JPH08270542A - Power generation device - Google Patents

Power generation device

Info

Publication number
JPH08270542A
JPH08270542A JP2458596A JP2458596A JPH08270542A JP H08270542 A JPH08270542 A JP H08270542A JP 2458596 A JP2458596 A JP 2458596A JP 2458596 A JP2458596 A JP 2458596A JP H08270542 A JPH08270542 A JP H08270542A
Authority
JP
Japan
Prior art keywords
pressure
working fluid
tank
fluid
turbine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2458596A
Other languages
Japanese (ja)
Inventor
Tadao Kitajima
忠雄 北島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2458596A priority Critical patent/JPH08270542A/en
Publication of JPH08270542A publication Critical patent/JPH08270542A/en
Pending legal-status Critical Current

Links

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

PURPOSE: To generate clean and inexpensive power by driving a turbine while reciprocating alternatively a pressure tank through utilization of positional energy of operation fluid, and pressure difference of contraction in response to a bellows chamber inside a power cylinder due to compressed gas. CONSTITUTION: When pressure base body generated in a compressor 3 is fed to a pressure vessel 1, operation fluid P thereinside is pushed out through a conduit 11. A turbine 12 is driven by the fluid. The fluid completing work is fed to a water storage tank 15 installed in the highest position, then fed to a pressure tank 21, and introduced into a bellows chamber 37 of a power cylinder 31 through a fluid conduit 35 provided with a check valve 33. Compressed air inside the pressure vessel 1 is fed to a power cylinder 30. A pressure plate 26 is raised, and a pressure plate 27 is lowered through a balance mechanism Q. When the operation fluid P in the pressure chamber 2 is boosted and discharged. The turbine 12 is also driven by the fluid.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は発電機タービン等を
回転駆動するための動力発生装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a power generator for rotating a generator turbine or the like.

【0002】[0002]

【従来の技術】従来の電力発電施設では、一般的に水を
作業流体とする蒸気タービンが広く利用されている。ま
た、タービン駆動用の動力源として、LNG等の低温液
化ガスの保有する冷熱を利用する動力発生装置、あるい
は動力源用の作業流体としてフレオンまたはエーテルの
如き気化および液化の容易な物質を用いてタービン等を
駆動する動力発生装置等も知られている(例えば実開昭
57−174708号公報、特公平2−29842号公
報参照)。
2. Description of the Related Art Generally, steam turbines using water as a working fluid are widely used in conventional power generation facilities. Further, as a power source for driving the turbine, a power generator that uses cold heat possessed by a low-temperature liquefied gas such as LNG, or as a working fluid for the power source, a substance that is easily vaporized and liquefied, such as Freon or ether, is used. A power generation device for driving a turbine or the like is also known (see, for example, Japanese Utility Model Laid-Open No. 57-174708 and Japanese Patent Publication No. 2-29842).

【0003】[0003]

【発明が解決しようとする課題】しかしながら、従来の
技術においては、作業流体としてフロンを使用していた
ために、近時のフロンの使用規制に対応できない。ま
た、水は沸点が比較的高く比熱および潜熱が大きいの
で、蒸気タービンでは水の蒸気化のために多大なエネル
ギーを必要とし、水もその都度減少した場合に一々補充
しなければならない。さらに、水や低温液化ガス等の作
業流体を高温高圧ガスに変換するための加熱装置やター
ビン駆動を終えた後の気化作業流体の凝縮液化のための
冷却装置等の熱的サイクル構成に多大なる消費エネルギ
ーが要求され熱効率が低下しかつ高価になるという問題
点を有していた。
However, in the prior art, since CFCs are used as the working fluid, it is not possible to comply with the recent restrictions on the use of CFCs. In addition, since water has a relatively high boiling point and a large specific heat and latent heat, a large amount of energy is required for steamification of water in a steam turbine, and water must be replenished each time it decreases. Furthermore, the thermal cycle configuration of a heating device for converting a working fluid such as water or a low-temperature liquefied gas into a high-temperature high-pressure gas, or a cooling device for condensing and liquefying a vaporized working fluid after the turbine is driven is great. There is a problem that energy consumption is required, thermal efficiency is lowered, and it becomes expensive.

【0004】そこで、本発明は、叙上のような従来存し
た諸事情に鑑み創出されたもので、従来の蒸気タービン
に比べて消費エネルギーを必要最小限に抑え、クリーン
で安価な効率の良い純機械力学的かつ純流体循環的なサ
イクル構成の動力発生装置を提供することを目的とす
る。
Therefore, the present invention was created in view of the various existing conditions as described above. The energy consumption is kept to a necessary minimum as compared with the conventional steam turbine, and it is clean, inexpensive and efficient. An object of the present invention is to provide a power generator having a pure mechanical dynamic and pure fluid circulation cycle configuration.

【0005】[0005]

【課題を解決するための手段】上述した目的を達成する
ため、本発明にあっては、内部に封入された作業流体P
を圧縮気体により外部に圧送する一対の圧力容器1,2
と、該圧力容器1,2から供給される作業流体Pを介し
て駆動されるタービン12と、該タービン12を駆動し
た後の作業流体Pを貯留するための貯水タンク15と、
天秤竿22の中央支点を天秤支柱23上に支承させて揺
動自在となした圧力タンク天秤機構Qの該天秤竿22の
両端に吊持されかつ貯水タンク15の下方に該貯水タン
ク15から分岐した流体供給導管18,19を介して作
業流体Pが交互に導入される一対の圧力タンク20,2
1と、該一対の圧力タンク20,21の夫々の下方に配
置され、前記一対の圧力容器1,2夫々に気体出入管3
8,39により接続されている一対の密閉された動力シ
リンダー30,31と、該一対の動力シリンダー30,
31の夫々に圧力タンク天秤機構Qを介してのピストン
往復運動可能にして内挿されていて、一対の圧力タンク
20,21夫々に動力シリンダー30,31壁を貫挿し
て連繋のシリンダーロッド28,29を介して連結され
る底部の圧力板26,27を有し、かつ圧力タンク2
0,21に流体導入管34,35により接続された一対
の袋状のベローズ室36,37とを設けて成り、いずれ
か一方のベローズ室36,37内への圧力タンク20,
21からの作業流体Pの導入によるベローズ室36,3
7の拡脹、これに伴なう動力シリンダー30,31内の
圧縮気体の圧力容器1,2内への排気及び圧力容器1,
2内からのタービン12への作業流体Pの供給、また、
他方の動力シリンダー30,31内への圧力容器1,2
からの圧縮気体の供給及びベローズ室36,37内から
の作業流体Pの排出によるベローズ室36,37の縮
小、これに伴なう圧力容器1,2内への作業流体Pの供
給、貯留を交互に行なってタービン12を駆動するよう
にしたことを特徴とする。また、圧力タンク天秤機構Q
は、一方の圧力タンク20(21)からの一方のベロー
ズ室36(37)への作業流体Pの導入、排出と、他方
の圧力容器2(1)からの圧縮気体の他方の動力シリン
ダー31(30)への供給、排気とを連動させ、一方の
圧力板26(27)を下降させると同時に他方の圧力板
27(26)を上昇させて圧力タンク20,21を交互
にピストン往復運動するようにして構成することができ
る。一対の圧力タンク20,21夫々は上下部に分割配
置され、一方の上部圧力タンク20A(21A)は他方
の下部圧力タンク20B(21B)に逆止弁42,43
を設けた流体導出案内管44,45により接続してお
き、一方の上部圧力タンク20A(21A)に作業流体
Pが供給されるときには同じく一方の下部圧力タンク2
0B(21B)に他方の上部圧力タンク21A(20
A)からも作業流体Pが供給されるようにして構成する
ことができる。一方のベローズ室36(37)と同じく
一方の圧力容器1(2)とは動力シリンダー30(3
1)壁を貫挿した逆止弁46,47を設けた流体排出管
48,49によって直接に接続して構成することができ
る。
In order to achieve the above object, in the present invention, a working fluid P enclosed inside is used.
Of a pair of pressure vessels 1 and 2 for sending compressed air to the outside
A turbine 12 driven via a working fluid P supplied from the pressure vessels 1 and 2, a water storage tank 15 for storing the working fluid P after driving the turbine 12,
A pressure tank in which a central fulcrum of the balance rod 22 is supported on a balance support column 23 so as to be swingable. The balance mechanism Q is suspended from both ends of the balance rod 22 and branched from the water storage tank 15 below the water storage tank 15. A pair of pressure tanks 20, 2 into which the working fluid P is alternately introduced via the fluid supply conduits 18, 19
1 and a pair of pressure tanks 20 and 21 below the pressure vessels 20 and 21, respectively, and a gas inlet / outlet pipe 3 to and from the pair of pressure vessels 1 and 2, respectively.
A pair of sealed power cylinders 30, 31 connected by 8, 39, and a pair of power cylinders 30,
A cylinder rod 28, which is inserted into each of the pressure tank balance mechanisms Q so that the pistons can reciprocate, and is inserted into the pair of pressure tanks 20 and 21, respectively, through the walls of the power cylinders 30 and 31, A pressure tank 2 having bottom pressure plates 26, 27 connected via 29;
0 and 21 are provided with a pair of bag-shaped bellows chambers 36 and 37 connected by fluid introduction pipes 34 and 35, respectively, and a pressure tank 20 into either one of the bellows chambers 36 and 37 is provided.
Bellows chambers 36, 3 by introducing the working fluid P from 21
7, expansion of the compressed gas in the power cylinders 30 and 31 resulting from the expansion,
Supply of the working fluid P to the turbine 12 from within 2,
Pressure vessels 1, 2 into the other power cylinders 30, 31
Of the working fluid P from the inside of the bellows chambers 36 and 37 by the discharge of the working fluid P from the inside of the bellows chambers 36 and 37, and the supply and storage of the working fluid P into the pressure vessels 1 and 2. It is characterized in that the turbines 12 are driven alternately. Also, the pressure tank balance mechanism Q
Is for introducing and discharging the working fluid P from one pressure tank 20 (21) to the one bellows chamber 36 (37) and the other power cylinder 31 (of the compressed gas from the other pressure vessel 2 (1). 30), supply and exhaust are interlocked to lower one pressure plate 26 (27) and simultaneously raise the other pressure plate 27 (26) so that the pistons reciprocate the pressure tanks 20 and 21 alternately. Can be configured. Each of the pair of pressure tanks 20 and 21 is divided into upper and lower parts, and the upper pressure tank 20A (21A) on one side and the check valves 42 and 43 on the lower pressure tank 20B (21B) on the other side.
Are connected by fluid guide pipes 44 and 45 provided with the above, and when the working fluid P is supplied to one upper pressure tank 20A (21A), one lower pressure tank 2
0B (21B) to the other upper pressure tank 21A (20
The working fluid P can also be supplied from A). Like the one bellows chamber 36 (37) and one pressure vessel 1 (2), the power cylinder 30 (3
1) It can be constructed by directly connecting by fluid discharge pipes 48 and 49 provided with check valves 46 and 47 which penetrate the wall.

【0006】以上のように構成された本発明に係る動力
発生装置において、一対の圧力容器1、2内の作業流体
Pは、初期動作を行なうための補充用としての該圧力容
器1、2に作用される圧縮気体により、タービン12側
に供給されて直接タービン12を駆動させた後、最上位
置にある貯水タンク15に一旦貯留され、以後の動作は
この貯水タンク15の落差及び圧力容器1,2からの圧
縮気体の膨脹圧を利用して行なわれる。圧力タンク天秤
機構Qは、貯水タンク15から分岐した流体供給導管1
8(19)を介して一方の圧力タンク20(21)に送
出される作業流体Pの所定重量と、他方の圧力容器2
(1)から供給された圧縮気体が動力シリンダー31
(30)内に充満される圧縮気体の膨脹圧とで一方の圧
力タンク20(21)に荷重を与え、動力シリンダー3
0(31)内の圧力板26(27)は、ベローズ室36
(37)内部に導入される作業流体Pの重量及び他方の
動力シリンダー31(30)内の圧縮気体の膨脹圧によ
り他方のベローズ室37(36)をその圧力板27(2
6)を介して縮小させることに伴なう圧力タンク21
(20)の上昇によって、一方のベローズ室36(3
7)の拡脹を伴いながら降下させ、このときの下降加圧
状態で動力シリンダー30(31)内におけるベローズ
室36(37)外の下部にある圧縮気体を前記圧力容器
1(2)内に圧送させることで導管9(10),11を
介して供給される作業流体Pによってタービン12を駆
動させる。また、前記作業流体Pは流体導入管34(3
5)を介して動力シリンダー30(31)のベローズ室
36(37)内部に導入させる。同時に、圧力板26
(27)は、動力シリンダー30(31)内のベローズ
室36(37)外部にあった気体を動力シリンダー30
(31)から前記圧力容器1(2)内に気体出入管38
(39)を介して強制的に圧送させ、圧力容器1(2)
内の気体圧を増加させて圧力容器1(2)に作用される
圧縮気体を発生させる。そして、再度作業流体Pはター
ビン12側に供給されて直接タービン12を駆動した
後、最上位置にある貯水タンク15に再度貯留される。
また、このとき他方の動力シリンダー31(30)内で
は圧力板27(26)の上昇に伴いベローズ室37(3
6)内部の作業流体Pがベローズ室37(36)外の動
力シリンダー30(31)内に送出され、作業流体Pは
気体出入管39(38)を介して前記圧力容器2(1)
内に落下還流される。このようにして、一対の圧力タン
ク20、21のピストン動作が交互に切り換わりながら
継続的にサイクルが繰り返えされてタービン12に作業
流体Pを供給し、タービン12を駆動させる。上下に分
割配置された上下部の圧力タンク20A,20B、21
A,21Bにおいて、一方の上部圧力タンク20A(2
1)に作業流体Pが供給されるとき、その下部圧力タン
ク20B(21B)にも他方の上部圧力タンク21A
(20A)から作業流体Pが供給されることで、一方側
ではその上下部の圧力タンク20A,20B(21A,
21B)に上下で二重に作業流体Pが供給されることで
ベローズ室36(37)に対する加圧力を大きくさせ
る。一方のベローズ室36(37)と同じく一方の圧力
容器1(2)とを接続した流体排出管48,49は、圧
力容器1(2)から動力シリンダー30(31)に供給
される圧縮気体の流路である気体導入管38(39)と
は別個のものとさせ、ベローズ室36(37)から排出
される作業流体Pを、動力シリンダー30(31)に供
給される圧縮気体とは干渉させずに圧力容器1(2)に
円滑に排出させる。
In the power generating apparatus according to the present invention configured as described above, the working fluid P in the pair of pressure vessels 1 and 2 is supplied to the pressure vessels 1 and 2 for replenishment for performing the initial operation. The compressed gas is supplied to the turbine 12 side to directly drive the turbine 12 and then temporarily stored in the water storage tank 15 at the uppermost position. The subsequent operations are the head of the water storage tank 15 and the pressure vessel 1, The expansion pressure of the compressed gas from 2 is utilized. The pressure tank balance mechanism Q includes a fluid supply conduit 1 branched from the water storage tank 15.
8 (19) to the pressure tank 20 (21) on one side and the predetermined weight of the working fluid P and the pressure vessel 2 on the other side.
The compressed gas supplied from (1) is the power cylinder 31.
The expansion pressure of the compressed gas filled in (30) applies a load to one of the pressure tanks 20 (21), and the power cylinder 3
The pressure plate 26 (27) in the 0 (31) is a bellows chamber 36.
(37) The weight of the working fluid P introduced into the inside and the expansion pressure of the compressed gas in the other power cylinder 31 (30) cause the other bellows chamber 37 (36) to move to the pressure plate 27 (2).
6) Pressure tank 21 associated with reduction via
By the rise of (20), one of the bellows chambers 36 (3
7) The gas is lowered while expanding, and the compressed gas in the lower part outside the bellows chamber 36 (37) in the power cylinder 30 (31) is lowered into the pressure vessel 1 (2) in the descending pressurization state at this time. By pumping, the turbine 12 is driven by the working fluid P supplied via the conduits 9 (10) and 11. Further, the working fluid P is the fluid introduction pipe 34 (3
5) Introduce it into the bellows chamber 36 (37) of the power cylinder 30 (31) via 5). At the same time, the pressure plate 26
(27) is the power cylinder 30 (31) inside the bellows chamber 36 (37) gas outside the power cylinder 30
From (31) into the pressure vessel 1 (2), a gas inlet / outlet pipe 38
The pressure vessel 1 (2) is forcibly pumped through (39).
The internal gas pressure is increased to generate a compressed gas that acts on the pressure vessel 1 (2). Then, the working fluid P is again supplied to the turbine 12 side to directly drive the turbine 12, and then stored again in the water storage tank 15 at the uppermost position.
Further, at this time, in the other power cylinder 31 (30), as the pressure plate 27 (26) rises, the bellows chamber 37 (3
6) The working fluid P inside is delivered into the power cylinder 30 (31) outside the bellows chamber 37 (36), and the working fluid P is passed through the gas inlet / outlet pipe 39 (38) to the pressure vessel 2 (1).
It is dropped and returned to the inside. In this manner, the piston operation of the pair of pressure tanks 20 and 21 is alternately switched, and the cycle is continuously repeated to supply the working fluid P to the turbine 12 and drive the turbine 12. Upper and lower pressure tanks 20A, 20B, 21 which are divided into upper and lower parts
A and 21B, one upper pressure tank 20A (2
When the working fluid P is supplied to 1), the lower pressure tank 20B (21B) is also supplied to the other upper pressure tank 21A.
By supplying the working fluid P from (20A), the pressure tanks 20A and 20B (21A,
21B) is double-supplied with the working fluid P in the upper and lower directions to increase the pressure applied to the bellows chamber 36 (37). The fluid discharge pipes 48 and 49, which are connected to one of the bellows chambers 36 (37) and one of the pressure vessels 1 (2), supply the compressed gas supplied from the pressure vessel 1 (2) to the power cylinder 30 (31). The working fluid P discharged from the bellows chamber 36 (37) interferes with the compressed gas supplied to the power cylinder 30 (31) by making it separate from the gas introduction pipe 38 (39) which is a flow path. Instead, it is smoothly discharged into the pressure vessel 1 (2).

【0007】[0007]

【発明の実施の形態】以下、図面を参照して本発明の実
施の形態を説明するに、図1において示される第1の実
施の形態における符号1,2は左右の下位置に配置した
一対の圧力容器であり、夫々の圧力容器1,2内部に例
えば水あるいは低い動粘性率を有する作業流体Pを封入
し、外部のコンプレッサー3により圧縮気体を導入して
作業流体Pに所要の補充圧力を付加するようになってい
る。4は圧力容器1に封入した作業流体Pの量を監視す
る水位計であり、5は圧力容器1の内圧を監視する圧力
計、6は圧力容器1の内圧が設定値以上になった場合に
気体圧を逃がす安全弁である。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, referring to the drawings, an embodiment of the present invention will be described. Reference numerals 1 and 2 in the first embodiment shown in FIG. Each of the pressure vessels 1 and 2 is filled with water or a working fluid P having a low kinematic viscosity, and a compressed gas is introduced by an external compressor 3 to replenish the working fluid P with a required replenishing pressure. Is to be added. 4 is a water level gauge for monitoring the amount of the working fluid P sealed in the pressure vessel 1, 5 is a pressure gauge for monitoring the internal pressure of the pressure vessel 1, and 6 is for when the internal pressure of the pressure vessel 1 exceeds a set value. It is a safety valve that releases gas pressure.

【0008】一対の圧力容器1の下部からは夫々電磁弁
7、8を有する導管9、10が夫々分岐接続され、該導
管9、10の出口は単一の導管11を介して例えば発電
機用のタービン12のノズル13に接続されており、圧
力容器1,2の作業流体Pが圧縮気体により圧送されて
タービン12を駆動し、該タービン12は発電機等の所
要の作業機を駆動する。該タービン12の出口は排水管
14を介して最上位置に配置されている貯水タンク15
に通じており、タービン12の駆動を終えた作業流体P
が該貯水タンク15に送られて貯留されるようになって
いる。
From the lower part of the pair of pressure vessels 1, conduits 9 and 10 respectively having solenoid valves 7 and 8 are branched and connected, and the outlets of the conduits 9 and 10 are connected via a single conduit 11 to, for example, a generator. Connected to the nozzle 13 of the turbine 12, the working fluid P in the pressure vessels 1 and 2 is pumped by compressed gas to drive the turbine 12, and the turbine 12 drives a required working machine such as a generator. The outlet of the turbine 12 is a water storage tank 15 arranged at the uppermost position via a drain pipe 14.
Working fluid P which has been driven to the turbine 12 and has finished driving the turbine 12.
Is sent to and stored in the water storage tank 15.

【0009】貯水タンク15の下方には該貯水タンク1
5からの作業流体Pが交互に導入されるように電磁弁1
6、17を備えた流体供給導管18、19を介して該貯
水タンク15よりも下位にある一対の圧力タンク20、
21上に夫々接続してあり、また、一対の圧力タンク2
0、21を天秤竿22の両端に吊持しかつ該天秤竿22
の中央支点を天秤支柱23上に支承させてシーソー状に
揺動自在と成して圧力タンク天秤機構Qを構成してあ
る。
Below the water storage tank 15 is the water storage tank 1.
Solenoid valve 1 so that the working fluid P from 5 is introduced alternately.
A pair of pressure tanks 20 below the water storage tank 15 via fluid supply conduits 18, 19 provided with 6, 17;
21 connected to each other, and a pair of pressure tanks 2
0 and 21 are hung on both ends of the balance rod 22 and the balance rod 22
The pressure tank balance mechanism Q is configured by supporting the central fulcrum of the above on the balance support column 23 and swinging like a seesaw.

【0010】一対の圧力タンク20、21の夫々の下方
には、前記一対の圧力容器1,2夫々に開閉弁付きの気
体出入管38,39により接続されている一対の密閉さ
れた動力シリンダー30,31を配置してあり、また、
該動力シリンダー30,31夫々には圧力タンク天秤機
構Qを介してピストン往復運動可能にした交互に収縮自
在な袋状のベローズ室36,37夫々を内挿してある。
そして、該ベローズ室36,37は逆止弁32、33を
備えたフレキシブルな流体導入管34,35により圧力
タンク20,21に接続し、かつ底部の圧力板26,2
7は動力シリンダー30,31壁、例えば該動力シリン
ダー30,31の上壁を貫挿し、圧力タンク20,21
の底面に上端によって連繋したシリンダーロッド28、
29の下端に連結してあり、圧力タンク30,31内に
導入された作業流体Pの荷重付加に伴ない下降する圧力
板26,27、また、圧力タンク20,21から供給さ
れる作業流体Pによって膨脹されるようにしてある。す
なわち、圧力タンク天秤機構Qの動作に基づき夫々の動
力シリンダー30、31内で圧力板26、27が上下動
方向に交互に切り替わりながら同一ストローク(落差)
でピストン往復運動を行なうことでベローズ室36,3
7が交互に収縮するようになっている。また、圧力板2
6,27には逆止弁24、25が備えられていて、導入
された作業流体Pを該逆止弁24、25により動力シリ
ンダー30,31内に一旦排出した後に前記の気体出入
管38,39を経て再び圧力容器1,2に戻すことで還
流するようにしてある。
Below the pair of pressure tanks 20 and 21, respectively, a pair of sealed power cylinders 30 are connected to the pair of pressure vessels 1 and 2 by gas inlet / outlet pipes 38 and 39 with open / close valves. , 31 are arranged, and also
The power cylinders 30 and 31 are respectively provided with bellows chambers 36 and 37, which are alternately retractable and have a piston reciprocating motion through a pressure tank balance mechanism Q, which are alternately contractible.
The bellows chambers 36 and 37 are connected to the pressure tanks 20 and 21 by flexible fluid introducing pipes 34 and 35 having check valves 32 and 33, and the pressure plates 26 and 2 at the bottom are connected.
7 is a wall of the power cylinders 30 and 31, for example, an upper wall of the power cylinders 30 and 31, which penetrates the pressure cylinders 20 and 21.
A cylinder rod 28 connected to the bottom of the
The pressure plates 26 and 27 connected to the lower end of the pressure tank 29 and descending with the load of the working fluid P introduced into the pressure tanks 30 and 31, and the working fluid P supplied from the pressure tanks 20 and 21. It is designed to be inflated by. That is, based on the operation of the pressure tank balance mechanism Q, the pressure plates 26 and 27 in the respective power cylinders 30 and 31 are alternately switched in the vertical movement direction, and the same stroke (head)
By reciprocating the piston with the bellows chamber 36,3
7 contracts alternately. Also, the pressure plate 2
6 and 27 are provided with check valves 24 and 25, and the introduced working fluid P is once discharged into the power cylinders 30 and 31 by the check valves 24 and 25, and then the gas inlet / outlet pipe 38, By returning the pressure to the pressure vessels 1 and 2 via 39 again, reflux is performed.

【0011】このように夫々の圧力板26、27の上面
と夫々動力シリンダー30、31の上壁内面との間には
前記圧力タンク20、21から前記流体導入管34、3
5を介して作業流体Pが導入または排出されるようにし
た袋状に形成されたベローズ室36、37が設けられて
いるのであり、圧力板26、27のピストン往復運動に
伴い該ベローズ室36、37が収縮運動するのである。
このときに縮小されるベローズ室36,37から動力シ
リンダー30,31内に排出された作業流体Pは夫々の
気体出入管38,39により前記圧力容器1,2内に還
流する一方、圧力容器1,2内の圧縮気体が動力シリン
ダー30,31に供給されるようにしてある。すなわ
ち、ベローズ室36,37底部の圧力板26,27は、
圧力容器1,2からの圧縮気体の膨脹圧によって押し上
げられるのであり、いずれか一方の動力シリンダー30
(31)に圧縮気体が供給されると、その圧力板26
(27)を上昇させる一方、圧力タンク天秤機構Qによ
って他方の動力シリンダー31(30)を膨脹させてそ
の圧力板27(26)を降下させるようにしてある。従
って、ベローズ室36,37は、これの内部への作動流
体Pの導入、排出、また、圧縮気体の動力シリンダー3
0,31内への供給、排気によって圧力板27(26)
を介して交互に膨脹、縮小するのである。
As described above, between the upper surfaces of the pressure plates 26 and 27 and the inner surfaces of the upper walls of the power cylinders 30 and 31, the pressure tanks 20 and 21 to the fluid introduction pipes 34 and 3, respectively.
There are provided bellows chambers 36, 37 formed in a bag shape so that the working fluid P can be introduced or discharged through the bellows 5, and the bellows chamber 36 is reciprocally moved with the pistons of the pressure plates 26, 27. , 37 contracts.
The working fluid P discharged into the power cylinders 30, 31 from the bellows chambers 36, 37, which are reduced in size at this time, is recirculated into the pressure containers 1, 2 by the gas inlet / outlet pipes 38, 39, respectively. , 2 is supplied to the power cylinders 30 and 31. That is, the pressure plates 26 and 27 at the bottom of the bellows chambers 36 and 37 are
It is pushed up by the expansion pressure of the compressed gas from the pressure vessels 1 and 2, and either one of the power cylinders 30 is pushed.
When compressed gas is supplied to (31), its pressure plate 26
While raising (27), the pressure tank balance mechanism Q expands the other power cylinder 31 (30) to lower the pressure plate 27 (26). Therefore, the bellows chambers 36 and 37 are provided in the bellows chambers 36 and 37, and the working fluid P is introduced into and discharged from the bellows chambers 36 and 37.
Pressure plate 27 (26) by supply and exhaust into 0, 31
It expands and contracts alternately through.

【0012】このようにして例えば一方の動力シリンダ
ー30(31)内のベローズ室36(37)内部への作
業流体Pの注入及び他方の動力シリンダー31(30)
内への圧縮気体の供給膨脹状態で、圧力板26(27)
には所要の水圧が加重され前記圧力タンク20(21)
の重量も加わって該圧力板26(27)は動力シリンダ
ー30(31)内を下降するように構成してある。この
とき加圧圧縮状態で動力シリンダー30(31)内の圧
力板26(27)下方の気体は気体出入管38(39)
を介して前記圧力容器1(2)内に圧送されて圧力容器
1(2)内の気体圧を増加させ、圧力容器1(2)に作
用される圧縮気体を発生させることで作業流体Pに所要
の圧力を付加し、作業流体Pはタービン12側に再度揚
上供給されて直接タービン12を駆動した後、最上位置
にある貯水タンク15に再度貯留されるようになってい
る。
Thus, for example, the working fluid P is injected into the bellows chamber 36 (37) in one power cylinder 30 (31) and the other power cylinder 31 (30).
When the compressed gas is supplied into the pressure plate 26 in an expanded state, the pressure plate 26 (27)
The required water pressure is applied to the pressure tank 20 (21).
The pressure plate 26 (27) is configured to descend in the power cylinder 30 (31) in addition to the weight of the pressure plate 26 (27). At this time, the gas below the pressure plate 26 (27) in the power cylinder 30 (31) under pressure compression is the gas inlet / outlet pipe 38 (39).
Through the pressure vessel 1 (2) to increase the gas pressure in the pressure vessel 1 (2) and generate a compressed gas which acts on the pressure vessel 1 (2) to generate a working fluid P. After a required pressure is applied, the working fluid P is again lifted and supplied to the turbine 12 side to directly drive the turbine 12, and then stored again in the water storage tank 15 at the uppermost position.

【0013】また、他方の動力シリンダー31(30)
内では圧縮気体の膨脹圧によって圧力タンク天秤機構Q
を介して圧力板27(26)が上昇移動され、逆止弁2
5(24)を介してのベローズ室37(36)外部への
作業流体Pの送出状態により該作業流体Pを気体出入管
39(38)を介して前記圧力容器2(1)内に落下さ
せ還流するように構成してある。
The other power cylinder 31 (30)
Inside the pressure tank balance mechanism Q due to the expansion pressure of the compressed gas
The pressure plate 27 (26) is moved upward through the check valve 2
The working fluid P is dropped into the pressure vessel 2 (1) through the gas inlet / outlet pipe 39 (38) by the delivery state of the working fluid P to the outside of the bellows chamber 37 (36) via 5 (24). It is configured to reflux.

【0014】次に、本発明装置の動作説明を述べると、
本発明に係る動力発生装置においては、上位の貯水タン
ク15と、一方側の圧力タンク20(21)および下部
の動力シリンダー30(31)と、発電機等のタービン
12に通じる導管9(10),11と、一対の圧力容器
1、2の一部容積内とには予め作業流体Pを充填させて
あり、一対の圧力容器1、2内の作業流体Pが初期駆動
を行なうため、該圧力容器1、2内の気体側に作用され
るコンプレッサー3による補充圧力用の圧縮気体によ
り、作業流体Pは導管9(10),11内を循環流的に
揚上し、直接タービン12を回転駆動した後、排水管1
4を経て最高位にある貯水タンク15に一旦貯留される
(以後の動作はコンプレッサー3によらずにこの貯水タ
ンク15の落差及び圧力容器1,2内の圧縮気体の膨脹
圧を利用して行なわれる)。
Next, the operation of the device of the present invention will be described.
In the power generator according to the present invention, the upper water storage tank 15, the pressure tank 20 (21) on one side and the power cylinder 30 (31) on the lower side, and the conduit 9 (10) leading to the turbine 12 of the generator or the like. , 11 and the partial volumes of the pair of pressure vessels 1 and 2 are filled with the working fluid P in advance, and the working fluid P in the pair of pressure vessels 1 and 2 performs the initial drive. The working gas P is circulated in the conduits 9 (10) and 11 by the compressed gas for replenishing pressure by the compressor 3 acting on the gas side in the containers 1 and 2, and directly drives the turbine 12 to rotate. After that, drain pipe 1
4 and is temporarily stored in the highest water storage tank 15 (the subsequent operation is performed by utilizing the head of the water storage tank 15 and the expansion pressure of the compressed gas in the pressure vessels 1 and 2 without depending on the compressor 3. ).

【0015】一方の圧力タンク21(20)は、貯水タ
ンク15から分岐した別個の流体供給導管19(18)
を介して送出される作業流体Pにより所定の重量に達す
るまで貯水保留され、それに伴い一方の圧力タンク21
(20)は荷重を得ると共に、作業流体Pは逆止弁33
(32)付の流体導入管35(34)を介して動力シリ
ンダー31(30)のベローズ室37(36)内部に導
入される一方、他方の圧力容器1(2)内の圧縮気体が
気体出入管38(39)を介して動力シリンダー30
(31)に供給されて圧力板26(27)を押し上げる
ことで圧力タンク天秤機構Qにより動力シリンダー31
(30)内を圧力板27(26)がベローズ室37(3
6)を拡脹させながら降下する。同時に、動力シリンダ
ー31(30)内のベローズ室37(36)外部にあっ
た圧縮気体は一対の圧力タンク20、21の重量差に伴
う下降加圧力で動力シリンダー31(30)から前記圧
力容器2(1)内に気体出入管39(38)を介して強
制的に圧送され、圧力容器2(1)内の気体圧は増加さ
れて圧力容器2(1)に作用される作業流体P加圧用の
圧縮気体となり、再度作業流体Pはタービン12側に循
環流的に揚上されてその水圧により直接タービン12を
回転駆動した後、最上位置にある貯水タンク15に再度
貯留される。
One pressure tank 21 (20) is a separate fluid supply conduit 19 (18) branching from the water storage tank 15.
The working fluid P sent through the tank holds water until a predetermined weight is reached, and accordingly, one of the pressure tanks 21
(20) obtains the load, and the working fluid P receives the check valve 33.
(32) is introduced into the bellows chamber 37 (36) of the power cylinder 31 (30) via a fluid introduction pipe 35 (34), while the compressed gas in the other pressure vessel 1 (2) is introduced and discharged. Power cylinder 30 via pipe 38 (39)
It is supplied to (31) and pushes up the pressure plate 26 (27) to cause the pressure tank balance mechanism Q to drive the power cylinder 31.
Inside the (30), the pressure plate 27 (26) is moved to the bellows chamber 37 (3
Descend while expanding 6). At the same time, the compressed gas outside the bellows chamber 37 (36) inside the power cylinder 31 (30) is moved downward from the power cylinder 31 (30) to the pressure container 2 by the downward pressure due to the weight difference between the pair of pressure tanks 20 and 21. For pressurizing the working fluid P, which is forcibly pumped into the inside of (1) through the gas inlet / outlet pipe 39 (38) and the gas pressure in the pressure vessel 2 (1) is increased to act on the pressure vessel 2 (1). The working fluid P is again circulated to the turbine 12 side in a circulating flow manner, and the turbine 12 is directly driven to rotate by the water pressure thereof, and then stored again in the water storage tank 15 at the uppermost position.

【0016】また、このとき他方の動力シリンダー30
(31)内では圧力タンク天秤機構Qによる圧力板26
(27)の上昇に伴いベローズ室36(37)を縮小さ
せながらベローズ室36(37)内部の作業流体Pが圧
力板26(27)の逆止弁24(25)を介してベロー
ズ室36(37)外部に導出され、作業流体Pは前記気
体出入管38(39)を介して前記圧力容器1(2)内
に落下還流されて貯留される。このようにして圧力タン
ク天秤機構Qにより夫々の圧力タンク20(21)内の
ピストン往復運動が交互に切り換わりながら動作する。
以上の動作により、流路は電磁弁7、8、16、17に
より自動的に切換えられるので継続的に上記のサイクル
が繰り返えされる。
At this time, the other power cylinder 30
In (31), the pressure plate 26 by the pressure tank balance mechanism Q is
The working fluid P inside the bellows chamber 36 (37) is contracted with the rise of (27) while the bellows chamber 36 (37) is contracted through the check valve 24 (25) of the pressure plate 26 (27). 37) The working fluid P is led out to the outside, is dropped into the pressure vessel 1 (2) through the gas inlet / outlet pipe 38 (39), is refluxed and stored therein. In this way, the pressure tank balance mechanism Q operates while alternately reciprocating the piston reciprocating motion in each pressure tank 20 (21).
By the above operation, the flow paths are automatically switched by the solenoid valves 7, 8, 16, 17, so that the above cycle is continuously repeated.

【0017】尚、本実施の形態では動力発生装置を構成
する夫々一対の圧力タンク20、21と動力シリンダー
30、31に対し夫々と連繋される一対の圧力容器1、
2を採用しているが、その他の構成として図示を省略し
たが、夫々一対の圧力タンクと動力シリンダーに対し単
一の圧力容器を共用させても良く、その構成に基づく作
用効果は上記実施の形態と略同じなのでその説明を省略
する。
In the present embodiment, the pair of pressure vessels 1 and 21 are connected to the pair of pressure tanks 20 and 21 and the pair of power cylinders 30 and 31, respectively, which constitute the power generator.
Although the second configuration is adopted, although not shown as the other configuration, a single pressure vessel may be shared by each pair of pressure tanks and power cylinders. The description is omitted because it is almost the same as the form.

【0018】また、図2には第2の実施の形態が示され
ており、第1の実施の形態を示した図1と同一の構成部
分については同一の符号が付されることでその詳細な説
明は省略されている。この第2の実施の形態にあっては
第1の実施の形態における一対の圧力タンク20,21
夫々を上下部に分割配置して上部圧力タンク20A,2
1A、下部圧力タンク20B,21Bとして形成すると
共に一方側の上下部の圧力タンク20A,20B相互、
他方側の上下部の圧力タンク21A,21B相互夫々を
連結ロッド40,41夫々によって一体的に昇降するよ
うに連結し、また、一方の上部圧力タンク20A(21
A)は他方の下部圧力タンク21B(20B)に逆止弁
42,43を設けた流体導出案内管44,45により接
続する。そして、一方の上部圧力タンク20A(21
A)に作業流体Pが供給されるときには同じく一方の下
部圧力タンク20B(21B)に他方の上部圧力タンク
21A(20A)からも作業流体Pが供給されるように
してあり、そのため上部圧力タンク20A,21Aと下
部圧力タンク20B,21Bとは、加圧作動後で上部圧
力タンク20A,21Aが下位置にあっても加圧作動前
で上位置にある下部圧力タンク21B,21Aに対して
は常時上方位置にあるように設定されているものであ
る。
A second embodiment is shown in FIG. 2, and the same components as those in FIG. 1 showing the first embodiment are designated by the same reference numerals and their details will be described. The description is omitted. In the second embodiment, the pair of pressure tanks 20 and 21 in the first embodiment are used.
Upper pressure tanks 20A, 2
1A, lower pressure tanks 20B and 21B, and upper and lower pressure tanks 20A and 20B on one side,
The upper and lower pressure tanks 21A and 21B on the other side are connected to each other by connecting rods 40 and 41 so as to move up and down integrally, and one upper pressure tank 20A (21
A) is connected to the other lower pressure tank 21B (20B) by fluid guide pipes 44 and 45 provided with check valves 42 and 43. Then, one upper pressure tank 20A (21
When the working fluid P is supplied to A), the working fluid P is also supplied from the other upper pressure tank 21A (20A) to the one lower pressure tank 20B (21B). , 21A and the lower pressure tanks 20B, 21B are always provided with respect to the lower pressure tanks 21B, 21A that are in the upper position before the pressurizing operation even if the upper pressure tanks 20A, 21A are in the lower position after the pressurizing operation. It is set to be in the upper position.

【0019】すなわち、貯水タンク15から上位置にあ
る一方の上部圧力タンク20A(21A)に作業流体P
が供給されるときに、加圧作動後で下位置にある他方の
上部圧力タンク21A(20A)からは開放される流体
導出案内管44(45)を経て一方の下部圧力タンク2
0B(21B)に作業流体Pが供給されることで、一方
側ではその上下部の圧力タンク20A,20B夫々に作
業流体Pが供給されることで大きな加圧作用を得ること
ができる。
That is, the working fluid P is transferred from the water storage tank 15 to the upper pressure tank 20A (21A) located at the upper position.
When the pressure is supplied, one lower pressure tank 2 via the fluid outlet guide pipe 44 (45) which is opened from the other upper pressure tank 21A (20A) in the lower position after the pressurization operation.
By supplying the working fluid P to 0B (21B), the working fluid P is supplied to the pressure tanks 20A and 20B above and below the one side, respectively, so that a large pressurizing action can be obtained.

【0020】更に、一方のベローズ室36,37と同じ
く一方の圧力容器1,2とは動力シリンダー30,31
壁を貫挿した逆止弁46,47を設けたフレキシブルな
流体排出管48,49によって直接に接続してある。す
なわち、該流体排出管48,49は前記圧力板26,2
7に上端を接続し、動力シリンダー30,31内におけ
る底部側でフレキシブルに形成し、底部から外方に突出
して圧力容器1,2における底部側に下端を接続してあ
る。こうすることで、ベローズ室36,37内に導入さ
れることで圧力板26,27を下降させた後の作業流体
Pがベローズ室36,37から圧力容器1,2に排出さ
れるとき、動力シリンダー30,31と圧力容器1,2
との間における圧縮気体の出入に伴なう圧力板26,2
7の昇降に際し、作業流体Pの流路と圧縮気体の流路と
が別個に形成されることで相互に干渉されないためにそ
れらの流れを円滑にし、ひいては圧力タンク天秤機構Q
による圧力タンク20(20A,20B),21(21
A,21B)の交互の昇降、ベローズ室36,37の交
互の収縮を確実、安定的に円滑に行なわせることができ
る。
Further, one of the bellows chambers 36, 37 and one of the pressure vessels 1, 2 are connected to the power cylinders 30, 31.
It is directly connected by flexible fluid discharge pipes 48 and 49 provided with check valves 46 and 47 which penetrate the wall. That is, the fluid discharge pipes 48, 49 are connected to the pressure plates 26, 2
7, the upper end is connected, and the flexible cylinder is formed on the bottom side in the power cylinders 30 and 31, and the lower end is connected to the bottom side of the pressure vessels 1 and 2 protruding outward from the bottom. By doing so, when the working fluid P after being lowered into the pressure plates 26 and 27 by being introduced into the bellows chambers 36 and 37 is discharged from the bellows chambers 36 and 37 to the pressure vessels 1 and 2, power is generated. Cylinders 30 and 31 and pressure vessels 1 and 2
Pressure plates 26, 2 associated with the inflow and outflow of compressed gas between and
When the work piece 7 is moved up and down, the working fluid P flow path and the compressed gas flow path are formed separately from each other so that they do not interfere with each other, so that their flow is smoothed, and thus the pressure tank balance mechanism Q.
Pressure tank 20 (20A, 20B), 21 (21
It is possible to surely and stably carry out alternating vertical movement of (A, 21B) and alternating contraction of the bellows chambers 36, 37.

【0021】[0021]

【発明の効果】以上の如く本発明の動力発生装置によれ
ば、従来の熱機関である蒸気タービンのように液化熱媒
体を蒸発器へ供給するための熱交換エネルギーを必要と
せず、作業流体Pの位置エネルギーと圧力容器1,2内
の圧縮気体による動力シリンダー30,31内の圧力板
26,27を介するベローズ室36,37に対する収縮
の圧力差とを利用して圧力タンク20,21を交互にピ
ストン往復運動させることで連続的に作動流体Pを供給
することになって、タービン12を駆動するという純機
械力学的かつ純流体循環的なサイクル構成であるので、
フロン規制にも対応でき、消費エネルギーを必要最小限
に抑えかつクリーンで安価な効率の良い動力を得ること
ができる。
As described above, according to the power generator of the present invention, the working fluid does not require heat exchange energy for supplying the liquefied heat medium to the evaporator, unlike the conventional steam turbine which is a heat engine. Using the potential energy of P and the contraction pressure difference between the bellows chambers 36 and 37 through the pressure plates 26 and 27 in the power cylinders 30 and 31 by the compressed gas in the pressure vessels 1 and 2, the pressure tanks 20 and 21 are Since the working fluid P is continuously supplied by alternately reciprocating the pistons, the cycle configuration is pure mechanical dynamic and pure fluid circulation, which drives the turbine 12.
It can comply with CFC regulations, minimize energy consumption, and obtain clean, inexpensive, and efficient power.

【0022】すなわち、これは本発明において、圧力容
器1,2から作業流体Pを圧縮気体により外部に供給し
てタービン12を駆動した後に貯留する貯水タンク15
を上位に配し、該貯水タンク15の下方には作業流体P
を交互に導入する圧力タンク20,21を配し、圧力タ
ンク20,21同士を交互に昇降するよう支承する圧力
タンク天秤機構Qを設ける。圧力タンク20,21下方
には逆止弁24,25を有する圧力板26,27を底部
に設け、作業流体Pの上方からの導入、また、圧力板2
6,27下方からの圧縮気体の供給で収縮するベローズ
室36,37をピストン往復運動可能となるよう動力シ
リンダー30,31に内挿すると共に、圧力タンク2
0,21、ベローズ室36,37、動力シリンダー3
0,31、圧力容器1,2、タービン12、貯水タンク
15を接続することで作業流体Pの循環管路を構成した
からである。
That is, in the present invention, this is a water storage tank 15 for storing the working fluid P from the pressure vessels 1 and 2 by a compressed gas to the outside to drive the turbine 12 and store the working fluid P.
Is placed on the upper side, and the working fluid P is provided below the water storage tank 15.
A pressure tank balance mechanism Q is provided for arranging the pressure tanks 20 and 21 for alternately introducing the pressure tanks and supporting the pressure tanks 20 and 21 so as to alternately move up and down. Pressure plates 26, 27 having check valves 24, 25 are provided at the bottom of the pressure tanks 20, 21 at the bottom to introduce the working fluid P from above, and the pressure plate 2
Bellows chambers 36 and 37, which contract by supplying compressed gas from below, are inserted into the power cylinders 30 and 31 so that the pistons can reciprocate, and the pressure tank 2
0, 21, bellows chambers 36, 37, power cylinder 3
This is because the circulation conduit for the working fluid P is configured by connecting 0, 31, the pressure vessels 1, 2, the turbine 12, and the water storage tank 15.

【0023】また、上下に分割配置された上下部の圧力
タンク20A,20B、21A,21Bとすることで、
いずれか一方側で加圧に利用した作業流体Pを他方側で
再度の加圧に利用でき、しかも、上下で二重になる加圧
作用でベローズ室36,37に対する加圧力を大きくで
き、ひいては圧力容器1,2からのタービン12への作
業流体Pの供給圧を増大することで効率よくタービン1
2を駆動できるものである。
Further, the upper and lower pressure tanks 20A, 20B, 21A and 21B are arranged in a vertically divided manner,
The working fluid P used for pressurization on one side can be used for pressurization again on the other side, and the pressurizing action which is doubled up and down can increase the pressurizing force on the bellows chambers 36 and 37. By increasing the supply pressure of the working fluid P from the pressure vessels 1 and 2 to the turbine 12, the turbine 1 can be efficiently used.
2 can be driven.

【0024】更に、一方側のベローズ室36,37、圧
力容器1,2相互とを逆止弁46,47を設けた流体排
出管48,49によって直接に接続することで、圧力容
器1,2から動力シリンダー30,31に供給される圧
縮気体の流路である気体導入管38,39と作業流体P
の流路である流体排出管48,49とを別個のものとで
き、ベローズ室36,37から排出される作業流体P
と、動力シリンダー30,31に供給される圧縮気体と
は相互に干渉されずに圧力容器1,2への作業流体Pの
排出、動力シリンダー30,31への圧縮気体の供給夫
々を極めて円滑に行なわせることができ、作動を確実、
安定したものとできる。
Further, by directly connecting the bellows chambers 36, 37 on one side and the pressure vessels 1, 2 to each other by fluid discharge pipes 48, 49 provided with check valves 46, 47, the pressure vessels 1, 2 are connected. Working fluid P and the gas introduction pipes 38 and 39 which are the flow paths of the compressed gas supplied to the power cylinders 30 and 31 from the
The fluid discharge pipes 48 and 49, which are the flow paths of the above, can be separated from each other, and the working fluid P discharged from the bellows chambers 36 and 37
And the compressed gas supplied to the power cylinders 30 and 31 does not interfere with each other, and the working fluid P is discharged to the pressure vessels 1 and 2 and the compressed gas is supplied to the power cylinders 30 and 31 very smoothly. Can be performed, the operation is sure,
It can be stable.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施の一形態における概略図である。FIG. 1 is a schematic diagram of an embodiment of the present invention.

【図2】本発明の他の実施の形態における概略図であ
る。
FIG. 2 is a schematic view of another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

P…作業流体 Q…圧力タンク
天秤機構 1,2…圧力容器 3…コンプレッ
サー 4…水位計 5…圧力計 6…安全弁 7,8…電磁弁 9,10,11…導管 12…タービン 13…ノズル 14…排水管 15…貯水タンク 16,17…電
磁弁 18,19…流体供給導管 20,21…圧
力タンク 20A,21A…上部圧力タンク 20B,21B
…下部圧力タンク 22…天秤竿 23…天秤支柱 24,25…逆止弁 26,27…圧
力板 28,29…シリンダーロッド 30,31…動
力シリンダー 32,33…逆止弁 34,35…流
体導入管 36,37…ベローズ室 38,39…戻
し管 40,41…連結ロッド 42,43…逆
止弁 44,45…流体導出案内管 46,47…逆
止弁 48,49…流体排出管
P ... Working fluid Q ... Pressure tank balance mechanism 1,2 ... Pressure container 3 ... Compressor 4 ... Water level gauge 5 ... Pressure gauge 6 ... Safety valve 7,8 ... Solenoid valve 9,10,11 ... Conduit 12 ... Turbine 13 ... Nozzle 14 ... Drain pipe 15 ... Water storage tank 16, 17 ... Solenoid valve 18, 19 ... Fluid supply conduit 20, 21 ... Pressure tank 20A, 21A ... Upper pressure tank 20B, 21B
... Lower pressure tank 22 ... Balance rod 23 ... Balance column 24, 25 ... Check valve 26, 27 ... Pressure plate 28, 29 ... Cylinder rod 30, 31 ... Power cylinder 32, 33 ... Check valve 34, 35 ... Fluid introduction Pipes 36, 37 ... Bellows chambers 38, 39 ... Return pipes 40, 41 ... Connecting rods 42, 43 ... Check valves 44, 45 ... Fluid guide tubes 46, 47 ... Check valves 48, 49 ... Fluid discharge pipes

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 内部に封入された作業流体を圧縮気体に
より外部に圧送する一対の圧力容器と、該圧力容器から
供給される作業流体を介して駆動されるタービンと、該
タービンを駆動した後の作業流体を貯留するための貯水
タンクと、天秤竿の中央支点を天秤支柱上に支承させて
揺動自在となした圧力タンク天秤機構の該天秤竿の両端
に吊持されかつ貯水タンクの下方に該貯水タンクから分
岐した流体供給導管を介して作業流体が交互に導入され
る一対の圧力タンクと、該一対の圧力タンクの夫々の下
方に配置され、前記一対の圧力容器夫々に気体出入管に
より接続されている一対の密閉された動力シリンダー
と、該一対の動力シリンダーの夫々に圧力タンク天秤機
構を介してのピストン往復運動可能にして内挿されてい
て、一対の圧力タンク夫々に動力シリンダー壁を貫挿し
て連繋のシリンダーロッドを介して連結される底部の圧
力板を有し、かつ圧力タンクに流体導入管により接続さ
れた一対の袋状のベローズ室とを設けて成り、いずれか
一方のベローズ室内への圧力タンクからの作業流体の導
入によるベローズ室の拡脹、これに伴なう動力シリンダ
ー内の圧縮気体の圧力容器内への排気及び圧力容器内か
らのタービンへの作業流体の供給、また、他方の動力シ
リンダー内への圧力容器からの圧縮気体の供給及びベロ
ーズ室内からの作業流体の排出によるベローズ室の縮
小、これに伴なう圧力容器内への作業流体の供給、貯留
を交互に行なってタービンを駆動するようにしたことを
特徴とする動力発生装置。
1. A pair of pressure vessels for sending a working fluid sealed inside by a compressed gas to the outside, a turbine driven through the working fluid supplied from the pressure vessels, and after driving the turbine. A water tank for storing the working fluid of the pressure tank and a pressure tank in which the central fulcrum of the balance rod is supported on a balance support column so that the pressure tank balance mechanism is suspended at both ends of the balance rod and below the water storage tank. A pair of pressure tanks into which a working fluid is alternately introduced via a fluid supply conduit branched from the water storage tank, and a gas inlet / outlet pipe arranged below each of the pair of pressure tanks. A pair of closed power cylinders connected to each other, and a pair of pressure tanks inserted into the pair of power cylinders so that the pistons can reciprocate through the pressure tank balance mechanism. Each of them has a bottom pressure plate that is connected through a cylinder rod connected through the power cylinder wall, and a pair of bag-shaped bellows chambers connected to the pressure tank by a fluid introduction pipe. The expansion of the bellows chamber by introducing the working fluid from the pressure tank into one of the bellows chambers, the accompanying exhaustion of the compressed gas in the power cylinder to the pressure vessel, and the turbine from the pressure vessel. Of the working fluid, the compressed gas is supplied from the pressure vessel into the other power cylinder and the working fluid is discharged from the bellows chamber to reduce the size of the bellows chamber. The power generation device is characterized in that the turbine is driven by alternately supplying and storing water.
【請求項2】 圧力タンク天秤機構は、一方の圧力タン
クからの一方のベローズ室への作業流体の導入、排出
と、他方の圧力容器からの圧縮気体の他方の動力シリン
ダーへの供給、排気とを連動させ、一方の圧力板を下降
させると同時に他方の圧力板を上昇させて圧力タンクを
交互にピストン往復運動するようにしてある請求項1記
載の動力発生装置。
2. The pressure tank balance mechanism comprises: introducing and discharging a working fluid from one pressure tank to one bellows chamber; and supplying and discharging a compressed gas from the other pressure container to the other power cylinder. 2. The power generator according to claim 1, wherein the pressure tanks are interlocked with each other to lower one pressure plate and simultaneously raise the other pressure plate to alternately reciprocate the piston in the pressure tank.
【請求項3】 一対の圧力タンク夫々は上下部に分割配
置され、一方の上部圧力タンクは他方の下部圧力タンク
に逆止弁を設けた流体導出案内管により接続しておき、
一方の上部圧力タンクに作業流体が供給されるときには
同じく一方の下部圧力タンクに他方の上部圧力タンクか
らも作業流体が供給されるようにしてある請求項1また
は2記載の動力発生装置。
3. A pair of pressure tanks are respectively divided into upper and lower parts, one upper pressure tank is connected to the other lower pressure tank by a fluid outlet guide pipe provided with a check valve,
3. The power generator according to claim 1, wherein when the working fluid is supplied to one upper pressure tank, the working fluid is also supplied to one lower pressure tank from the other upper pressure tank.
【請求項4】 一方のベローズ室と同じく一方の圧力容
器とは動力シリンダー壁を貫挿した逆止弁を設けた流体
排出管によって直接に接続してある請求項1乃至3のい
ずれか記載の動力発生装置。
4. The bellows chamber and the one pressure vessel are directly connected to each other by a fluid discharge pipe provided with a check valve penetrating the wall of the power cylinder. Power generator.
JP2458596A 1995-02-03 1996-01-18 Power generation device Pending JPH08270542A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2458596A JPH08270542A (en) 1995-02-03 1996-01-18 Power generation device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP7-39175 1995-02-03
JP3917595 1995-02-03
JP2458596A JPH08270542A (en) 1995-02-03 1996-01-18 Power generation device

Publications (1)

Publication Number Publication Date
JPH08270542A true JPH08270542A (en) 1996-10-15

Family

ID=26362130

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2458596A Pending JPH08270542A (en) 1995-02-03 1996-01-18 Power generation device

Country Status (1)

Country Link
JP (1) JPH08270542A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1293302C (en) * 2003-11-13 2007-01-03 张开明 Pneumatic machine
JP2008230836A (en) * 2007-03-23 2008-10-02 Toyota Motor Corp Article moving device
JP2008301606A (en) * 2007-05-30 2008-12-11 Nippon Telegr & Teleph Corp <Ntt> Generating set
CN100449143C (en) * 2005-08-02 2009-01-07 姜国芳 Hydraulic control gas energy power machine
WO2010013967A3 (en) * 2008-08-01 2010-06-10 Kim Ok-Ju Power generation apparatus
ES2344334A1 (en) * 2010-05-25 2010-08-24 Juan Lizarralde Elberdin Generator of energy through the oscillation and pressing of a fluid (Machine-translation by Google Translate, not legally binding)
CN102112740A (en) * 2008-08-01 2011-06-29 金沃柱 Power generation apparatus
WO2013155083A1 (en) * 2012-04-10 2013-10-17 Pingitore Frank C System and method for generating electricity
CN106968902A (en) * 2017-03-28 2017-07-21 武汉商学院 Piston type solar steam TRT

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1293302C (en) * 2003-11-13 2007-01-03 张开明 Pneumatic machine
CN100449143C (en) * 2005-08-02 2009-01-07 姜国芳 Hydraulic control gas energy power machine
JP2008230836A (en) * 2007-03-23 2008-10-02 Toyota Motor Corp Article moving device
JP2008301606A (en) * 2007-05-30 2008-12-11 Nippon Telegr & Teleph Corp <Ntt> Generating set
WO2010013967A3 (en) * 2008-08-01 2010-06-10 Kim Ok-Ju Power generation apparatus
CN102112740A (en) * 2008-08-01 2011-06-29 金沃柱 Power generation apparatus
ES2344334A1 (en) * 2010-05-25 2010-08-24 Juan Lizarralde Elberdin Generator of energy through the oscillation and pressing of a fluid (Machine-translation by Google Translate, not legally binding)
WO2013155083A1 (en) * 2012-04-10 2013-10-17 Pingitore Frank C System and method for generating electricity
CN106968902A (en) * 2017-03-28 2017-07-21 武汉商学院 Piston type solar steam TRT

Similar Documents

Publication Publication Date Title
US8495872B2 (en) Energy storage and recovery utilizing low-pressure thermal conditioning for heat exchange with high-pressure gas
KR101156726B1 (en) Engine with an active mono-energy and/or bi-energy chamber with compressed air and/or additional energy and thermodynamic cycle thereof
US20130091836A1 (en) Dead-volume management in compressed-gas energy storage and recovery systems
US20120006013A1 (en) High-efficiency energy-conversion based on fluid expansion and compression
US20120047884A1 (en) High-efficiency energy-conversion based on fluid expansion and compression
JP2005504927A (en) High pressure pump system for supplying cryogenic fluid from storage tanks
US20120036851A1 (en) Fluid circulation in energy storage and recovery systems
JP2001502029A (en) Fluid transfer device
JPH08270542A (en) Power generation device
JP2009544881A (en) Cryogenic engine with ambient temperature thermal energy and constant pressure
JP2018165511A (en) Working fluid supply control device
CN105201926B (en) The temp liquid piston device of gas isothermal scaling is realized based on storage gas unit
AU2016303395A1 (en) Cryogenic pump for liquefied natural gas
JP4466129B2 (en) Liquid pump and Rankine cycle equipment
US20240003271A1 (en) Plant for producing mechanical energy from a carrier fluid under cryogenic conditions
KR20190077102A (en) High dynamic density range thermal cycle engine
US3765799A (en) Thermal-gravity fluid pumping method and apparatus
MXPA04000011A (en) Assembly of gas expansion elements and a method for operating said assembly.
CN1873223A (en) Heat engine of energy conversion between liquid and gas in low termperature
US11499501B2 (en) Stirling engine design and assembly
CN114810258B (en) Compressed air energy storage system and heat pump electricity storage coupling system
CN115773164B (en) Isothermal compressed air synergistic energy storage system and method
CN104454015B (en) Isothermal expansion power system by hydraulic pressure
US11081904B1 (en) Methods, systems and installations for the compression, expansion and/or storage of a gas
JPH01262376A (en) Method and device for carrying liquid, which can be boiled