JPH08270435A - Exhaust emission control device for diesel engine - Google Patents

Exhaust emission control device for diesel engine

Info

Publication number
JPH08270435A
JPH08270435A JP7118995A JP7118995A JPH08270435A JP H08270435 A JPH08270435 A JP H08270435A JP 7118995 A JP7118995 A JP 7118995A JP 7118995 A JP7118995 A JP 7118995A JP H08270435 A JPH08270435 A JP H08270435A
Authority
JP
Japan
Prior art keywords
reducing agent
atmospheric pressure
engine
engine speed
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7118995A
Other languages
Japanese (ja)
Inventor
Yasuo Asaumi
靖男 浅海
Masanobu Hirata
公信 平田
Takayuki Tsuchiya
孝幸 土屋
Hisashi Akagawa
久 赤川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
UD Trucks Corp
Original Assignee
UD Trucks Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by UD Trucks Corp filed Critical UD Trucks Corp
Priority to JP7118995A priority Critical patent/JPH08270435A/en
Publication of JPH08270435A publication Critical patent/JPH08270435A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B3/00Engines characterised by air compression and subsequent fuel addition
    • F02B3/06Engines characterised by air compression and subsequent fuel addition with compression ignition

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

PURPOSE: To optimize the addition quantity of a reducing agent according to the change of the atmospheric pressure by computing the addition quantity of the reducing agent (light oil), added in an exhaust passage upstream from a catalyst for the efficient reduction of NOX, on the basis of engine load, engine speed and the atmospheric pressure. CONSTITUTION: During the operation of an engine, engine load, engine speed and catalyst temperature are read from a load sensor 7, an engine speed sensor 8 and a temperature sensor 9, and light oil serving as a reducing agent is not added until the catalyst temperature rises to the activation temperature of a catalyst. In the case of judging a reducing agent adding area from the engine speed and load, a reducing agent addition quantity table corresponding to the atmospheric pressure is selected, and the reducing agent addition quantity is determined on the basis of the engine speed and load. According to the determined addition quantity, the reducing agent is added by an adding device 6. The reducing agent addition quantity is thereby optimized, so that the emission of unreacted reducing agent is reduced, and fuel consumption becomes desirable.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ディーゼルエンジンの
排気浄化装置に関し、特に、排気中の窒素酸化物を除去
する触媒の還元剤添加技術に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an exhaust emission control device for a diesel engine, and more particularly to a technique for adding a reducing agent to a catalyst for removing nitrogen oxides in exhaust gas.

【0002】[0002]

【従来の技術】エンジンの排気中に含まれる窒素酸化物
(以下、NOxと記す)濃度を低下させる有効な手段と
して、排気還流(EGR)を行うことが公知であるが、
他の手段として、エンジンの排気通路に触媒を介装し、
この触媒にてNOxを低減する方法も考えられる。
Exhaust gas recirculation (EGR) is known as an effective means for reducing the concentration of nitrogen oxides (hereinafter referred to as NOx) contained in the exhaust gas of an engine.
As another means, a catalyst is provided in the exhaust passage of the engine,
A method of reducing NOx with this catalyst is also conceivable.

【0003】この場合、NOxの効率的な還元を図るた
め、ディーゼルエンジンにおいて、触媒の上流側の排気
通路に還元剤としての軽油を添加する装置を設けたもの
が知られている(実開平5−87218公報参照)。
In this case, in order to efficiently reduce NOx, it is known that a diesel engine is provided with a device for adding light oil as a reducing agent to the exhaust passage on the upstream side of the catalyst (actual exploitation 5). -87218).

【0004】[0004]

【発明が解決しようとする課題】ところで、従来のディ
ーゼルエンジンの還元剤添加装置においては、還元剤と
しての軽油の添加量を一つのテーブル、例えば、エンジ
ン回転数とエンジン負荷に基づく還元剤添加量テーブル
により決定していた。しかし、前記テーブルでは、大気
圧の変化を考慮していないため、例えば、車両が山岳地
帯等の高地を走行しているときには、大気圧が下がり、
図5に示す如く排気ガス重量が減少し、NOx浄化率は
向上するが、排気ガスの減少に伴い必要な還元剤の添加
量が減少するため、還元剤添加量が過剰となり未反応の
還元剤(軽油)が排出されてしまうという問題点があ
る。また、適正量以上の還元剤(軽油)を添加するた
め、燃費悪化の原因ともなる。
By the way, in the conventional reducing agent addition device for a diesel engine, the addition amount of light oil as a reducing agent is stored in one table, for example, the reducing agent addition amount based on the engine speed and the engine load. It was decided by the table. However, in the table, since the change in atmospheric pressure is not taken into consideration, for example, when the vehicle is traveling in a highland such as a mountain area, the atmospheric pressure decreases,
As shown in FIG. 5, the weight of the exhaust gas is reduced and the NOx purification rate is improved, but the required amount of the reducing agent is reduced as the exhaust gas is reduced. There is a problem that (light oil) is discharged. Further, since a proper amount or more of the reducing agent (light oil) is added, it causes deterioration of fuel efficiency.

【0005】そこで、本発明は以上のような従来の問題
点に鑑み、触媒に添加する還元剤の添加量を適正化し
て、未反応の還元剤の放出を軽減し、併せて、還元剤と
して軽油を使用した場合の燃費の悪化を改善することを
目的とする。
In view of the conventional problems as described above, the present invention optimizes the amount of reducing agent added to the catalyst to reduce the release of unreacted reducing agent, and at the same time, as a reducing agent. The purpose is to improve the deterioration of fuel efficiency when using light oil.

【0006】[0006]

【課題を解決するための手段】このため、請求項1記載
の発明は、エンジンの排気中に含まれる窒素酸化物を排
気通路に介装された触媒で除去する排気浄化装置におい
て、前記触媒の上流側に還元剤を添加する還元剤添加手
段と、エンジン負荷を検出するエンジン負荷検出手段
と、エンジン回転数を検出するエンジン回転数検出手段
と、大気圧を検出する大気圧検出手段と、検出されたエ
ンジン負荷とエンジン回転数と大気圧に基づいて、還元
剤添加量を演算する還元剤添加量演算手段と、前記還元
剤添加量演算手段により演算された還元剤添加量となる
ように前記還元剤添加手段を制御する還元剤添加制御手
段と、を含んで構成されたディーゼルエンジンの排気浄
化装置とした。
Therefore, the invention according to claim 1 is, in an exhaust emission control device for removing nitrogen oxides contained in exhaust gas of an engine by a catalyst interposed in an exhaust passage, the catalyst of the catalyst. Reducing agent adding means for adding a reducing agent upstream, engine load detecting means for detecting engine load, engine speed detecting means for detecting engine speed, atmospheric pressure detecting means for detecting atmospheric pressure, and detecting The reducing agent addition amount calculating means for calculating the reducing agent addition amount based on the engine load, the engine speed and the atmospheric pressure, and the reducing agent addition amount calculated by the reducing agent addition amount calculating means. The exhaust gas purification device for a diesel engine is configured to include a reducing agent addition control means for controlling the reducing agent addition means.

【0007】[0007]

【作用】請求項1記載の発明においては、触媒に添加す
る還元剤の添加量が適正化され、未反応の還元剤の放出
が軽減でき、併せて、還元剤としての軽油を使用した場
合の燃費の悪化を改善することができる。
According to the first aspect of the present invention, the amount of the reducing agent added to the catalyst is optimized, the release of unreacted reducing agent can be reduced, and, in addition, when diesel oil is used as the reducing agent. It is possible to improve the deterioration of fuel efficiency.

【0008】[0008]

【実施例】以下、添付された図面を参照して本発明を詳
述する。図1は、本発明のディーゼルエンジンの排気浄
化装置の実施例の全体システム構成を示している。ディ
ーゼルエンジン1の排気管2には、NOx浄化用の触媒
3が介装されており、当該触媒3の上流側の排気管2に
は、還元剤としての軽油を添加するためのノズル4が配
設されている。このノズル4は、軽油タンク5と連通さ
れた軽油添加装置6と接続されている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in detail below with reference to the accompanying drawings. FIG. 1 shows the overall system configuration of an embodiment of an exhaust emission control device for a diesel engine of the present invention. The exhaust pipe 2 of the diesel engine 1 is provided with a catalyst 3 for purifying NOx, and the exhaust pipe 2 upstream of the catalyst 3 is provided with a nozzle 4 for adding light oil as a reducing agent. It is set up. The nozzle 4 is connected to a light oil addition device 6 that communicates with a light oil tank 5.

【0009】一方、ディーゼルエンジン1には、エンジ
ン負荷(例えば、燃料噴射ポンプのコントロールラック
位置等)を検出するエンジン負荷検出手段としての負荷
センサ7と、エンジン回転数を検出するエンジン回転数
検出手段としての回転数センサ8と、が設けられ、触媒
3の上流側には、触媒温度として触媒入口温度を検出す
る触媒温度検出手段としての温度センサ9が設けられて
いる。なお、触媒3の温度を直接検出する温度センサを
設けてもよい。また、ディーゼルエンジン1の周辺に
は、大気圧を検出する大気圧検出手段としての大気圧セ
ンサ10が設けられている。
On the other hand, the diesel engine 1 has a load sensor 7 as an engine load detecting means for detecting an engine load (for example, a control rack position of a fuel injection pump) and an engine speed detecting means for detecting an engine speed. And a temperature sensor 9 as catalyst temperature detecting means for detecting the catalyst inlet temperature as the catalyst temperature is provided on the upstream side of the catalyst 3. A temperature sensor that directly detects the temperature of the catalyst 3 may be provided. Further, an atmospheric pressure sensor 10 as an atmospheric pressure detecting means for detecting the atmospheric pressure is provided around the diesel engine 1.

【0010】前記各センサからの出力は、還元剤として
の軽油の添加制御を行う制御装置11に入力され、該制
御装置11は、検出された各センサからの信号に基づい
て、還元剤添加手段としての軽油添加装置6の制御を行
っている。図2は、本発明に係る還元剤添加制御の制御
ブロック図を示している。制御装置11は、各種検出手
段としてのセンサからの信号を入力する入力手段11a
と、各種センサからの信号に基づいて、還元剤としての
軽油添加量を演算する還元剤添加量演算手段11b及び
還元剤としての軽油の添加制御を行う還元剤添加制御手
段11cと、還元剤添加制御手段11cの信号を出力す
る出力手段11d、から構成されている。
Outputs from the respective sensors are input to a control device 11 for controlling addition of light oil as a reducing agent, and the control device 11 based on the detected signals from the respective sensors, the reducing agent adding means. The light oil adding device 6 is controlled. FIG. 2 shows a control block diagram of the reducing agent addition control according to the present invention. The control device 11 has input means 11a for inputting signals from sensors as various detection means.
And a reducing agent addition amount calculation means 11b for calculating the addition amount of light oil as a reducing agent based on signals from various sensors, a reducing agent addition control means 11c for controlling addition of light oil as a reducing agent, and a reducing agent addition The output means 11d outputs the signal of the control means 11c.

【0011】また、負荷センサ7と、回転数センサ8
と、大気圧センサ10の出力は、入力手段11aを介し
て還元剤の添加量を演算する還元剤添加量演算手段11
bに入力され、当該還元剤添加量演算手段11bで演算
された結果得られた還元剤添加量は、還元剤としての軽
油の添加制御を行う還元剤添加制御手段11cに入力さ
れる。これに加えて、還元剤添加制御手段11cには、
負荷センサ7と、回転数センサ8と、温度センサ9の出
力が、入力手段11aを介して入力される。一方、還元
剤添加制御手段11cの出力は、出力手段11dを介し
て軽油添加装置6に入力される。
A load sensor 7 and a rotation speed sensor 8 are also provided.
And the output of the atmospheric pressure sensor 10 is the reducing agent addition amount calculation means 11 for calculating the addition amount of the reducing agent via the input means 11a.
The reducing agent addition amount obtained as a result of being input to b and being calculated by the reducing agent addition amount calculating means 11b is input to the reducing agent addition control means 11c which controls addition of light oil as a reducing agent. In addition to this, the reducing agent addition control means 11c includes
The outputs of the load sensor 7, the rotation speed sensor 8 and the temperature sensor 9 are input via the input means 11a. On the other hand, the output of the reducing agent addition control means 11c is input to the light oil addition device 6 via the output means 11d.

【0012】図3に示すフローチャートは、制御装置1
1において実行される還元剤添加制御の内容を示す。ス
テップ1(図では、S1と略記する。以下同様)では、
負荷センサ7、回転数センサ8及び温度センサ9よりエ
ンジン負荷Q、エンジン回転数N及び触媒温度Tを読み
込む。
The flowchart shown in FIG.
The content of the reducing agent addition control executed in 1 will be described. In step 1 (abbreviated as S1 in the figure, the same applies hereinafter),
The engine load Q, the engine speed N, and the catalyst temperature T are read from the load sensor 7, the rotation speed sensor 8, and the temperature sensor 9.

【0013】ステップ2では、触媒温度Tが触媒が活性
化する温度に上昇するまで還元剤としての軽油の添加を
行わないようにすると共に、エンジン回転数N及びエン
ジン負荷Qにより還元剤(軽油)添加領域か否か判断
し、添加領域であればステップ3へ、添加領域でないと
きはステップ7へと進む。ステップ3では、大気圧セン
サ10より大気圧Pを読み込む。
In step 2, addition of light oil as a reducing agent is stopped until the catalyst temperature T rises to a temperature at which the catalyst is activated, and the reducing agent (light oil) is changed by the engine speed N and the engine load Q. It is determined whether or not it is the addition region. If it is the addition region, the process proceeds to step 3, and if it is not the addition region, the process proceeds to step 7. At step 3, the atmospheric pressure P is read from the atmospheric pressure sensor 10.

【0014】ステップ4では、大気圧Pに応じた還元剤
(軽油)添加量テーブルを選択し、ステップ5におい
て、エンジン回転数N及びエンジン負荷Qに基づいて、
ステップ4で選択した還元剤(軽油)添加量テーブルよ
り還元剤(軽油)添加量を決定する。ここで、還元剤
(軽油)添加テーブルとは、図4に示す如く、ある大気
圧の範囲(例えば、P2 ≦P<P1 )におけるエンジン
回転数Nとエンジン負荷Qの関係により決定される還元
剤(軽油)添加量Aを含んだ配列(テーブル)のことで
ある。すなわち、ステップ4では、大気圧Pによりこの
中からある大気圧範囲のテーブル(例えば、図4(b)
の内の一部、P2 ≦P<P1 におけるテーブル)を選択
し、ステップ5では、選択したテーブルから実際に添加
する還元剤の添加量(例えば、A2 22 )を決定する。上
述のステップ4〜ステップ5の処理が、本発明の請求項
1記載の還元剤添加量演算手段に相当する。
In step 4, a reducing agent (light oil) addition amount table corresponding to the atmospheric pressure P is selected, and in step 5, based on the engine speed N and the engine load Q,
The reducing agent (light oil) addition amount is determined from the reducing agent (light oil) addition amount table selected in step 4. Here, the reducing agent (light oil) addition table is determined by the relationship between the engine speed N and the engine load Q in a certain atmospheric pressure range (for example, P 2 ≦ P <P 1 ) as shown in FIG. It is an array (table) including the reducing agent (light oil) addition amount A. That is, in step 4, a table of an atmospheric pressure range from the atmospheric pressure P is set according to the atmospheric pressure P (for example, FIG. 4B).
(A table in which P 2 ≦ P <P 1 ) is selected, and in step 5, the amount of reducing agent to be actually added (for example, A 2 22 ) is determined from the selected table. The processes of steps 4 to 5 described above correspond to the reducing agent addition amount calculation means according to claim 1 of the present invention.

【0015】なお、ステップ4〜ステップ5での処理で
は、還元剤添加量を決定するに際し、還元剤添加量テー
ブルを使用したが、これに代えて、算術演算によって還
元剤添加量を決定してもよい。ステップ6では、決定さ
れた還元剤(軽油)の添加量に応じ、添加装置6により
還元剤(軽油)を添加した後、ステップ1へと戻る。
In the processing in steps 4 to 5, the reducing agent addition amount table is used in determining the reducing agent addition amount. Instead of this, the reducing agent addition amount is determined by arithmetic operation. Good. In step 6, the reducing agent (light oil) is added by the adding device 6 according to the determined addition amount of the reducing agent (light oil), and then the process returns to step 1.

【0016】一方、ステップ2において還元剤(軽油)
添加領域でないと判断された場合は、ステップ7で還元
剤(軽油)の添加を停止し、ステップ1へと戻る。以上
のような制御を行えば、大気圧の変化を考慮した還元剤
(軽油)の添加量を決定できる。また、図5は、従来技
術及び本発明の大気圧変化に対する各種の排気特性を示
している。この図を参照しながら本発明の実施例の効果
を説明する。
On the other hand, in step 2, a reducing agent (light oil)
If it is determined that it is not in the addition region, the addition of the reducing agent (light oil) is stopped in step 7, and the process returns to step 1. By performing the control as described above, the addition amount of the reducing agent (light oil) can be determined in consideration of the change in atmospheric pressure. Further, FIG. 5 shows various exhaust characteristics with respect to changes in atmospheric pressure according to the related art and the present invention. The effects of the embodiment of the present invention will be described with reference to this drawing.

【0017】排気ガス重量は、大気圧に比例するので、
例えば、車両が山岳地帯等の高地を走行し大気圧が低下
すると、排気ガス重量が減少する。適正な還元剤添加量
は、排気ガス重量と比例するため、大気圧の低下に伴い
適正な還元剤添加量も減少する。しかし、従来技術で
は、還元剤添加量はエンジン回転数とエンジン負荷とに
より一義的に決まり大気圧とは無関係であったため、大
気圧が低下した場合には、他の運転条件が同一であれば
還元剤添加量は一定であるため、過剰となってしまう。
すると、還元剤添加量と比例関係にあるNOx浄化率は
必要以上に向上するが、過剰な還元剤を添加するため、
反応しきれない還元剤が増加する。すなわち、未反応の
還元剤の排出が増加することになる。
Since the exhaust gas weight is proportional to the atmospheric pressure,
For example, when a vehicle travels in a highland such as a mountainous area and the atmospheric pressure drops, the weight of exhaust gas decreases. Since the appropriate amount of reducing agent added is proportional to the weight of exhaust gas, the amount of appropriate reducing agent also decreases as the atmospheric pressure decreases. However, in the conventional technique, the reducing agent addition amount is uniquely determined by the engine speed and the engine load and has nothing to do with the atmospheric pressure. Therefore, when the atmospheric pressure decreases, if other operating conditions are the same. Since the amount of reducing agent added is constant, it becomes excessive.
Then, the NOx purification rate, which is proportional to the amount of reducing agent added, is improved more than necessary, but since excessive reducing agent is added,
The amount of reducing agent that cannot react increases. That is, the emission of unreacted reducing agent increases.

【0018】一方、本発明の実施例では、還元剤添加量
を決定するに際し、エンジン回転数とエンジン負荷に加
え大気圧を考慮する。そのため、還元剤添加量は、大気
圧変化に応じたものとすることができ、大気圧が低下し
た場合には、還元剤添加量は減少することになる。すな
わち、大気圧変化に応じた還元剤添加量の制御を行うこ
とができ、NOx浄化率を一定に保ったまま、未反応還
元剤の排出を減少することができるようになる。
On the other hand, in the embodiment of the present invention, the atmospheric pressure is considered in addition to the engine speed and the engine load when determining the reducing agent addition amount. Therefore, the reducing agent addition amount can be made to correspond to the atmospheric pressure change, and when the atmospheric pressure decreases, the reducing agent addition amount decreases. That is, the amount of reducing agent added can be controlled according to the change in atmospheric pressure, and the amount of unreacted reducing agent can be reduced while keeping the NOx purification rate constant.

【0019】[0019]

【発明の効果】以上説明したように、請求項1記載の発
明によれば、還元剤の添加量をエンジン負荷とエンジン
回転数と大気圧により演算するので、大気圧の変化に応
じた還元剤の添加量が適正化され、過剰な還元剤の添加
による未反応の添加剤の放出が減少し、併せて、還元剤
としての軽油を使用した場合の燃費の悪化を改善するこ
とができる。
As described above, according to the first aspect of the present invention, since the addition amount of the reducing agent is calculated by the engine load, the engine speed and the atmospheric pressure, the reducing agent according to the change of the atmospheric pressure. The addition amount of is reduced, the release of unreacted additive due to the addition of excessive reducing agent is reduced, and at the same time, the deterioration of fuel consumption when using light oil as the reducing agent can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の実施例を示すシステム構成図FIG. 1 is a system configuration diagram showing an embodiment of the present invention.

【図2】 同上における制御ブロック図FIG. 2 is a control block diagram of the same as above.

【図3】 同上における制御内容を示すフローチャートFIG. 3 is a flowchart showing the control contents of the above.

【図4】 同上における還元剤添加量テーブルの一例FIG. 4 is an example of a reducing agent addition amount table in the same as above.

【図5】 従来及び本発明の大気圧変化に対する各種の
排気特性を示す図
FIG. 5 is a diagram showing various exhaust characteristics with respect to changes in atmospheric pressure according to the related art and the present invention.

【符号の説明】[Explanation of symbols]

3 触媒 6 還元剤添加装置 7 負荷センサ 8 回転数センサ 10 大気圧センサ 11 制御装置 3 Catalyst 6 Reducing Agent Addition Device 7 Load Sensor 8 Rotation Speed Sensor 10 Atmospheric Pressure Sensor 11 Control Device

───────────────────────────────────────────────────── フロントページの続き (72)発明者 赤川 久 埼玉県上尾市大字壱丁目1番地 日産ディ ーゼル工業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Hisashi Akagawa 1-chome, Ichome, Ageo City, Saitama Prefecture Nissan Diesel Industry Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】エンジンの排気中に含まれる窒素酸化物を
排気通路に介装された触媒で除去する排気浄化装置にお
いて、前記触媒の上流側に還元剤を添加する還元剤添加
手段と、エンジン負荷を検出するエンジン負荷検出手段
と、エンジン回転数を検出するエンジン回転数検出手段
と、大気圧を検出する大気圧検出手段と、検出されたエ
ンジン負荷とエンジン回転数と大気圧に基づいて、還元
剤添加量を演算する還元剤添加量演算手段と、前記還元
剤添加量演算手段により演算された還元剤添加量となる
ように前記還元剤添加手段を制御する還元剤添加制御手
段と、を含んで構成されたことを特徴とするディーゼル
エンジンの排気浄化装置。
1. An exhaust emission control device for removing nitrogen oxides contained in the exhaust gas of an engine with a catalyst interposed in an exhaust passage, and a reducing agent addition means for adding a reducing agent upstream of the catalyst, and an engine. Based on the engine load detection means for detecting the load, the engine speed detection means for detecting the engine speed, the atmospheric pressure detection means for detecting the atmospheric pressure, the detected engine load, the engine speed and the atmospheric pressure, Reducing agent addition amount calculation means for calculating the reducing agent addition amount, and reducing agent addition control means for controlling the reducing agent addition means so that the reducing agent addition amount is calculated by the reducing agent addition amount calculation means. An exhaust emission control device for a diesel engine, which is characterized by including the above.
JP7118995A 1995-03-29 1995-03-29 Exhaust emission control device for diesel engine Pending JPH08270435A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7118995A JPH08270435A (en) 1995-03-29 1995-03-29 Exhaust emission control device for diesel engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7118995A JPH08270435A (en) 1995-03-29 1995-03-29 Exhaust emission control device for diesel engine

Publications (1)

Publication Number Publication Date
JPH08270435A true JPH08270435A (en) 1996-10-15

Family

ID=13453475

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7118995A Pending JPH08270435A (en) 1995-03-29 1995-03-29 Exhaust emission control device for diesel engine

Country Status (1)

Country Link
JP (1) JPH08270435A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0919702A3 (en) * 1997-11-07 2001-08-16 Siemens Aktiengesellschaft Process for reducing the NOx content of Diesel engine exhaust gas
WO2007026901A1 (en) 2005-09-02 2007-03-08 Toyota Jidosha Kabushiki Kaisha Exhaust gas purification device
US8181447B2 (en) 2005-09-02 2012-05-22 Toyota Jidosha Kabushiki Kaisha Exhaust gas purification device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0919702A3 (en) * 1997-11-07 2001-08-16 Siemens Aktiengesellschaft Process for reducing the NOx content of Diesel engine exhaust gas
WO2007026901A1 (en) 2005-09-02 2007-03-08 Toyota Jidosha Kabushiki Kaisha Exhaust gas purification device
US8181447B2 (en) 2005-09-02 2012-05-22 Toyota Jidosha Kabushiki Kaisha Exhaust gas purification device

Similar Documents

Publication Publication Date Title
EP0822323B1 (en) An exhaust emission purification apparatus and method for an internal combustion engine
EP1247968B1 (en) Control apparatus and method for vehicle having internal combustion engine and continuously variable transmission, and control apparatus and method for internal combustion engine
JP3577728B2 (en) Air-fuel ratio control device for internal combustion engine
JP3076417B2 (en) Engine exhaust purification device
US6865885B2 (en) Exhaust gas purifying method and apparatus for internal combustion engine
JP3852788B2 (en) Diesel engine NOx catalyst deterioration detection device and its deterioration detection method
US5311737A (en) Exhaust purification apparatus for an engine
JP2007162603A (en) Exhaust emission control system of internal combustion engine
JP2692311B2 (en) Exhaust gas purification device for internal combustion engine
US20110271663A1 (en) Exhaust purifying device for internal combustion engines
WO2007138454A1 (en) Exhaust purification device and method of internal combustion engine
US5501074A (en) Exhaust gas purifying system
JPH08270435A (en) Exhaust emission control device for diesel engine
JPH08260947A (en) Emission control device of diesel engine
JPH094437A (en) Nitrogen oxide cleaning device of internal combustion engine
JP7262705B2 (en) engine exhaust purification device
JP2884798B2 (en) Exhaust gas purification device for internal combustion engine
JP2822731B2 (en) Exhaust gas purification device for internal combustion engine
JP3620680B2 (en) Exhaust gas purification device
JPH11324653A (en) Exhaust emission control device for internal combustion engine
JPH1162559A (en) Exhaust emission control device of internal combustion engine
JP3484759B2 (en) Diesel engine exhaust purification system
JP2589592Y2 (en) Diesel engine exhaust purification system
KR100335899B1 (en) Method for catalyst overheating protection of vehicle
JP2639157B2 (en) Exhaust gas purification device for internal combustion engine