JPH08269124A - High-rigidity propylene-ethylene block copolymer composition - Google Patents

High-rigidity propylene-ethylene block copolymer composition

Info

Publication number
JPH08269124A
JPH08269124A JP10010695A JP10010695A JPH08269124A JP H08269124 A JPH08269124 A JP H08269124A JP 10010695 A JP10010695 A JP 10010695A JP 10010695 A JP10010695 A JP 10010695A JP H08269124 A JPH08269124 A JP H08269124A
Authority
JP
Japan
Prior art keywords
mfr
propylene
ethylene
polymerization
block copolymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10010695A
Other languages
Japanese (ja)
Other versions
JP3482732B2 (en
Inventor
Takahiro Oka
隆弘 岡
Shunji Kawazoe
俊次 川添
Yasuhiro Yamane
康宏 山根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JNC Corp
Original Assignee
Chisso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chisso Corp filed Critical Chisso Corp
Priority to JP10010695A priority Critical patent/JP3482732B2/en
Priority to KR1019950020056A priority patent/KR100341040B1/en
Priority to EP95112296A priority patent/EP0700943B1/en
Priority to DE69502784T priority patent/DE69502784T2/en
Priority to US08/516,089 priority patent/US5672658A/en
Priority to CZ952273A priority patent/CZ227395A3/en
Publication of JPH08269124A publication Critical patent/JPH08269124A/en
Application granted granted Critical
Publication of JP3482732B2 publication Critical patent/JP3482732B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE: To obtain a propylene-ethylene block copolymer, capable of satisfying specific conditions and useful for moldings having high impact resistance, etc., from a two-stage process by using a specified catalyst. CONSTITUTION: This composition is obtained by (A) homopolymerizing propylene in the first stage and providing the homopolymer in an amount of 60-95wt.% based on the total weight and then (B) copolymerizing propylene with ethylene in the second stage and affording a propylene-ethylene copolymer having 30-80wt.% ethylene content in an amount of 5-40wt.% based on the total weight. The maximal value [MFR (h)] and the minimal value [MFR (1)] of the polymer in the stage (A) have the relationship of formula I and the isotactic pentad fraction of the propylene polymer in the stage (A) is >=0.96. The Mw /Mn (Q value) of the polymer in the stage (A) is <=6. The homo- and copolymerizations are carried out so that the melt flow rate [MFR (i)] of the polymer in the stage (A) and the melt flow rate [MFR (ii)] of the polymer in the stage (B) may have the relationship of formula II.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は高剛性成形用プロピレン
・エチレンブロック共重合体組成物に関する。さらに詳
しくは、本発明はなんら特別な添加剤を添加しなくとも
高剛性でかつ高耐衝撃性を有する成形品が得られる該重
合体組成物に関する。
FIELD OF THE INVENTION The present invention relates to a propylene / ethylene block copolymer composition for high rigidity molding. More specifically, the present invention relates to the polymer composition, which gives a molded article having high rigidity and high impact resistance without adding any special additive.

【0002】[0002]

【従来の技術】汎用樹脂としての結晶性ポリプロピレン
(以下ポリプロピレンということがある)は高い剛性、
硬度、引っ張り強度および耐熱性等を有する。しかしな
がら耐衝撃性が不十分であり、機械的衝撃を受け若しく
は低温で使用される成形品には使用され難い問題点があ
る。また、他の汎用樹脂例えばABS樹脂若しくはハイ
インパクトポリスチレン樹脂と比較した場合、耐衝撃性
のみならず剛性も劣る。ポリプロピレンの具体的用途ひ
いては需要拡大のためには、前述の耐衝撃性のみなら
ず、剛性を今一段と向上させることが要望される。立体
規則性触媒を用いて製造される結晶性ポリプロピレン
は、剛性、耐熱性などに優れた性質を有する反面、衝撃
強度、特に低温における衝撃強度が低いという問題点が
あり、実用上その利用範囲が制約されていた。そこでこ
の問題点を解決する方法として、プロピレンを他のα−
オレフィン例えばエチレンとランダム若しくはブロック
共重合させる方法が知られている。得られたランダム共
重合体はポリプロピレンと比較して特に低温衝撃性の改
良が不十分であり、エチレン含量を高めるに伴って剛
性、強度、耐熱性等が急激に低下する。同じくブロック
共重合体はポリプロピレンと比較して低温衝撃性は著し
く向上する反面、剛性、硬度および耐熱性等は低下す
る。ブロック共重合体の上述の欠点を改善する方法が数
多く提案されている。
2. Description of the Related Art Crystalline polypropylene (hereinafter sometimes referred to as polypropylene) as a general-purpose resin has high rigidity,
It has hardness, tensile strength and heat resistance. However, the impact resistance is insufficient, and there is a problem that it is difficult to use for a molded article that is subjected to mechanical impact or is used at a low temperature. In addition, when compared with other general-purpose resins such as ABS resin or high-impact polystyrene resin, not only impact resistance but also rigidity is poor. For specific applications of polypropylene and further for expanding demand, it is required to further improve not only the above-mentioned impact resistance but also rigidity. Crystalline polypropylene produced by using a stereoregular catalyst has excellent properties such as rigidity and heat resistance, but on the other hand, it has a problem that impact strength, especially impact strength at low temperature, is low. It was restricted. Therefore, as a method for solving this problem, propylene is used as another α-
A method of random or block copolymerization with an olefin such as ethylene is known. The obtained random copolymer has insufficient improvement in low-temperature impact resistance as compared with polypropylene, and its rigidity, strength, heat resistance and the like are rapidly lowered as the ethylene content is increased. Similarly, the block copolymer has significantly improved low-temperature impact resistance as compared with polypropylene, but has reduced rigidity, hardness, heat resistance and the like. Many methods have been proposed to improve the above-mentioned drawbacks of block copolymers.

【0003】例えば、特開昭50−115296号、同
52−4588号、同53−35879号においては、
プロピレンとエチレンのブロック共重合を多段で実施す
る方法を提案している。また、例えば、特公昭47−8
207号、同49−13231号、同49−13514
号は、触媒に第3成分を添加する改良方法を提案してい
る。さらに特開昭55−764号、同54−15209
5号、同53−29390号、特公昭55−8011号
は特定の触媒を用いる改良方法を提案している。しかし
ながら、前記諸提案は、ポリプロピレン(単独重合体)
に比較して得られるブロック共重合体の剛性の低下の程
度を可能な限り少なくしようとする緩和の為の技術であ
り、未だ該単独重合体と同等以上の剛性値を可能にする
には至っていない。また、特開昭58−201816号
にポリプロピレン同等以上の剛性を有する高剛性プロピ
レン・エチレンブロック共重合体の製造法が提案されて
いるが、耐衝撃性の改善が不十分であった。
For example, in JP-A Nos. 50-115296, 52-4588 and 53-35879,
A method for carrying out block copolymerization of propylene and ethylene in multiple stages is proposed. Also, for example, Japanese Patent Publication No. 47-8
No. 207, No. 49-13231, No. 49-13514
No. 1 proposes an improved method of adding a third component to the catalyst. Further, JP-A-55-764 and 54-15209
No. 5, No. 53-29390, and Japanese Patent Publication No. 55-8011 propose an improved method using a specific catalyst. However, the above proposals are based on polypropylene (homopolymer).
It is a technique for relaxation to reduce the degree of decrease in rigidity of the block copolymer obtained as compared with the above method, and it is still possible to achieve a rigidity value equal to or higher than that of the homopolymer. Not in. Further, Japanese Patent Application Laid-Open No. 58-201816 proposes a method for producing a high-rigidity propylene / ethylene block copolymer having a rigidity equal to or higher than that of polypropylene, but the impact resistance was not sufficiently improved.

【0004】前述の公知技術の現状に鑑み特殊な添加剤
を加える事なしに高剛性でかつ高耐衝撃性の成形品を得
ることの可能なプロピレン・エチレンブロック共重合体
を発明すべく鋭意検討した結果、以下に述べる限定され
た条件で製造することにより該共重合体が得られること
を見出し本発明に至った。以上の説明から明らかなよう
に本発明の目的は、高剛性でかつ高耐衝撃性の成形品に
適したプロピレン・エチレンブロック共重合体組成物を
提供することにある。
In view of the above-mentioned state of the art, the inventors have earnestly studied to invent a propylene / ethylene block copolymer capable of obtaining a molded article having high rigidity and high impact resistance without adding a special additive. As a result, they have found that the copolymer can be obtained by the production under the limited conditions described below, and completed the present invention. As is apparent from the above description, an object of the present invention is to provide a propylene / ethylene block copolymer composition suitable for molded articles having high rigidity and high impact resistance.

【0005】[0005]

【課題を解決するための手段】本発明は下記1)〜5)
より構成される。 1)チタン、マグネシウム、ハロゲン及び多価カルボン
酸エステルを必須成分として含有する固体触媒成分
(A)と有機アルミニウム化合物(B)と一般式R4 x
5 ySi(OR6z (式中R4 ,R6 は炭化水素基、R
5 は炭化水素基あるいはヘテロ原子を含む炭化水素基を
しめし、x+y+z=4,0≦x≦2,1≦y≦3,1
≦z≦3である。)で表される有機ケイ素化合物(C)
を組み合わせた触媒系を用い、第1段階として2槽以上
の重合器を直列に用いた重合工程(I)でプロピレンの
単独重合を実施して全重量の60〜95重量%を製造
し、第2段階として1槽以上の重合器を用いた重合工程
(II)でプロピレンとエチレンの共重合を実施してエチ
レンの含有量が30〜80重量%のプロピレン・エチレ
ン共重合部を全重量の5〜40重量%製造してなるプロ
ピレン・エチレンブロック共重合体において、重合工程
(I)の各槽で得られる重合体のメルトフローレートの
最高値(以下MFR(h)と言う)と最小値(MFR
(l)と言う)とが 0.1≦Log(MFR(h) /MFR(l))≦1 …(1) なる関係を有し、重合工程(I)で得られたプロピレン
重合体のアイソタクチックペンタッド分率(P)が0.
96以上、Mw/Mn(Q値)が6以下であり、かつ、
重合工程(I)で得られる重合体のメルトフローレート
(以下MFR(i )と言う)と重合工程(II)で得られ
る重合体のメルトフローレート(以下MFR(ii)とい
う)とが 3≦Log(MFR(i)/MFR(ii))≦7 …(2) なる関係を有する高剛性プロピレン・エチレンブロック
共重合体組成物。 2)最終的に得られる重合体のMFRが0.1以上10
0以下である前記第1項に記載の高剛性プロピレン・エ
チレンブロック共重合体組成物。 3)炭化水素溶媒中で重合された前記1)に記載の高剛
性プロピレン・エチレンブロック共重合体組成物。 4)前記1)に記載のMFR(h)とMFR(1)とが 0.2≦Log(MFR(h)/MFR(1))≦0.
5 となる関係を有する前記1)に記載の高剛性プロピレン
・エチレンブロック共重合体組成物。 5)前記1)に記載のMFR(i)とMFR(ii)と
が 4≦Log(MFR(i)/MFR(ii))≦6 となる関係を有する前記1)に記載の高剛性プロピレン
・エチレンブロック共重合体組成物。
The present invention includes the following 1) to 5).
It is composed of 1) A solid catalyst component (A) containing titanium, magnesium, halogen and a polycarboxylic acid ester as essential components, an organoaluminum compound (B) and a general formula R 4 x R
5 y Si (OR 6 ) z (wherein R 4 and R 6 are hydrocarbon groups, R
5 represents a hydrocarbon group or a hydrocarbon group containing a hetero atom, and x + y + z = 4,0 ≦ x ≦ 2,1 ≦ y ≦ 3,1
≦ z ≦ 3. ) An organosilicon compound (C) represented by
As a first step, propylene homopolymerization is carried out in a polymerization step (I) using two or more polymerization vessels in series to produce 60 to 95% by weight of the total weight. Copolymerization of propylene and ethylene was carried out in a polymerization step (II) using one or more tanks as two stages, and the propylene / ethylene copolymerization part having an ethylene content of 30 to 80% by weight was added to 5% of the total weight. In the propylene / ethylene block copolymer produced by up to 40% by weight, the maximum value (hereinafter referred to as MFR (h)) and the minimum value (hereinafter referred to as MFR (h)) of the melt flow rate of the polymer obtained in each tank of the polymerization step (I). MFR
(Referred to as (l)) has a relationship of 0.1 ≦ Log (MFR (h) / MFR (l)) ≦ 1 (1), and the iso of the propylene polymer obtained in the polymerization step (I). The tactic pentad fraction (P) is 0.
96 or more, Mw / Mn (Q value) is 6 or less, and
The melt flow rate of the polymer obtained in the polymerization step (I) (hereinafter referred to as MFR (i)) and the melt flow rate of the polymer obtained in the polymerization step (II) (hereinafter referred to as MFR (ii)) are 3 ≦. A high-rigidity propylene / ethylene block copolymer composition having a relationship of Log (MFR (i) / MFR (ii)) ≦ 7 (2). 2) MFR of the polymer finally obtained is 0.1 or more and 10
The high-rigidity propylene / ethylene block copolymer composition according to the above item 1, which is 0 or less. 3) The high-rigidity propylene / ethylene block copolymer composition as described in 1) above, which is polymerized in a hydrocarbon solvent. 4) MFR (h) and MFR (1) described in 1) above are 0.2 ≦ Log (MFR (h) / MFR (1)) ≦ 0.
The high-rigidity propylene / ethylene block copolymer composition according to 1), which has a relationship of 5. 5) The high-rigidity propylene according to 1), wherein the MFR (i) and MFR (ii) described in 1) above have a relationship of 4 ≦ Log (MFR (i) / MFR (ii)) ≦ 6. Ethylene block copolymer composition.

【0006】本発明においては、重合触媒として少なく
ともマグネシウム原子、チタン原子、ハロゲン原子、及
び多価カルボン酸エステルを含む固体触媒成分(A)
と、有機アルミニウム化合物(B)と電子供与性化合物
(C)を用いて得られる高立体規則性触媒系を用いる
が、これら触媒について特に制限はなく、公知の種々の
高立体規則性のポリプロピレンを与える触媒系を使用す
ることが可能である。このような固体触媒成分(A)を
製造する方法としては、例えば特開昭50−10838
5号、同50−126590号、同51−20297
号、同51−28189号、同51−64586号、同
51−92885号、同51−136625号、同52
−87489号、同52−100596号、同52−1
47688号、同52−104593号、同53−25
80号、同53−40093号、同53−40094
号、同55−135102号、同55−135103
号、同55−152710号、同56−811号、同5
6−11908号、同56−18606号、同58−8
3006号、同58−138705号、同58−138
706号、同58−138707号、同58−1387
08号、同58−138709号、同58−13871
0号、同58−138715号、同60−23404
号、同61−21109号、同61−37802号、同
61−37803号、同62−104810号、同62
−104811号、同62−104812号、同62−
104813号、同63−54405号等の各公報に開
示された方法に準じて製造することができる。
In the present invention, a solid catalyst component (A) containing at least a magnesium atom, a titanium atom, a halogen atom, and a polyvalent carboxylic acid ester as a polymerization catalyst.
And a highly stereoregular catalyst system obtained by using the organoaluminum compound (B) and the electron donating compound (C) is used, but the catalyst is not particularly limited, and various known highly stereoregular polypropylenes can be used. It is possible to use a catalyst system that gives. A method for producing such a solid catalyst component (A) is, for example, JP-A-50-10838.
5, No. 50-126590, No. 51-20297.
No. 51, No. 51-28989, No. 51-64586, No. 51-92885, No. 51-136625, No. 52.
-87489, 52-100596, 52-1
47688, 52-104593, 53-25.
No. 80, No. 53-40093, No. 53-40094
No. 55-135102, No. 55-135103
No. 55, No. 55-152710, No. 56-811, No. 5
6-11908, 56-18606, 58-8
No. 3006, No. 58-138705, No. 58-138
706, 58-138707 and 58-1387.
08, 58-138709, 58-13871.
No. 0, No. 58-138715, No. 60-23404
No. 61, No. 61-21109, No. 61-37802, No. 61-37803, No. 62-104810, No. 62.
-104811, 62-104812, 62-
It can be manufactured according to the method disclosed in each publication such as 104813 and 63-54405.

【0007】上記固体成分(A)において使用される多
価カルボン酸エステルとしてはその具体例として、フタ
ル酸、マレイン酸、置換マロン酸などと炭素数2以上の
アルコールとのエステルである。本発明において上記
(A)に用いられるマグネシウム化合物は種々あるが、
還元能を有するまたは有しないマグネシウム化合物が用
いられる。前者の例としては、ジメチルマグネシウム、
ジエチルマグネシウム、ジプロピルマグネシウム、ジブ
チルマグネシウム、エチル塩化マグネシウム、プロピル
塩化マグネシウム、ブチル塩化マグネシウムなどがあげ
られる。また後者の例としては、塩化マグネシウム、臭
化マグネシウム、ヨウ化マグネシウムのようなハロゲン
化マグネシウム、メトキシ塩化マグネシウム、エトキシ
塩化マグネシウムのようなアルコキシ塩化マグネシウ
ム、エトキシマグネシウム、イソプロポキシマグネシウ
ム、ブトキシマグネシウムのようなアルコキシマグネシ
ウム、ラウリン酸マグネシウム、ステアリン酸マグネシ
ウムのようなカルボン酸マグネシウムなどを挙げること
ができる。これらの中で特に好ましい化合物はハロゲン
化マグネシウム、アルコキシ塩化マグネシウム、アルコ
キシマグネシウムである。
Specific examples of the polyvalent carboxylic acid ester used in the solid component (A) are esters of phthalic acid, maleic acid, substituted malonic acid and the like with an alcohol having 2 or more carbon atoms. In the present invention, there are various magnesium compounds used in the above (A),
A magnesium compound with or without reducing ability is used. Examples of the former include dimethylmagnesium,
Examples thereof include diethyl magnesium, dipropyl magnesium, dibutyl magnesium, ethyl magnesium chloride, propyl magnesium chloride and butyl magnesium chloride. Examples of the latter include magnesium halides such as magnesium chloride, magnesium bromide and magnesium iodide, magnesium methoxy chloride, alkoxy magnesium chloride such as ethoxy magnesium chloride, ethoxy magnesium, isopropoxy magnesium and butoxy magnesium. Mention may be made of alkoxy magnesium, magnesium laurate, magnesium carboxylates such as magnesium stearate and the like. Of these, particularly preferred compounds are magnesium halide, alkoxy magnesium chloride and alkoxy magnesium.

【0008】本発明において固体触媒成分(A)に用い
られるチタン化合物としては、通常Ti(OR)A
4-A (Rは炭化水素基、Xはハロゲン、0≦A≦4)で
しめされる化合物が最適である。具体的には、TiCl
4 ,TiBr4 などのテトラハロゲン化チタン、Ti
(OCH3 )Cl3 ,Ti(OC25 )Cl3 などの
トリハロゲン化アルコキシチタン、Ti(OCH32
Cl2 ,Ti(OC252 Cl2 などのジハロゲン
化ジアルコキシチタン、Ti(OCH33 Cl,Ti
(OC253 Clなどのモノハロゲン化トリアルコ
キシチタン、Ti(OCH34 ,Ti(OC25
4 などのテトラアルコキシチタンであり、特に好ましい
ものはTiCl4 である。固体触媒成分(A)の調製に
おいて上記チタン化合物、マグネシウム化合物及び多価
カルボン酸エステルの他、更に必要に応じて他の電子供
与体例えばアルコール、エーテル、フェノール、ケイ素
化合物、アルミニウム化合物などを共存させることがで
きる。
The titanium compound used as the solid catalyst component (A) in the present invention is usually Ti (OR) A X.
A compound represented by 4-A (R is a hydrocarbon group, X is a halogen, and 0≤A≤4) is most suitable. Specifically, TiCl
4 , Titanium tetrahalide such as TiBr 4 , Ti
Trihalogenated alkoxytitanium such as (OCH 3 ) Cl 3 and Ti (OC 2 H 5 ) Cl 3 , Ti (OCH 3 ) 2
Cl 2 , Ti (OC 2 H 5 ) 2 Cl 2 and other dihalogenated dialkoxy titanium, Ti (OCH 3 ) 3 Cl, Ti
Monohalogenated trialkoxy titanium such as (OC 2 H 5 ) 3 Cl, Ti (OCH 3 ) 4 , Ti (OC 2 H 5 )
Tetraalkoxytitanium such as 4 , and particularly preferred is TiCl 4 . In the preparation of the solid catalyst component (A), other electron donors such as alcohol, ether, phenol, silicon compound, aluminum compound and the like are made to coexist as necessary, in addition to the above titanium compound, magnesium compound and polyvalent carboxylic acid ester. be able to.

【0009】本発明において使用される有機アルミニウ
ム化合物(B)としては、一般式がAlR2 m3 n
3-(m+n) (式中R2 及びR3 は炭化水素基またはアルコ
キシ基を示し、Xはハロゲンを示し、mおよびnは0≦
m≦3、0≦n≦3、1.5≦m+n≦3の任意の数を
示す。)で表される有機アルミニウム化合物を用いるこ
とができる。具体例としては、トリメチルアルミニウ
ム、トリエチルアルミニウム、トリ−n−プロピルアル
ミニウム、トリ−n−ブチルアルミニウム、トリ−i−
ブチルアルミニウム、ジエチルアルミニウムクロライ
ド、ジn−プロピルアルミニウムモノクロライド、ジエ
チルアルミニウムアイオダイド、メチルアルミニウムセ
スキクロライド、エチルアルミニウムセスキクロライ
ド、エトキシジエチルアルミニウムなどをあげることが
できる。これら有機アルミニウム化合物(B)は単独あ
るいは2種類以上を混合して使用することができる。
The organoaluminum compound (B) used in the present invention has a general formula of AlR 2 m R 3 n X.
3- (m + n) (wherein R 2 and R 3 represent a hydrocarbon group or an alkoxy group, X represents a halogen, and m and n are 0 ≦
An arbitrary number of m ≦ 3, 0 ≦ n ≦ 3, and 1.5 ≦ m + n ≦ 3 is shown. ) An organoaluminum compound represented by Specific examples include trimethyl aluminum, triethyl aluminum, tri-n-propyl aluminum, tri-n-butyl aluminum, and tri-i-.
Examples thereof include butyl aluminum, diethyl aluminum chloride, di-n-propyl aluminum monochloride, diethyl aluminum iodide, methyl aluminum sesquichloride, ethyl aluminum sesquichloride, and ethoxydiethyl aluminum. These organoaluminum compounds (B) can be used alone or in combination of two or more.

【0010】本発明において使用される電子供与体成分
(C)としては、一般式R4 x5 ySi(OR6z (式
中R4 ,R6 は炭化水素基、R5 は炭化水素基あるいは
ヘテロ原子を含む炭化水素基をしめし、x+y+z=
4,0≦x≦2,1≦y≦3,1≦z≦3である。)で
表される有機ケイ素化合物が使用できる。その具体例と
してはメチルトリメトキシシラン、メチルトリエトキシ
シラン、メチルトリプロポキシシラン、エチルトリメト
キシシラン、エチルトリエトキシシラン、エチルトリプ
ロポキシシラン、n−プロピルトリメトキシシラン、n
−プロピルトリエトキシシラン、i−プロピルトリメト
キシシラン、i−プロピルトリエトキシシラン、n−ブ
チルトリメトキシシラン、n−ブチルトリエトキシシラ
ン、i−ブチルトリメトキシシラン、i−ブチルトリエ
トキシシラン、t−ブチルトリメトキシシラン、t−ブ
チルトリエトキシシラン、n−ペンチルトリメトキシシ
ラン、n−ペンチルトリエトキシシラン、ネオペンチル
トリメトキシシラン、ネオペンチルトリエトキシシラ
ン、ヘキサデシルトリメトキシシラン、ヘキサデシルト
リエトキシシラン、ジメチルジメトキシシラン、ジメチ
ルジエトキシシラン、ジエチルジメトキシシラン、ジエ
チルジエトキシシラン、ジ−n−プロピルジメトキシシ
ラン、ジ−i−プロピルジメトキシシラン、ジ−n−ブ
チルジメトキシシラン、ジ−i−ブチルジメトキシシラ
ン、ジ−t−ブチルジメトキシシラン、ジ−n−ペンチ
ルジメトキシシラン、ジネオペンチルジメトキシシラ
ン、フェニルトリメトキシシラン、フェニルトリエトキ
シシラン、ジフェニルジメトキシシラン、ジフェニルジ
エトキシシラン、シクロヘキシルトリメトキシシラン、
シクロヘキシルトリエトキシシラン、ジシクロヘキシル
ジメトキシシラン、ジシクロヘキシルジエトキシシラ
ン、3−メルカプトプロピルメチルジメトキシシラン、
3−イソシアナトプロピルトリエトキシシシラン、2−
(3−シクロヘキセニル)エチルトリメトキシシラン等
を例示することができる。これら有機ケイ素化合物は単
独あるいは2種類以上を任意の割合で混合し使用するこ
とができる。この中で特に好ましい有機ケイ素化合物は
ジ−i−プロピルジメトキシシラン、t−ブチルトリエ
トキシシラン、t−ブチルトリメトキシシラン、i−ブ
チルトリメトキシシラン、シクロヘキシルトリメトキシ
シランである。有機ケイ素化合物(C)の好ましい添加
量は該有機アルミニウム化合物(B)に対しモル比
(B)/(C)=1〜15で、添加量が少ないと剛性の
向上が不十分で、多過ぎると触媒活性が低下し実用的で
ない。
The electron donor component (C) used in the present invention is represented by the general formula R 4 x R 5 y Si (OR 6 ) z (wherein R 4 and R 6 are hydrocarbon groups, and R 5 is carbonized). Indicating a hydrogen group or a hydrocarbon group containing a hetero atom, x + y + z =
4, 0 ≦ x ≦ 2, 1 ≦ y ≦ 3, 1 ≦ z ≦ 3. ) Organosilicon compounds represented by Specific examples thereof include methyltrimethoxysilane, methyltriethoxysilane, methyltripropoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane, ethyltripropoxysilane, n-propyltrimethoxysilane, n.
-Propyltriethoxysilane, i-propyltrimethoxysilane, i-propyltriethoxysilane, n-butyltrimethoxysilane, n-butyltriethoxysilane, i-butyltrimethoxysilane, i-butyltriethoxysilane, t- Butyltrimethoxysilane, t-butyltriethoxysilane, n-pentyltrimethoxysilane, n-pentyltriethoxysilane, neopentyltrimethoxysilane, neopentyltriethoxysilane, hexadecyltrimethoxysilane, hexadecyltriethoxysilane, Dimethyldimethoxysilane, dimethyldiethoxysilane, diethyldimethoxysilane, diethyldiethoxysilane, di-n-propyldimethoxysilane, di-i-propyldimethoxysilane, di-n-butyldimethoxysilane , Di-i-butyldimethoxysilane, di-t-butyldimethoxysilane, di-n-pentyldimethoxysilane, dineopentyldimethoxysilane, phenyltrimethoxysilane, phenyltriethoxysilane, diphenyldimethoxysilane, diphenyldiethoxysilane, Cyclohexyltrimethoxysilane,
Cyclohexyltriethoxysilane, dicyclohexyldimethoxysilane, dicyclohexyldiethoxysilane, 3-mercaptopropylmethyldimethoxysilane,
3-isocyanatopropyltriethoxysilane, 2-
(3-Cyclohexenyl) ethyltrimethoxysilane etc. can be illustrated. These organosilicon compounds can be used alone or in admixture of two or more kinds at any ratio. Among these, particularly preferred organosilicon compounds are di-i-propyldimethoxysilane, t-butyltriethoxysilane, t-butyltrimethoxysilane, i-butyltrimethoxysilane and cyclohexyltrimethoxysilane. The preferable addition amount of the organosilicon compound (C) is a molar ratio (B) / (C) of 1 to 15 with respect to the organoaluminum compound (B). If the addition amount is small, the improvement of rigidity is insufficient and too large. And the catalytic activity is reduced, which is not practical.

【0011】前記固体触媒成分(A)は、ついで有機ア
ルミニウム化合物(B)および前述の有機ケイ素化合物
(C)と組み合わせて触媒としてプロピレンの重合に用
いるか、更に好ましくは、α−オレフィンを反応させて
予備活性化した触媒として用いる。予備活性化は固体触
媒成分(A)中のチタン1モルに対して有機アルミニウ
ム(B)を0.3〜20モルを用い、0〜50℃で1分
〜20時間、α−オレフィンを0.1〜10モル、好ま
しくは0.3〜3モルを反応させる事が望ましい。予備
活性化のためのα−オレフィンの反応は脂肪族または芳
香族炭化水素溶媒中でも、また溶媒を用いないで液化プ
ロピレン、液化ブテン−1等の液化α−オレフィン中で
も行え、エチレン、プロピレン等を気相で反応させるこ
ともできる。また、予め得られたα−オレフィン重合体
または水素を共存させることもできる。さらに、予備活
性化に於いて予め有機シラン化合物(C)を添加するこ
ともできる。予備活性化するために用いるα−オレフィ
ンは、エチレン、プロピレン、ブテン−1、ヘキセン−
1、ヘプテン−1、その他の直鎖モノオレフィン類、4
−メチル−ペンテン−1、2−メチル−ペンテン−1、
3−メチル−ブテン−1等の枝鎖モノオレフィン類、ス
チレン等である。これらのα−オレフィンは重合対象で
あるα−オレフィンを混合して用いても良い。予備活性
化終了後は、溶媒、有機アルミニウム化合物および未反
応α−オレフィン、有機アルミニウム化合物をろ別、デ
カンテーションで除いたり、乾燥して粉粒体として用い
ることもできる。
The solid catalyst component (A) is then used in combination with the organoaluminum compound (B) and the above-mentioned organosilicon compound (C) as a catalyst for the polymerization of propylene, or more preferably, it is reacted with an α-olefin. Used as a pre-activated catalyst. For pre-activation, 0.3 to 20 mol of organoaluminum (B) is used with respect to 1 mol of titanium in the solid catalyst component (A), 0 to 50 ° C. for 1 minute to 20 hours, and the α-olefin is adjusted to 0. It is desirable to react 1 to 10 mol, preferably 0.3 to 3 mol. The reaction of α-olefin for preactivation can be performed in an aliphatic or aromatic hydrocarbon solvent, or in a liquefied α-olefin such as liquefied propylene or liquefied butene-1 without using a solvent, and vaporized ethylene, propylene or the like. It is also possible to react in phases. Further, the α-olefin polymer or hydrogen obtained in advance can be made to coexist. Furthermore, the organic silane compound (C) can be added in advance in the preliminary activation. The α-olefin used for preactivating is ethylene, propylene, butene-1, hexene-
1, heptene-1, other linear monoolefins, 4
-Methyl-pentene-1, 2-methyl-pentene-1,
Branched chain monoolefins such as 3-methyl-butene-1, styrene and the like. These α-olefins may be used as a mixture of α-olefins to be polymerized. After the completion of the preliminary activation, the solvent, the organoaluminum compound and the unreacted α-olefin and the organoaluminum compound can be filtered off, removed by decantation, or dried to be used as a powder or granular material.

【0012】このようにして得られた予備活性化された
触媒は、プロピレンをn−ヘキサン、n−ヘプタン、n
−オクタン、ベンゼン、トルエン等の炭化水素溶媒中で
行うスラリー重合、または液化プロピレン中で行うバル
ク重合および気相重合で行うことができる。スラリー重
合の場合、通常重合温度は20〜90℃、好ましくは5
0〜80℃であり、重合圧力は0〜5MPaで実施させ
る。また気相重合の場合、通常重合温度は20〜150
℃であり、重合圧力は0.2〜5MPaで実施される。
分子量コントロールのために通常水素が使用され、最終
的に得られる重合体のMFRが0.1〜1000の範囲
で実施される。
The pre-activated catalyst thus obtained contains propylene as n-hexane, n-heptane, n
-Slurry polymerization carried out in a hydrocarbon solvent such as octane, benzene or toluene, or bulk polymerization and gas phase polymerization carried out in liquefied propylene. In the case of slurry polymerization, the polymerization temperature is usually 20 to 90 ° C., preferably 5
It is 0 to 80 ° C., and the polymerization pressure is 0 to 5 MPa. In the case of gas phase polymerization, the polymerization temperature is usually 20 to 150.
And the polymerization pressure is 0.2 to 5 MPa.
Hydrogen is usually used for controlling the molecular weight, and MFR of the polymer finally obtained is carried out in the range of 0.1 to 1000.

【0013】重合工程(I)の重合量は最終的に得られ
るプロピレン・エチレンブロック共重合体組成物全量に
対し60〜95重量%である。重合量が上記範囲より少
なすぎる場合は製品の剛性面の低下が発生し、多すぎる
場合は低温衝撃強度の改善が不十分となる。重合工程
(I)の重合は、直列に連結した重合器2台以上を用い
て実施し、各槽で得られる重合体のメルトフローインデ
ックスの最高値(MFR(h))と最小値(MFR
(l))との関係は、 0.1≦Log(MFR(h)/MFR(l))≦1 …(1) が好ましく、より好ましくは 0.2≦Log(MFR(h)/MFR(l))≦0.5 …(3) である。該MFRの比が上記式(1)の範囲より小さい
場合は製品の剛性面の低下が発生し、大きい場合は最終
的に得られるプロピレン・エチレンブロック共重合体組
成物の引張り伸度と対衝撃性が低下し好ましくない。ま
た、重合工程(I)で得られる重合体のアイソタクチッ
クペンタッド分率(P)は0.96以上、ゲルパーミネ
ーションクロマトグラフィー(GPC)で測定した重量
平均分子量(Mw)と数平均分子量(Mn)の比(Q
値)が6以下である。該アイソタクチックペンタッド分
率(P)が本発明より小さい場合は成形品の剛性が低下
し、該Q値が本発明より大きい場合は成形品の耐衝撃性
が低下し好ましくない。
The amount of polymerization in the polymerization step (I) is 60 to 95% by weight based on the total amount of the propylene / ethylene block copolymer composition finally obtained. If the amount of polymerization is less than the above range, the rigidity of the product will be deteriorated, and if it is too large, the improvement of low temperature impact strength will be insufficient. The polymerization in the polymerization step (I) is carried out using two or more polymerization vessels connected in series, and the maximum (MFR (h)) and minimum (MFR) of the melt flow index of the polymer obtained in each tank are obtained.
The relationship with (l)) is preferably 0.1 ≦ Log (MFR (h) / MFR (l)) ≦ 1 (1), and more preferably 0.2 ≦ Log (MFR (h) / MFR ( l)) ≦ 0.5 (3). When the MFR ratio is smaller than the range of the above formula (1), the rigidity of the product is deteriorated, and when it is large, the tensile elongation and impact resistance of the propylene / ethylene block copolymer composition finally obtained. It is not preferable because the property deteriorates. Further, the isotactic pentad fraction (P) of the polymer obtained in the polymerization step (I) is 0.96 or more, the weight average molecular weight (Mw) and the number average molecular weight measured by gel permeation chromatography (GPC). Ratio of (Mn) (Q
Value) is 6 or less. When the isotactic pentad fraction (P) is smaller than that of the present invention, the rigidity of the molded article is lowered, and when the Q value is larger than the present invention, the impact resistance of the molded article is unfavorably lowered.

【0014】重合工程(II)は、通常重合温度が20〜
80℃、好ましくは40〜70℃、圧力0〜5MPaで
エチレンとプロピレンを共重合させることにより実施さ
れる。エチレンとプロピレンとの重合器への供給方法な
らびに重合形式は限定されない。分子量コントロールの
ため通常水素が用いられ、気相中の濃度で0.1〜10
モル%で実施される。重合工程(II)の重合は、1台の
重合器又は連結された2台の重合器を用いて実施する。
重合工程(II)で重合した部分中のエチレン含有量は3
0〜80重量%、より好ましくは40〜70重量%であ
る。該エチレン含有量が上記範囲外の場合は得られる重
合体の剛性、耐衝撃性が劣り好ましくない。重合工程
(II)の重合量は最終的に得られる重合体全量に対して
5〜40重量%である。エチレン、プロピレンに更に他
のα−オレフィン、非共役ジエンなども併用してもよ
い。重合工程(I)で得られる重合体のMFR(i)と
重合工程(II)で得られる重合体のMFR(ii)の関係
は 3≦Log(MFR(i)/MFR(ii))≦7 …(2) が好ましく、より好まくは 4≦Log(MFR(i)/MFR(ii))≦6 …(4) である。MFR(i)は、重合工程(I)の重合体のみ
実測値であり、MFR(ii)は第2段階終了後のMFR
実測値{MFR(i+ii)とする}と重合工程(I)の
重合体分率(W1)と重合工程(II)の重合体分率(W
2)からの下式(5)、(6)による計算値である。 LogMFR(T)=W1×LogMFR(i)+W2×LogMFR(ii) …(5) W1+W2=1 …(6) Log(MFR(i)/MFR(ii))が上記式(2)
の範囲外の場合は得られる重合体の耐衝撃性、引張り伸
度が劣り好ましくない。最終的に得られる重合体のMF
Rは0.1〜100の範囲が好ましく、より好ましくは
1〜80の範囲である。該MFRが本発明より小さい場
合は成形性が低下し、該MFRが本発明より大きい場合
は耐衝撃性が低下し好ましくない。
In the polymerization step (II), the polymerization temperature is usually 20 to
It is carried out by copolymerizing ethylene and propylene at 80 ° C., preferably 40 to 70 ° C. and a pressure of 0 to 5 MPa. The method of supplying ethylene and propylene to the polymerization vessel and the polymerization mode are not limited. Hydrogen is usually used to control the molecular weight, and the concentration in the gas phase is 0.1 to 10
Carried out in mol%. The polymerization in the polymerization step (II) is carried out using one polymerization vessel or two polymerization vessels connected to each other.
The ethylene content in the portion polymerized in the polymerization step (II) is 3
It is 0 to 80% by weight, more preferably 40 to 70% by weight. When the ethylene content is out of the above range, the resulting polymer has poor rigidity and impact resistance, which is not preferable. The polymerization amount in the polymerization step (II) is 5 to 40% by weight based on the total amount of the polymer finally obtained. In addition to ethylene and propylene, other α-olefin, non-conjugated diene and the like may be used together. The relationship between the MFR (i) of the polymer obtained in the polymerization step (I) and the MFR (ii) of the polymer obtained in the polymerization step (II) is 3 ≦ Log (MFR (i) / MFR (ii)) ≦ 7. (2) is preferable, and more preferably 4 ≦ Log (MFR (i) / MFR (ii)) ≦ 6 (4). MFR (i) is the measured value only for the polymer in the polymerization step (I), and MFR (ii) is the MFR after completion of the second stage.
Measured value {MFR (i + ii)}, polymer fraction (W1) in polymerization step (I) and polymer fraction (W in polymerization step (II)
It is a value calculated by the following equations (5) and (6) from 2). LogMFR (T) = W1 × LogMFR (i) + W2 × LogMFR (ii) (5) W1 + W2 = 1 (6) Log (MFR (i) / MFR (ii)) is the above formula (2).
If it is out of the range, the resulting polymer is inferior in impact resistance and tensile elongation, which is not preferable. MF of polymer finally obtained
R is preferably in the range of 0.1 to 100, more preferably 1 to 80. When the MFR is smaller than that of the present invention, moldability is lowered, and when the MFR is larger than the present invention, impact resistance is lowered, which is not preferable.

【0015】本発明の共重合体組成物を用いて得られる
成型品の剛性、耐熱性(耐熱剛性、熱変形温度等)、寸
法安定性(成形収縮率、成型品の反り変形性等)、塗装
性及び耐磨耗性等の改善を目的として、本発明の高剛性
プロピレン・エチレンブロック共重合体組成物に無機フ
ィラーを本発明の目的を損なわない範囲で配合すること
ができ、該範囲としては、該高剛性プロピレン・エチレ
ンブロック共重合体組成物100重量部に対し該無機フ
ィラーを好ましくは0.1〜30重量部、更に好ましく
は0.1〜25重量部配合することが例示できる。該無
機フィラーとしては、タルク、炭酸カルシウム、チタン
酸カリウムウィスカー、マイカ、ガラス繊維、硫酸バリ
ウム及び硫酸マグネシウム等が例示でき、これらを単独
又は併用しても良く、該無機フィラーの中でもタルクが
好ましく、平均粒径が5μm以下、好ましくは耐衝撃性
の点で2μm以下であり、10μmを越える粒径成分が
5重量%以下、好ましくは耐衝撃性の点で1重量%以下
のタルクが更に好ましい。得られる成型品の耐衝撃性、
寸法安定性(線膨張係数、成型品の反り変形等)及び塗
装性等の改善を目的として、本発明の高剛性プロピレン
・エチレンブロック共重合体組成物に非晶性若しくは低
結晶性エチレン・α−オレフィン共重合体、ポリエチレ
ン(高密度ポリエチレン、低密度ポリエチレン、直鎖状
低密度ポリエチレン、超低密度ポリエチレン等)又はス
チレン系エラストマーを本発明の目的を損なわない範囲
で配合することができ、該範囲としては、該高剛性プロ
ピレン・エチレンブロック共重合体組成物100重量部
に対し該非晶性又は低結晶性エチレン・α−オレフィン
共重合体を好ましくは1〜20重量部、更に好ましくは
1〜10重量部配合することが例示できる。該非晶性又
は低結晶性エチレン・α−オレフィン共重合体として
は、非晶性エチレン・プロピレン共重合体及び非晶性エ
チレン・1−ブテン共重合体等が例示でき、その中でも
非晶性エチレン・α−オレフィン共重合体が好ましい。
該非晶性エチレン・α−オレフィン共重合体としては、
プロピレン含有量が20〜50重量%、好ましくは20
〜35重量%、ムーニ粘度[ML1+4(100℃)]
が5〜60、好ましくは10〜50並びにMFR(23
0℃;21.18N)が0.1〜20g/10min、
好ましくは0.5〜10g/10minの非晶性エチレ
ン・プロピレン共重合体が例示できる。また、必要に応
じて本発明の目的を損なわない範囲で、本発明の高剛性
プロピレン・エチレンブロック共重合体組成物に、酸化
防止剤、帯電防止剤、着色剤(顔料)、造核剤、スリッ
プ剤、離型剤、難燃剤、紫外線吸収剤、耐候剤、可塑
剤、ラジカル発生剤等の各種添加剤の1種以上を配合す
ることができる。
Rigidity, heat resistance (heat resistant rigidity, heat deformation temperature, etc.), dimensional stability (molding shrinkage ratio, warp deformability, etc.) of a molded product obtained by using the copolymer composition of the present invention, For the purpose of improving paintability and abrasion resistance, etc., an inorganic filler can be added to the high-rigidity propylene / ethylene block copolymer composition of the present invention within a range that does not impair the object of the present invention. Is preferably 0.1 to 30 parts by weight, more preferably 0.1 to 25 parts by weight with respect to 100 parts by weight of the high-rigidity propylene / ethylene block copolymer composition. Examples of the inorganic filler include talc, calcium carbonate, potassium titanate whiskers, mica, glass fiber, barium sulfate and magnesium sulfate, and these may be used alone or in combination. Among the inorganic fillers, talc is preferable, Talc having an average particle size of 5 μm or less, preferably 2 μm or less in terms of impact resistance, and 5% by weight or less of a particle size component exceeding 10 μm, preferably 1% by weight or less in terms of impact resistance is more preferable. Impact resistance of the obtained molded product,
In order to improve dimensional stability (coefficient of linear expansion, warpage deformation of molded products, etc.) and paintability, the high-rigidity propylene / ethylene block copolymer composition of the present invention contains amorphous or low crystalline ethylene / α. -Olefin copolymer, polyethylene (high-density polyethylene, low-density polyethylene, linear low-density polyethylene, ultra-low-density polyethylene, etc.) or styrene-based elastomer can be compounded within a range that does not impair the object of the present invention. The range is preferably 1 to 20 parts by weight, and more preferably 1 to 20 parts by weight of the amorphous or low crystalline ethylene / α-olefin copolymer with respect to 100 parts by weight of the high-rigidity propylene / ethylene block copolymer composition. It can be illustrated that 10 parts by weight are blended. Examples of the amorphous or low crystalline ethylene / α-olefin copolymer include amorphous ethylene / propylene copolymer and amorphous ethylene / 1-butene copolymer, and among them, amorphous ethylene -Α-olefin copolymers are preferred.
As the amorphous ethylene / α-olefin copolymer,
Propylene content is 20 to 50% by weight, preferably 20
~ 35 wt%, Mooney viscosity [ML1 + 4 (100 ° C)]
Is 5 to 60, preferably 10 to 50 and MFR (23
0 ° C .; 21.18 N) is 0.1 to 20 g / 10 min,
An amorphous ethylene / propylene copolymer of preferably 0.5 to 10 g / 10 min can be exemplified. Further, if necessary, the high-rigidity propylene / ethylene block copolymer composition of the present invention contains an antioxidant, an antistatic agent, a colorant (pigment), a nucleating agent, within a range that does not impair the object of the present invention. One or more kinds of various additives such as a slip agent, a release agent, a flame retardant, an ultraviolet absorber, a weather resistance agent, a plasticizer and a radical generator can be blended.

【0016】なお後述の実施例に係る諸物性の分析、測
定法などについて以下に示した。 MFR;ASTM D−1238 (単位;g/10m
in) 230℃、2.16kg荷重 アイソタクチックペンタッド分率(P);macrom
olecules 8687(1975)に基づいて測
定される。13C−NMRを使用し、ポリプロピレン分子
鎖中のペンタッド単位でのアイソタクチック分率であ
る。 平均分子量(Mn,Mw);試料を135℃のオルトジ
クロルベンゼンに溶解させ、ウォータス社製150C型
のGPC(Gel PerminationChrom
atograph)で測定した。使用カラム TSK
GEL GMH6−HT エチレン含量;赤外線吸収スペクトル法による。(単
位;重量%) 重合工程(I)と重合工程(II)の重合量比(W1,W
2);エチレン/プロピレンの反応量比を変化させた共
重合体を予め作り、これを標準サンプルとし、赤外線吸
収スペクトルで検量線を作り、重合工程(II)のエチレ
ン/プロピレン反応量比を求め、更に全ポリマー中のエ
チレン含量から計算した。(重量/重量) 曲げ弾性率;JIS K7203(単位;MPa)に準
拠。 引張強度;JIS K7113(単位;MPa)に準
拠。 引張伸度;JIS K7113(単位;%)に準拠。 HDT;JIS K7207(単位;℃)に準拠。 アイゾット衝撃強度(II);JIS K7110(単
位;J/m)に準拠。 以上に記述したように本発明は、特定の重合条件を用い
ることにより公知技術を大幅に越える効果を達成するこ
とを可能とした物であり、更に具体的に実施例により説
明するが本発明はこれに限定される物ではない。
The analysis of various physical properties and the measuring method according to the examples described below are shown below. MFR; ASTM D-1238 (unit: g / 10m
in) 230 ° C., 2.16 kg load Isotactic pentad fraction (P); macrom
olecules 8687 (1975). It is the isotactic fraction in pentad units in the polypropylene molecular chain using 13 C-NMR. Average molecular weight (Mn, Mw); Dissolve a sample in ortho-dichlorobenzene at 135 ° C., and make 150C type GPC (Gel Permeation Chrom manufactured by Waters).
Atograph). Column used TSK
GEL GMH6-HT ethylene content; by infrared absorption spectroscopy. (Unit: wt%) Polymerization ratio (W1, W) between the polymerization step (I) and the polymerization step (II)
2); Make a copolymer in which the reaction amount ratio of ethylene / propylene is changed in advance, use this as a standard sample, and make a calibration curve by infrared absorption spectrum to obtain the reaction amount ratio of ethylene / propylene in the polymerization step (II). Furthermore, it was calculated from the ethylene content in the total polymer. (Weight / weight) Flexural modulus; based on JIS K7203 (unit: MPa). Tensile strength; conforms to JIS K7113 (unit: MPa). Tensile elongation according to JIS K7113 (unit:%). HDT; conforms to JIS K7207 (unit: ° C). Izod impact strength (II); conforms to JIS K7110 (unit: J / m). As described above, the present invention makes it possible to achieve an effect far exceeding the known art by using specific polymerization conditions, and the present invention will be described in more detail with reference to Examples. It is not limited to this.

【0017】[0017]

【実施例】【Example】

実施例1 (触媒の調製〜固体チタン触媒成分の調製)150gの
マグネシウムエトキサイド、275mlの2−エチルヘ
キシルアルコール及び300mlのトルエン混合物を
0.3MPaの二酸化炭素雰囲気のもとで93℃で3時
間攪はんした後、さらに400mlのトルエンと400
mlのn−デカンを加えた。以下この溶液を炭酸マグネ
シウム溶液と称する。100mlのトルエン、30ml
のクロロベンゼン、9mlのテトラエトキシシラン、
8.5mlの四塩化チタン及び100mlのイソパール
G(平均炭素数10のイソパラフィン系炭化水素、沸点
156〜176℃)を30℃で5分間攪はんし、前記炭
酸マグネシウムを50ml添加した。これを5分間攪は
んした後、22mlのテトラヒドロフランを添加し、6
0℃で1時間攪はんした。攪はんを停止し上澄み液を除
去後、生成した固体を50mlのトルエンで洗浄した。
得られた固体に100mlのクロロベンゼンと100m
lの四塩化チタンを添加し135℃で1時間攪はんし
た。攪はんを停止し、上澄み液を除去後、250mlの
クロロベンゼン、100mlの四塩化チタン及び2.1
mlのフタル酸ジ−n−ブチルを添加し135℃で1.
5時間攪はんした。上澄み液を除去後、600mlのト
ルエン、800mlのイソパールG、400mlのヘキ
サンで順次固体を洗浄して固体触媒成分を採取した。こ
の固体触媒成分の組成はチタン2.3重量%、塩素55
重量%、マグネシウム17重量%及びフタル酸ジ−n−
ブチル7.5重量%であった。
Example 1 (Catalyst Preparation-Solid Titanium Catalyst Component Preparation) 150 g of magnesium ethoxide, 275 ml of 2-ethylhexyl alcohol and 300 ml of a mixture of toluene were stirred at 93 ° C. for 3 hours under a carbon dioxide atmosphere of 0.3 MPa. After stirring, add 400 ml of toluene and 400
ml n-decane was added. Hereinafter this solution is referred to as a magnesium carbonate solution. 100 ml of toluene, 30 ml
Chlorobenzene, 9 ml tetraethoxysilane,
8.5 ml of titanium tetrachloride and 100 ml of Isopar G (isoparaffin hydrocarbon having an average carbon number of 10, boiling point 156 to 176 ° C.) were stirred at 30 ° C. for 5 minutes, and 50 ml of the magnesium carbonate was added. After stirring this for 5 minutes, 22 ml of tetrahydrofuran was added,
The mixture was stirred at 0 ° C for 1 hour. After the stirring was stopped and the supernatant was removed, the produced solid was washed with 50 ml of toluene.
100 ml of chlorobenzene and 100 m were added to the obtained solid.
l of titanium tetrachloride was added, and the mixture was stirred at 135 ° C. for 1 hour. After stopping the stirring and removing the supernatant, 250 ml of chlorobenzene, 100 ml of titanium tetrachloride and 2.1 ml of
1. Add ml of di-n-butyl phthalate and add 1.
Stir for 5 hours. After removing the supernatant, the solid was washed successively with 600 ml of toluene, 800 ml of Isopar G, and 400 ml of hexane to collect a solid catalyst component. The composition of this solid catalyst component is 2.3% by weight titanium and 55% chlorine.
% By weight, 17% by weight of magnesium and di-n-phthalate
Butyl was 7.5% by weight.

【0018】予備活性化触媒の調整 内容積50Lの傾斜羽根付きステンレス製反応器を窒素
ガスで置換した後、n−ヘキサン40Lを投入し、前記
の固体生成物75g、トリエチルアルミニウム13gを
室温で加えた後、プロピレン100gを120分間かけ
て供給し、未反応プロピレン及びn−ヘキサンを減圧で
除去し、150gの予備活性化触媒を得た。
Preparation of Pre-Activated Catalyst After replacing a stainless steel reactor with an inclined blade with an internal volume of 50 L with nitrogen gas, 40 L of n-hexane was charged, and 75 g of the above solid product and 13 g of triethylaluminum were added at room temperature. After that, 100 g of propylene was supplied over 120 minutes to remove unreacted propylene and n-hexane under reduced pressure to obtain 150 g of preactivated catalyst.

【0019】重合工程(I) 窒素置換をした内容積500Lのタービン型撹拌羽根付
ステンレス製重合器にn−ヘキサン250Lついでトリ
エチルアルミウム89g、有機ケイ素化合物としてジ−
i−プロピルジメトキシシラン69gを仕込み、ついで
前記予備活性化触媒15gを添加し、器内温度を70℃
に昇温後、全圧0.8MPa、気相部の水素/プロピレ
ン濃度比を0.24に維持しながら、プロピレンと水素
を供給して1時間第1段目の重合を行った後、プロピレ
ンの供給を停止し、器内温度を30℃まで冷却し、水素
と未反応のプロピレンを放出した。ついで重合スラリー
の一部を抜き出し、MFRの測定および重合体中のMg
分の誘導結合プラズマ発光分光分析(ICP法)を行い
触媒単位重量当たりの重合体収量を求めるのに供した。
器内を70℃に昇温後、プロピレンと水素を供給して、
全圧を1.0MPa、気相部の水素/プロピレン濃度比
を0.24に維持しながら1時間第2段目の重合を行っ
た後、プロピレンの供給を停止し、器内温度を30℃ま
で冷却し、水素と未反応のプロピレンを放出した。つい
で重合スラリーの一部を抜き出し、MFRの測定を行う
とともに、重合体中のMg分をICP法により求め、第
2段目の重合体収量を求めた。ついで前述の1段目の該
収量値を用いて第1段目と第2段目の重合量の比率を求
めた。さらに LogMFR=a×LogMFR1 +(1−a)×Lo
gMFR2 a:第1段の重合比率 MFR:第2段終了抜き出し品のMFR MFR1 、MFR2 :第1段目、第2段目のMFR にMFR1 およびMFRの値を代入し第2段目のMFR
2 を求めた。ついで、器内を70℃に昇温後、プロピレ
ンと水素を供給して、全圧を1.2MPa、気相部の水
素/プロピレン濃度比を24%に維持しながら1時間第
3段目の重合を行った後、プロピレンの供給を停止し、
器内温度を30℃まで冷却し、水素と未反応のプロピレ
ンを放出した。ついで重合スラリーの一部を抜き出し、
MFRの測定を行うとともに、重合体中のMg分をIC
P法により求め、第3段目の重合の比率を求めた。さら
に LogMFR=a×LogMFR1 +b×LogMFR
2 +c×LogMFR3 a+b+c=1 a:第1段の重合比率、b:第2段の重合比率、c:第
3段の重合比率 MFR:第3段終了抜き出し品のMFR MFR1 、MFR2 、MFR3 :第1段目、第2段目、
第3段目のMFRにMFR1 、MFR2 およびMFRの
値を代入し第3段目のMFR3 を求めた。
Polymerization step (I) A stainless steel polymerization vessel with an internal volume of 500 L equipped with a turbine type stirring blade, which had been purged with nitrogen, had 250 L of n-hexane, 89 g of triethylaluminum and di-organosilicon compound.
69 g of i-propyldimethoxysilane was charged, then 15 g of the preliminary activation catalyst was added, and the temperature inside the vessel was 70 ° C.
After the temperature was raised to 1, the total pressure was 0.8 MPa, and while maintaining the hydrogen / propylene concentration ratio in the gas phase part at 0.24, propylene and hydrogen were supplied to carry out the first stage polymerization for 1 hour, and then propylene was added. Was stopped, the temperature inside the vessel was cooled to 30 ° C., and hydrogen and unreacted propylene were discharged. Then, a part of the polymerized slurry was extracted, and the MFR was measured and the Mg in the polymer was
Inductively coupled plasma optical emission spectroscopy (ICP method) was used to determine the polymer yield per unit weight of catalyst.
After heating the inside of the vessel to 70 ° C, supply propylene and hydrogen,
After carrying out the second stage polymerization for 1 hour while maintaining the total pressure at 1.0 MPa and the hydrogen / propylene concentration ratio in the gas phase at 0.24, the supply of propylene was stopped and the temperature inside the vessel was set to 30 ° C. After cooling to room temperature, hydrogen and unreacted propylene were released. Then, a part of the polymerized slurry was extracted, the MFR was measured, and the Mg content in the polymer was determined by the ICP method to determine the second-stage polymer yield. Then, using the yield value of the first stage, the ratio of the polymerization amounts of the first stage and the second stage was determined. Furthermore, LogMFR = a × LogMFR 1 + (1-a) × Lo
gMFR 2 a: 1st stage polymerization ratio MFR: 2nd stage end MFR MFR 1 and MFR 2 : 1st and 2nd stage MFR substituting the values of MFR 1 and MFR for 2nd stage Eye MFR
I asked for 2 . Then, after the temperature inside the vessel was raised to 70 ° C., propylene and hydrogen were supplied to maintain the total pressure at 1.2 MPa and the hydrogen / propylene concentration ratio in the gas phase portion at 24% for 1 hour in the third stage. After carrying out the polymerization, the supply of propylene was stopped,
The temperature inside the vessel was cooled to 30 ° C., and hydrogen and unreacted propylene were discharged. Then, pull out a part of the polymerization slurry,
MFR is measured and the Mg content in the polymer is measured by IC
It was determined by the P method, and the ratio of the third stage polymerization was determined. Furthermore, LogMFR = a × LogMFR 1 + b × LogMFR
2 + c × LogMFR 3 a + b + c = 1 a: 1st stage polymerization ratio, b: 2nd stage polymerization ratio, c: 3rd stage polymerization ratio MFR: 3rd stage final extraction product MFR MFR 1 , MFR 2 , MFR 3 : 1st stage, 2nd stage,
The values of MFR 1 , MFR 2 and MFR were substituted into the MFR at the third stage to obtain MFR 3 at the third stage.

【0020】重合工程(II) 器内温度を60℃に昇温後、エチレンの供給比率が35
重量%となるようにエチレンとプロピレンを2時間連続
的に供給した。エチレンの全供給量は4.5kgであっ
た。重合中は気相水素濃度が1モル%となるように水素
を供給した。2時間重合後エチレンおよびプロピレンの
供給を停止し、器内温度を30℃まで冷却した後未反応
のエチレンおよびプロピレンを放出した。ついで重合器
内にメタノールを50L供給し、器内温度を60℃に昇
温した。30分後、更に20重量%のカセイソーダ水を
0.5L加え20分間撹拌し、純水100L加えた後、
器内温度を30℃に冷却した。水槽を抜き出した後、更
に300Lの純水を加え10分間撹拌水洗し水槽を抜き
出した。ついでヘキサンスラリーを抜き出し、ろ過、乾
燥した。得られたプロピレン・エチレンブロック共重合
体組成物を分析し、それらの値を表1に示した。
Polymerization step (II) After the temperature inside the vessel was raised to 60 ° C., the ethylene feed ratio was changed to 35
Ethylene and propylene were continuously supplied for 2 hours so that the weight% was adjusted. The total supply of ethylene was 4.5 kg. During the polymerization, hydrogen was supplied so that the gas phase hydrogen concentration was 1 mol%. After the polymerization for 2 hours, the supply of ethylene and propylene was stopped, the temperature inside the vessel was cooled to 30 ° C., and then unreacted ethylene and propylene were discharged. Then, 50 L of methanol was supplied into the polymerization vessel, and the temperature inside the vessel was raised to 60 ° C. After 30 minutes, 0.5 L of caustic soda water of 20% by weight was further added and stirred for 20 minutes, and 100 L of pure water was added.
The internal temperature was cooled to 30 ° C. After extracting the water tank, 300 L of pure water was further added, and the mixture was washed with stirring water for 10 minutes, and then the water tank was extracted. Then, the hexane slurry was extracted, filtered, and dried. The resulting propylene / ethylene block copolymer composition was analyzed, and the values are shown in Table 1.

【0021】射出成形品の製造 上記で得られた製品パウダー3.0kgにフェノール系
熱安定剤0.003kg、ステアリン酸カルシウム0.
003kgを加え高速攪拌式混合機(註.ヘンシェルミ
キサー、商品名)で室温下に10分混合し、該混合物を
スクリュウ−径40mmの押出造粒機を用いて造粒し
た。ついで該造粒物を射出成形機で溶融樹脂温度230
℃、金形温度50℃でJIS形のテストピースを作成
し、該テストピースにつき湿度50%室温23℃の室内
で72時間状態調整した。ついで後述、表1のように物
性値を測定した。
Production of Injection-Molded Product To 3.0 kg of the product powder obtained above, 0.003 kg of a phenolic heat stabilizer, calcium stearate of 0.
003 kg was added, and the mixture was mixed for 10 minutes at room temperature with a high-speed stirring mixer (Note. Henschel mixer, trade name), and the mixture was granulated using an extruder with a screw diameter of 40 mm. Then, the granulated product is melted at a temperature of 230
A JIS type test piece was prepared at a temperature of 50 ° C. and a mold temperature of 50 ° C., and the test piece was conditioned for 72 hours in a room with a humidity of 50% and a room temperature of 23 ° C. Then, the physical property values were measured as shown in Table 1 below.

【0022】実施例2,3、比較例1 重合工程(I)でジ−i−プロピルジメトキシシランの
添加量を27.4g、13.7g、6.9gに変更した
以外は実施例1と同様に行った結果を表1に示す。重合
工程(I)で得られた重合体のアイソタクチックペンタ
ッド分率(P)が本発明より小さい場合は成形品の剛性
が劣る。
Examples 2, 3 and Comparative Example 1 Same as Example 1 except that the addition amount of di-i-propyldimethoxysilane was changed to 27.4 g, 13.7 g and 6.9 g in the polymerization step (I). The results obtained in Table 1 are shown in Table 1. When the isotactic pentad fraction (P) of the polymer obtained in the polymerization step (I) is smaller than that of the present invention, the rigidity of the molded product is poor.

【0023】[0023]

【表1】 [Table 1]

【0024】実施例4 重合工程(I)で1段目、2段目、3段目の気相部の水
素/プロピレン濃度比をそれぞれ0.3、0.23、
0.16に変更した以外は実施例2と同様に行った結果
を表2に示す。
Example 4 In the polymerization step (I), the hydrogen / propylene concentration ratios of the gas phase portions of the first, second and third stages were 0.3, 0.23,
Table 2 shows the results obtained in the same manner as in Example 2 except that the content was changed to 0.16.

【0025】実施例5 重合工程(I)で1段目、2段目の気相部の水素/プロ
ピレン濃度比をそれぞれ0.22に変更し、第3段目の
重合を省略した以外は実施例4と同様に行った結果を表
2に示す。
Example 5 In the polymerization step (I), the hydrogen / propylene concentration ratio in the gas phase of the first and second stages was changed to 0.22, respectively, and the polymerization in the third stage was omitted. The results obtained in the same manner as in Example 4 are shown in Table 2.

【0026】比較例2 重合工程(I)で1段目、2段目の気相部の水素/プロ
ピレン濃度比をそれぞれ0.21、0.23に、各段の
重合時間を1.5時間に変更した以外は実施例5と同様
に行った結果を表2に示す。Log(MFR(h)/M
FR(l))の値が本発明より小さいため、成形品の剛
性が実施例5より劣る。
Comparative Example 2 In the polymerization step (I), the hydrogen / propylene concentration ratios of the gas phase portions of the first and second stages were 0.21 and 0.23, respectively, and the polymerization time of each stage was 1.5 hours. Table 2 shows the results obtained in the same manner as in Example 5 except that the above was changed to. Log (MFR (h) / M
Since the value of FR (l)) is smaller than that of the present invention, the rigidity of the molded product is inferior to that of Example 5.

【0027】比較例3 重合工程(I)で1段目の水素/プロピレン濃度比を
0.18に、重合時間を3時間に変更し、2段目、3段
目の重合を省略した以外は実施例4と同様に行った結果
を表2に示す。実施例4に比べ成形品の剛性が劣る。
Comparative Example 3 In the polymerization step (I), the hydrogen / propylene concentration ratio in the first step was changed to 0.18, the polymerization time was changed to 3 hours, and the second and third steps were omitted. The results obtained in the same manner as in Example 4 are shown in Table 2. The rigidity of the molded product is inferior to that of Example 4.

【0028】比較例4 重合工程(I)で1段目、2段目、3段目の気相部の水
素/プロピレン濃度比をそれぞれ0.45、0.23、
0.10に変更した以外は実施例4と同様に行った結果
を表2に示す。Log(MFR(h)/MFR(l))
の値が本発明より大きいため、成形品の引っ張り伸度と
耐衝撃性が実施例4より劣る。
Comparative Example 4 In the polymerization step (I), the hydrogen / propylene concentration ratios of the gas phase portions of the first, second and third stages were 0.45 and 0.23, respectively.
Table 2 shows the results obtained in the same manner as in Example 4 except that the value was changed to 0.10. Log (MFR (h) / MFR (l))
Is larger than that of the present invention, the tensile elongation and impact resistance of the molded product are inferior to those of Example 4.

【0029】[0029]

【表2】 [Table 2]

【0030】実施例6 重合工程(I)で1段目、2段目、3段目の気相部の水
素/プロピレン濃度比を0.35に、重合工程(II)の
気相水素濃度を0.2モル%に変更した以外は実施例2
と同様に行った結果を表3に示す。
Example 6 In the polymerization step (I), the hydrogen / propylene concentration ratio in the gas phase portions of the first, second and third steps was set to 0.35, and the gas phase hydrogen concentration in the polymerization step (II) was changed to Example 2 except that the content was changed to 0.2 mol%.
Results obtained in the same manner as in Table 3 are shown in Table 3.

【0031】実施例7 重合工程(I)で1段目、2段目、3段目の気相部の水
素/プロピレン濃度比を0.20に、重合工程(II)の
気相水素濃度を3モル%に変更した以外は実施例2と同
様に行った結果を表3に示す。
Example 7 In the polymerization step (I), the hydrogen / propylene concentration ratio in the first, second and third gas phase portions was set to 0.20, and the gas phase hydrogen concentration in the polymerization step (II) was changed to Table 3 shows the results obtained in the same manner as in Example 2 except that the content was changed to 3 mol%.

【0032】比較例5 重合工程(I)で1段目、2段目、3段目の気相部の水
素/プロピレン濃度比を0.60に、重合工程(II)の
気相水素濃度を0.05モル%に変更した以外は実施例
2と同様に行った結果を表3に示す。重合工程(I)と
重合工程(II)のMFR比Log(MFR(i)/MF
R(ii))が本発明より大きいため耐衝撃性が実施例2
より劣る。
Comparative Example 5 In the polymerization step (I), the hydrogen / propylene concentration ratio in the first, second and third gas phase portions was set to 0.60, and the gas phase hydrogen concentration in the polymerization step (II) was changed to Table 3 shows the results obtained in the same manner as in Example 2 except that the content was changed to 0.05 mol%. MFR ratio of polymerization step (I) and polymerization step (II) Log (MFR (i) / MF
Since R (ii)) is larger than that of the present invention, impact resistance is Example 2
Inferior.

【0033】比較例6 重合工程(I)で1段目、2段目、3段目の気相部の水
素/プロピレン濃度比をそれぞれ0.18に、重合工程
(II)の気相水素濃度を10モル%に変更した以外は実
施例2と同様に行った結果を表3に示す。重合工程
(I)と重合工程(II)のMFR比Log(MFR
(i)/MFR(ii))が本発明より小さいため剛性、
耐衝撃性、引っ張り伸度が実施例2より劣る。
Comparative Example 6 In the polymerization step (I), the hydrogen / propylene concentration ratios of the first, second and third vapor phase parts were respectively set to 0.18, and the vapor phase hydrogen concentration in the polymerization step (II) was changed. Table 3 shows the results obtained in the same manner as in Example 2 except that the content was changed to 10 mol%. MFR ratio of polymerization step (I) and polymerization step (II) Log (MFR
Since (i) / MFR (ii)) is smaller than that of the present invention, rigidity,
The impact resistance and tensile elongation are inferior to those of Example 2.

【0034】[0034]

【表3】 [Table 3]

【0035】実施例8 重合工程(I)で1段目、2段目、3段目の気相部の水
素/プロピレン濃度比を0.08に、重合工程(II)の
気相水素濃度を0.5モル%に、エチレンの全供給量を
2kgに変更した以外は実施例3と同様に行った結果を
表4に示す。
Example 8 In the polymerization step (I), the hydrogen / propylene concentration ratio in the gas phase portions of the first, second and third steps was set to 0.08, and the gas phase hydrogen concentration in the polymerization step (II) was changed to Table 4 shows the results obtained in the same manner as in Example 3 except that the total amount of ethylene fed was changed to 0.5 mol% and 2 kg.

【0036】実施例9 重合工程(I)で1段目、2段目、3段目の気相部の水
素/プロピレン濃度比を0.17に、重合工程(II)の
気相水素濃度を0.5モル%に、エチレンの供給比率を
65重量%に、エチレンの全供給量を7kgに変更した
以外は実施例3と同様に行った結果を表4に示す。
Example 9 In the polymerization step (I), the hydrogen / propylene concentration ratio of the first, second and third vapor phase parts was set to 0.17, and the gas phase hydrogen concentration in the polymerization step (II) was changed to Table 4 shows the results obtained in the same manner as in Example 3 except that the amount of ethylene fed was changed to 0.5% by weight, the amount of ethylene fed was changed to 65% by weight, and the total amount of ethylene fed was changed to 7 kg.

【0037】比較例7 固体触媒成分(A)の調整で電子供与体としてエチルベ
ンゾエートを使用した以外は実施例9と同様に行った結
果を表4に示す。実施例9に比べ剛性および耐衝撃性が
著しく劣る。
Comparative Example 7 Table 4 shows the results obtained in the same manner as in Example 9 except that ethylbenzoate was used as an electron donor in the preparation of the solid catalyst component (A). The rigidity and impact resistance are significantly inferior to those of Example 9.

【0038】比較例8 固体触媒成分(A)として特開昭58−201816の
実施例に記載されている還元型触媒を、有機アルミニウ
ム化合物(B)としてジエチルアルミニウムクロライド
を、有機ケイ素化合物(C)の代わりにp−トルイル酸
メチルを使用した以外は実施例9と同様に行った結果を
表4に示す。実施例9に比べ剛性、引っ張り伸度、耐衝
撃性が劣る。
Comparative Example 8 As the solid catalyst component (A), the reduction catalyst described in the Examples of JP-A-58-201816, diethyl aluminum chloride as the organoaluminum compound (B), and organosilicon compound (C). Table 4 shows the results obtained in the same manner as in Example 9 except that methyl p-toluate was used instead of. Rigidity, tensile elongation, and impact resistance are inferior to those of Example 9.

【0039】[0039]

【表4】 [Table 4]

【0040】実施例10〜14 有機ケイ素化合物としてt−ブチルトリメトキシシラ
ン、t−ブチルトリエトキシシラン、i−ブチルトリメ
トキシシラン、シクロヘキシルトリメトキシシラン、ジ
−i−ブチルジメトキシシランを使用した以外は実施例
2と同様に行った結果を表5に示す。
Examples 10 to 14 Except that t-butyltrimethoxysilane, t-butyltriethoxysilane, i-butyltrimethoxysilane, cyclohexyltrimethoxysilane and di-i-butyldimethoxysilane were used as the organosilicon compound. The results obtained in the same manner as in Example 2 are shown in Table 5.

【0041】[0041]

【表5】 [Table 5]

【0042】比較例9〜12 有機ケイ素化合物の代わりに電子供与体としてp−トル
イル酸メチル、トリエチルアミン、アセトフェノン、ジ
エチレングリコールジメチルエーテルを使用した以外は
実施例2と同様に行った結果を表6に示す。実施例2に
比べ剛性が劣る。
Comparative Examples 9 to 12 Table 6 shows results obtained in the same manner as in Example 2 except that methyl p-toluate, triethylamine, acetophenone and diethylene glycol dimethyl ether were used as electron donors instead of the organosilicon compound. The rigidity is inferior to that of the second embodiment.

【0043】[0043]

【表6】 [Table 6]

【0044】実施例15、比較例13,14 重合工程(II)のエチレン供給比率をそれぞれ25重量
%、15重量%、90重量%に、エチレンの全供給量を
3.5kg、2.5kg、7.0kgに変更した以外は
実施例1と同様に行った結果を表7に示す。実施例15
に比べ、比較例13は重合工程(II)で重合した部分中
に占めるエチレン分含量が本発明より小さいため成形品
の剛性と耐衝撃性が劣り、比較例14は該エチレン分含
量が大きいため引張り伸度と耐衝撃性が劣る。
Example 15, Comparative Examples 13 and 14 The ethylene supply ratios in the polymerization step (II) were 25% by weight, 15% by weight and 90% by weight, respectively, and the total amount of ethylene supplied was 3.5 kg, 2.5 kg, Table 7 shows the results obtained in the same manner as in Example 1 except that the weight was changed to 7.0 kg. Example 15
In comparison, Comparative Example 13 has a smaller content of ethylene in the polymerized portion in the polymerization step (II) than that of the present invention, resulting in poor rigidity and impact resistance of the molded product, and Comparative Example 14 has a large content of ethylene. Poor tensile elongation and impact resistance.

【0045】[0045]

【表7】 [Table 7]

【0046】実施例16 実施例2で得られたプロピレン・エチレンブロック共重
合体組成物の製品パウダー3.0kgにフェノール系熱
安定剤0.003kg、ステアリン酸カルシウム0.0
03kg、カサ比重0.39で平均粒径が10μmのタ
ルク0.03kgを加え高速攪拌式混合機(註.ヘンシ
ェルミキサー、商品名)で室温下に10分混合し、該混
合物をスクリュウー径40mmの押出造粒機を用いて造
粒した。ついで該造粒物を射出成形機で溶融樹脂温度2
30℃、金型温度50℃でJIS形のテストピースを作
成し、該テストピースにつき湿度50%室温23℃の室
内で72時間状態調整した。ついで物性値を測定したと
ころ、曲げ弾性率1750MPa、引張り強度38MP
a、引張り伸度380%、HDT127℃、アイゾット
・インパクト119J/mであった。
Example 16 3.0 kg of the product powder of the propylene / ethylene block copolymer composition obtained in Example 2 was added to 0.003 kg of a phenolic heat stabilizer and 0.0 of calcium stearate.
03 kg, 0.03 kg of talc having a bulk specific gravity of 0.39 and an average particle size of 10 μm were added, and mixed for 10 minutes at room temperature with a high-speed stirring mixer (Note. Henschel mixer, trade name), and the mixture with a screw diameter of 40 mm Granulation was performed using an extrusion granulator. Then, the granulated product is melted at a molten resin temperature of 2 with an injection molding machine.
A JIS type test piece was prepared at 30 ° C. and a mold temperature of 50 ° C., and the condition of the test piece was adjusted for 72 hours in a room with a humidity of 50% and a room temperature of 23 ° C. Then, when the physical properties were measured, the bending elastic modulus was 1750 MPa, the tensile strength was 38 MP.
a, tensile elongation 380%, HDT 127 ° C., Izod impact 119 J / m.

【0047】実施例17 実施例2で得られたプロピレン・エチレンブロック共重
合体組成物の製品パウダー3.0kgにフェノール系熱
安定剤0.003kg、ステアリン酸カルシウム0.0
03kg、カサ比重0.12cm2 /gで平均粒径が
1.3μmのタルク0.15kgを加えた以外は実施例
16と同様に行い、ついで物性値を測定したところ曲げ
弾性率1870MPa、引張り強度38MPa、引張り
伸度380%、HDT131℃、アイゾット・インパク
ト98J/mであった。
Example 17 3.0 kg of the product powder of the propylene / ethylene block copolymer composition obtained in Example 2 was added to 0.003 kg of a phenolic heat stabilizer and 0.0 of calcium stearate.
The same procedure was performed as in Example 16 except that 0.15 kg of talc having a bulk specific gravity of 0.12 cm 2 / g and a bulk specific gravity of 0.12 cm 2 / g was added, and the physical properties were measured. The flexural modulus was 1870 MPa and the tensile strength was measured. 38 MPa, tensile elongation 380%, HDT 131 ° C., and Izod impact 98 J / m.

【0048】実施例2で得られたプロピレン・エチレン
ブロック共重合体組成物の製品パウダー3.0kgにフ
ェノール系熱安定剤0.003kg、ステアリン酸カル
シウム0.003kg、非晶性エチレン・α−オレフィ
ン共重合体としては、プロピレン含有量が26重量%、
ムーニ粘度[ML1+4(100℃)]が24の非晶性
エチレン・プロピレン共重合体0.06kgを加えた以
外は実施例16と同様に行い、ついで物性値を測定した
ところ曲げ弾性率1430MPa、引張り強度36MP
a、引張り伸度490%、HDT115℃、アイゾット
・インパクト121J/mであった。
3.0 kg of the product powder of the propylene / ethylene block copolymer composition obtained in Example 2 was added to 0.003 kg of a phenolic heat stabilizer, 0.003 kg of calcium stearate, and an amorphous ethylene / α-olefin copolymer. The polymer has a propylene content of 26% by weight,
Mooney viscosity [ML1 + 4 (100 ° C.)] was the same as in Example 16 except that 0.06 kg of an amorphous ethylene / propylene copolymer having a viscosity of 24 was added, and the physical properties were measured. Strength 36MP
a, tensile elongation 490%, HDT 115 ° C., Izod impact 121 J / m.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の組成物の製法を示す製造工程図(フ
ローシート)である。
FIG. 1 is a manufacturing process diagram (flow sheet) showing a method for manufacturing a composition of the present invention.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 チタン、マグネシウム、ハロゲン及び多
価カルボン酸エステルを必須成分として含有する固体触
媒成分(A)と有機アルミニウム化合物(B)と一般式
4 x5 ySi(OR6z (式中R4 ,R6 は炭化水素
基、R5 は炭化水素基あるいはヘテロ原子を含む炭化水
素基をしめし、x+y+z=4,0≦x≦2,1≦y≦
3,1≦z≦3である。)で表される有機ケイ素化合物
(C)を組み合わせた触媒系を用い、第1段階として2
槽以上の重合器を直列に用いた重合工程(I)でプロピ
レンの単独重合を実施して全重量の60〜95重量%を
製造し、第2段階として1槽以上の重合器を用いた重合
工程(II)でプロピレンとエチレンの共重合を実施して
エチレンの含有量が30〜80重量%のプロピレン・エ
チレン共重合部を全重量の5〜40重量%製造してなる
プロピレン・エチレンブロック共重合体において、重合
工程(I)の各槽で得られる重合体のメルトフローレー
トの最高値(以下MFR(h)と言う)と最小値(MF
R(l)と言う)とが 0.1≦Log(MFR(h) /MFR(l))≦1 …(1) なる関係を有し、重合工程(I)で得られたプロピレン
重合体のアイソタクチックペンタッド分率(P)が0.
96以上、Mw/Mn(Q値)が6以下であり、かつ、
重合工程(I)で得られる重合体のメルトフローレート
(以下MFR(i )と言う)と重合工程(II)で得られ
る重合体のメルトフローレート(以下MFR(ii)とい
う)とが 3≦Log(MFR(i)/MFR(ii))≦7 …(2) なる関係を有する高剛性プロピレン・エチレンブロック
共重合体組成物。
1. A solid catalyst component (A) containing titanium, magnesium, halogen and a polycarboxylic acid ester as essential components, an organoaluminum compound (B) and a general formula R 4 x R 5 y Si (OR 6 ) z. (In the formula, R 4 and R 6 represent a hydrocarbon group, R 5 represents a hydrocarbon group or a hydrocarbon group containing a hetero atom, and x + y + z = 4,0 ≦ x ≦ 2,1 ≦ y ≦
3, 1 ≦ z ≦ 3. 2) is used as the first step by using a catalyst system in which an organosilicon compound (C) represented by
Propylene homopolymerization was carried out in a polymerization step (I) using a tank or more polymerization vessels in series to produce 60 to 95% by weight of the total weight, and as a second step, polymerization using one or more vessel polymerization machines. A propylene / ethylene block copolymer produced by copolymerizing propylene and ethylene in step (II) to produce a propylene / ethylene copolymer part having an ethylene content of 30 to 80% by weight based on the total weight of 5 to 40% by weight. In the polymer, the maximum value (hereinafter referred to as MFR (h)) and the minimum value (MF) of the melt flow rate of the polymer obtained in each tank of the polymerization step (I)
R (l)) has a relationship of 0.1 ≦ Log (MFR (h) / MFR (l)) ≦ 1 (1), and the propylene polymer obtained in the polymerization step (I) is Isotactic pentad fraction (P) is 0.
96 or more, Mw / Mn (Q value) is 6 or less, and
The melt flow rate of the polymer obtained in the polymerization step (I) (hereinafter referred to as MFR (i)) and the melt flow rate of the polymer obtained in the polymerization step (II) (hereinafter referred to as MFR (ii)) are 3 ≦. A high-rigidity propylene / ethylene block copolymer composition having a relationship of Log (MFR (i) / MFR (ii)) ≦ 7 (2).
【請求項2】 最終的に得られる重合体のMFRが0.
1以上100以下である特許請求第1項の高剛性プロピ
レン・エチレンブロック共重合体組成物。
2. The MFR of the polymer finally obtained is 0.
The high-rigidity propylene / ethylene block copolymer composition according to claim 1, which is 1 or more and 100 or less.
【請求項3】 炭化水素溶媒中で重合された請求項1に
記載の高剛性プロピレン・エチレンブロック共重合体組
成物。
3. The high-rigidity propylene / ethylene block copolymer composition according to claim 1, which is polymerized in a hydrocarbon solvent.
【請求項4】 請求項1に記載のMFR(h)とMFR
(1)とが 0.2≦Log(MFR(h)/MFR(1))≦0.
5 となる関係を有する請求項1に記載の高剛性プロピレン
・エチレンブロック共重合体組成物。
4. The MFR (h) and MFR according to claim 1.
(1) is 0.2 ≦ Log (MFR (h) / MFR (1)) ≦ 0.
The high-rigidity propylene / ethylene block copolymer composition according to claim 1, having a relationship of 5.
【請求項5】 請求項1に記載のMFR(i)とMFR
(ii)とが 4≦Log(MFR(i)/MFR(ii))≦6 となる関係を有する請求項1に記載の高剛性プロピレン
・エチレンブロック共重合体組成物。
5. The MFR (i) and MFR according to claim 1.
The high-rigidity propylene / ethylene block copolymer composition according to claim 1, wherein (ii) has a relationship of 4 ≦ Log (MFR (i) / MFR (ii)) ≦ 6.
JP10010695A 1994-08-18 1995-03-31 Method for producing high-rigidity propylene / ethylene block copolymer Expired - Fee Related JP3482732B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP10010695A JP3482732B2 (en) 1995-03-31 1995-03-31 Method for producing high-rigidity propylene / ethylene block copolymer
KR1019950020056A KR100341040B1 (en) 1994-08-18 1995-07-08 High Rigidity Propylene-Ethylene Block Copolymer Composition and Its Manufacturing Method
EP95112296A EP0700943B1 (en) 1994-08-18 1995-08-04 A highly stiff propylene-ethylene block copolymer composition and a process for producing the same
DE69502784T DE69502784T2 (en) 1994-08-18 1995-08-04 A highly rigid composition of "propylene-ethylene block copolymer" and a process for its manufacture
US08/516,089 US5672658A (en) 1994-08-18 1995-08-17 Highly stiff propylene-ethylene block copolymer composition and a process for producing the same
CZ952273A CZ227395A3 (en) 1995-03-31 1995-09-05 Composition of highly solid propylene-ethylene block copolymer and process for preparing thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10010695A JP3482732B2 (en) 1995-03-31 1995-03-31 Method for producing high-rigidity propylene / ethylene block copolymer

Publications (2)

Publication Number Publication Date
JPH08269124A true JPH08269124A (en) 1996-10-15
JP3482732B2 JP3482732B2 (en) 2004-01-06

Family

ID=14265139

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10010695A Expired - Fee Related JP3482732B2 (en) 1994-08-18 1995-03-31 Method for producing high-rigidity propylene / ethylene block copolymer

Country Status (2)

Country Link
JP (1) JP3482732B2 (en)
CZ (1) CZ227395A3 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997038033A1 (en) * 1996-04-08 1997-10-16 Sumitomo Chemical Company, Limited High-rigidity ethylene/propylene block copolymer and process for the production thereof
KR20020046389A (en) * 2000-12-13 2002-06-21 유현식 Polypropylene-based resin composition
JP2002241452A (en) * 2001-02-21 2002-08-28 Chisso Corp Propylene-ethylene block copolymer composition and molded item obtained by using the same
US6586517B2 (en) 2001-02-16 2003-07-01 Mazda Motor Corporation Long fiber-reinforced polypropylene resin composition
JP2009019208A (en) * 2007-07-13 2009-01-29 Sk Energy Co Ltd Ethylene-propylene block copolymer-based polypropylene resin composition superior in fluidity, rigidity and impact strength
JP2010168546A (en) * 2008-12-25 2010-08-05 Sumitomo Chemical Co Ltd Manufacturing method for propylene-based block copolymer

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997038033A1 (en) * 1996-04-08 1997-10-16 Sumitomo Chemical Company, Limited High-rigidity ethylene/propylene block copolymer and process for the production thereof
US6204336B1 (en) 1996-04-08 2001-03-20 Sumitomo Chemical Company High-rigidity ethylene/propylene block copolymer and process for the production thereof
KR20020046389A (en) * 2000-12-13 2002-06-21 유현식 Polypropylene-based resin composition
US6586517B2 (en) 2001-02-16 2003-07-01 Mazda Motor Corporation Long fiber-reinforced polypropylene resin composition
JP2002241452A (en) * 2001-02-21 2002-08-28 Chisso Corp Propylene-ethylene block copolymer composition and molded item obtained by using the same
JP2009019208A (en) * 2007-07-13 2009-01-29 Sk Energy Co Ltd Ethylene-propylene block copolymer-based polypropylene resin composition superior in fluidity, rigidity and impact strength
JP2010168546A (en) * 2008-12-25 2010-08-05 Sumitomo Chemical Co Ltd Manufacturing method for propylene-based block copolymer

Also Published As

Publication number Publication date
JP3482732B2 (en) 2004-01-06
CZ227395A3 (en) 1996-10-16

Similar Documents

Publication Publication Date Title
KR100341040B1 (en) High Rigidity Propylene-Ethylene Block Copolymer Composition and Its Manufacturing Method
EP0885926B2 (en) Propylene polymer blends, processes of producing the same, and polypropylene resin compositions
WO2018117271A1 (en) Masterbatch composition
JP3508187B2 (en) Continuous production of propylene / ethylene block copolymer
JP3355864B2 (en) Continuous production of high-rigidity propylene / ethylene block copolymer
JP3482732B2 (en) Method for producing high-rigidity propylene / ethylene block copolymer
JP3355806B2 (en) Method for producing high-rigidity propylene / ethylene block copolymer
CN109923170B (en) Master batch composition and polypropylene resin composition containing the same
JP2010013588A (en) Method for producing propylene-based block copolymer
JPH0977954A (en) Polyolefin resin composition
JPH0410889B2 (en)
JPH0977953A (en) Polyolefin resin composition
JPH11228617A (en) Alpha-olefin polymerization catalyst and production of alpha-olefin polymer
JP2002241452A (en) Propylene-ethylene block copolymer composition and molded item obtained by using the same
JP2003321583A (en) Polyethylene resin composition
JP2003211481A (en) Method for molding using thermoplastic resin and foaming agent and molded product obtained by the same
JPH0912623A (en) Alpha-olefin polymerization catalyst and production of alpha-olefin polymer
JP2003160684A (en) Polypropylene resin molding
JPH11181136A (en) Foamed polypropylene blow molding
JPH06329737A (en) High-flow propylene block copolymer
JPH07109316A (en) Production of thermoplastic polymer and composition
JP3452669B2 (en) Inorganic filler reinforced resin composition
JP3750264B2 (en) Polypropylene multilayer hollow molded product
JP2001122917A (en) METHOD FOR POLYMERIZING alpha-OLEFIN AND alpha-OLEFIN POLYMER PRODUCED BY THE METHOD
JPH08157658A (en) Inorganic filler-reinforced resin composition

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071017

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081017

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091017

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101017

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111017

Year of fee payment: 8

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111017

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111017

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121017

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121017

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131017

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees