. or lower, more preferably 120 ° C. or higher and 160 ° C. or lower. 120 ° C
In the following, the significance of shortening the ring closure reaction time is small, and it is
In the above case, the product of sufficient purity cannot be obtained due to the polymerization of unsaturated imide. The reaction time is usually about 1 to 6 hours.

【0032】反応後、減圧下に共沸用ハロゲン化炭化水
素溶媒、非プロトン性極性溶媒を回収する。この時溶媒
は80%以上回収することが次の水洗工程での分液性を
高め好ましい。
After the reaction, the azeotropic halogenated hydrocarbon solvent and the aprotic polar solvent are recovered under reduced pressure. At this time, it is preferable that 80% or more of the solvent is recovered to enhance the liquid separation property in the next water washing step.

【0033】次に濃縮された反応混合物を水と分液が可
能で水より比重の小さい有機溶媒に溶解させる。この有
機溶媒に水より比重の大きいものを選ぶと水洗工程毎に
有機溶液を釜から取り出すか、釜上部より上抜き分液を
行う必要があり、安全保全や生産効率の面で不利とな
る。
Next, the concentrated reaction mixture is dissolved in an organic solvent which can be separated from water and has a specific gravity smaller than that of water. If an organic solvent having a higher specific gravity than water is selected as the organic solvent, it is necessary to take out the organic solution from the kettle at each washing step or to perform liquid separation from the top of the kettle, which is disadvantageous in terms of safety maintenance and production efficiency.

【0034】水より比重の小さい有機溶媒の具体例とし
ては、メチルイソブチルケトン等のケトン系溶媒、酢酸
エチル等のエステル系溶媒、トルエン、キシレン等の炭
化水素系溶媒が挙げられるが、中でもメチルイソブチル
ケトン等のケトン系溶媒が好ましい。使用量は不飽和イ
ミドの溶解度にもよるが通常は不飽和イミドに対し、2
〜20重量倍である。
Specific examples of the organic solvent having a smaller specific gravity than water include ketone solvents such as methyl isobutyl ketone, ester solvents such as ethyl acetate, and hydrocarbon solvents such as toluene and xylene. Among them, methyl isobutyl is preferable. Ketone solvents such as ketones are preferred. Although the amount used depends on the solubility of the unsaturated imide, it is usually 2
~ 20 times the weight.

【0035】次に20〜90℃で水洗、分液操作を行う。洗
浄操作は二回以上繰り返すことが好ましい。使用する水
は、上水、工業用水、イオン交換水、食塩水が用いら
れ、重曹等の弱塩基を用いて酸性触媒を中和除去するこ
とが好ましい。水層のpHは最終的に4 〜8 、好ましくは
5 〜7 である。洗浄液の使用量は不飽和イミドに対し、
0.5 〜20重量倍である。
Next, washing at 20 to 90 ° C. and liquid separation are performed. The washing operation is preferably repeated twice or more. The water used is tap water, industrial water, ion-exchanged water, or saline, and it is preferable to neutralize and remove the acidic catalyst with a weak base such as sodium bicarbonate. The pH of the aqueous layer is finally 4-8, preferably
It is 5 to 7. The amount of cleaning liquid used is
0.5 to 20 times by weight.

【0036】水洗後、共沸脱水等の操作により溶液中の
水分を除去した後、必要に応じて濾過により無機成分を
除去する。この時、セライト等やイオン吸着剤等の濾過
助剤を用いても良い。溶媒を減圧、常圧下に留去し、残
存溶媒量を製品に対し1 重量%以下に低減させ、不飽和
イミドの融点あるいは軟化点以上に加熱してから釜より
排出、冷却して製品を得ることができる。
After washing with water, water in the solution is removed by an operation such as azeotropic dehydration, and then an inorganic component is removed by filtration if necessary. At this time, a filter aid such as Celite or an ion adsorbent may be used. The solvent is distilled off under reduced pressure and atmospheric pressure to reduce the amount of residual solvent to 1% by weight or less based on the product, and after heating above the melting point or softening point of the unsaturated imide, it is discharged from the kettle and cooled to obtain the product. be able to.

【0037】[0037]

【実施例】以下に本発明の実施例を示すが、本発明はこ
れに限定されるものではない。 実施例1 温度計、撹拌装置およびコンデンサーを装着した2リッ
トル四ツ口フラスコに商品名ビスフェノール IPL(日本
石油(株)社製、イソプレン由来の炭化水素基(炭素数
5 /炭素数10の成分を8 /2 の割合で含む)でフェノー
ルを連結したもの。水酸基当量 140 g/eq. )140.0 g
と、p-クロロニトロベンゼン 154.4 g、ジメチルアセト
アミド(以下、DMAcと略。) 495 gを仕込み、窒素
気流下 50 ℃で溶解させた。水酸化ナトリウム 49.5 g
を加え、80℃に昇温し、80〜90℃で 3時間反応を続け、
内温を100 ℃まで上げてから2 時間反応を続けた。二酸
化炭素を用いて中和してから、商品名キョーワード1000
(濾過助剤、協和化学工業(株)社製)を30 g反応混合
物に加えて、濾過により生成した塩を除いた。DMAc
200 gで洗浄して濾液に合わせた。この溶液の一部を減
圧下に濃縮し、トルエンに溶解させ、水洗してから有機
層を硫酸マグネシウムで乾燥した。濾過により乾燥剤を
除去してからトルエンを留去して標準品を得た。赤外吸
収スペクトルから 1340 と1508cm-1にニトロ基による
吸収が観察された。この化合物をNPLとする。
EXAMPLES Examples of the present invention will be shown below, but the present invention is not limited thereto. Example 1 A 2-liter four-necked flask equipped with a thermometer, a stirrer, and a condenser was placed under a trade name of bisphenol IPL (manufactured by Nippon Oil Co., Ltd., a hydrocarbon group derived from isoprene (carbon number).
5 / containing 10 carbon atoms in a ratio of 8/2) to which phenol is linked. Hydroxyl equivalent 140 g / eq.) 140.0 g
Then, 154.4 g of p-chloronitrobenzene and 495 g of dimethylacetamide (hereinafter abbreviated as DMAc) were charged and dissolved at 50 ° C. under a nitrogen stream. Sodium hydroxide 49.5 g
Was added, the temperature was raised to 80 ° C, the reaction was continued at 80-90 ° C for 3 hours,
After the internal temperature was raised to 100 ° C, the reaction was continued for 2 hours. Product name Kyoward 1000 after neutralization with carbon dioxide
(Filter aid, manufactured by Kyowa Chemical Industry Co., Ltd.) was added to 30 g of the reaction mixture to remove the salt generated by filtration. DMAc
It was washed with 200 g and combined with the filtrate. A part of this solution was concentrated under reduced pressure, dissolved in toluene, washed with water, and then the organic layer was dried over magnesium sulfate. After removing the desiccant by filtration, toluene was distilled off to obtain a standard product. From the infrared absorption spectrum, absorption by the nitro group was observed at 1340 and 1508 cm -1 . This compound is designated as NPL.

【0038】実施例2 1リットルナス型フラスコに実施例1で得られたNPL
のDMAc溶液(濃度を23.3重量%に調整。)617.3 g
と 5%パラジウム/活性炭触媒 7.2 gを仕込んだ。減圧
してから窒素で復圧して系内の酸素を除去した。次に再
度減圧にしてから水素で復圧する操作を三回繰り返して
反応容器内部を水素で置換した。水素雰囲気下、内温を
80±5 ℃まで昇温させ、同温で12時間反応を続け、還元
反応を完結させた。減圧にしてから窒素で復圧し、内部
の水素を除去した。別途濾過装置の濾紙の上に商品名ラ
ジオライト(水澤化学製、濾過助剤の一種。)をコート
してから反応溶液を80℃で濾過し、DMAc 20 g で洗
浄した。濾液を1 リットルフラスコに入れ、減圧下にD
MAcを回収した。クロロベンゼンを加えて、反応混合
物を溶解後、減圧下に共沸脱水を行い、Dean-Stark脱水
装置を用いて系内の水を分離除去した。続いて濾過によ
り不溶成分を除去した。溶液の一部を減圧下に濃縮して
標準品を得た。このものは淡褐色のガラス状であり、赤
外吸収スペクトルで1226cm-1にエーテル結合、3210〜
3440cm-1にアミノ結合による吸収が認められた。この
化合物をAPLとする。
Example 2 The NPL obtained in Example 1 was placed in a 1 liter eggplant type flask.
DMAc solution (concentration adjusted to 23.3% by weight) 617.3 g
Then, 7.2 g of 5% palladium / activated carbon catalyst was charged. After the pressure was reduced, the pressure in the system was restored with nitrogen to remove oxygen in the system. Next, the operation of depressurizing again and then returning to pressure with hydrogen was repeated three times to replace the inside of the reaction vessel with hydrogen. Internal temperature under hydrogen atmosphere
The temperature was raised to 80 ± 5 ° C and the reaction was continued at the same temperature for 12 hours to complete the reduction reaction. After the pressure was reduced, the pressure was restored with nitrogen to remove hydrogen inside. Separately, the filter paper of the filter was coated with Radiolite (manufactured by Mizusawa Chemical Co., Ltd., a kind of filter aid), and the reaction solution was filtered at 80 ° C. and washed with 20 g of DMAc. Put the filtrate in a 1 liter flask and add D under reduced pressure.
The MAc was recovered. Chlorobenzene was added to dissolve the reaction mixture, followed by azeotropic dehydration under reduced pressure, and water in the system was separated and removed using a Dean-Stark dehydrator. Subsequently, insoluble components were removed by filtration. A part of the solution was concentrated under reduced pressure to obtain a standard product. This is a light brown glassy substance, and has an ether bond at 1226 cm -1 in the infrared absorption spectrum, 3210 ~
Absorption by an amino bond was observed at 3440 cm -1 . This compound is designated as APL.

【0039】実施例3 300 ミリリットル四ツ口フラスコに無水マレイン酸 9.4
gとクロロベンゼン 55.1 g およびDMAc 5.4 gを仕
込み、窒素気流下撹拌して溶解させた。実施例2の操作
で得られたAPLのクロロベンゼン溶液(濃度を27.8重
量%に調整。)66.1 gを滴下ロートを用いてフラスコに
25±5 ℃で2 時間かけて滴下した。35℃で2 時間反応を
続けアミド酸化反応を完結させた。続いてp −トルエン
スルホン酸一水和物 0.76 g を加え、減圧下、共沸脱水
を行いながら100 ℃で1 時間、110 ℃で1 時間、続いて
徐々に常圧に戻しながら131 ℃で4 時間脱水閉環反応を
行った。生成した水を、Dean−Stark 共沸脱水装置を用
いて系外に分離しながら反応を進めた。次に減圧下に、
クロロベンゼン、続いてDMAcを合計90%回収した。
続いてメチルイソブチルケトン(以下、MIBKと
略。)87 gを加えて溶解させた。溶液を60℃まで冷却し
てから、水層のpHが5 〜7 となる様に計量した重曹およ
び水300 g を加え中和してから洗浄、分液を行った。さ
らに60℃で15%食塩水300 g で2 回洗浄、分液を行って
から減圧下に共沸脱水を行い、濾過により塩を除いた。
濾液を減圧下に濃縮、最終的に150℃/5Torr の条件に
到達してから製品をフラスコから溶融状態で取りだし、
淡褐色固体を収量 23.6 g (収率95.0%)で得た(MP
Lとする。)。赤外吸収スペクトルにより1237cm-1
エーテル結合、1716cm-1にイミド結合による吸収が確
認された。このものは70℃で軟化し、溶融粘度は175 ℃
で3.8 ポイズであった。
EXAMPLE 3 Maleic anhydride 9.4 in a 300 ml four necked flask.
g, 55.1 g of chlorobenzene and 5.4 g of DMAc were charged, and they were dissolved by stirring under a nitrogen stream. 66.1 g of a chlorobenzene solution of APL obtained by the procedure of Example 2 (concentration adjusted to 27.8% by weight) was placed in a flask using a dropping funnel.
The solution was added dropwise at 25 ± 5 ° C over 2 hours. The reaction was continued at 35 ° C. for 2 hours to complete the amidation reaction. Subsequently, 0.76 g of p-toluenesulfonic acid monohydrate was added, and azeotropic dehydration was performed under reduced pressure at 100 ° C for 1 hour, 110 ° C for 1 hour, and then gradually returned to normal pressure at 131 ° C for 4 hours. The dehydration ring closure reaction was carried out for an hour. The produced water was separated from the system using a Dean-Stark azeotropic dehydrator to proceed the reaction. Then under reduced pressure,
A total of 90% recovery of chlorobenzene followed by DMAc was recovered.
Subsequently, 87 g of methyl isobutyl ketone (hereinafter abbreviated as MIBK) was added and dissolved. The solution was cooled to 60 ° C., and sodium bicarbonate and 300 g of water, which were weighed so that the pH of the aqueous layer was 5 to 7, were added to neutralize the solution, followed by washing and liquid separation. After further washing twice with 300 g of 15% saline at 60 ° C, liquid separation was performed, azeotropic dehydration was performed under reduced pressure, and salts were removed by filtration.
The filtrate was concentrated under reduced pressure, and after reaching the condition of 150 ° C / 5 Torr, the product was taken out from the flask in a molten state,
A light brown solid was obtained with a yield of 23.6 g (95.0% yield) (MP
Let L. ). Infrared absorption spectrum by an ether bond to 1237cm -1, absorption by imide bond at 1716 cm -1. It softens at 70 ° C and has a melt viscosity of 175 ° C.
It was 3.8 poise.

【0040】実施例4および比較例1 実施例3で得られたMPLおよび N,N' −4,4'−ジフェ
ニルメタンビスマレイミド(融点158 ℃、溶融粘度 2.4
ポイズ/175 ℃、この化合物をイミド1と称する。)
に、アセトン、トルエン、 MIBK(メチルイソブチ
ルケトン)、PGM(プロピレングリコールモノメチル
エーテル)、MEK(メチルエチルケトン)を加え(各
イミド化合物が溶けた場合30重量%濃度の溶液になる
量)、室温での溶解度を比較した。溶解した場合を○、
溶解しなかった場合を×として結果を表1に示した。
Example 4 and Comparative Example 1 MPL and N, N'-4,4'-diphenylmethane bismaleimide obtained in Example 3 (melting point 158 ° C., melt viscosity 2.4
Poise / 175 ° C., this compound is called Imide 1. )
Acetone, toluene, MIBK (methyl isobutyl ketone), PGM (propylene glycol monomethyl ether), and MEK (methyl ethyl ketone) are added to the above (amount of 30% by weight solution when each imide compound is dissolved), and solubility at room temperature Were compared. When dissolved, ○
The results are shown in Table 1 when the case of no dissolution was marked with x.

【0041】[0041]

【表1】 [Table 1]

【0042】[0042]

【発明の効果】汎用のマレイミドである N,N' −4,4'−
ジフェニルメタンビスマレイミドに比べ、本発明の製造
方法によって得られるマレイミド化合物は同程度の溶融
粘度を示しながら、融点が低く、かつ汎用有機溶媒への
溶解性も優れており、また耐熱性の優れた硬化物を与え
る。従来、高融点、難溶性で作業性の悪かったイミド化
合物に比べ格段に取扱い性が優れ、応用範囲を広げるこ
とができる。また、本発明の製造方法によって得られる
ジアミノ化合物はマレイミド化合物以外にも溶媒に可溶
なポリイミドの原料としても活用が可能であり応用範囲
も広く、有用である。
EFFECT OF THE INVENTION N, N'-4,4'- which is a general-purpose maleimide
Compared to diphenylmethane bismaleimide, the maleimide compound obtained by the production method of the present invention shows a similar melt viscosity, but has a low melting point and excellent solubility in general-purpose organic solvents, and also has excellent heat resistance. Give things. Compared with imide compounds, which have conventionally had a high melting point, poor solubility, and poor workability, they are much easier to handle and can be used in a wider range of applications. Further, the diamino compound obtained by the production method of the present invention can be utilized as a raw material for a solvent-soluble polyimide in addition to the maleimide compound, and has a wide range of applications and is useful.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C08G 73/10 C09K 3/10 L // C07B 61/00 300 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical display location C08G 73/10 C09K 3/10 L // C07B 61/00 300

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】(1)イソプレンと一般式(4) 【化1】 (式中、R1 、R2 はそれぞれハロゲン原子、炭素数1
〜6 の炭化水素基または炭素数1 〜6 の含ハロゲン炭化
水素基を表し、c、dはそれぞれ0 以上4 以下の整数で
c+d≦4 を満たす。)で表されるフェノール化合物の
1種または2種以上とを反応させて一般式(5) 【化2】 (式中、Qはイソプレンから誘導される炭化水素基を表
す。R1 、R2 、c、dの定義はそれぞれ一般式(4)
の場合と同じである。)で表されるビスフェノール化合
物を製造する工程、(2)前工程で得られたビスフェノ
ール化合物と一般式(6) 【化3】 (式中、Xはフッ素、塩素、臭素、ヨウ素、ニトロ基を
示し、Ri 、Rj はそれぞれハロゲン原子、炭素数1 〜
6 の炭化水素基または炭素数1 〜6 の含ハロゲン炭化水
素基を表し、a 、b はそれぞれ0 以上4 以下の整数でa
+b ≦4 を満たす。)で表されるニトロベンゼン化合物
とを反応させることにより一般式(3) 【化4】 (式中、Q、R1 、R2 、Ri 、Rj 、a、b、c、d
の定義はそれぞれ一般式(4)、一般式(5)および一
般式(6)の場合と同じである。)で示されるジニトロ
化合物を製造する工程、を順次行うことを特徴とするジ
ニトロ化合物の製造方法。
1. (1) Isoprene and the general formula (4): (In the formula, R 1 and R 2 are a halogen atom and a carbon number 1 respectively.
Represents a hydrocarbon group having 1 to 6 carbon atoms or a halogen-containing hydrocarbon group having 1 to 6 carbon atoms, and c and d each are an integer of 0 or more and 4 or less and satisfy c + d ≦ 4. ) Is reacted with one or more phenol compounds represented by the general formula (5) (In the formula, Q represents a hydrocarbon group derived from isoprene. R 1 , R 2 , c, and d are defined by the general formula (4), respectively.
Is the same as in. ) A step of producing a bisphenol compound represented by the formula (2), the bisphenol compound obtained in the previous step (2) and the general formula (6) (In the formula, X represents a fluorine, chlorine, bromine, iodine or nitro group, R i and R j are a halogen atom and a carbon number of 1 to 1 respectively.
Represents a hydrocarbon group having 6 or a halogen-containing hydrocarbon group having 1 to 6 carbon atoms, a and b are each an integer of 0 or more and 4 or less;
It satisfies + b ≤4. ) By reacting with a nitrobenzene compound represented by the general formula (3) (Wherein, Q, R 1 , R 2 , R i , R j , a, b, c, d
Are the same as those in the general formula (4), the general formula (5) and the general formula (6), respectively. The manufacturing method of the dinitro compound characterized by performing sequentially the process of manufacturing the dinitro compound shown by these.
【請求項2】請求項1記載の方法で得られたジニトロ化
合物を還元して一般式(2) 【化5】 (式中、Qはイソプレンから誘導される炭化水素基を表
す。R1 、R2 、Ri、Rj はそれぞれハロゲン原子、
炭素数1 〜6 の炭化水素基または炭素数1 〜6 の含ハロ
ゲン炭化水素基を表し、a、b、c、dはそれぞれ0 以
上4 以下の整数でa+b≦4 、c+d≦4 を満たす。)
で示されるジアミノ化合物を製造する方法。
2. The dinitro compound obtained by the method according to claim 1 is reduced to give a compound represented by the general formula (2): (In the formula, Q represents a hydrocarbon group derived from isoprene. R 1 , R 2 , Ri, and R j are each a halogen atom,
It represents a hydrocarbon group having 1 to 6 carbon atoms or a halogen-containing hydrocarbon group having 1 to 6 carbon atoms, and a, b, c and d are each an integer of 0 or more and 4 or less, and satisfy a + b ≦ 4 and c + d ≦ 4. )
A method for producing a diamino compound represented by:
【請求項3】請求項2記載の方法で得られたジアミノ化
合物と無水マレイン酸とを反応させて一般式(1) 【化6】 (式中、Qはイソプレンから誘導される炭化水素基を表
す。R1 、R2 、Ri 、Rj はそれぞれハロゲン原子、
炭素数1 〜6 の炭化水素基または炭素数1 〜6 の含ハロ
ゲン炭化水素基を表し、a、b、c、dはそれぞれ0 以
上4 以下の整数でa+b≦4 、c+d≦4 を満たす。)
で示されるビスマレイミド化合物を製造する方法。
3. A diamino compound obtained by the method according to claim 2 is reacted with maleic anhydride to obtain a compound represented by the general formula (1): (In the formula, Q represents a hydrocarbon group derived from isoprene. R 1 , R 2 , R i , and R j are each a halogen atom,
It represents a hydrocarbon group having 1 to 6 carbon atoms or a halogen-containing hydrocarbon group having 1 to 6 carbon atoms, and a, b, c and d are each an integer of 0 or more and 4 or less, and satisfy a + b ≦ 4 and c + d ≦ 4. )
A method for producing a bismaleimide compound represented by:
JP16694494A 1994-07-19 1994-07-19 Manufacture of heat-hardening compound and its intermediate Pending JPH0827108A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16694494A JPH0827108A (en) 1994-07-19 1994-07-19 Manufacture of heat-hardening compound and its intermediate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16694494A JPH0827108A (en) 1994-07-19 1994-07-19 Manufacture of heat-hardening compound and its intermediate

Publications (1)

Publication Number Publication Date
JPH0827108A true JPH0827108A (en) 1996-01-30

Family

ID=15840534

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16694494A Pending JPH0827108A (en) 1994-07-19 1994-07-19 Manufacture of heat-hardening compound and its intermediate

Country Status (1)

Country Link
JP (1) JPH0827108A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012128255A1 (en) * 2011-03-24 2012-09-27 株式会社日本触媒 N-phenylmaleimide compound and copolymer composition obtained using same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012128255A1 (en) * 2011-03-24 2012-09-27 株式会社日本触媒 N-phenylmaleimide compound and copolymer composition obtained using same
JPWO2012128255A1 (en) * 2011-03-24 2014-07-24 株式会社日本触媒 N-phenylmaleimide compound and copolymer composition obtained using the same
US9631033B2 (en) 2011-03-24 2017-04-25 Nippon Shokubai Co., Ltd. N-phenylmaleimide compound and copolymer composition obtained using same

Similar Documents

Publication Publication Date Title
US8779162B2 (en) Cyanate ester compounds and cured products thereof
KR950013879B1 (en) Polyimide
JPH0827108A (en) Manufacture of heat-hardening compound and its intermediate
US5326881A (en) Unsaturated imide compounds containing alicyclic structure, process for producing the same and intermediate therefor
JP2006219396A (en) Aromatic diamine compound and method for producing the same
JPH06727B2 (en) Method for producing bis (3-aminophenoxy) compound
JP2744127B2 (en) Composition for thermosetting resin
US5081315A (en) Fluoro-containing compounds based on 4,4&#39;-bis[2-(4-hydroxyphenyl) hexafluoroisopropyl]diphenyl ether, processes for their preparation and their use
JP3132783B2 (en) Aromatic dinitro compound, aromatic diamino compound and method for producing them
JPH0710812B2 (en) Method for producing bis (3-nitrophenoxy) compound
CA1290341C (en) 2,6-bis(aminophenoxy)pyridine and method of preparing the same
JPH06135905A (en) Aromatic nitro compounds and aromatic amino compounds each having heterocyclic structure, and their production
JP3475754B2 (en) Novel polyimide precursor, polyimide and method for producing the same
JP2533606B2 (en) Novel aromatic amine resin and method for producing the same
JPH0550511B2 (en)
JP3132782B2 (en) Aromatic dinitro compound, aromatic diamino compound and method for producing them
JP2670292B2 (en) Method for producing aromatic amine resin
JPH03101644A (en) New diamine
JPH06329629A (en) Production of unsaturated imido compound containing alicyclic structure
JP2986591B2 (en) Novel polyimide and its manufacturing method
JPH0687795A (en) Nitro compound, amine compound and imide compound
JPS6210051A (en) Novel etherdiamine and production thereof
JPS6087247A (en) Production of 1,3-bis(3-aminophenoxy)benzene
JPH06157457A (en) Unsaturated imido-based compound having alicyclic structure and its production
KR900001172B1 (en) Process for preparing 2,6-bis(amino phenoxy) pyridine