JPH08268771A - Glass joined body and its production - Google Patents

Glass joined body and its production

Info

Publication number
JPH08268771A
JPH08268771A JP7071551A JP7155195A JPH08268771A JP H08268771 A JPH08268771 A JP H08268771A JP 7071551 A JP7071551 A JP 7071551A JP 7155195 A JP7155195 A JP 7155195A JP H08268771 A JPH08268771 A JP H08268771A
Authority
JP
Japan
Prior art keywords
glass
interface
ceramics
corrosion
crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7071551A
Other languages
Japanese (ja)
Other versions
JP3023288B2 (en
Inventor
Shuichi Ichikawa
周一 市川
Kenji Kato
賢治 加藤
Kouichi Umemoto
鍠一 梅本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP7071551A priority Critical patent/JP3023288B2/en
Publication of JPH08268771A publication Critical patent/JPH08268771A/en
Application granted granted Critical
Publication of JP3023288B2 publication Critical patent/JP3023288B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Ceramic Products (AREA)
  • Secondary Cells (AREA)

Abstract

PURPOSE: To provide a glass joined body having improved reliability of the glass joined parts. CONSTITUTION: When glass 3 is joined to ceramics 1, 2, crystals 4 having the same compsn. as the glass 1 or the ceramics 1, 2 or crystals 4 of an oxide contained in the compsn. of the glass 1 or the ceramics 1, 2 are deposited on the interface between the glass 3 and each of the ceramics 1, 2 and the objective glass joined body is produced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、腐食性物質に曝される
ガラス接合体に関するものであり、特に腐食性物質に対
して高耐食性を有するガラス接合体およびその製造法に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a glass joined body exposed to a corrosive substance, and more particularly to a glass joined body having high corrosion resistance to a corrosive substance and a method for producing the same.

【0002】[0002]

【従来の技術】これまで、ガラスはその優れたシール性
や絶縁特性を利用して極めて多くの箇所のシール材とし
て利用されてきている。そして、このガラスシールによ
って接合されたガラス接合体は、しばしば腐食性物質に
曝される箇所での使用が課せられる。このような腐食性
物質に曝されるガラス接合体の一例として、ナトリウム
−硫黄電池や熱電変換装置がある。
2. Description of the Related Art Up to now, glass has been used as a sealing material for an extremely large number of places by utilizing its excellent sealing property and insulating property. Further, the glass joined body joined by the glass seal is often required to be used at a place exposed to a corrosive substance. Examples of the glass bonded body exposed to such a corrosive substance include a sodium-sulfur battery and a thermoelectric conversion device.

【0003】ナトリウム−硫黄電池は300 〜350 ℃で作
動する高温型2次電池であり、溶融ナトリウムを陰極活
物質、溶融硫黄または多硫化ナトリウムもしくはその両
方を陽極活物質とし、固体電解質としてナトリウムイオ
ン伝導性のあるベータアルミナ管の内側と外側に上記陰
極活物質と陽極活物質とを配した状態で、ベータアルミ
ナ管をアルファアルミナ等の絶縁体にガラス接合して金
属製容器内に収納して構成している。
A sodium-sulfur battery is a high temperature secondary battery which operates at 300 to 350 ° C., and uses molten sodium as a cathode active material, molten sulfur or sodium polysulfide or both as an anode active material, and sodium ion as a solid electrolyte. With the cathode active material and the anode active material arranged inside and outside the conductive beta alumina tube, the beta alumina tube was glass-bonded to an insulator such as alpha alumina and housed in a metal container. I am configuring.

【0004】上述した従来のナトリウム−硫黄電池にお
いては、ベータアルミナ管と絶縁体との接合ガラスがナ
トリウムにより腐食され、電池寿命低下の原因となる問
題があった。この問題に対して、本出願人は特開平4−
26565号公報、特開平4−175271号公報等に
おいて、耐ナトリウム性に優れた封止ガラス組成を開示
してきた。そして、これらの技術により、ガラスのナト
リウムによる腐食速度は著しく遅くなり、電池のガラス
接合部の耐食性を改善することが出来た。
In the above-mentioned conventional sodium-sulfur battery, there is a problem that the bonding glass between the beta-alumina tube and the insulator is corroded by sodium, which causes a decrease in battery life. With respect to this problem, the present applicant has disclosed in
In Japanese Patent No. 26565 and Japanese Patent Laid-Open No. 4-175271, a sealing glass composition having excellent sodium resistance has been disclosed. With these techniques, the corrosion rate of glass due to sodium was remarkably slowed, and the corrosion resistance of the glass bonding portion of the battery could be improved.

【0005】[0005]

【発明が解決しようとする課題】本出願人は、さらにナ
トリウム−硫黄電池における接合ガラスについて研究を
行ったところ、上述したガラスの腐食には2つの腐食の
形態があることを見い出した。すなわち、図3に示すよ
うに、ベータアルミナ管11とアルファアルミナ絶縁板
12とを接合ガラス13により接合するに際し、接合ガ
ラス3の表面で起こる表面腐食14と、接合ガラス13
とベータアルミナ管11との界面または接合ガラス13
とアルファアルミナ絶縁板12との界面で起こる界面腐
食15とがあることが、新たにわかってきた。
When the applicant further conducted research on a bonded glass in a sodium-sulfur battery, he found that the above-described glass corrosion has two forms of corrosion. That is, as shown in FIG. 3, when the beta-alumina tube 11 and the alpha-alumina insulating plate 12 are bonded by the bonding glass 13, the surface corrosion 14 that occurs on the surface of the bonding glass 3 and the bonding glass 13
Interface between glass and beta-alumina tube 11 or bonded glass 13
It has been newly found that there is an interfacial corrosion 15 that occurs at the interface between the alpha alumina insulating plate 12 and the alpha alumina insulating plate 12.

【0006】このうち、表面腐食14は界面腐食15に
比べて進展速度が遅く、また表面がハクリするだけであ
り、接合部の破壊等の重大な問題は発生しないが、界面
腐食15は進展速度が速く、また界面腐食15が進むと
界面を起点とするクラック16が発生して、接合部の破
壊や、電池の寿命低下につながることがわかってきた。
Of these, the surface corrosion 14 has a slower growth rate than the interfacial corrosion 15, and only the surface is peeled off, and no serious problems such as destruction of the joint portion occur, but the interface corrosion 15 has a growth rate. It has been found that the cracking occurs from the interface when the interface corrosion 15 progresses and the interface corrosion 15 progresses, which leads to the destruction of the joint and the shortening of the battery life.

【0007】本発明の目的は上述した課題を解消して、
ガラス接合体のガラス接合部分の信頼性を向上させたガ
ラス接合体およびその製造法を提供しようとするもので
ある。
The object of the present invention is to solve the above problems,
An object of the present invention is to provide a glass joined body in which the reliability of the glass joined portion of the glass joined body is improved, and a method for producing the same.

【0008】[0008]

【課題を解決するための手段】本発明のガラス接合体
は、ガラスとセラミックスとの界面に、ガラスあるいは
セラミックスと同一成分から構成される結晶、あるいは
それぞれの組成に含有されている酸化物成分から構成さ
れる結晶が析出していることを特徴とするものである。
The glass bonded body of the present invention comprises a crystal composed of the same component as glass or ceramics, or an oxide component contained in each composition at the interface between glass and ceramics. It is characterized in that the constituent crystals are precipitated.

【0009】また、本発明のガラス接合体の製造法は、
上記ガラス接合体の製造法において、前記結晶を、ガラ
スとセラミックスとの界面に析出させることを特徴とす
るものである。
The method for producing a glass joined body of the present invention is
In the above method for manufacturing a glass joined body, the crystal is deposited at an interface between glass and ceramics.

【0010】[0010]

【作用】上述した構成において、ガラスとセラミックス
との界面に析出した結晶が腐食に対してピン止め効果を
有し、界面腐食を起こさせないよう作用する。よって、
腐食の形態は腐食速度の遅い表面腐食のみとなるため、
著しく長寿命化したガラス接合体を得ることができる。
In the above-mentioned structure, the crystal deposited at the interface between the glass and the ceramic has a pinning effect against corrosion and acts so as not to cause interface corrosion. Therefore,
Since the only form of corrosion is surface corrosion, which has a slow corrosion rate,
It is possible to obtain a glass joined body having a remarkably long life.

【0011】本発明において、界面に析出している結晶
がガラスあるいはセラミックスと同一、あるいはそれぞ
れの組成に含有されている酸化物成分から構成される結
晶であると規定したのは、構成成分の全く異なる結晶で
は析出結晶の耐ナトリウム性が逆に悪くて、腐食のピン
止め効果を果たさない可能性があるからである。
In the present invention, it is defined that the crystal precipitated at the interface is a crystal composed of the oxide component contained in the same composition as that of glass or ceramics or each composition. This is because, in the case of different crystals, the sodium resistance of the precipitated crystals is rather poor, and the pinning effect of corrosion may not be achieved.

【0012】また、析出している結晶の熱膨張係数は、
ガラスあるいはセラミックスと同一、あるいはその中間
の値であることが望ましい。なぜなら、この値から外れ
ると熱膨張差により発生する応力によって、接合部にク
ラックが発生する可能性があるからである。さらに、結
晶の粒径は50μm以下望ましくは20μm 以下であること
が望ましい。なぜなら、析出結晶の粒径が50μm以上に
増大するとガラスとの界面をクラックが走りやすくな
り、接合部の強度低下につながるからである。
The coefficient of thermal expansion of the precipitated crystals is
It is desirable that the value be the same as that of glass or ceramics, or an intermediate value. This is because if the value deviates from this value, the stress generated by the difference in thermal expansion may cause cracks in the joint. Further, the crystal grain size is preferably 50 μm or less, more preferably 20 μm or less. This is because when the grain size of the precipitated crystals increases to 50 μm or more, cracks easily run at the interface with the glass, leading to a decrease in the strength of the joint.

【0013】[0013]

【実施例】図1は本発明のガラス接合体の一例として、
ナトリウム−硫黄電池の接合界面の状態の一例を示す図
である。図1において、1はベータアルミナ管、2はア
ルファアルミナ絶縁体、3はベータアルミナ管1とアル
ファアルミナ絶縁体2とを接合するための接合ガラスで
ある。本発明の特徴は、ベータアルミナ管1と接合ガラ
ス3との界面およびアルファアルミナ絶縁体2と接合ガ
ラス3との界面に、結晶4を析出させた点である。
EXAMPLE FIG. 1 shows an example of a glass joined body of the present invention.
It is a figure which shows an example of the state of the joint interface of a sodium-sulfur battery. In FIG. 1, 1 is a beta alumina tube, 2 is an alpha alumina insulator, and 3 is a bonding glass for bonding the beta alumina tube 1 and the alpha alumina insulator 2. A feature of the present invention is that crystals 4 are deposited on the interface between the beta alumina tube 1 and the bonding glass 3 and the interface between the alpha alumina insulator 2 and the bonding glass 3.

【0014】この結晶4の組成は、接合ガラス3あるい
はベータアルミナ管1またはアルファアルミナ絶縁体2
と同一成分、またはそれぞれの組成に含有されている酸
化物成分から構成される。また、結晶4の熱膨張係数に
ついては、特に限定するものではないが、ガラスあるい
はセラミックスと同一、あるいはその中間の値であるこ
とが望ましい。さらに、結晶4の粒径すなわち最大長さ
も特に限定するものではないが、50μm以下であること
が望ましい。このような結晶4さえ接合界面に析出でき
れば、製造方法はどのような方法でも用いることができ
る。なお、図1に示す例では、結晶4があるため界面腐
食は発生せず、問題とならない表面腐食5のみが発生し
ている。
The composition of the crystal 4 is such that the bonding glass 3 or the beta alumina tube 1 or the alpha alumina insulator 2 is used.
And the oxide component contained in each composition. The coefficient of thermal expansion of the crystal 4 is not particularly limited, but is preferably the same as that of glass or ceramics, or an intermediate value. Further, the grain size of crystal 4, that is, the maximum length is not particularly limited, but is preferably 50 μm or less. Any method can be used as the manufacturing method as long as such a crystal 4 can be deposited at the bonding interface. In the example shown in FIG. 1, since there is the crystal 4, interface corrosion does not occur, and only surface corrosion 5 that does not pose a problem occurs.

【0015】以下、実際の例について説明する。SiO2
B2O3を主成分とし、その他の成分がAl2O3 、Na2O、Ti
O2、MgO の中の数種類の酸化物の組合わせから構成され
るなるホウケイ酸ガラスA〜Hについて、ガラス単体お
よび接合体とした時のナトリウムに対する耐食性を調べ
るため、以下の試験を行なった。
An actual example will be described below. SiO 2 ,
B 2 O 3 as the main component, other components are Al 2 O 3 , Na 2 O, Ti
For borosilicate glasses A to H composed of a combination of several kinds of oxides in O 2 and MgO, the following tests were carried out in order to investigate the corrosion resistance to sodium when used as a simple substance or a joined body.

【0016】まず、ホウケイ酸ガラスのガラスフリット
A〜Hについて、白金るつぼ中で、最高温度1100℃の接
合スケジュールと同一の熱処理を行い、ガラス単体を得
た。これから3×4×5mmのサンプルを切り出し、N2
雰囲気で400 ℃のナトリウム中に浸漬し、ナトリウムを
メタノールで除去した後、1000時間経過後の表面変色層
の厚み測定を行った。変色層の厚み測定は、サンプル断
面を鏡面研磨した後、光学顕微鏡を用いて測定した。
First, the glass frits A to H of borosilicate glass were heat-treated in a platinum crucible under the same joining schedule as that for the maximum temperature of 1100 ° C. to obtain a single glass. A 3 x 4 x 5 mm sample is cut out from this and N 2
After immersing in sodium at 400 ° C. in an atmosphere and removing sodium with methanol, the thickness of the surface discoloration layer was measured after 1000 hours. The thickness of the color-change layer was measured using an optical microscope after mirror polishing the cross section of the sample.

【0017】次に、図2に示すように、上記ガラスフリ
ットを接合ガラス6として使用して、αアルミナリング
7とベータアルミナ円板8とを最高温度1100℃の接合ス
ケジュールによって接合した。その後、作製したガラス
接合体をN2雰囲気で400 ℃のナトリウム中に浸漬し、10
0 時間毎に取り出し、ナトリウムをメタノールで除去し
た後、クラックの有無を蛍光探傷により調べた。試験結
果を以下の表1に示す。なお、表1において、界面結晶
の粒径は、界面結晶の最大の長さから求めた。
Next, as shown in FIG. 2, using the glass frit as the bonding glass 6, the α-alumina ring 7 and the beta-alumina disk 8 were bonded according to the bonding schedule of the maximum temperature of 1100 ° C. Then, the manufactured glass bonded body was immersed in sodium at 400 ° C in an N 2 atmosphere, and
After taking out every 0 hours and removing sodium with methanol, the presence or absence of cracks was examined by fluorescent flaw detection. The test results are shown in Table 1 below. In Table 1, the grain size of the interfacial crystal was determined from the maximum length of the interfacial crystal.

【0018】[0018]

【表1】 [Table 1]

【0019】表1の結果から、本発明の試験No.1〜4は
少なくとも1000時間はクラックの発生がなく耐食性が良
好であるのに対し、比較例の試験No.5〜8ではいずれも
1000時間までにクラックが発生してしまい、耐食性が十
分でないことがわかった。また、本発明例と比較例とを
比較すればわかるように、ガラス単体の腐食速度が変わ
らないもの(たとえばガラスBとF)でも、界面に結晶
が析出したガラス接合体の方が良好な耐食性を示すこと
がわかった。
From the results shown in Table 1, in the test Nos. 1 to 4 of the present invention, no cracks are generated for at least 1000 hours and the corrosion resistance is good, whereas in the test Nos. 5 to 8 of the comparative examples, all of them are shown.
It was found that cracks were generated by 1000 hours and the corrosion resistance was not sufficient. Further, as can be seen by comparing the present invention example and the comparative example, even if the corrosion rate of the glass simple substance does not change (for example, glass B and F), the glass bonded body in which crystals are precipitated at the interface has better corrosion resistance. Was found to show.

【0020】なお、接合部にクラックが観察されたサン
プルについて解析したところ、いずれも界面の腐食部分
を起点にしてクラックが進展していた。また、本発明例
において界面に析出していた結晶を、X線回折装置を使
用して同定したところ、2Al2O3・B2O3、3MgO・B2O3、あ
るいはAl2O3 といったガラスあるいはセラミックスのそ
れぞれの組成に含有されている酸化物成分、あるいは同
一の組成から構成される結晶であった。これらの試験結
果から、界面の結晶はガラスとセラミックスの反応によ
って生成していることが考えられた。
Analysis of samples in which cracks were observed at the joints revealed that cracks propagated from the corroded portion of the interface as the starting point. Furthermore, crystals were precipitated in the interface in the present invention example, was identified using an X-ray diffractometer, such 2Al 2 O 3 · B 2 O 3, 3MgO · B 2 O 3 or Al 2 O 3, It was an oxide component contained in each composition of glass or ceramics, or a crystal composed of the same composition. From these test results, it was considered that the crystal at the interface was generated by the reaction between glass and ceramics.

【0021】[0021]

【発明の効果】以上の説明から明かなように、本発明に
よれば、ガラスとセラミックスとの界面に析出した結晶
が腐食に対してピン止め効果を有し、界面腐食を起こさ
せないよう作用するため、、腐食の形態は腐食速度の遅
い表面腐食のみとなり、著しく長寿命化したガラス接合
体を得ることができる。
As is apparent from the above description, according to the present invention, the crystal deposited at the interface between glass and ceramics has a pinning effect against corrosion and acts so as not to cause interface corrosion. Therefore, the form of corrosion is only surface corrosion with a slow corrosion rate, and it is possible to obtain a glass joined body having a significantly long life.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のガラス接合体の接合界面の状態の一例
を示す図である。
FIG. 1 is a diagram showing an example of a state of a bonding interface of a glass bonded body of the present invention.

【図2】本発明における実施例で使用した試験体の断面
図である。
FIG. 2 is a cross-sectional view of a test body used in an example of the present invention.

【図3】従来のガラス接合体の接合界面の状態の一例を
示す図である。
FIG. 3 is a diagram showing an example of a state of a bonding interface of a conventional glass bonded body.

【符号の説明】[Explanation of symbols]

1 ベータアルミナ管、2 アルファアルミナ絶縁体、
3 接合ガラス、4 結晶
1 beta-alumina tube, 2 alpha-alumina insulator,
3 bonded glass, 4 crystal

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】ガラスとセラミックスとの界面に、ガラス
あるいはセラミックスと同一成分から構成される結晶、
あるいはそれぞれの組成に含有されている酸化物成分か
ら構成される結晶が析出していることを特徴とするガラ
ス接合体。
1. A crystal composed of the same component as glass or ceramics at the interface between glass and ceramics,
Alternatively, the glass bonded body is characterized in that crystals composed of oxide components contained in the respective compositions are precipitated.
【請求項2】前記析出した結晶の熱膨張係数が、ガラス
またはセラミックスと同一、あるいはその中間である請
求項1記載のガラス接合体。
2. The glass joined body according to claim 1, wherein the precipitated crystal has a thermal expansion coefficient which is the same as that of glass or ceramics, or in the middle thereof.
【請求項3】前記結晶の粒径が50μm以下である請求項
1または2記載のガラス接合体。
3. The glass joined body according to claim 1, wherein the crystal grain size is 50 μm or less.
【請求項4】請求項1〜3のいずれか1項に記載のガラ
ス接合体の製造法において、前記結晶を、ガラスとセラ
ミックスとの界面に析出させることを特徴とするガラス
接合体の製造法。
4. The method for producing a glass joined body according to claim 1, wherein the crystal is precipitated at an interface between glass and ceramics. .
JP7071551A 1995-03-29 1995-03-29 Glass joined body and method for producing the same Expired - Lifetime JP3023288B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7071551A JP3023288B2 (en) 1995-03-29 1995-03-29 Glass joined body and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7071551A JP3023288B2 (en) 1995-03-29 1995-03-29 Glass joined body and method for producing the same

Publications (2)

Publication Number Publication Date
JPH08268771A true JPH08268771A (en) 1996-10-15
JP3023288B2 JP3023288B2 (en) 2000-03-21

Family

ID=13463992

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7071551A Expired - Lifetime JP3023288B2 (en) 1995-03-29 1995-03-29 Glass joined body and method for producing the same

Country Status (1)

Country Link
JP (1) JP3023288B2 (en)

Also Published As

Publication number Publication date
JP3023288B2 (en) 2000-03-21

Similar Documents

Publication Publication Date Title
US5380596A (en) Glass joint body and method of manufacturing the same
JP5307795B2 (en) SEALING MATERIAL, DEVICE USING SUCH MATERIAL, AND METHOD FOR PRODUCING SUCH DEVICE
KR102398188B1 (en) Method for joining ceramic to metal, and sealing structure thereof
EP0166530A1 (en) Oxygen sensor for and method of determining concentration of oxygen
JP7542015B2 (en) Bonded joints including insulating members, in particular with at least partially crystallized glass, uses thereof, crystallizable and at least partially crystallized glass, and uses thereof - Patents.com
KR20140131363A (en) Thin, fine grained and fully dense glass-ceramic seal for sofc stack
WO2006064935A1 (en) Electrochemical sensor and process for producing the same
DE69310280T2 (en) Alumina, calcium oxide, yttria sealant composition
CA2869996A1 (en) A vacuum insulating glazing, a sealing, and a method of producing vacuum insulating glazing
Duke et al. Strengthening glass‐ceramics by application of compressive glazes
US4268313A (en) Sodium resistant sealing glasses
JP5789177B2 (en) Polycrystalline ceramic joined body and method for producing the same
EP1322566B1 (en) Process for preparing barium lanthanum silicate glass-ceramics
JPH08268771A (en) Glass joined body and its production
Hing Interaction of alkali metal and halide vapors with ceramic materials
DE102015215935B4 (en) Sensor element for detecting at least one property of a measurement gas in a measurement gas space
JP4014250B2 (en) Carbon dioxide sensor
JPH11307118A (en) Glass joint of solid electrolyte body and insulating member, its manufacture and high-temperature type secondary battery using the glass joint
JP2527844B2 (en) Glass bonded body and manufacturing method thereof
GB2047227A (en) Alumina, calcia and baria sealing composition
JP3205851B2 (en) Sodium-sulfur battery and manufacturing method thereof
JP2003004694A (en) Gas sensor
JP2619061B2 (en) Bonding glass for forming sodium-sulfur battery and method for bonding bottomed cylindrical solid electrolyte and insulator ring using the bonding glass
KR101598268B1 (en) A Sealant for Solid Oxide Fuel Cell and A Manufacturing Method therefor
JPWO2022165554A5 (en)

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19991214

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090114

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090114

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100114

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110114

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120114

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130114

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140114

Year of fee payment: 14

EXPY Cancellation because of completion of term