JPH08269585A - Method for separating and recovering platinum family element and technetium - Google Patents

Method for separating and recovering platinum family element and technetium

Info

Publication number
JPH08269585A
JPH08269585A JP6986495A JP6986495A JPH08269585A JP H08269585 A JPH08269585 A JP H08269585A JP 6986495 A JP6986495 A JP 6986495A JP 6986495 A JP6986495 A JP 6986495A JP H08269585 A JPH08269585 A JP H08269585A
Authority
JP
Japan
Prior art keywords
exchange resin
technetium
nitric acid
anion exchange
palladium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6986495A
Other languages
Japanese (ja)
Other versions
JP3366485B2 (en
Inventor
Etsushiyuu I
悦周 韋
Mikiro Kumagai
幹郎 熊谷
Yoichi Takashima
洋一 高島
Kunihiko Takeda
邦彦 武田
Kazuhiro Suzuki
一弘 鈴木
Takashi Nanba
隆司 難波
Masami Aso
雅美 麻生
Yasue Hori
保惠 堀
Shinobu Oe
忍 大江
Akira Maekawa
晃 前川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SANGYO SOUZOU KENKYUSHO
Kansai Electric Power Co Inc
Tokyo Electric Power Company Holdings Inc
Original Assignee
SANGYO SOUZOU KENKYUSHO
Kansai Electric Power Co Inc
Tokyo Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SANGYO SOUZOU KENKYUSHO, Kansai Electric Power Co Inc, Tokyo Electric Power Co Inc filed Critical SANGYO SOUZOU KENKYUSHO
Priority to JP06986495A priority Critical patent/JP3366485B2/en
Publication of JPH08269585A publication Critical patent/JPH08269585A/en
Application granted granted Critical
Publication of JP3366485B2 publication Critical patent/JP3366485B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

PURPOSE: To obtain a method for separating and recovering platinum family elements and technetium with a high purity at a high yield from the nitric acid soln. of spent unclear fuel or the waste liquids generated from reprocessing plants. CONSTITUTION: The nitric acid soln. of spent nuclear fuel or a waste liquid generated from the reprocessing plant is brought into contact with anion exchange resin to selectively adsorb the platinum family elements, such as palladium and ruthenium, and technetium in the solns. The anion exchange resin is an anion exchange resin consisting of high-molecular polymers as base bodies and having heterocyclic groups contg. nitrogen atoms as functional groups or a weakly basic anion exchange resin having primary to secondary amine groups as functional groups. The ion exchange resin after the adsorption is successively brought into contact with a dilute nitric acid soln., aq. soln. contg. thiourea or ammonia and concd. nitric acid soln., thereby, the ruthenium, palladium and technetium adsorbed on the ion exchange regions are respectively selectively eluted and recovered.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、使用済み核燃料の硝
酸溶解液及び再処理工場で発生する廃液からの白金族元
素及びテクネチウムの分離回収方法に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for separating and recovering platinum group elements and technetium from a nitric acid solution of spent nuclear fuel and a waste solution generated at a reprocessing plant.

【0002】[0002]

【従来の技術】使用済み核燃料には、ウランやプルトニ
ウム等の核燃料物質のほかに、白金族元素やテクネチウ
ム等の有用な核分裂生成物が相当量含まれている。現在
工業的に行われているピューレクス法と呼ばれる再処理
プロセスでは、使用済み燃料を硝酸で溶解した後、溶媒
抽出法によりウラン、プルトニウムを抽出分離して再利
用している。白金族元素やテクネチウムは他の多種な核
分裂生成物と共に抽出残液に残り、放射性廃液として処
理される。この廃液は、硝酸回収工程や蒸発濃縮工程を
経て高レベル廃液となり、最終的にはガラス固化体の形
で地層深部に貯蔵され処分される計画が進められてい
る。
Spent nuclear fuel contains, in addition to nuclear fuel materials such as uranium and plutonium, considerable amounts of useful fission products such as platinum group elements and technetium. In the reprocessing process currently called industrially called the Purex method, spent fuel is dissolved in nitric acid, and then uranium and plutonium are extracted and separated by a solvent extraction method for reuse. Platinum group elements and technetium remain in the extraction residual liquid together with various other fission products, and are treated as radioactive waste liquid. This waste liquid becomes a high-level waste liquid through a nitric acid recovery process and an evaporative concentration process, and is finally planned to be stored and disposed in the deep strata in the form of a vitrified body.

【0003】上記再処理プロセスにおいて白金族元素及
びテクネチウム等の有価金属元素はいずれの工程でも分
離回収されていない。そのため、溶媒抽出工程では主と
して白金族元素のコロイド状析出物からなるクラッドと
呼ばれる固体微粒子が析出する。このようなクラッドは
水相と有機溶媒相の界面に形成され蓄積されていくた
め、ウランとプルトニウムの抽出を妨害し、分離性能や
核分裂生成物の除染性能を低下させる大きな原因となっ
ている。
In the above reprocessing process, platinum group elements and valuable metal elements such as technetium are not separated and recovered in any step. Therefore, in the solvent extraction step, solid fine particles called a clad mainly composed of colloidal deposits of platinum group elements are deposited. Since such a clad is formed and accumulated at the interface between the water phase and the organic solvent phase, it interferes with the extraction of uranium and plutonium, and is a major cause of deterioration in separation performance and decontamination performance of fission products. .

【0004】また、高レベル廃液のガラス固化工程で
は、揮発しやすい放射性のルテニウム酸化物が生成され
るため、高温処理時に揮発拡散する恐れがあり、これを
解決するため、高価で複雑なルテニウム除去設備が必要
とされる。
Further, in the vitrification step of the high-level liquid waste, radioactive ruthenium oxide which is easily volatilized is generated, so that there is a risk of volatilization and diffusion during high-temperature processing. To solve this, expensive and complicated ruthenium removal is performed. Equipment is required.

【0005】なお、高レベル廃液中には超長半減期の強
い放射性核種である99Tc(テクネチウム)が含まれて
おり、廃液の処理にあたって、例えばガラス固化体とし
て地層処分する場合、長期にわたる環境への放射能の影
響を与える恐れがあるとされている。
The high-level liquid waste contains 99 Tc (technetium), which is a radionuclide with a very long half-life, and when the liquid waste is treated, for example, when it is disposed in the geological formation as a vitrified body, it has a long-term environmental impact. It is said that there is a possibility that radioactivity will affect this.

【0006】一方、白金族元素は装飾品のみならず、電
子材料、電気材料として電器産業の分野や触媒として合
成化学、石油化学、自動車産業等の分野において利用さ
れている極めて重要な金属元素である。しかしながら、
白金族元素の天然鉱物資源は乏しく、その埋蔵と生産は
極端に限られた国に偏っており、このため、白金族元素
の供給体制は極めて脆弱である。特に、現在日本におけ
る白金族元素の鉱山はほとんど無く、その全てを海外か
らの輸入に頼っており、価格も極めて高く、原料供給の
確保は重要な課題となっている。
On the other hand, the platinum group element is an extremely important metal element which is used not only in ornaments but also in the fields of electric appliances as electronic materials and electric materials and in the fields of synthetic chemistry, petrochemistry, automobile industry as catalysts. is there. However,
The natural mineral resources of platinum group elements are scarce, and their reserves and production are concentrated in extremely limited countries, which makes the supply system of platinum group elements extremely fragile. In particular, there are almost no platinum group element mines in Japan at present, all of which rely on imports from overseas, the prices are extremely high, and securing raw material supply is an important issue.

【0007】他方、使用済み核燃料中には相当量の白金
族元素が含まれており、その生成量は燃料の組成や燃焼
度にもよるが、通常の燃焼度の軽水炉使用済み燃料1t
当たりに含まれる量はパラジウム(Pd)850g、ル
テニウム(Ru)1900g、ロビジウム(Rh)32
0g程度である。もしこれらの白金族元素が全量回収さ
れ、その放射能が利用できる十分なレベルまで低減され
れば、現在日本における化学触媒利用量をパラジウムで
約36%、ルテニウムで約60%、ロビジウムでほぼ1
00%満足することができる計算となる。なお、テクネ
チウムは天然には全く産出されていない元素で、核分裂
反応によって人工的に作られた元素である。使用済み核
燃料1t当たり750g程度のテクネチウムが含まれて
いる。
On the other hand, the spent nuclear fuel contains a considerable amount of platinum group elements, and the production amount depends on the composition and burnup of the fuel, but 1 t of the spent fuel of a light water reactor with a normal burnup is used.
The amount contained per unit is 850 g of palladium (Pd), 1900 g of ruthenium (Ru), 32 of rhobidium (Rh).
It is about 0 g. If all of these platinum group elements were recovered and their radioactivity was reduced to a sufficient level, the amount of chemical catalysts used in Japan is currently about 36% for palladium, about 60% for ruthenium, and about 1% for rhobidium.
It is a calculation that can be satisfied with 00%. Note that technetium is an element that is not produced in nature at all, and is an element artificially created by the fission reaction. About 750 g of technetium is contained per ton of spent nuclear fuel.

【0008】使用済み燃料中の白金族元素やテクネチウ
ムは溶解工程で一部が不溶残査となるが、そのかなりの
部分は硝酸に溶解されて溶解液中に存在する。これらの
元素の溶解量は燃料の燃焼度、使用する硝酸溶液の濃
度、さらに溶解温度等の条件によるが、通常パラジウム
はほとんど全量、ルテニウムは60〜90%、テクネチ
ウムは約半分程度が溶解するとされている。なお、ロジ
ウム(Rh)の大部分は溶解されずに不溶残査に残って
いる。溶解したこれらの白金族元素やテクネチウムは、
燃料溶解液中にはU、Pu等の核燃料物質のほかに、N
p、Am、Cm等のマイナアクチノイド元素、Cs等の
アルカリ金属元素、Ba、Sr等のアルカリ土類金属元
素、Y、Nd、Ce等の希土類金属元素、Mo、Zr、
Te等の多種多様な核分裂生成物と共存している。ま
た、再処理向上で発生する高レベル放射能廃液中には、
少量のU、Pu抽出残留物及び硝酸に溶解された白金族
元素、テクネチウム及び上記核分裂生成物のほとんど全
量が含まれている。これらの溶液は複雑な組成及び多様
な化学的性質に加え、強い放射能を持っているため、そ
の中の有価元素の分離回収に関しては、まだ効果的な方
法が確立されていないのが現状である。
Part of the platinum group elements and technetium in the spent fuel become insoluble residues in the dissolution process, but a considerable part thereof is dissolved in nitric acid and exists in the solution. The amount of these elements dissolved depends on the burnup of the fuel, the concentration of the nitric acid solution used, and the melting temperature. Usually, it is said that almost all palladium, 60 to 90% ruthenium, and about half of technetium are dissolved. ing. Most of rhodium (Rh) is not dissolved but remains in the insoluble residue. These dissolved platinum group elements and technetium are
In addition to U, Pu and other nuclear fuel substances, N
Minor actinide elements such as p, Am and Cm, alkali metal elements such as Cs, alkaline earth metal elements such as Ba and Sr, rare earth metal elements such as Y, Nd and Ce, Mo and Zr,
It coexists with a wide variety of fission products such as Te. In addition, in the high-level radioactive liquid waste generated by improved reprocessing,
It contains small amounts of U, Pu extraction residues and almost all platinum group elements, technetium and the above fission products dissolved in nitric acid. In addition to their complicated composition and diverse chemical properties, these solutions have strong radioactivity, and as a result, effective methods have not yet been established for the separation and recovery of valuable elements in them. is there.

【0009】[0009]

【発明が解決しようとする課題】従来は使用済み核燃料
の硝酸溶解液または再処理工場で発生する廃液から白金
族元素及びテクネチウムは分離回収されていなかったた
め、白金族元素及びテクネチウムが使用済み核燃料の再
処理プロセス及び廃棄物の処理処分工程を妨害する等の
問題点があった。一方、白金族元素及びテクネチウムは
工業的に極めて利用価値が高い金属元素であるが、これ
らの元素は国内で産出できず供給が困難である等の問題
点があった。従って、白金族元素及びテクネチウムを分
離回収することは、再処理プロセス性能を向上させ廃液
の放射能レベルの低減化に大きく寄与すると同時に、希
少金属原料の安定確保にも貢献する。
Conventionally, since platinum group elements and technetium have not been separated and recovered from a nitric acid solution of spent nuclear fuel or a waste solution generated at a reprocessing plant, platinum group elements and technetium are contained in spent nuclear fuel. There were problems such as obstructing the reprocessing process and the waste disposal process. On the other hand, platinum group elements and technetium are industrially extremely useful metal elements, but there is a problem that these elements cannot be produced domestically and supply is difficult. Therefore, separating and recovering the platinum group element and technetium greatly contributes to improving the performance of the reprocessing process and reducing the radioactivity level of the waste liquid, and at the same time, ensuring the stability of the rare metal raw material.

【0010】この発明は上記のような問題点を解消する
ためになされたもので、使用済み核燃料の硝酸溶解液ま
たは再処理工場で発生する廃液から白金族元素及びテク
ネチウムを高収率、高純度で分離回収する方法を得るこ
とを目的とする。
The present invention has been made to solve the above-mentioned problems, and it is possible to obtain a platinum group element and technetium in a high yield and a high purity from a nitric acid solution of spent nuclear fuel or a waste liquid generated in a reprocessing plant. The purpose is to obtain a method of separation and recovery by.

【0011】[0011]

【課題を解決するための手段】請求項1の発明に係る白
金族元素及びテクネチウムの分離回収方法は、使用済み
核燃料の硝酸溶解液または再処理工場で発生する廃液を
アニオン交換樹脂と接触させて、パラジウム、ルテニウ
ム等の白金族元素及びテクネチウムを選択的に吸着させ
るものである。
According to a first aspect of the present invention, there is provided a method for separating and recovering platinum group elements and technetium, which comprises contacting a nitric acid solution of spent nuclear fuel or a waste solution generated in a reprocessing plant with an anion exchange resin. It selectively adsorbs platinum group elements such as palladium, ruthenium and technetium.

【0012】請求項2の発明に係る白金族元素及びテク
ネチウムの分離回収方法は、白金族元素及びテクネチウ
ムを吸着させた後のイオン交換樹脂を希硝酸溶液、チオ
尿素またはアンモニア含有水溶液、濃硝酸溶液に順次接
触させてイオン交換樹脂に吸着したルテニウム、パラジ
ウム、テクネチウムをそれぞれ選択的に溶離回収するも
のである。
In the method for separating and recovering platinum group elements and technetium according to the invention of claim 2, the ion exchange resin after adsorbing the platinum group elements and technetium is diluted nitric acid solution, aqueous solution containing thiourea or ammonia, concentrated nitric acid solution. Ruthenium, palladium, and technetium adsorbed on the ion-exchange resin by sequentially contacting with are selectively eluted and recovered.

【0013】請求項3の発明に係る白金族元素及びテク
ネチウムの分離回収方法は、アニオン交換樹脂が、高分
子ポリマを基体とし、窒素原子を含有する複素環基を官
能基とするアニオン交換樹脂もしくは1〜2級アミン基
を官能基とする弱塩基性アニオン交換樹脂であるもので
ある。
In the method for separating and recovering a platinum group element and technetium according to the third aspect of the present invention, the anion exchange resin is an anion exchange resin whose base is a polymer and which has a nitrogen atom-containing heterocyclic group as a functional group. It is a weakly basic anion exchange resin having a primary to secondary amine group as a functional group.

【0014】本発明者等は、まず、使用済み核燃料の硝
酸溶解液または再処理工場で発生する廃液(これらの溶
液を以下「処理液」という)から白金族元素及びテクネ
チウムを分離回収するために、硝酸水溶液における白金
族元素、テクネチウム及び上記処理液中に含まれる他の
各種金属元素に対する種々のアニオン交換樹脂の吸着特
性を調べてきた。特に白金族元素及びテクネチウムの吸
着特性と交換体の官能基構造との関連性に着目し鋭意研
究を重ねた結果、これらの元素に対して強い吸着力及び
優れた選択性を示す交換基を持つ数種のアニオン交換樹
脂を見出した。これらの樹脂は高分子ポリマーを基体と
し、窒素原子を含有する複素環基を官能基とするアニオ
ン交換樹脂、もしくは1〜2級アミン基を官能基とする
弱塩基性アニオン交換樹脂である。この様な官能基とし
て、具体的には次に示す構造を有するものが挙げられ
る。
The inventors of the present invention firstly separated and recovered platinum group elements and technetium from a nitric acid solution of spent nuclear fuel or a waste liquid generated at a reprocessing plant (these solutions are hereinafter referred to as “treatment liquid”). , The adsorption characteristics of various anion exchange resins for platinum group elements, technetium in nitric acid aqueous solution and various other metal elements contained in the above treatment liquid have been investigated. In particular, as a result of intensive research focusing on the relationship between the adsorption characteristics of platinum group elements and technetium and the functional group structure of the exchanger, it has an exchange group showing strong adsorption power and excellent selectivity for these elements. Several anion exchange resins have been found. These resins are anion exchange resins having a high molecular polymer as a base and having a nitrogen atom-containing heterocyclic group as a functional group, or weakly basic anion exchange resins having a primary to secondary amine group as a functional group. Specific examples of such a functional group include those having the structures shown below.

【0015】[0015]

【化1】 Embedded image

【0016】上記官能基を有するアニオン交換樹脂は、
交換基に強い配位結合力を有する窒素原子を含んでいる
ため、白金族元素特にパラジウムイオンに対して極めて
強い吸着力及び優れた選択性を呈している。
The anion exchange resin having the above functional group is
Since the exchange group contains a nitrogen atom having a strong coordination bond, it exhibits an extremely strong adsorptive power and excellent selectivity to platinum group elements, particularly palladium ions.

【0017】これらのアニオン交換樹脂への白金族元素
及びテクネチウムの吸着特性について測定した結果の一
例を示す。図1は本発明のジピロリル基アニオン交換樹
脂への吸着分配係数の硝酸濃度依存性を示すグラフ図で
ある。この図において、縦軸は吸着分配係数、横軸は硝
酸濃度をモル/リットル(mol/l)示し、実線はパ
ラジウム(Pd)、テクネチウム(Tc)、ルテニウム
(Ru)、ロジウム(Rh)のジピロリル基アニオン交
換樹脂への吸着分配係数の測定値であり、破線は通常工
業的に最も多く使用されている市販4級アンモニウム基
アニオン交換樹脂へのパラジウム(Pd)の吸着分配係
数の測定値である。吸着分配係数は、吸着平衡時におけ
る樹脂中の金属濃度と溶液中の金属濃度との比として定
義される。この図より、パラジウムに対する吸着分配係
数は、本発明のジピロリル基アニオン交換樹脂では、硝
酸濃度約10-2Mの薄い酸性側から約12Mの濃硝酸ま
での広い領域において、4級アンモニウム基アニオン交
換樹脂の数十〜数百倍程度の大きい値を示す。また、テ
クネチウムに対しても、希硝酸溶液において極めて強い
吸着性を示すことがわかる。さらに、ルテニウムは、硝
酸濃度0.5M〜4Mの範囲で比較的強い吸着性を示
す。
An example of the results of measurement of the adsorption characteristics of the platinum group element and technetium on these anion exchange resins is shown. FIG. 1 is a graph showing the nitric acid concentration dependence of the adsorption distribution coefficient on the dipyrrolyl group anion exchange resin of the present invention. In this figure, the vertical axis shows the adsorption distribution coefficient, the horizontal axis shows the nitric acid concentration in mol / liter (mol / l), and the solid line shows palladium (Pd), technetium (Tc), ruthenium (Ru), and dipyrrolyl of rhodium (Rh). Is a measured value of the adsorption distribution coefficient to the base anion exchange resin, and the broken line is a measured value of the adsorption distribution coefficient of palladium (Pd) to the commercially available quaternary ammonium group anion exchange resin which is most often used industrially. . The adsorption partition coefficient is defined as the ratio between the metal concentration in the resin and the metal concentration in the solution at the adsorption equilibrium. From this figure, it can be seen that the adsorption partition coefficient for palladium was found in the wide range of the dipyrrolyl group anion exchange resin of the present invention from a thin acidic side with a nitric acid concentration of about 10 -2 M to a concentrated nitric acid of about 12 M. The value is as large as several tens to several hundreds of times that of resin. Further, it can be seen that technetium also exhibits extremely strong adsorptivity in a dilute nitric acid solution. Furthermore, ruthenium exhibits a relatively strong adsorptivity in the nitric acid concentration range of 0.5M to 4M.

【0018】なお、ジピリジン基、1級アミン基、2級
アミン基を交換基とするアニオン交換樹脂をそれぞれ用
いて測定したところ図1とほとんど同様な結果が得られ
た。一方、これらの樹脂は白金族元素及びテクネチウム
以外の元素、とりわけ上記処理液中に共存する他の金属
元素に対しては通常の市販4級アンモニウム基アニオン
交換樹脂とほぼ同等の吸着性を示すことが確認された。
具体的には、U、Pu、Npは硝酸濃度が2M以上の場
合ではニトラトアニオン錯体を形成するためアニオン交
換樹脂によく吸着されるが、硝酸濃度2M、特に1.5
M以下ではアニオン錯体が形成されないためまったく吸
着されない。また、Cs等のアルカリ金属元素、Ba、
Sr等のアルカリ土類金属元素、Nd、Ce等の希土類
金属元素、Am、Cm等のマイナアクチノイド元素、M
o、Zr等の元素は、硝酸溶液中ではアニオンニトラト
錯体を形成せず、いずれもカチオンの形で存在するた
め、アニオン交換樹脂にはまったく吸着されない。従っ
て、上記樹脂を用いれば、処理液中の白金族元素及びテ
クネチウムのみを選択的に吸着させて、溶液中に共存す
る他の元素から分離することができる。
When anion exchange resins having a dipyridine group, a primary amine group and a secondary amine group as an exchange group were used for measurement, almost the same results as in FIG. 1 were obtained. On the other hand, these resins show almost the same adsorptivity as the ordinary commercial quaternary ammonium group anion exchange resin for elements other than platinum group elements and technetium, especially other metal elements coexisting in the above treatment liquid. Was confirmed.
Specifically, U, Pu, and Np form a nitrato anion complex when the nitric acid concentration is 2 M or more, and thus are well adsorbed on the anion exchange resin, but the nitric acid concentration is 2 M, particularly 1.5 M.
Below M, no anion complex is formed, and therefore no adsorption occurs. In addition, alkali metal elements such as Cs, Ba,
Alkaline earth metal elements such as Sr, rare earth metal elements such as Nd and Ce, minor actinide elements such as Am and Cm, M
Elements such as o and Zr do not form an anion nitrato complex in a nitric acid solution, and since they all exist in the form of cations, they are not adsorbed on the anion exchange resin at all. Therefore, when the above resin is used, only the platinum group element and technetium in the treatment liquid can be selectively adsorbed and separated from other elements coexisting in the solution.

【0019】また、上記アニオン交換樹脂に吸着された
白金族元素及びテクネチウムをそれぞれ分離回収するた
め、本発明者等はさらに鋭意な検討を重ねた結果、次の
(1)〜(3)に記載する方法を見出した。すなわち、
Further, the inventors of the present invention have conducted further diligent studies in order to separate and collect the platinum group element and technetium adsorbed on the anion exchange resin, and as a result, the following (1) to (3) are described. I found a way to do it. That is,

【0020】(1)処理液中からパラジウム、ルテニウ
ム等の白金族元素及びテクネチウムを吸着させた後のイ
オン交換樹脂を、次いで希硝酸溶液と接触させイオン交
換樹脂に吸着したルテニウムのみを選択的に溶離回収す
る。 (2)上記ルテニウムを溶離させた後のイオン交換樹脂
を、次いでチオ尿素(SC(NH22 )またはアンモ
ニア(NH3 )含有水溶液と接触させイオン交換樹脂に
吸着したパラジウムのみを選択的に溶離回収する。 (3)上記パラジウムを溶離させた後のイオン交換樹脂
を、次いで濃硝酸溶液と接触させイオン交換樹脂に吸着
したテクネチウムを選択的に溶離回収する。以下、本発
明を溶液調整工程、吸着工程、溶離回収工程に分けてさ
らに詳細に説明する。
(1) The ion exchange resin after adsorbing platinum group elements such as palladium and ruthenium and technetium from the treatment liquid is brought into contact with a dilute nitric acid solution, and only the ruthenium adsorbed on the ion exchange resin is selectively selected. Elute and collect. (2) The ion exchange resin after eluting the ruthenium is then contacted with an aqueous solution containing thiourea (SC (NH 2 ) 2 ) or ammonia (NH 3 ), and only palladium adsorbed on the ion exchange resin is selectively selected. Elute and collect. (3) The ion exchange resin after eluting the palladium is then contacted with a concentrated nitric acid solution to selectively elute and collect the technetium adsorbed on the ion exchange resin. Hereinafter, the present invention will be described in more detail by dividing it into a solution preparation step, an adsorption step, and an elution recovery step.

【0021】溶液調整工程 本発明では、まず処理液中の硝酸濃度を0.01〜2規
定の範囲、好ましくは0.1〜1.5規定の範囲に調整
しておく。これらの溶液中の硝酸濃度が0.01規定以
下では溶液中の白金族元素をはじめ多種の金属元素のイ
オンが加水分解反応により沈澱し、次の吸着工程でイオ
ン交換体への吸着性が低下してしまう。
Solution adjusting step In the present invention, first, the nitric acid concentration in the treatment liquid is adjusted to a range of 0.01 to 2 N, preferably 0.1 to 1.5 N. When the nitric acid concentration in these solutions is 0.01 N or less, the ions of various metal elements including platinum group elements in the solution are precipitated by the hydrolysis reaction, and the adsorbability to the ion exchanger decreases in the next adsorption step. Resulting in.

【0022】一方、溶液中の硝酸濃度が2規定以上とな
ると、溶液中に多量なNO3 -イオンが存在し、溶液特に
使用済み燃料の溶解液中に共存するU4+、UO2 2+、P
4+、Np4+等の金属イオンがNO3 -とアニオン錯体を
形成する。これらのアニオン錯体はアニオン交換体に強
い吸着性を呈するため、白金族元素及びテクネチウムと
の分離が困難になる。なお、溶液中の硝酸濃度の調整は
硝酸または純水を添加することによって容易に行われ
る。場合によっては、公知の化学脱硝法や電解脱硝法に
よって行うこともできる。
On the other hand, when the nitrate concentration in the solution is 2N or more, large amount of NO 3 in the solution - ion present, U coexist in solution in the solution, especially spent fuel 4+, UO 2 2+ , P
Metal ions such as u 4+ and Np 4+ form an anion complex with NO 3 . Since these anion complexes have strong adsorptivity to the anion exchanger, it becomes difficult to separate them from the platinum group element and technetium. The nitric acid concentration in the solution can be easily adjusted by adding nitric acid or pure water. In some cases, known chemical denitration method or electrolytic denitration method can be used.

【0023】吸着工程 溶液調整工程で得られた溶液を上記アニオン交換樹脂と
接触させることにより、溶液中のパラジウム、ルテニウ
ム、テクネチウムのみが樹脂に吸着されて溶液相から樹
脂相に移行し溶液中の他の元素から分離される。なお、
ルテニウムは主にニトロシル・ニトラトのアニオン錯
体、テクネチウムはTcO4 -アニオンの形で吸着され
る。一方、パラジウムの場合、溶液中では主としてPd
2+の形で存在するが、上記樹脂の官能基に強い配位結合
力を有する窒素原子を含んでいるため、パラジウムイオ
ンと官能基中のN原子が配位結合によって安定な錯体を
形成することによってパラジウムが強く吸着される。
Adsorption step By bringing the solution obtained in the solution preparation step into contact with the anion exchange resin, only palladium, ruthenium, and technetium in the solution are adsorbed by the resin and transferred from the solution phase to the resin phase. Separated from other elements. In addition,
Ruthenium is adsorbed mainly in the form of an anion complex of nitrosyl nitrato, and technetium is adsorbed in the form of TcO 4 anion. On the other hand, in the case of palladium, Pd is mainly used in the solution.
Although it exists in the form of 2+ , since the functional group of the resin contains a nitrogen atom having a strong coordination bond, the palladium ion and the N atom in the functional group form a stable complex by the coordination bond. As a result, palladium is strongly adsorbed.

【0024】吸着操作は公知のカラム式及びバッチ式が
好ましく利用される。すなわち、カラム式では、イオン
交換樹脂をカラムに詰めて処理液を通液し、溶液中のパ
ラジウム、ルテニウム、テクネチウムを樹脂に吸着させ
る。バッチ式では、容器に処理液及びイオン交換樹脂を
入れて撹拌又は振とうし、溶液中のパラジウム、ルテニ
ウム、テクネチウムを樹脂に吸着させる。使用するイオ
ン交換樹脂の形状は特に限定するものではなく、通常工
業的によく利用される粒径数十〜数百ミクロン程度のマ
クロポア型、ゲル型又は担体担持型の球状樹脂粒が好ま
しく用いられる。また、吸着温度も特に限定することな
く、通常工業的に容易に実現する室温から80℃程度の
範囲でよい。なお、温度を上げることによって吸着速度
をある程度促進することができる。
As the adsorption operation, known column type and batch type are preferably used. That is, in the column type, the ion exchange resin is packed in a column and the treatment liquid is passed through to adsorb palladium, ruthenium, and technetium in the solution onto the resin. In the batch system, the treatment liquid and the ion exchange resin are put in a container and stirred or shaken to adsorb palladium, ruthenium, and technetium in the solution onto the resin. The shape of the ion-exchange resin used is not particularly limited, and macroporous type, gel type or carrier-supporting type spherical resin particles having a particle size of about several tens to several hundreds of micron which are usually used industrially are preferably used. . Also, the adsorption temperature is not particularly limited, and may be in the range of room temperature to 80 ° C. which is usually industrially easily realized. The adsorption rate can be accelerated to some extent by raising the temperature.

【0025】溶離回収工程 上記吸着工程を経てアニオン交換樹脂に吸着した白金族
元素及びテクネチウムを、次の(a)〜(c)に記載す
る溶離工程によりそれぞれ分離回収し、それと同時に樹
脂を再生して再利用に供することができる。すなわち、 (a)ルテニウム溶離工程 図1に示したように、硝酸
濃度0.05M以下ではルテニウムの分配係数は急激に
低下し、アニオン交換樹脂にほとんど吸着されなくな
る。従って、上記吸着工程を経たイオン交換樹脂を、次
いで希硝酸溶液と接触させることによって、樹脂に吸着
したルテニウムのみを選択的に溶離することができる。
尚、溶離液として用いる硝酸濃度を0.001M〜0.
05Mの範囲にすることが好ましい。硝酸濃度0.05
M以上では、ルテニウムが樹脂に吸着されるため完全に
溶離されない。一方、硝酸濃度0.001M以下では、
ルテニウムの一部が加水分解により水酸化物ないし酸化
物沈澱になって樹脂粒子の表面や細孔に固着して溶出さ
れない恐れがある。
Elution recovery step The platinum group element and technetium adsorbed on the anion exchange resin through the adsorption step are separated and recovered by the elution steps described in (a) to (c) below, and at the same time, the resin is regenerated. Can be reused. That is, (a) Ruthenium elution step As shown in FIG. 1, when the nitric acid concentration is 0.05 M or less, the distribution coefficient of ruthenium sharply decreases and the ruthenium is hardly adsorbed on the anion exchange resin. Therefore, by contacting the ion exchange resin that has undergone the adsorption step with a dilute nitric acid solution, only ruthenium adsorbed on the resin can be selectively eluted.
The nitric acid concentration used as the eluent was 0.001M to 0.
It is preferably in the range of 05M. Nitric acid concentration 0.05
Above M, ruthenium is not completely eluted because it is adsorbed on the resin. On the other hand, when the nitric acid concentration is 0.001 M or less,
There is a risk that a part of ruthenium will be hydrolyzed into a hydroxide or an oxide precipitate and will stick to the surface or pores of the resin particles and not be eluted.

【0026】(b)パラジウム溶離工程 図1に示した
ように、パラジウムは12M以下の広い硝酸濃度領域に
おいて強い吸着性を呈し、この硝酸濃度範囲ではパラジ
ウムの溶離が望めない。一方、12M以上の濃硝酸濃度
になると吸着が弱くなり、12M以上の濃硝酸によって
溶離される可能性がある。しかし、濃厚硝酸を溶離液と
する場合、テクネチウムも溶離されるため(図1参
照)、両者の分離が困難になる。パラジウムを選択的に
溶離回収するために、本発明者等は種々の溶離剤及び溶
離条件を鋭意検討し、その結果、チオ尿素(SC(NH
22 )及びアンモニア(NH3 )はパラジウムの極め
て優れた溶離剤であることを見出した。これらの試薬は
窒素原子の配位結合を通してパラジウムイオンと強い錯
形成能力を有し、PdXn2+(X=SC(NH22
たはNH3 、n=1〜4)といった安定なカチオン錯体
を形成する。このため、アニオン交換樹脂に吸着された
パラジウムはこれらの溶離剤との配位子置換反応によっ
て樹脂から溶離される。チオ尿素試薬は水溶性であり、
これを水または硝酸酸性水溶液に溶かして0.1〜数M
チオ尿素溶液として好ましく用いられる。一方、NH3
溶離液としては市販アンモニア水を0.1〜数M程度に
薄めて使えばよい。尚、溶離液としてのこれらの試薬濃
度は特に限定するものではない。一方、溶離剤の使用量
は当然のことながらパラジウムの吸着量に応じる必要が
あり、本発明者等の検討結果によればパラジウム吸着量
の2倍モル量以上、好ましくは4倍モル量以上使用すれ
ば吸着したパラジウムを選択的に完全に溶離することが
できる。
(B) Palladium Elution Step As shown in FIG. 1, palladium exhibits strong adsorptivity in a wide nitric acid concentration range of 12 M or less, and elution of palladium cannot be expected in this nitric acid concentration range. On the other hand, when the concentration of concentrated nitric acid is 12 M or more, the adsorption becomes weak, and there is a possibility that it will be eluted by the concentrated nitric acid of 12 M or more. However, when concentrated nitric acid is used as an eluent, technetium is also eluted (see FIG. 1), and thus it becomes difficult to separate the two. In order to selectively elute and recover palladium, the present inventors diligently studied various eluents and elution conditions, and as a result, thiourea (SC (NH
2 ) 2 ) and ammonia (NH 3 ) have been found to be very good eluents for palladium. These reagents have a strong ability to form a complex with a palladium ion through a coordinate bond of a nitrogen atom, and form a stable cation complex such as PdXn 2+ (X = SC (NH 2 ) 2 or NH 3 , n = 1 to 4). Form. Therefore, the palladium adsorbed on the anion exchange resin is eluted from the resin by the ligand substitution reaction with these eluents. Thiourea reagent is water soluble,
Dissolve this in water or nitric acid acidic aqueous solution to 0.1 to several M
It is preferably used as a thiourea solution. On the other hand, NH 3
As the eluent, commercially available ammonia water may be diluted to about 0.1 to several M and used. The concentrations of these reagents as the eluent are not particularly limited. On the other hand, as a matter of course, the amount of the eluent used needs to correspond to the amount of adsorbed palladium, and according to the results of studies by the present inventors, the amount adsorbed with palladium is at least twice the molar amount, preferably at least four times the molar amount. If so, the adsorbed palladium can be selectively and completely eluted.

【0027】(c)テクネチウム溶離工程 上記パラジ
ウムを溶離させた後のイオン交換樹脂を、次いで濃硝酸
溶液と接触させイオン交換樹脂に吸着したテクネチウム
を溶離回収する。図1に示したように、テクネチウムは
希硝酸溶液においては樹脂に強く吸着するが、硝酸濃度
の増大とともに吸着は急激に減少し、約9M以上になる
とほとんど吸着されなくなる。本発明者等の検討結果に
よれば、9M〜14M程度の濃硝酸溶液を溶離液として
用いた場合、樹脂に吸着されたテクネチウムを全量回収
することができる。なお、テクネチウムの溶離完了と共
に樹脂がNO3 -を吸着した型となり、すなわち、樹脂が
再生されて次の吸着工程に供することができる。
(C) Technetium Elution Step The ion exchange resin after the palladium is eluted is then contacted with a concentrated nitric acid solution to elute and recover the technetium adsorbed on the ion exchange resin. As shown in FIG. 1, technetium strongly adsorbs to the resin in a dilute nitric acid solution, but the adsorption decreases sharply as the nitric acid concentration increases, and is almost not adsorbed at about 9 M or more. According to the results of studies by the present inventors, when a concentrated nitric acid solution of about 9 M to 14 M is used as an eluent, the total amount of technetium adsorbed on the resin can be recovered. When the elution of technetium is completed, the resin becomes a type in which NO 3 is adsorbed, that is, the resin is regenerated and can be used in the next adsorption step.

【0028】なお、上記(a)〜(c)の溶離操作は吸
着工程で記載したカラム式及びバッチ式と同様な方法で
行われ、樹脂をそれぞれの溶離剤溶液と接触させること
により、樹脂に吸着されたルテニウム、パラジウム、テ
クネチウム各金属イオンが順次それぞれ溶出され樹脂相
から溶液相に移行して分離回収される。溶離操作の温度
も吸着工程と同様に工業的に容易に実現する室温〜80
℃程度でよい。
The elution operations (a) to (c) above are carried out in the same manner as in the column type and the batch type described in the adsorption step. The adsorbed ruthenium, palladium, and technetium metal ions are sequentially eluted and transferred from the resin phase to the solution phase for separation and recovery. The temperature of the elution operation is industrially easily achieved at room temperature to 80 as well as the adsorption step.
C may be sufficient.

【0029】[0029]

【作用】請求項1の発明における白金族元素及びテクネ
チウムの分離回収方法は、使用済み核燃料の硝酸溶解液
または再処理工場で発生する廃液をアニオン交換樹脂と
接触させると、アニオン交換樹脂が白金族元素及びテク
ネチウムに対して強い吸着力と優れた選択性を有してい
るので、白金族元素及びテクネチウムが選択的に吸着さ
れる。
According to the method for separating and recovering platinum group elements and technetium in the invention of claim 1, when the nitric acid solution of the spent nuclear fuel or the waste solution generated in the reprocessing plant is brought into contact with the anion exchange resin, the anion exchange resin is converted into the platinum group. Since it has a strong adsorption force for elements and technetium and excellent selectivity, platinum group elements and technetium are selectively adsorbed.

【0030】請求項2の発明における白金族元素及びテ
クネチウムの分離回収方法は、白金族元素及びテクネチ
ウムを吸着させた後のイオン交換樹脂を希硝酸溶液、チ
オ尿素またはアンモニア含有水溶液、濃硝酸溶液に順次
接触させると、これらの溶液はそれぞれルテニウム、パ
ラジウム、テクネチウムに対する溶離液であるため、ル
テニウム、パラジウム、テクネチウムがそれぞれ選択的
に溶離回収される。
In the method for separating and recovering platinum group elements and technetium in the invention of claim 2, the ion exchange resin after adsorbing the platinum group elements and technetium is formed into a dilute nitric acid solution, an aqueous solution containing thiourea or ammonia, or a concentrated nitric acid solution. When they are sequentially contacted, these solutions are eluents for ruthenium, palladium, and technetium, respectively, so that ruthenium, palladium, and technetium are selectively eluted and recovered.

【0031】請求項3の発明における白金族元素及びテ
クネチウムの分離回収方法は、アニオン交換樹脂が、高
分子ポリマを基体とし、窒素原子を含有する複素環基を
官能基とするアニオン交換樹脂もしくは1〜2級アミン
基を官能基とする弱塩基性アニオン交換樹脂であり、交
換基に強い配位結合力を有する窒素原子を含んでいるた
め、白金族元素特にパラジウムイオンに対して極めて強
い吸着力及び優れた選択性を有する。
In the method for separating and recovering the platinum group element and technetium according to the invention of claim 3, the anion exchange resin is an anion exchange resin having a polymer polymer as a base material and a nitrogen atom-containing heterocyclic group as a functional group, or 1 ~ It is a weakly basic anion exchange resin having a secondary amine group as a functional group, and because the exchange group contains a nitrogen atom having a strong coordination bond, it has an extremely strong adsorption force for platinum group elements, especially palladium ions. And has excellent selectivity.

【0032】[0032]

【実施例】【Example】

実施例1.吸着工程及び洗浄工程:内径1cm、長さ2
0cmのガラスカラムの中に交換容量3.4meq/g
のジピロリル基アニオン交換樹脂を15cm充填し(樹
脂重量約6g)、カラム全体を60℃の一定温度に保温
した。カラムの上端から、Pd 504.7mg/l、
Ru 503.8mg/l、Rh 251.7mg/
l、Tc 517.1mg/l、Cs 998.2mg
/l、Sr 1022.4mg/l、Y 501.3m
g/l、Nd 1017.7mg/l、Mo492.3
mg/l、Zr 503.6mg/l、硝酸濃度 1m
ol/lといった組成の模擬使用済み核燃料再処理廃液
50mlを5ml/minの流速で通液した後、続いて
濃度1Mの硝酸水溶液50mlを流して交換体及びカラ
ムの洗浄を行った。カラムの下端から流出した溶液をフ
ラクションコレクタにより10mlごとに分取した。
Example 1. Adsorption process and cleaning process: inner diameter 1 cm, length 2
Exchange capacity 3.4 meq / g in a 0 cm glass column
15 cm of the dipyrrolyl group anion exchange resin of (6) was filled (resin weight: about 6 g), and the whole column was kept at a constant temperature of 60 ° C. From the top of the column, Pd 504.7 mg / l,
Ru 503.8 mg / l, Rh 251.7 mg /
1, Tc 517.1 mg / l, Cs 998.2 mg
/ L, Sr 1022.4mg / l, Y 501.3m
g / l, Nd 1017.7 mg / l, Mo492.3
mg / l, Zr 503.6 mg / l, nitric acid concentration 1 m
After 50 ml of the simulated spent nuclear fuel reprocessing waste liquid having a composition such as ol / l was passed at a flow rate of 5 ml / min, 50 ml of a nitric acid aqueous solution having a concentration of 1 M was subsequently flown to wash the exchanger and the column. The solution flowing out from the lower end of the column was collected by a fraction collector every 10 ml.

【0033】ルテニウム溶離工程:次いで、0.05M
の希硝酸溶液50mlを上記と同様な操作で通液し、流
出液を上記と同様な操作で採取した。 パラジウム溶離工程:次いで、溶離液として0.05M
の希硝酸溶液の代わりに0.5Mチオ尿素含有の0.0
1M硝酸溶液を用いたこと以外は上記のルテニウム溶離
工程と同様な操作を行った。
Ruthenium elution step: then 0.05M
50 ml of the diluted nitric acid solution was passed through by the same operation as above, and the outflow liquid was collected by the same operation as above. Palladium elution step: then 0.05M as eluent
Instead of dilute nitric acid solution containing 0.05M thiourea
The same operation as the above ruthenium elution step was performed except that a 1 M nitric acid solution was used.

【0034】テクネチウム溶離工程:次いで、溶離液と
して0.05Mの希硝酸溶液の代わりに12M硝酸溶液
を用いたこと以外は上記のルテニウム溶離工程と同様な
操作を行った。 上記各フラクション流出液中の金属濃度を高周波誘導結
合プラズマ(ICP)発光分析法により定量分析した。
図2はこの定量分析の結果を示すグラフ図であり、図に
おいて縦軸は流出液中の濃度(mg/l)を、横軸は上
記工程における流出液のフラクションNo.を示す。同
図より、本発明の分離回収目的金属であるパラジウム、
ルテニウム、テクネチウム以外の金属元素は樹脂にほと
んど吸着されずに吸着工程及びそれに続く洗浄工程の流
出液中に収集されたことがわかる。なお、パラジウム、
ルテニウム、テクネチウムの各目的金属元素は相互に分
離されてそれぞれの溶出液中に濃縮回収されていたこと
がわかる。
Technetium elution step: Then, the same operation as the above ruthenium elution step was performed except that a 12M nitric acid solution was used as an eluent instead of the 0.05M dilute nitric acid solution. The metal concentration in each fraction effluent was quantitatively analyzed by high frequency inductively coupled plasma (ICP) emission spectrometry.
FIG. 2 is a graph showing the results of this quantitative analysis, in which the vertical axis represents the concentration (mg / l) in the effluent and the horizontal axis represents the fraction No. of the effluent in the above process. Indicates. From the figure, palladium, which is the metal for separation and recovery of the present invention,
It can be seen that metal elements other than ruthenium and technetium were hardly adsorbed by the resin and were collected in the effluent of the adsorption step and the subsequent washing step. In addition, palladium,
It can be seen that the target metal elements of ruthenium and technetium were separated from each other and concentrated and recovered in the respective eluates.

【0035】実施例2. 吸着工程:表1に処理液として示す組成の模擬使用済み
核燃料溶解液(硝酸濃度1.5M)200mlを容量3
00mlの共栓三角フラスコにとり、その中に交換容量
5.5meq/gの1級と2級アミン基を共に含む弱塩
基性アニオン交換樹脂5gを入れて、30℃に調整した
恒温水槽中にセットして5時間振とうさせた。その後、
ガラスフィルタによりこの樹脂を吸着残液から分離し
た。
Example 2. Adsorption process: 200 ml of simulated spent nuclear fuel solution (nitric acid concentration 1.5 M) having the composition shown in Table 1 as the treatment liquid was added to the volume 3
Transfer to a 00 ml Erlenmeyer flask with ground stopper, put 5 g of a weakly basic anion exchange resin containing both primary and secondary amine groups with an exchange capacity of 5.5 meq / g, and set it in a constant temperature water bath adjusted to 30 ° C. And shaken for 5 hours. afterwards,
The resin was separated from the adsorption residual liquid by a glass filter.

【0036】ルテニウム溶離工程:次いで、0.05M
の希硝酸溶液50mlを容量100mlの共栓三角フラ
スコにとり、その中に上記吸着残液から分離した樹脂を
入れて、30℃に調節した恒温水槽中にセットして30
分間振とうさせた。その後、ガラスフィルタによりこの
樹脂を溶離液から分離した。
Ruthenium elution step: then 0.05M
50 ml of the dilute nitric acid solution was placed in an Erlenmeyer flask with a capacity of 100 ml, and the resin separated from the adsorption residual liquid was put therein and set in a constant temperature water bath adjusted to 30 ° C.
Shake for a minute. The resin was then separated from the eluent by a glass filter.

【0037】パラジウム溶離工程:次いで、溶離液とし
て0.05Mの希硝酸溶液の代わりに0.2Mチオ尿素
含有の0.1M硝酸溶液を用いたこと以外は上記のルテ
ニウム溶離工程と同様な操作を行った。
Palladium elution step: Then, the same operation as the above ruthenium elution step was performed except that a 0.1M nitric acid solution containing 0.2M thiourea was used as the eluent instead of the 0.05M dilute nitric acid solution. went.

【0038】テクネチウム溶離工程:次いで、溶離液と
して0.05Mの希硝酸溶液の代わりに10M硝酸溶液
を用いたこと以外は上記のルテニウム溶離工程と同様な
操作を行った。 上記各溶液中の金属濃度を高周波誘導結合プラズマ(I
CP)発光分析法により定量分析した。その結果を表1
に示す。
Technetium elution step: Then, the same operation as the above ruthenium elution step was performed except that a 10M nitric acid solution was used as an eluent instead of the 0.05M dilute nitric acid solution. The metal concentration in each of the above solutions is determined by the high frequency inductive coupling plasma
CP) Quantitative analysis was carried out by emission spectrometry. The results are shown in Table 1.
Shown in

【0039】[0039]

【表1】 [Table 1]

【0040】表中の結果から求めた本発明の分離回収目
的金属であるパラジウム、ルテニウム、テクネチウムの
回収率はそれぞれ95.3%、86.8%、89.5%
であった。なお、パラジウム、ルテニウム、テクネチウ
ム以外の金属元素は樹脂にほとんど吸着されずに、吸着
残液中に残されたことがわかる。また、各目的元素の溶
出液中には他の金属元素はほとんど検出されず、その合
計濃度はいずれも5mg/l以下であった。
The recoveries of palladium, ruthenium and technetium, which are the metals for separation and recovery of the present invention, obtained from the results in the table are 95.3%, 86.8% and 89.5%, respectively.
Met. It can be seen that metal elements other than palladium, ruthenium and technetium were hardly adsorbed by the resin and remained in the adsorption residual liquid. Further, other metal elements were hardly detected in the eluate of each target element, and the total concentration was 5 mg / l or less in all cases.

【0041】なお、上記パラジウム溶離工程において、
溶離液として0.2Mチオ尿素含有の0.1M硝酸溶液
の代わりに0.5Mアンモニア水溶液を用いたところ、
パラジウム溶出液中の金属濃度はPd 1917.3m
g/l、Ru 1.54mg/l、Tc 0.38mg
/lであって、パラジウムの回収率は95.1%であっ
た。すなわち、チオ尿素と同様の効果が認められた。
In the above palladium elution step,
When a 0.5M aqueous ammonia solution was used instead of a 0.1M nitric acid solution containing 0.2M thiourea as an eluent,
The metal concentration in the palladium eluate was Pd 1917.3 m.
g / l, Ru 1.54mg / l, Tc 0.38mg
/ L, and the recovery rate of palladium was 95.1%. That is, the same effect as thiourea was observed.

【0042】[0042]

【発明の効果】以上のように、請求項1の発明によれ
ば、使用済み核燃料の硝酸溶解液または再処理工場で発
生する廃液をアニオン交換樹脂と接触させるように構成
したので、アニオン交換樹脂の白金族元素及びテクネチ
ウムに対する強い吸着力と優れた選択性により白金族元
素及びテクネチウムを選択的に吸着できる効果がある。
従って、溶媒抽出工程におけるクラッドの発生が防止で
き、再処理プロセス性能の向上が図れる効果がある。ま
た、再処理廃液の放射能レベルが低減化され、処理処分
上の安全性、経済性を高める効果がある。
As described above, according to the first aspect of the present invention, the nitric acid solution of the spent nuclear fuel or the waste liquid generated in the reprocessing plant is brought into contact with the anion exchange resin. Has a strong adsorption force for platinum group elements and technetium and an excellent selectivity, so that platinum group elements and technetium can be selectively adsorbed.
Therefore, it is possible to prevent the generation of clad in the solvent extraction step and improve the performance of the reprocessing process. In addition, the radioactivity level of the reprocessing waste liquid is reduced, which has the effect of enhancing the safety and economic efficiency in processing and disposal.

【0043】請求項2の発明によれば、白金族元素及び
テクネチウムを吸着させた後のイオン交換樹脂を希硝酸
溶液、チオ尿素またはアンモニア含有水溶液、濃硝酸溶
液に順次接触させるように構成したので、ルテニウム、
パラジウム、テクネチウムをそれぞれ選択的に溶離回収
できる効果がある。従って、将来における希少金属原料
の安定確保に大いに寄与できる効果がある。
According to the second aspect of the present invention, the ion exchange resin after adsorbing the platinum group element and technetium is constituted to be brought into contact with a dilute nitric acid solution, an aqueous solution containing thiourea or ammonia, and a concentrated nitric acid solution in that order. ,ruthenium,
Palladium and technetium can be selectively eluted and recovered. Therefore, there is an effect that it can greatly contribute to securing stable supply of rare metal raw materials in the future.

【0044】請求項3の発明によれば、アニオン交換樹
脂が高分子ポリマを基体とし窒素原子を含有する複素環
基を官能基とするアニオン交換樹脂もしくは1〜2級ア
ミン基を官能基とする弱塩基性アニオン交換樹脂である
ように構成したので、白金族元素特にパラジウムイオン
に対して極めて強い吸着力及び優れた選択性を有する効
果がある。
According to the third aspect of the present invention, the anion exchange resin has a high molecular polymer as a base material and an anion exchange resin having a nitrogen atom-containing heterocyclic group as a functional group or a primary or secondary amine group as a functional group. Since it is composed of a weakly basic anion exchange resin, it has an effect of having extremely strong adsorptivity for platinum group elements, particularly palladium ions, and excellent selectivity.

【0045】本発明の方法は、比較的簡単な装置と容易
な操作で行われる信頼性の高いイオン交換プロセスであ
り、工業的に実施することは経済的かつ合理的である。
The method of the present invention is a reliable ion exchange process which is carried out with relatively simple equipment and easy operation, and is economical and rational to carry out industrially.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明のジピロリル基アニオン交換樹脂への
吸着分配係数の硝酸濃度依存性を示すグラフ図である。
FIG. 1 is a graph showing the dependence of adsorption partition coefficient on a dipyrrolyl group anion exchange resin of the present invention in nitric acid concentration.

【図2】この発明の実施例2による各工程におけるフラ
クション流出液中の金属濃度を示すグラフ図である。
FIG. 2 is a graph showing a metal concentration in a fraction effluent in each step according to Example 2 of the present invention.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 G21F 9/06 581 G21F 9/06 581J (72)発明者 熊谷 幹郎 千葉県柏市松葉町4−7−5−204 (72)発明者 高島 洋一 東京都品川区荏原7−18−19 (72)発明者 武田 邦彦 横浜市南区中里2−12−5 (72)発明者 鈴木 一弘 神奈川県横浜市鶴見区江ヶ崎町4番1号 東京電力株式会社原子力研究所内 (72)発明者 難波 隆司 神奈川県横浜市鶴見区江ヶ崎町4番1号 東京電力株式会社原子力研究所内 (72)発明者 麻生 雅美 神奈川県横浜市鶴見区江ヶ崎町4番1号 東京電力株式会社原子力研究所内 (72)発明者 堀 保惠 大阪市北区中之島3丁目3番22号 関西電 力株式会社内 (72)発明者 大江 忍 大阪市北区中之島3丁目3番22号 関西電 力株式会社内 (72)発明者 前川 晃 大阪市北区中之島3丁目3番22号 関西電 力株式会社内─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification number Internal reference number FI Technical indication location G21F 9/06 581 G21F 9/06 581J (72) Inventor Mikiro Kumagai 4-Matsuba-cho, Kashiwa-shi, Chiba 7-204 (72) Inventor Yoichi Takashima 7-18-19 Ebara, Shinagawa-ku, Tokyo 7-18-19 (72) Kunihiko Takeda Kunihiko Takeda 2-12-5 Nakazato, Minami-ku, Yokohama (72) Kazuhiro Suzuki, Yokohama, Kanagawa 4-1, Egasaki-cho, Tsurumi-ku, TEPCO Ltd. Nuclear Research Institute (72) Inventor Takashi Namba 4-1-1, Egasaki-cho, Tsurumi-ku, Yokohama-shi, Kanagawa TEPCO Ltd. Atomic Energy Research Institute (72) Inventor Masami Aso, 4-1, Egasaki-cho, Tsurumi-ku, Yokohama-shi, Kanagawa Prefecture, Atomic Energy Research Institute, Tokyo Electric Power Co., Inc. (72) Inventor, Hokei Hori, 3-3-22 Nakanoshima, Kita-ku, Osaka City Kansai Electric Power Co., Inc. Within the company (72) inventor Nin Oe, Kita-ku, Osaka Nakanoshima 3-chome No. 3 No. 22 Kansai Electric Power Co., Ltd. in the (72) inventor Akira Maekawa Kita-ku, Osaka Nakanoshima 3-chome No. 3 No. 22 Kansai Electric Power Co., Ltd. in

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 使用済み核燃料の硝酸溶解液または再処
理工場で発生する廃液をアニオン交換樹脂と接触させ、
溶液中のパラジウム、ルテニウム等の白金族元素及びテ
クネチウムを選択的に吸着させることを特徴とする白金
族元素及びテクネチウムの分離回収方法。
1. A nitric acid solution of spent nuclear fuel or a waste liquid generated at a reprocessing plant is contacted with an anion exchange resin,
A method for separating and recovering platinum group elements and technetium, which comprises selectively adsorbing platinum group elements such as palladium and ruthenium and technetium in a solution.
【請求項2】 前記白金族元素及びテクネチウムを吸着
させた後の前記イオン交換樹脂を、希硝酸溶液と接触さ
せ前記イオン交換樹脂に吸着したルテニウムを選択的に
溶離し、次いで前記イオン交換樹脂をチオ尿素またはア
ンモニア含有水溶液と接触させ前記イオン交換樹脂に吸
着したパラジウムを選択的に溶離し、次いで前記イオン
交換樹脂を濃硝酸溶液と接触させ前記イオン交換樹脂に
吸着したテクネチウムを選択的に溶離回収することを特
徴とする請求項1記載の白金族元素及びテクネチウムの
分離回収方法。
2. The ion exchange resin after adsorbing the platinum group element and technetium is contacted with a dilute nitric acid solution to selectively elute ruthenium adsorbed on the ion exchange resin, and then the ion exchange resin is adsorbed on the ion exchange resin. Selectively elute palladium adsorbed on the ion exchange resin by contact with an aqueous solution containing thiourea or ammonia, and then elute and collect technetium adsorbed on the ion exchange resin by contacting the ion exchange resin with a concentrated nitric acid solution. The method for separating and recovering a platinum group element and technetium according to claim 1, wherein
【請求項3】 前記アニオン交換樹脂は高分子ポリマを
基体とし、窒素原子を含有する複素環基を官能基とする
アニオン交換樹脂もしくは1〜2級アミン基を官能基と
する弱塩基性アニオン交換樹脂であることを特徴とする
請求項1または請求項2記載の白金族元素及びテクネチ
ウムの分離回収方法。
3. The anion exchange resin is based on a polymer, and is an anion exchange resin having a nitrogen atom-containing heterocyclic group as a functional group or a weakly basic anion exchange having a primary or secondary amine group as a functional group. The method for separating and recovering platinum group element and technetium according to claim 1 or 2, which is a resin.
JP06986495A 1995-03-28 1995-03-28 Method for separation and recovery of platinum group elements and technetium Expired - Fee Related JP3366485B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06986495A JP3366485B2 (en) 1995-03-28 1995-03-28 Method for separation and recovery of platinum group elements and technetium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06986495A JP3366485B2 (en) 1995-03-28 1995-03-28 Method for separation and recovery of platinum group elements and technetium

Publications (2)

Publication Number Publication Date
JPH08269585A true JPH08269585A (en) 1996-10-15
JP3366485B2 JP3366485B2 (en) 2003-01-14

Family

ID=13415100

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06986495A Expired - Fee Related JP3366485B2 (en) 1995-03-28 1995-03-28 Method for separation and recovery of platinum group elements and technetium

Country Status (1)

Country Link
JP (1) JP3366485B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012121495A2 (en) * 2011-03-09 2012-09-13 (주)알티아이엔지니어링 Method for recovering precious metal from polyketone polymerization reaction waste liquid
CN102766767A (en) * 2012-07-20 2012-11-07 佛山市邦普循环科技有限公司 Ion exchange recovery method for precious metal platinum in spent automobile exhaust catalyst
KR101439363B1 (en) * 2013-09-23 2014-09-11 순천향대학교 산학협력단 Method for manufacturing nano-particles using ion exchange resin and liquid reducing process
JP2016109468A (en) * 2014-12-03 2016-06-20 国立研究開発法人日本原子力研究開発機構 Separation and recovery method of platinum group materials and its separation and recovery apparatus
KR20220168010A (en) * 2021-06-15 2022-12-22 한국수력원자력 주식회사 Separation method of radionuclide

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012121495A2 (en) * 2011-03-09 2012-09-13 (주)알티아이엔지니어링 Method for recovering precious metal from polyketone polymerization reaction waste liquid
WO2012121495A3 (en) * 2011-03-09 2012-11-22 (주)알티아이엔지니어링 Method for recovering precious metal from polyketone polymerization reaction waste liquid
CN103476956A (en) * 2011-03-09 2013-12-25 Rti化学工程有限公司 Method for recovering precious metal from polyketone polymerization reaction waste liquid
CN102766767A (en) * 2012-07-20 2012-11-07 佛山市邦普循环科技有限公司 Ion exchange recovery method for precious metal platinum in spent automobile exhaust catalyst
KR101439363B1 (en) * 2013-09-23 2014-09-11 순천향대학교 산학협력단 Method for manufacturing nano-particles using ion exchange resin and liquid reducing process
JP2016109468A (en) * 2014-12-03 2016-06-20 国立研究開発法人日本原子力研究開発機構 Separation and recovery method of platinum group materials and its separation and recovery apparatus
KR20220168010A (en) * 2021-06-15 2022-12-22 한국수력원자력 주식회사 Separation method of radionuclide

Also Published As

Publication number Publication date
JP3366485B2 (en) 2003-01-14

Similar Documents

Publication Publication Date Title
JP3677013B2 (en) Method for separating and recovering elements from radioactive liquid waste
US20040178385A1 (en) Method for preparing a composite solid material based on hexacyanoferrates, and method for fixing mineral pollutants using same
US5372794A (en) Process for the separation of certain elements from aqueous solutions resulting from the reprocessing of spent nuclear fuels
Wei et al. Development of the MAREC process for HLLW partitioning using a novel silica-based CMPO extraction resin
JP5922193B2 (en) NOVEL ADSORBENT, METHOD FOR PRODUCING THE SAME AND USE THEREOF
US5508010A (en) Method of separating fission molybdenum
EP0118493A1 (en) Fixation of anionic materials with a complexing agent.
Mathur et al. Extraction chromatographic separation of minor actinides from PUREX high-level wastes using CMPO
JP3366485B2 (en) Method for separation and recovery of platinum group elements and technetium
US4460547A (en) Separating actinide ions from aqueous, basic, carbonate containing solutions using mixed tertiary and quaternary amino anion exchange resins
Pokhitonov et al. Palladium in irradiated fuel. Are there any prospects for recovery and application?
Nogami et al. Ion-exchange selectivity of tertiary pyridine-type anion-exchange resin for treatment of spent nuclear fuels
JP3889322B2 (en) Separation of americium and curium from heavy rare earth elements
JP3611658B2 (en) Methods for separating and recovering platinum group elements
Lee et al. Ion exchange characteristics of palladium and rhodium from a simulated radioactive liquid waste
Lee et al. Ion exchange characteristics of palladium from nitric acid solution by anion exchangers
JP2003215292A (en) Method for separating and recovering americium, curium, and rare-earth element
Lee et al. Ion exchange characteristics of rhodium and ruthenium from a simulated radioactive liquid waste
JPH0631803B2 (en) A method for recovering the valuable material uranium in an extractive reprocessing process for spent nuclear fuel
JP3049320B1 (en) Plutonium separation and recovery method
US7101484B2 (en) Sr-90/Y-90 radionuclide generator for production of high-quality Y-90 solution
Venkatesan et al. Sorption of radioactive strontium on a silica-titania mixed hydrous oxide gel
Collins et al. Chemical process engineering in the transuranium processing plant
US3458290A (en) Process for the recovery of metal values by selective fixing in an aqueous phase
Irving Separation techniques used in radiochemical procedures

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees