JPH08268766A - Zirconia melt cast refractories and their production - Google Patents

Zirconia melt cast refractories and their production

Info

Publication number
JPH08268766A
JPH08268766A JP8015984A JP1598496A JPH08268766A JP H08268766 A JPH08268766 A JP H08268766A JP 8015984 A JP8015984 A JP 8015984A JP 1598496 A JP1598496 A JP 1598496A JP H08268766 A JPH08268766 A JP H08268766A
Authority
JP
Japan
Prior art keywords
refractory
melt
zirconia
mold
cast
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8015984A
Other languages
Japanese (ja)
Other versions
JP3877796B2 (en
Inventor
Takanosuke Kuroda
隆之助 黒田
Kazuyori Takatsuji
一頼 高辻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP01598496A priority Critical patent/JP3877796B2/en
Publication of JPH08268766A publication Critical patent/JPH08268766A/en
Application granted granted Critical
Publication of JP3877796B2 publication Critical patent/JP3877796B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Abstract

PURPOSE: To provide zirconia melt cast refractories which have excellent corrosion resistance to fused glass and less generate air bubbles at a high yield by rotating a casting mold around a revolving shaft and solidifying the zirconia melt in this casting mold in the state of imparting centrifugal force to the zirconia melt. CONSTITUTION: This process comprises casting the zirconia melt cast refractories contg. >=33wt.% (more preferably 88 to 97wt.%) ZrO2 component by using the casting mold. The casting mold 2 having a sprue 6 is embedded and fixed into a heat insulating material 4 housed in a flask 5 fixed to a turntable 7 of a rotating device 1 and is rotated around the revolving shaft 3. The melt of the raw material poured into the casting mold is solidified in the state of applying >=1.2G (more preferably 1.5 to 3.5G) centrifugal force thereon on at least a part of the melt. The solidified matter taken out of the casting mold is merely subjected to cutting off of the small volumetric part where voids exist deviating. The product yield is thus greatly improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、主として溶融ガラ
スと接触するガラス溶融窯の側壁、床等に使用されるジ
ルコニア質溶融鋳造耐火物及びその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a zirconia-based fused cast refractory used mainly for the side wall, floor, etc. of a glass melting furnace that comes into contact with molten glass and a method for producing the same.

【0002】[0002]

【従来の技術】溶融鋳造耐火物は、結合耐火物(通常の
焼成された耐火物)と比べて組織が緻密であり、緻密で
ある分耐食性に優れている。このため、溶融鋳造耐火物
は主として炉の浸食作用の激しい箇所に使用されてい
る。ジルコニア質溶融鋳造耐火物は、溶融ガラスに対す
る耐食性が特に優れているので、溶融ガラスと接触する
ガラス窯の側壁や床に多用されている。
2. Description of the Related Art A molten cast refractory has a denser structure than a bonded refractory (ordinary fired refractory) and is excellent in corrosion resistance because it is dense. For this reason, molten cast refractories are mainly used in places where the erosion action of the furnace is severe. Since the zirconia-based melt-casting refractory has particularly excellent corrosion resistance to molten glass, it is often used for the side wall and floor of a glass kiln that comes into contact with molten glass.

【0003】実用に供されている溶融鋳造耐火物は、多
くが直方体形状を有するが、ガラス窯のコーナー部分等
には直方体(6面体)より面数の多い多面体が使用され
ている箇所もある。ガラス窯の耐火物には、ガラス中に
欠点ができるだけ導入されないように溶融ガラスと接触
する部分に溶融ガラスに対する耐食性が大きく、泡を発
生しにくい耐火物を使用する。また、耐火物が不均質で
ある場合には、耐火物の溶融ガラスに対する耐食性が大
きく、溶融ガラス中に泡を発生しにくい組織の部分を溶
融ガラスと接触する側に配置して使用する。
Most of the melt-cast refractories used for practical use have a rectangular parallelepiped shape, but in some corners of a glass kiln, a polyhedron having a larger number of faces than a rectangular parallelepiped (a hexahedron) is used. . As the refractory material of the glass kiln, a refractory material that has a large corrosion resistance to the molten glass and is less likely to generate bubbles is used in a portion in contact with the molten glass so that defects are not introduced into the glass as much as possible. When the refractory is non-homogeneous, the refractory has a high corrosion resistance to the molten glass and a portion of the structure in which bubbles are unlikely to be generated in the molten glass is disposed on the side in contact with the molten glass for use.

【0004】ガラス窯に使用される代表的なジルコニア
質溶融鋳造耐火物には、ZrO2 、Al23 、SiO
2 及び少量のアルカリ成分からなるAZS系と称するジ
ルコニア質溶融鋳造耐火物(たとえば組成がZrO2
3〜41重量%、Al2346〜50重量%、SiO2
12〜16重量%及びアルカリ金属酸化物0.3〜
1.8重量%である)がある。特に最近は、電子部品用
に高品質のガラスの需要が増加し、溶融ガラスに対する
耐食性がさらに優れ、耐火物が溶融ガラス中に溶け出し
てガラスの欠点の原因となる傾向が特に少ないとされ
る、ZrO2 成分を88〜97重量%含む高ジルコニア
質溶融鋳造耐火物の使用が増加している。
Typical zirconia fused cast refractories used in glass kilns include ZrO 2 , Al 2 O 3 and SiO.
A zirconia melt cast refractory called AZS system consisting of 2 and a small amount of alkaline component (for example, the composition is ZrO 2 3
3 to 41% by weight, Al 2 O 3 46 to 50% by weight, SiO 2
12 to 16 wt% and alkali metal oxides 0.3 to
1.8% by weight). Especially recently, the demand for high-quality glass for electronic parts has increased, the corrosion resistance to molten glass is further excellent, and it is said that there is a particularly low tendency for refractory substances to leach into molten glass and cause defects in glass. , High-zirconia melt cast refractories containing 88-97 wt% ZrO 2 component are increasing.

【0005】AZS系のジルコニア質溶融鋳造耐火物
は、単斜晶系のZrO2 結晶(鉱物名バデレアイト、常
温では単斜晶系の結晶であるが高温では正方晶系の結晶
に変態する)、α−Al23 結晶(コランダム)及び
アルカリ成分を含むシリカ質のマトリックスガラスで構
成されている。このマトリックスガラスはZrO2 結晶
が体積変化を伴って単斜晶系の結晶から正方晶系の結晶
に可逆的に結晶変態する900〜1200℃の温度域に
おいて適度の粘性を有するガラスとして耐火物中に存在
し、ZrO2 結晶の体積変化によって耐火物中に発生す
る歪みを吸収、緩和するクッションとして機能し、耐火
物に亀裂が発生するのを防いでいる。耐火物中のマトリ
ックスガラスの果たす機能は、高ジルコニア質溶融鋳造
耐火物においても同様であり、相対的にマトリックスガ
ラスの量が少ないため歪みを緩和するマトリックスガラ
スの特性は一層重要である。
The AZS-based zirconia melt-cast refractory is a monoclinic ZrO 2 crystal (a mineral name is baddeleyite, which is a monoclinic crystal at normal temperature but is transformed into a tetragonal crystal at high temperature), It is composed of a siliceous matrix glass containing an α-Al 2 O 3 crystal (corundum) and an alkali component. This matrix glass is a refractory glass with moderate viscosity in the temperature range of 900 to 1200 ° C. in which the ZrO 2 crystal undergoes reversible crystal transformation from a monoclinic crystal to a tetragonal crystal with a volume change. Exist as a cushion that absorbs and relaxes the strain generated in the refractory due to the volume change of the ZrO 2 crystal, and prevents the refractory from cracking. The function of the matrix glass in the refractory is the same as in the high zirconia melt-cast refractory, and since the amount of the matrix glass is relatively small, the characteristic of the matrix glass that alleviates strain is more important.

【0006】これらジルコニア質溶融鋳造耐火物は、所
定の化学組成に調合された原料を黒鉛電極を備えるアー
ク電気炉中に投入してアーク溶融し、その溶融物を所要
の内側寸法を有する、あらかじめ保温材に埋め込まれた
黒鉛製等の鋳型に注入し、冷却固化することによって製
造されている。
These zirconia-based melt-cast refractories are prepared by introducing raw materials prepared to have a predetermined chemical composition into an arc electric furnace equipped with a graphite electrode and arc-melting the melt. It is manufactured by pouring into a mold made of graphite or the like embedded in a heat insulating material and then cooling and solidifying.

【0007】また、ジルコニア質溶融鋳造耐火物では、
溶融物が冷却固化するときにその体積が2〜3割減少す
る。このため、ライザーと呼ばれる容量のある湯口が、
溶融物が固化して収縮した箇所に溶融物を供給するため
に設けられている。しかし、溶融物が固化した箇所への
溶融物の供給は必ず途絶えるので、固化した耐火物中に
ボイドが形成され、耐火物中にボイド群が形成される。
このボイド群は、鋳造されて鋳型から取り出された溶融
鋳造耐火物の、通常は溶湯を注入した湯口に近い上部中
央に存在する。
Further, in the zirconia-based molten cast refractory,
When the melt is cooled and solidified, its volume is reduced by 20 to 30%. For this reason, a sprue with a capacity called a riser
It is provided in order to supply the melt to the location where the melt solidifies and contracts. However, the supply of the melt to the solidified portion of the melt is always interrupted, so that voids are formed in the solidified refractory and voids are formed in the refractory.
This group of voids is present in the center of the upper part of the molten cast refractory that has been cast and taken out of the mold, usually near the sprue into which the molten metal has been poured.

【0008】ガラス窯にジルコニア質溶融鋳造耐火物を
使用する場合、このボイド群の存在は耐火物の耐用を損
ない、ガラス中に欠点を発生させる原因になる。このた
め、ボイド群の偏在する部分(通常鋳造された耐火物の
約50体積%に及ぶ)を切除したボイドフリー耐火物
(以下、VF耐火物という)がガラス窯に多く使用され
ている。
When a zirconia-based fused cast refractory is used in a glass kiln, the presence of this void group impairs the refractory's service life and causes defects in the glass. For this reason, a void-free refractory (hereinafter referred to as a VF refractory) obtained by cutting out an unevenly distributed portion of the void group (which reaches about 50% by volume of a normally cast refractory) is often used for a glass kiln.

【0009】製品の歩留を向上させ、気泡や砂利(スト
ーンともいう)などの欠点が少ない高品質のガラスを製
造するために種々の対策が講じられている。しかし、現
在最も優れているとされるZrO2 成分を88〜97重
量%含むジルコニア質溶融鋳造耐火物のVF耐火物を、
さらにその鋳造時の表面を削り落として使用してもガラ
ス中に発生する欠点を皆無にすることが困難である。
Various measures have been taken in order to improve the yield of products and produce high quality glass with few defects such as bubbles and gravel (also called stone). However, the VF refractory containing zirconia-based melt-cast refractory containing 88 to 97% by weight of ZrO 2 component, which is said to be the best at present, is
Furthermore, it is difficult to eliminate all the defects that occur in the glass even if the surface used during the casting is scraped off and used.

【0010】本発明者らはZrO2 成分を88〜97重
量%含む高ジルコニア質溶融鋳造耐火物と溶融ガラスと
の接触部で、溶融ガラス中に気泡が発生する状況を詳細
に調べた。その結果、高ジルコニア質溶融鋳造耐火物の
緻密な組織中にマトリックスガラスと細かい気孔(大部
分は1mm以下)が層状に集積した厚さが1mm以下
の、切断研磨面に肉眼で観察できる暗灰色を帯びた層状
組織(以下、ワームトレーシング又はWTという)が存
在し、このWTが高ジルコニア質溶融鋳造耐火物の鋳造
時に鋳型の側面に接していた耐火物の表面に沿って多数
存在していることを発見した。また、このWTが耐火物
の異常侵食の起点になりうる他、溶融ガラス中に気泡を
発生する起点になることを認めた。
The present inventors have examined in detail the situation where bubbles are generated in the molten glass at the contact portion between the molten zirconia refractory containing the ZrO 2 component in an amount of 88 to 97% by weight and the molten glass. As a result, matrix glass and fine pores (mostly 1 mm or less) were accumulated in a layered structure in the dense structure of high zirconia melt cast refractory, and the thickness was 1 mm or less. There is a layered structure (hereinafter referred to as worm tracing or WT) having a tinge, and many WT are present along the surface of the refractory that was in contact with the side surface of the mold during casting of the high zirconia melt cast refractory. I found that. Further, it was confirmed that this WT can be a starting point for abnormal erosion of refractory materials and a starting point for generating bubbles in the molten glass.

【0011】また、ZrO2 成分を88〜97重量%含
む高ジルコニア質溶融鋳造耐火物の切断面を詳細に調査
した結果、耐火物の鋳造時に鋳型の底部と接していた耐
火物の表面から6〜8cm以内の距離にある部分の耐火
物中には、このWTが観察されないことを発見した。
Further, as a result of detailed investigation of the cut surface of the high zirconia melt cast refractory containing 88 to 97% by weight of ZrO 2 component, it was found from the surface of the refractory which was in contact with the bottom of the mold during casting of the refractory to It was discovered that this WT was not observed in the refractory in the part within a distance of ~ 8 cm.

【0012】[0012]

【発明が解決しようとする課題】本発明の目的は、溶融
ガラスに対する耐食性に優れ、かつ溶融ガラスと接触さ
せたときに発生する気泡が少ないジルコニア質溶融鋳造
耐火物を製造でき、VF耐火物と称するジルコニア質溶
融鋳造耐火物を高い歩留りで製造しうる製造方法を提供
することにある。
DISCLOSURE OF THE INVENTION An object of the present invention is to produce a zirconia fused cast refractory having excellent corrosion resistance to molten glass and less bubbles generated when it is brought into contact with molten glass, and to obtain a VF refractory. It is an object of the present invention to provide a manufacturing method capable of manufacturing a so-called zirconia-based molten cast refractory with a high yield.

【0013】[0013]

【課題を解決するための手段】本発明は前述の課題を達
成すべくなされたものであり、鋳型を用いて鋳造する、
ZrO2 成分を33重量%以上含むジルコニア質溶融鋳
造耐火物の製造方法において、鋳型を回転軸の回りに回
転させることによって鋳型内に注入した原料の溶融物の
少なくとも一部分に1.2G以上の遠心力を与えた状態
で溶融物を固化させることを特徴とする。
SUMMARY OF THE INVENTION The present invention has been made to achieve the above-mentioned object, and is cast by using a mold,
In a method for producing a zirconia-based melt-cast refractory containing 33 wt% or more of ZrO 2 component, at least a part of the melt of the raw material injected into the mold by rotating the mold around a rotating shaft is centrifuged at 1.2 G or more. It is characterized in that the melt is solidified in the state where force is applied.

【0014】ガラス窯に使用されるZrO2 成分を33
重量%以上含むジルコニア質溶融鋳造耐火物のVF耐火
物を製造するときに、従来の方法による耐火物の鋳造時
には存在しない1.2G以上の遠心力を印加すると、耐
火物の溶融物に重力と遠心力の両方が同時に働き、ジル
コニア質溶融鋳造耐火物中に形成されるボイドの分布を
遠心力と重力が働く方向とは逆方向の狭い部分に偏在さ
せうる。
The ZrO 2 component used in the glass kiln is 33
When a VF refractory containing zirconia-based melt-casting refractory containing at least wt% is applied, a centrifugal force of 1.2 G or more, which does not exist when casting the refractory by the conventional method, is applied. Both centrifugal forces act at the same time, and the distribution of voids formed in the zirconia-based molten cast refractory can be unevenly distributed in a narrow portion in the direction opposite to the direction in which centrifugal force and gravity work.

【0015】本発明の製造方法によれば、遠心力の印加
によって鋳造された耐火物中のボイドが偏在する部分の
体積割合を顕著に少なくでき、VF耐火物を得るときに
切除する部分の割合(従来は上部を1/2以上切除して
いる)を減らしてVF耐火物の製造歩留りを顕著に高め
うる。耐火物を鋳造する鋳型内の一部分に10G程度の
遠心力を印加することは技術上の問題がなく、より大き
い遠心力を印加すれば、比重の大きいZrO2 成分を多
く含む溶融物の固化相表面への移動を促進できる。
According to the manufacturing method of the present invention, the volume ratio of the uneven distribution of voids in the cast refractory can be remarkably reduced by the application of the centrifugal force, and the ratio of the part to be cut off when obtaining the VF refractory. It is possible to significantly reduce the manufacturing yield of the VF refractory by reducing the number (cutting more than 1/2 of the upper part in the past). There is no technical problem in applying a centrifugal force of about 10 G to a part of the mold for casting the refractory, and if a larger centrifugal force is applied, the solidified phase of the melt containing a large amount of ZrO 2 component having a large specific gravity is applied. It can facilitate migration to the surface.

【0016】また、ボイドが分布する部分の大部分を切
除しない耐火物の場合にも、ガラス窯の溶融ガラスと接
触する側に、遠心力を印加して耐火物のボイドが存在し
ない組織の部分を使用すれば、ボイドが存在する組織の
部分に侵食が進むまでの間、安定して優れた耐食性を有
する耐火物として使用できる。
Also, in the case of a refractory in which most of the void-distributed portion is not cut off, centrifugal force is applied to the side of the glass kiln that contacts the molten glass, and the portion of the tissue where the refractory void does not exist Can be used as a refractory having stable and excellent corrosion resistance until erosion progresses to the part of the tissue where the void exists.

【0017】冷却固化時に大きすぎる遠心力を印加する
と、歪みを吸収、緩和するマトリックスガラス相の含有
量が少なくZrO2 結晶の多い固化相が形成され、この
ような固化相では体積変化を伴うZrO2 結晶の結晶変
態が起きる温度サイクルを受けたときにマトリックスガ
ラスによる歪みの緩和が充分になされない。この場合、
温度サイクルによって耐火物の体積が増大(残存膨張)
したり、耐火物に亀裂が発生する。このため、溶融物に
印加する遠心力は1.5〜3.5G、特には2.0〜
3.0Gとするのが好ましい。
When a too large centrifugal force is applied during cooling and solidification, a solidified phase containing a small amount of matrix glass phase that absorbs and relaxes strain and has a large amount of ZrO 2 crystals is formed. In such solidified phase, ZrO accompanied by volume change is formed. When the glass is subjected to a temperature cycle in which the crystal transformation of the two crystals occurs, the matrix glass does not sufficiently relax the strain. in this case,
Refractory volume increases due to temperature cycle (residual expansion)
Or cracks occur in the refractory. Therefore, the centrifugal force applied to the melt is 1.5 to 3.5 G, particularly 2.0 to
It is preferably 3.0 G.

【0018】鋳型に注入するジルコニア質溶融鋳造耐火
物の原料の溶融物の温度は2000℃以上と高い。この
ため、溶融物を注入した鋳型を回転させるときは、溶融
物が飛び散らないようにする。鋳型は遠心力によって生
じる応力に耐える強度を必要とするので、鋳型材には黒
鉛を使用するのが好ましい。遠心力が印加された溶融物
の荷重を受ける鋳型面は、回転軸と平行に、かつ荷重を
できるだけ鋳型面に垂直に受けるように配置するのが好
ましい。また、溶融物の固化速度を好ましい速度に調整
するため、鋳型の周囲を保温材で囲っているが、保温材
が回転時に飛び散らないように保温材の周囲を鋼鉄製の
箱等で囲って保持するのが好ましい。
The temperature of the melt of the raw material of the zirconia-based molten cast refractory to be poured into the mold is as high as 2000 ° C. or higher. Therefore, when the mold in which the melt is injected is rotated, the melt is prevented from scattering. It is preferable to use graphite as the mold material because the mold needs to have a strength to withstand the stress generated by the centrifugal force. The mold surface that receives the load of the melt to which the centrifugal force is applied is preferably arranged so as to be parallel to the rotation axis and to receive the load as perpendicular as possible to the mold surface. Also, in order to adjust the solidification rate of the melt to a preferable rate, the mold is surrounded by a heat insulating material, but the heat insulating material is surrounded by a steel box to prevent it from scattering during rotation. Preferably.

【0019】溶融物の冷却固化は鋳型に溶融物が注入さ
れた瞬間に始まる。比較的小型のジルコニア質溶融鋳造
耐火物を鋳造する場合には、鋳型を取り付けた回転装置
の慣性モーメントが小さいため、溶融物の注入直後に鋳
型を回転させて遠心力を急速に立ち上げることができ
る。回転装置をインバータ制御のモータで駆動すれば、
回転装置の回転数を任意に制御でき、たとえば溶融物の
固化中に回転速度を変えて固化相表面に常に一定の大き
さの遠心力が働くように制御したりすることもできる。
しかし、大型の耐火物を鋳造するときや複数の耐火物を
同時に鋳造するときには、溶融物の注入に要する時間が
長く、溶融物が注入された鋳型が重いので、装置を回転
させる慣性モーメントがさらに大きくなり、遠心力を急
速に立ち上げがたい。
Cooling and solidification of the melt begins at the moment the melt is poured into the mold. When casting a relatively small zirconia-based melt-casting refractory, since the moment of inertia of the rotating device equipped with the mold is small, it is possible to rotate the mold immediately after injecting the melt to rapidly raise the centrifugal force. it can. If you drive the rotating device with an inverter-controlled motor,
The rotation speed of the rotating device can be arbitrarily controlled, and for example, the rotation speed can be changed during solidification of the melt so that a centrifugal force of a constant magnitude always acts on the surface of the solidified phase.
However, when casting large refractory materials or when casting multiple refractory materials at the same time, it takes a long time to inject the melt, and since the mold into which the melt is injected is heavy, the moment of inertia for rotating the device is further increased. It becomes large and it is difficult to quickly set up centrifugal force.

【0020】本発明のジルコニア質溶融鋳造耐火物の好
ましい製造方法は、鋳型の湯口を回転軸上に設け、鋳型
が回転している状態で原料の溶融物を鋳型の湯口に注入
する。この製造方法を採用すれば、鋳型内に注入した溶
融物に直ちに遠心力を印加できる。したがって、鋳造す
る耐火物が大型であっても、あるいは同時に複数の耐火
物を鋳造する場合にも、遠心力を一貫して印加でき、W
Tが存在しない組織を有する部分を鋳型の外側の鋳型面
に接していた耐火物の表面付近に一貫して形成できる。
A preferred method for producing the zirconia-based melt-cast refractory material of the present invention is to provide a mold spout on a rotary shaft and inject the raw material melt into the mold spout while the mold is rotating. If this manufacturing method is adopted, centrifugal force can be immediately applied to the molten material injected into the mold. Therefore, even if the refractory to be cast is large, or if a plurality of refractories are cast at the same time, the centrifugal force can be consistently applied.
It is possible to consistently form a portion having a structure in which T does not exist near the surface of the refractory that was in contact with the mold surface outside the mold.

【0021】本発明のジルコニア質溶融鋳造耐火物の好
ましい製造方法では、回転軸の周囲に、回転軸に対して
対称的に配置した複数の鋳型を回転させ、同時に複数個
の耐火物を鋳造する。複数の耐火物を同時に鋳造できれ
ば、耐火物の生産性が向上する。この場合、回転装置の
バランスが取れるように、各鋳型は回転装置の回転軸に
対して対称的に配置するのが好ましい。回転装置に複数
の鋳型を取り付けるとき、各鋳型は必然的に回転軸の一
方の側にあり、各鋳型の内部に概ね同じ方向の遠心力が
働く。
In a preferred method for producing a zirconia melt cast refractory of the present invention, a plurality of molds symmetrically arranged with respect to the rotation axis are rotated around the rotation axis to simultaneously cast a plurality of refractories. . If multiple refractories can be cast at the same time, the productivity of the refractory will be improved. In this case, it is preferable that the molds are arranged symmetrically with respect to the rotation axis of the rotating device so that the rotating device can be balanced. When a plurality of molds are attached to the rotating device, each mold is necessarily on one side of the rotation axis, and centrifugal forces in substantially the same direction act inside each mold.

【0022】本発明のジルコニア質溶融鋳造耐火物の好
ましい製造方法では、原料の溶融物を88〜97重量%
のZrO2 成分を含むものとする。ジルコニア質溶融鋳
造耐火物のZrO2 原料には、天然に産するバデレアイ
ト鉱を精製した原料、又はジルコン砂からSiO2 成分
を除く処理をした原料が使用される。これら通常入手で
きるZrO2 原料中には1重量%程度の、耐火物として
使用されるときにZrO2 成分と同等の特性を示すHf
2 成分が共存している。本発明でいう耐火物中のZr
2 成分の含有量はZrO2 成分とHfO2 成分の含有
量を合わせた重量%である。
In a preferred method of producing the zirconia melt cast refractory of the present invention, the raw material melt is 88 to 97% by weight.
ZrO 2 component of As the ZrO 2 raw material for the zirconia-based melt-cast refractory, a raw material obtained by refining naturally occurring baddeleyite ore, or a raw material obtained by removing SiO 2 component from zircon sand is used. Of these normally available ZrO 2 raw materials, about 1% by weight of Hf exhibits the same characteristics as the ZrO 2 component when used as a refractory material.
O 2 component coexists. Zr in refractory material in the present invention
The content of the O 2 component is the total weight% of the contents of the ZrO 2 component and the HfO 2 component.

【0023】原料の溶融物が88〜97重量%のZrO
2 成分を含むものであるときには、冷却固化時に溶融物
に印加する遠心力を1.5G以上にすると、大きい遠心
力が働く回転軸から最も離れた鋳型の側面と接触してい
た耐火物の表面(以下、A面という)から10cm以内
の距離の部分に、溶融ガラス中に気泡を発生する起点と
なる前述のWTが存在しない組織を有するジルコニア質
溶融鋳造耐火物を製造できる。
The raw material melt is 88 to 97% by weight of ZrO.
When it contains two components, if the centrifugal force applied to the melt during cooling and solidification is set to 1.5 G or more, the surface of the refractory that was in contact with the side surface of the mold farthest from the rotating shaft where a large centrifugal force works (hereinafter , A surface) within a distance of 10 cm from the zirconia melt cast refractory having a structure in which the above-mentioned WT which is a starting point for generating bubbles in the molten glass does not exist.

【0024】遠心力を印加しない従来の方法で高ジルコ
ニア質溶融鋳造耐火物を鋳造するとき、鋳型の底面に接
していた耐火物の下部に厚さが6〜8cmのWTが存在
しない組織がある。WTが存在しない組織ができる理由
を、本発明者らは溶融物中におけるZrO2 成分の移動
に重力が寄与したと考えた。すなわち、ZrO2 成分の
含有量が多い溶融物の比重は、ZrO2 成分の含有量の
少ない溶融物の比重と比べて大きいので、重力がZrO
2 成分を多く含む溶融物を主としてZrO2 結晶からな
る固化相表面に移動させる駆動力になったと考えた。
When casting a high zirconia melt cast refractory by a conventional method which does not apply centrifugal force, there is a structure in which a WT having a thickness of 6 to 8 cm does not exist below the refractory which was in contact with the bottom surface of the mold. . The reason for the formation of the structure without WT is that the inventors considered that gravity contributed to the movement of the ZrO 2 component in the melt. That is, the specific gravity of the melt containing a large amount of the ZrO 2 component is larger than the specific gravity of less melt the content of the ZrO 2 component, gravity ZrO
It was considered that the driving force moved the melt containing a large amount of the two components to the surface of the solidified phase mainly composed of ZrO 2 crystals.

【0025】88〜97重量%のZrO2 成分を含むジ
ルコニア質溶融鋳造耐火物を鋳造するとき、耐火物の溶
融物を鋳型に注入した後の遠心力の立ち上がりが遅い
と、耐火物のA面に直交し、耐火物をおよそ2分する鋳
造時の底面に対して直角方向の切断面の、A面から2〜
3cmしか離れていない箇所に、数は少ないがWTが観
察されることもある。しかし、このような組織も従来の
WTが多数観察される耐火物の組織と比べて溶融ガラス
と接触したときの発泡は顕著に少ない。
When casting a zirconia melt-cast refractory containing 88 to 97% by weight of ZrO 2 component, if the centrifugal force rises slowly after the refractory melt is poured into the mold, the A surface of the refractory is 2 to the plane A, which is perpendicular to the bottom surface of the refractory and is cut in a direction perpendicular to the bottom surface during casting.
A small number of WTs may be observed at a distance of only 3 cm. However, such a structure also has significantly less foaming when it comes into contact with molten glass, as compared with the structure of a refractory in which many conventional WTs are observed.

【0026】本発明のジルコニア質溶融鋳造耐火物の好
ましい製造方法は、鋳型を、対称軸を有する四角柱の側
面を構成する鋳型面で囲まれた鋳造空間を有するものと
し、鋳造空間を対称軸に垂直な面で切断した切断面を正
方形又は正方形に近い長方形とし、鋳造空間の対称軸を
回転軸とする。この構成の鋳型は構造が簡単で作りやす
く、鋳型の各4側面の近傍に働く遠心力の大きさが概ね
等しくなり、回転軸を含む対称面が複数存在することに
よって高い対称性を保った状態で溶融物の冷却と固化が
進行する。
A preferred method for producing the zirconia melt cast refractory of the present invention is such that the mold has a casting space surrounded by the mold faces constituting the side surfaces of a square column having a symmetry axis, and the casting space is the symmetry axis. The cross section cut by a plane perpendicular to is a square or a rectangle close to a square, and the axis of symmetry of the casting space is the axis of rotation. The mold with this structure has a simple structure and is easy to make, and the centrifugal force acting in the vicinity of each of the four side surfaces of the mold is approximately the same, and the existence of multiple symmetry planes including the rotation axis maintains high symmetry. Then, the cooling and solidification of the melt proceed.

【0027】この鋳型空間の内部では、固化時に溶融物
が対称面を横切る流動をほとんど生じないので、耐火物
中の組織が対称性を保持したものになる。特に、原料の
溶融物が88〜97重量%のZrO2 成分を含むとき、
同じ大きさの遠心力を印加して鋳造する場合、WTが存
在しない緻密な組織の厚さが、鋳型の側面と接していた
耐火物の鋳造面からより厚い高ジルコニア質溶融鋳造耐
火物を製造できる。正方形に近い長方形という意味は、
長方形の長辺と短辺の比が1.2以下の1.0に近いも
のをいう。すなわち、対称軸を有する四角柱の対称軸に
直角な方向の切断面が正方形から若干ずれた長方形であ
っても、冷却固化後の耐火物の組織に大きな変化が認め
られず、鋳型の側面と接していた耐火物の表面付近に充
分厚いWTの存在しない組織を有する耐火物を製造でき
る。
Inside the mold space, the molten material hardly flows across the plane of symmetry during solidification, so that the structure of the refractory material retains symmetry. In particular, when the raw material melt contains 88 to 97% by weight of ZrO 2 component,
When casting with the same magnitude of centrifugal force, the dense structure without WT produces a thicker high-zirconia molten cast refractory from the casting surface of the refractory that was in contact with the side of the mold. it can. The meaning of a rectangle that is close to a square is
It means that the ratio of the long side to the short side of the rectangle is 1.2 or less and is close to 1.0. That is, even if the cutting surface in the direction perpendicular to the axis of symmetry of the quadrangular prism having the axis of symmetry is a rectangle slightly deviated from the square, no significant change is observed in the structure of the refractory after cooling and solidification, and the side surface of the mold A refractory having a sufficiently thick WT-free structure near the surface of the refractory in contact can be manufactured.

【0028】この製造方法の好ましいバリエーションの
1つとして、鋳型が、鋳造空間の内部に設けた、対称軸
を含むとともに四角柱の側面に直角に設けた鋳型壁によ
って鋳造空間を2つに仕切ったものである製造方法があ
る。この製造方法によれば、対称軸を含み四角柱の側面
と直交する鋳型面で2分してなるWTが少なく緻密な組
織の割合の多い2個の直方体の耐火物を同時に鋳造でき
る。
As one of preferred variations of this manufacturing method, the mold is divided into two parts by a mold wall provided inside the casting space, which includes the axis of symmetry and is provided at a right angle to the side surface of the square pole. There is a manufacturing method that is one. According to this manufacturing method, it is possible to simultaneously cast two rectangular parallelepiped refractories having a small proportion of WT and a large proportion of a dense structure, which is divided into two parts by a mold surface that includes the axis of symmetry and is orthogonal to the side surface of the rectangular column.

【0029】本発明のジルコニア質溶融鋳造耐火物の他
の好ましい製造方法では、溶融物の冷却固化後に鋳型か
ら取り出した固化体から、溶湯の注入口付近にあるボイ
ドが偏在する耐火物部分を切除する。この場合、溶融物
が遠心力を印加された状態で冷却固化するため、耐火物
中に生じるボイド群が偏在して鋳造体中の小さい容積の
部分に集まり、VF耐火物の製品歩留を顕著に高めう
る。
In another preferable method for producing a zirconia melt cast refractory of the present invention, a refractory portion in which voids are unevenly distributed in the vicinity of a molten metal injection port is cut out from a solidified body taken out from a mold after cooling and solidification of the melt. To do. In this case, since the melt is cooled and solidified in the state where centrifugal force is applied, void groups generated in the refractory are unevenly distributed and gather in a small volume portion in the cast body, and the product yield of the VF refractory is remarkable. Can be increased to

【0030】本発明のジルコニア質溶融鋳造耐火物は、
ZrO2 成分を88〜97重量%含み、ZrO2 結晶相
とSiO2 を主成分とする少量のマトリックスガラス相
とからなるジルコニア質溶融鋳造耐火物であって、耐火
物鋳造時の一耐火物側面と直交しかつ耐火物を凡そ2分
する鉛直な切断面と一致する、前記側面から10cm以
内の距離にある1.6cm×2.5cmの矩形の研磨さ
れた試料面を、EPMA(エレクトロンプローブマイク
ロアナライザ)の直径約100μmの電子スポットで走
査して調べるとき、いずれの矩形の試料面についても、
走査した電子スポットの内でマトリックスガラスの含有
量が50重量%以上とされる電子スポット、又は走査し
た電子スポットの内でZrO2 成分の含有量が50重量
%以下とされる電子スポットの存在割合が3%未満であ
ることを特徴とする。
The zirconia melt-cast refractory material of the present invention is
A zirconia melt-casting refractory material containing 88 to 97% by weight of ZrO 2 component and a ZrO 2 crystal phase and a small amount of a matrix glass phase containing SiO 2 as a main component. A rectangular polished sample surface of 1.6 cm × 2.5 cm within a distance of 10 cm from the side surface, which coincides with a vertical cut surface that divides the refractory roughly into two parts, is treated with an EPMA (electron probe micro (Analyzer) scanning with an electron spot with a diameter of about 100 μm,
The proportion of electron spots in which the content of matrix glass is 50 wt% or more in the scanned electron spots, or the proportion of electron spots in which the content of ZrO 2 component is 50 wt% or less in the scanned electron spots Is less than 3%.

【0031】ここで、耐火物側面というのは耐火物鋳造
時の位置関係を基準としている。溶融物に遠心力を働か
せて鋳造した耐火物にあてはめると、耐火物鋳造時の一
耐火物側面というのは耐火物の側面のうち、鋳造時に最
も大きい遠心力が働いた、回転軸から最も遠い側にある
側面である。また、耐火物を凡そ2分する切断面とは、
切断面で2分した両側の耐火物の体積のそれぞれが切断
前の耐火物全体の体積の1/3を割らない切断面をい
う。
Here, the refractory side surface is based on the positional relationship during refractory casting. When applied to a refractory that was cast by exerting centrifugal force on the melt, one refractory side during refractory casting is the side of the refractory that has the largest centrifugal force during casting, and is the furthest from the axis of rotation. It is the side on the side. In addition, the cut surface that divides the refractory material into about two
A cut surface in which each of the volumes of the refractory material on both sides divided by the cut surface does not fall below 1/3 of the volume of the entire refractory material before cutting.

【0032】本発明では耐火物組織中にWTが存在する
かどうかを元素分析機能を有するEPMAを使用して評
価する。まず、あらかじめ評価する耐火物を切断研磨し
た試料面上のマトリックスガラス相のみからなる組織の
部分に直径約100μmの電子スポットを当て、その部
分のSiの特性X線の強度(カウント数)を測定してこ
の部分のマトリックスガラスの量を100重量%に設定
する。次に、試料面上の耐火物中のZrO2 結晶相のみ
からなる部分のZrの特性X線の強度(カウント数)を
測定してこの部分のZrO2 成分の含有量を100重量
%に設定する。この場合、EPMAの設定条件を調節し
たり適当な係数を乗ずれば、濃度が100重量%のとき
のカウント数をあらかじめ設定した数値(たとえば2
0,000カウント)に合わせうる。
In the present invention, whether or not WT is present in the refractory structure is evaluated using EPMA having an elemental analysis function. First, an electron spot with a diameter of about 100 μm is applied to the part of the structure consisting only of the matrix glass phase on the surface of the sample obtained by cutting and polishing the refractory to be evaluated in advance, and the Si characteristic X-ray intensity (count number) of that part is measured. Then, the amount of the matrix glass in this portion is set to 100% by weight. Next, the intensity (count number) of the characteristic X-ray of Zr in the portion consisting only of the ZrO 2 crystal phase in the refractory on the sample surface was measured and the content of the ZrO 2 component in this portion was set to 100% by weight. To do. In this case, if the EPMA setting conditions are adjusted or multiplied by an appropriate coefficient, the count number when the concentration is 100% by weight is set in advance (for example, 2).
10,000 counts).

【0033】次いで、回転軸を含み、耐火物鋳造時の一
耐火物側面と直交し、かつ耐火物を垂直に凡そ2分する
切断面と一致する、研磨した試料面に、EPMAの直径
約100μmの電子スポットを当てて走査し、マトリッ
クスガラスの含有量が50重量%以上又はZrO2 成分
の含有量が50重量%以下である電子スポット(以下、
Wスポットという)を検出する。電子スポットによる走
査は、たとえば0.1mm間隔で電子スポットを研磨し
た切断面に当ててWスポットであるかどうかを判別す
る。
Then, the EPMA diameter is about 100 μm on the polished sample surface which includes the axis of rotation, is orthogonal to one side surface of the refractory during casting of the refractory, and is coincident with the cut surface that bisects the refractory vertically. And scanning with an electron spot of 50% by weight or more of the matrix glass or 50% by weight or less of the ZrO 2 component (hereinafter,
W spot) is detected. In the scanning with the electron spots, for example, the electron spots are applied to the polished cut surface at intervals of 0.1 mm to determine whether or not the spots are W spots.

【0034】このとき、特性X線のカウント数と特定成
分の含有量が比例関係にあると仮定し、試料面に当てた
電子スポットの内、Siの特性X線のカウント数が10
0重量%のときのカウント数の50%以上あればマトリ
ックスガラスの含有量が50重量%以上のWスポットで
あるとする。同様に、Zrの特性X線のカウント数がZ
rO2 結晶が100重量%のときのカウント数の50%
以下であればZrO2成分の含有量が50重量%以下の
Wスポットであるとする。本発明では、このいずれかの
条件を満たす電子スポットをWスポットと判別する。こ
の方法で耐火物の研磨された切断面を調べると、WTの
ある部分にはマトリックスガラスが濃縮されており、Z
rO2 成分の含有量が少ないので、Wスポットが高い頻
度で検出される。
At this time, assuming that the count number of the characteristic X-rays and the content of the specific component are in a proportional relationship, the count number of the characteristic X-rays of Si is 10 among the electron spots applied to the sample surface.
If the count number is 50% or more at 0% by weight, it means that the W spot has a matrix glass content of 50% by weight or more. Similarly, the count number of the characteristic X-ray of Zr is Z
50% of the count number when the rO 2 crystal is 100% by weight
If it is below, it is assumed that the W spot has a ZrO 2 component content of 50% by weight or less. In the present invention, an electron spot satisfying any of these conditions is discriminated as a W spot. When the polished cut surface of the refractory material was examined by this method, the matrix glass was concentrated in the part where WT was
Since the content of the rO 2 component is low, W spots are frequently detected.

【0035】EPMAによる直径約100μmの電子ス
ポットで走査して耐火物鋳造時の耐火物側面と直交する
鉛直方向の切断面と一致する研磨した1.6cm×2.
5cm(面積が4cm2 )の試料面について肉眼で観察
するとき、WTは走査した電子スポットの内でWスポッ
トが研磨された切断面上に占める割合が3%超である試
料面にのみ観察される。逆に研磨された切断面上にWス
ポットが占める割合が3%未満である試料面にはWTが
観察されない。
1. Scanned with an electron spot of about 100 μm in diameter by EPMA and polished 1.6 cm × 2. Which corresponds to a vertical cut surface orthogonal to the side surface of the refractory during casting of the refractory.
When the sample surface of 5 cm (area: 4 cm 2 ) is observed with the naked eye, WT is observed only on the sample surface in which the proportion of W spots on the polished cut surface among the scanned electron spots is more than 3%. It On the contrary, WT is not observed on the sample surface where the proportion of W spots on the polished cut surface is less than 3%.

【0036】1.6cm×2.5cmの矩形の試料面は
EPMAで調べる便宜上採用した寸法の試料面であり、
2.0cm×2.0cmの正方形の試料面について調べ
ても結果は同じになる。したがって、本発明のジルコニ
ア質溶融鋳造耐火物では、耐火物鋳造時の一耐火物側面
から10cm以内の距離にある切断研磨された試料面上
にWTが観察されない。
A rectangular sample surface of 1.6 cm × 2.5 cm is a sample surface of a size adopted for the sake of exploration with EPMA.
The results are the same when a 2.0 cm × 2.0 cm square sample surface is examined. Therefore, in the zirconia fused cast refractory of the present invention, no WT is observed on the cut and polished sample surface within a distance of 10 cm from one refractory side during refractory casting.

【0037】耐火物の切断研磨面をEPMAの電子スポ
ットで走査して調べると、WTが観察されない耐火物の
部分にも3%未満の割合でWスポットが検出される。つ
まり、WスポットはそのすべてがWTの存在を意味する
ものでなく、Wスポットが分散して分布していればWT
が存在せず、その切断面にはWTが肉眼で観察されな
い。ジルコニア質溶融鋳造耐火物を亀裂なく鋳造するに
は、ZrO2 結晶の体積変化を伴う結晶変態に起因する
耐火物中の歪みを吸収するマトリックスガラスの存在が
必要である。マトリックスガラスが耐火物の冷却固化に
際して層状に集積したときにWTとなり、WTのある耐
火物の部分にWスポットが3%以上の割合で検出され
る。
When the cut and polished surface of the refractory is scanned with an electron spot of EPMA, W spots are also detected at a rate of less than 3% in the part of the refractory in which WT is not observed. In other words, the W spot does not mean that all the WTs exist, but if the W spots are distributed and distributed, the WT
Is not present, and no WT is visually observed on the cut surface. In order to cast a zirconia melt cast refractory without cracking, it is necessary to have a matrix glass that absorbs strain in the refractory caused by crystal transformation accompanied by volume change of ZrO 2 crystal. When the matrix glass accumulates in layers when the refractory is cooled and solidified, it becomes WT, and W spots are detected in a proportion of 3% or more on the refractory part having WT.

【0038】本発明のジルコニア質溶融鋳造耐火物は、
ZrO2 成分を88〜97重量%含み、ZrO2 結晶相
とSiO2 を主成分とする少量のマトリックスガラス相
とからなるジルコニア質溶融鋳造耐火物であって、耐火
物鋳造時の一耐火物側面と直交しかつ耐火物を凡そ2分
する鉛直な研磨された切断面を、肉眼で観察するとき、
前記側面から10cmまでの距離にある前記研磨された
切断面上にマトリックスガラスと細かい気孔が集積した
層状組織が認められないことを特徴とする。
The zirconia melt-cast refractory material of the present invention comprises
A zirconia melt-casting refractory material containing 88 to 97% by weight of ZrO 2 component and a ZrO 2 crystal phase and a small amount of a matrix glass phase containing SiO 2 as a main component. When observing with a naked eye a vertical polished cut surface that is orthogonal to and divides the refractory roughly into two parts,
A layered structure in which matrix glass and fine pores are accumulated is not observed on the polished cut surface at a distance of 10 cm from the side surface.

【0039】ここで細かい気孔とは、耐火物の切断研磨
面において耐火物の組織中、特にWT中に観察される直
径が1μm〜1mmの範囲にある気孔をいう。切断研磨
面に肉眼で観察されるWTは、通常周囲の組織と比べて
やや暗い灰色を呈する。しかし、ガラス窯などに使用さ
れて酸化雰囲気中で加熱すると薄茶色に変色する。
Here, the fine pores are pores having a diameter in the range of 1 μm to 1 mm observed in the structure of the refractory, particularly in WT, on the cut and polished surface of the refractory. The WT observed with the naked eye on the cut and polished surface usually has a slightly darker gray color than the surrounding tissue. However, when it is used in glass kilns and heated in an oxidizing atmosphere, it turns light brown.

【0040】このようなWTの形成は、理論上ZrO2
成分の含有量が少ないジルコニア質溶融鋳造耐火物にお
いても存在する。しかし、WTが肉眼で観察しうる状態
で存在するのがZrO2 成分を88重量%以上含むジル
コニア質溶融鋳造耐火物に限られ、この種のジルコニア
質溶融鋳造耐火物中のWTが溶融ガラスと接触したとき
に発泡する起点になることを認めたので、ZrO2 成分
の含有量を88重量%以上としている。また、耐火物中
のZrO2 成分の含有量が97重量%より多いと、耐火
物の鋳造時に亀裂が発生しやすくなり、実用性のあるジ
ルコニア質溶融鋳造耐火物の製造が困難になるのでZr
2 成分の含有量は97重量%以下とされる。
The formation of such WT is theoretically based on ZrO 2
It is also present in zirconia melt cast refractories with low content of components. However, it is limited to zirconia melt-casting refractory containing 88% by weight or more of ZrO 2 component that WT exists in a visually observable state, and WT in this type of zirconia-melting cast refractory is molten glass. Since it was recognized that the ZrO 2 component becomes a starting point of foaming when contacted, the content of the ZrO 2 component is set to 88% by weight or more. If the content of the ZrO 2 component in the refractory is more than 97% by weight, cracks are likely to occur during casting of the refractory, making it difficult to produce a practical zirconia-based fused cast refractory.
The content of O 2 component is 97% by weight or less.

【0041】ZrO2 成分を88〜97重量%含むジル
コニア質溶融鋳造耐火物中にWTが形成される理由は、
溶融物が固化するときにZrO2 成分のZrO2 結晶表
面への移動が遅いことに起因すると推定する。すなわ
ち、溶融物が鋳型中で冷却固化するときの温度分布は、
鋳型の表面に概ね平行な方向に等温面があり、溶融物の
固化は、温度の低い鋳型の表面で開始されて内側へと進
行し、形成される固化相の表面は等温面と概ね平行であ
る。
The reason why WT is formed in a zirconia melt-cast refractory containing 88 to 97% by weight of ZrO 2 component is as follows.
It is presumed that this is due to the slow migration of the ZrO 2 component to the ZrO 2 crystal surface when the melt solidifies. That is, the temperature distribution when the melt is cooled and solidified in the mold is
There is an isothermal surface in a direction substantially parallel to the surface of the mold, the solidification of the melt is initiated at the surface of the mold having a low temperature and proceeds inward, and the surface of the solidified phase formed is substantially parallel to the isothermal surface. is there.

【0042】この固化相は主としてZrO2 結晶からな
り、このZrO2 結晶の表面付近には、ZrO2 成分が
ZrO2 結晶の生成に消費されたことによってZrO2
成分の含有量が少なくSiO2 成分の多い溶融物が存在
する。固化相が生成するには固化相表面にZrO2 成分
が供給される必要があり、固化相表面におけるZrO2
結晶の生成はZrO2 成分の固化相表面への移動によっ
て律速される。しかし、SiO2 成分を多く含む溶融物
の粘性が大きいので、この溶融物中のZrO2成分の移
動は遅い。
[0042] The solidification phase consists mainly ZrO 2 crystals, in the vicinity of the surface of the ZrO 2 crystals, ZrO 2 by ZrO 2 component is consumed for the generation of ZrO 2 crystals
There is a melt with a low content of components and a high content of SiO 2 . The solidification phase is generated must ZrO 2 component is fed to the solidification phase surface, ZrO in solidified phase surface 2
The formation of crystals is limited by the movement of the ZrO 2 component to the surface of the solidified phase. However, since the viscosity of the melt containing a large amount of SiO 2 component is high, the movement of the ZrO 2 component in this melt is slow.

【0043】このため、ZrO2 結晶からなる固化相の
生成が中断された状態でさらに冷却が進行し、ZrO2
結晶の結晶化が先に形成されたZrO2 結晶からなる固
化相の表面から少々離れたZrO2 成分の濃度が大きい
溶融物中で開始される。その結果、耐火物のZrO2
晶を主とする固化相と固化相の間にSiO2 成分が多い
溶融物が層状に閉じ込められた状態になる。閉じ込めら
れた層状のSiO2 成分が多い溶融物がさらに冷却さ
れ、その内部のZrO2 成分が樹枝状に結晶化するとと
もに冷却固化すると、固化による体積減少に伴って細か
い気孔が生成し、WTが形成される。このような現象が
溶融物の固化時に繰り返し起きれば、耐火物中の固化相
表面に沿って多数のWTが生成する。
For this reason, cooling proceeds further in the state where the production of the solidified phase composed of ZrO 2 crystals is interrupted, and ZrO 2
Crystallization of the crystals begins in the melt with a high concentration of the ZrO 2 component, which is slightly away from the surface of the solidified phase consisting of the previously formed ZrO 2 crystals. As a result, a melt containing a large amount of SiO 2 component is confined in layers between the solidified phase mainly composed of ZrO 2 crystals of the refractory. The confined layered SiO 2 component-rich melt is further cooled, and the ZrO 2 component inside thereof crystallizes in a dendritic manner and solidifies by cooling, resulting in the formation of fine pores as the volume decreases due to solidification, resulting in WT. It is formed. If such a phenomenon occurs repeatedly during solidification of the melt, a large number of WT are formed along the surface of the solidification phase in the refractory.

【0044】このWTの部分にはZrO2 成分が少な
く、SiO2 成分を相対的に多く含んでいるため溶融ガ
ラスに対する耐食性が劣り、FeやTi等の不純物元素
が濃縮された状態で含まれていて暗灰色を呈する。そし
て、このWTは溶融ガラス中に気泡を発生させる起点に
なる。
This WT portion contains a small amount of ZrO 2 component and a relatively large amount of SiO 2 component, so that the corrosion resistance to molten glass is poor, and impurity elements such as Fe and Ti are contained in a concentrated state. Dark gray. Then, this WT serves as a starting point for generating bubbles in the molten glass.

【0045】ZrO2 成分を88〜97重量%含み、耐
火物鋳造時の一耐火物側面から10cmの距離の深さま
でWTが観察されないジルコニア質溶融鋳造耐火物は、
溶融物の冷却固化時に鋳型中の溶融物に遠心力を印加す
ることによって初めて製造された。すなわち、地球上に
ない1.5G以上の遠心力(耐火物の寸法や冷却速度等
の鋳造条件によって遠心力の大きさは変化するが)の働
きによって溶融物の主としてZrO2 結晶からなる固化
相表面にZrO2 成分が強制的に供給され、重力のみに
よって形成されるときより厚い、一耐火物側面から少な
くとも10cmの距離までの切断研磨面にWTが存在し
ない耐火物組織を有するジルコニア質溶融鋳造耐火物が
得られる。
A zirconia melt cast refractory containing 88 to 97% by weight of ZrO 2 and having no WT observed up to a depth of 10 cm from one side of the refractory during refractory casting is
It was first manufactured by applying a centrifugal force to the melt in the mold during cooling and solidification of the melt. That is, the solidified phase mainly composed of ZrO 2 crystals of the melt is acted by the action of centrifugal force of 1.5 G or more not found on the earth (the magnitude of the centrifugal force changes depending on the casting conditions such as refractory size and cooling rate). Zirconia melt casting with a refractory texture in which no WT is present on the cut and polished surface up to a distance of at least 10 cm from one refractory side, which is thicker when formed solely by gravity with the ZrO 2 component being forced into the surface Refractory can be obtained.

【0046】本発明によるZrO2 成分を88〜97重
量%含むジルコニア質溶融鋳造耐火物は、ガラス窯を構
築するときに積みやすいように、好ましくは直方体又は
直方体に近い形状を有する。本発明の高ジルコニア質溶
融鋳造耐火物をガラス窯に使用し、耐火物のWTが存在
しない組織を有する側をガラス窯の溶融ガラスと接触す
る側に配置してガラス窯を構築すると、ガラス窯中の溶
融ガラスが耐火物のWTが存在しない組織の部分と接触
している間、耐火物が起点となって溶融ガラス中に導入
される気泡が顕著に減少する。これによって、ガラス製
品の品質とガラス製品の歩留りが顕著に向上する。
The zirconia melt cast refractory containing 88 to 97% by weight of the ZrO 2 component according to the present invention preferably has a rectangular parallelepiped shape or a shape close to a rectangular parallelepiped so that it can be easily stacked when a glass kiln is constructed. When the high zirconia fused cast refractory of the present invention is used in a glass kiln, and the glass kiln is constructed by arranging the side having a structure where the WT of the refractory does not exist in the glass kiln in contact with the molten glass. While the molten glass therein is in contact with the portion of the structure where the refractory WT is not present, the bubbles introduced from the refractory into the molten glass are remarkably reduced. This significantly improves glass product quality and glass product yield.

【0047】[0047]

【実施例】以下に、本発明を実施例及び比較例によって
具体的に説明するが、本発明はこれらによって限定され
ない。
EXAMPLES The present invention will be specifically described below with reference to Examples and Comparative Examples, but the present invention is not limited to these.

【0048】[実施例1及び比較例1]図1は、実施例
1で耐火物の鋳造に使用した回転装置1と回転装置1に
取り付けた鋳型2を回転軸3を通る面で切断した断面図
である。鋳型2は厚さ約3cmの黒鉛板で製作してあ
り、図1では鋳造空間の断面形状が五角形であり、鋳型
は内寸が厚さ13cm、上部奥行き26cm〜下部奥行
き16cm、高さ35cmとされ、上部に約13cm×
13cmの湯口6を有する。この鋳型2を回転装置1の
回転台7に固定した枠5内に収容してバイヤーアルミナ
の保温材4中に埋め、35cm×13cmの鋳型の内壁
面の中央と回転軸3からの距離(回転半径)が92cm
となるように鋳型2を回転台7上に固定した。回転装置
1は最高回転数60rpmで回転できるものである。
[Example 1 and Comparative Example 1] FIG. 1 is a cross-sectional view of the rotating device 1 used for casting refractory material in Example 1 and the mold 2 attached to the rotating device 1 taken along a plane passing through the rotating shaft 3. It is a figure. The mold 2 is made of a graphite plate having a thickness of about 3 cm. In FIG. 1, the cross-sectional shape of the casting space is a pentagon, and the inner size of the mold is 13 cm, the upper depth is 26 cm to the lower depth is 16 cm, and the height is 35 cm. It is about 13 cm × on the top
It has a 13 cm sprue 6. This mold 2 is housed in a frame 5 fixed to a rotating table 7 of a rotating device 1 and embedded in a heat insulating material 4 of Bayer alumina, and the distance from the center of the inner wall surface of the mold of 35 cm × 13 cm to the rotating shaft 3 (rotation) Radius is 92 cm
The mold 2 was fixed on the rotary table 7 so that The rotating device 1 can rotate at a maximum rotation speed of 60 rpm.

【0049】原料に脱珪ジルコン、ジルコン砂、バイヤ
ーアルミナ及び炭酸ソーダを用い、ZrO2 :93.0
重量%、SiO2 :4.5重量%、Al23 :2.0
重量%、Na2 O:0.5重量%の組成に調合した約7
0kgの混合原料を、黒鉛電極を備える500kVAの
単相交流を電源とするアーク電気炉に投入してアーク溶
融した。この溶融物を湯口6から鋳型2中に注入し、鋳
型2を溶融物で満たして鋳型の上部に保温材4と保温材
の押さえ(図示せず)を取り付けて直ちに回転装置1を
起動し、約10秒で回転数を54rpmに上げ、この回
転数を40分間保持した。このとき、回転軸から最も離
れた鋳型の内壁面(130mm×350mmの側面)の
中央部には3G(2940cm/s2 )の遠心力が印加
されていると計算された。その後、回転装置の回転を停
止して2昼夜放冷し、鋳型内から固化したジルコニア質
溶融鋳造耐火物を取り出し、切断して調査した。
ZirO 2 : 93.0 using desiliconized zircon, zircon sand, Bayer alumina and sodium carbonate as raw materials.
% By weight, SiO 2 : 4.5% by weight, Al 2 O 3 : 2.0
Wt.%, Na 2 O: about 7 wt.
0 kg of the mixed raw material was charged into an arc electric furnace equipped with a graphite electrode and using a single-phase alternating current of 500 kVA as a power source to perform arc melting. This melt is poured into the mold 2 from the sprue 6, the mold 2 is filled with the melt, the heat insulating material 4 and a heat insulating material holder (not shown) are attached to the upper part of the mold, and the rotating device 1 is immediately activated. The rotation speed was increased to 54 rpm in about 10 seconds, and this rotation speed was maintained for 40 minutes. At this time, it was calculated that a centrifugal force of 3 G (2940 cm / s 2 ) was applied to the center of the inner wall surface (side surface of 130 mm × 350 mm) of the mold that was farthest from the rotation axis. After that, the rotation of the rotating device was stopped, and the mixture was allowed to cool for 2 days and night, and the solidified zirconia-based fused casting refractory was taken out from the mold, cut, and investigated.

【0050】比較例1として、回転装置上で回転させな
いで、他は実施例1と同じ条件でジルコニア質溶融鋳造
耐火物を鋳造し、実施例1の耐火物と同様に切断して調
査した。
As Comparative Example 1, a zirconia melt-cast refractory was cast under the same conditions as in Example 1 except that the refractory was not rotated on a rotating device, and cut and examined in the same manner as the refractory of Example 1.

【0051】実施例1の耐火物を、回転軸3を含み、最
大の遠心力が印加された回転軸から離れた鋳型の内壁面
に接していた耐火物の表面9(A面)に対して直角な面
(鋳造時の配置を基準とする、以下同じ)で切断してそ
の切断面を肉眼で観察した。図2の(a)は実施例1で
鋳造した耐火物の断面図であり、耐火物8の切断面に観
察されるボイド10の分布状態を示す。この耐火物をV
F耐火物とするには、B−B’の面で切断して左側の部
分を除けばよい。
The refractory material of Example 1 was included with respect to the surface 9 (A surface) of the refractory material that was in contact with the inner wall surface of the mold including the rotating shaft 3 and away from the rotating shaft to which the maximum centrifugal force was applied. The cut surface was cut at a right angle surface (based on the arrangement at the time of casting, the same applies hereinafter), and the cut surface was observed with the naked eye. FIG. 2A is a cross-sectional view of the refractory material cast in Example 1, and shows a distribution state of the voids 10 observed on the cut surface of the refractory material 8. This refractory is V
To make an F refractory, it is sufficient to cut at the plane BB 'and remove the left side portion.

【0052】また、比較例1の耐火物8’についても、
鋳造された耐火物が同じ鋳型の内壁面に接していた側面
9’(以下、A’面という)に直角で鋳造時の底面に対
して直角な面で2つに切断し、その切断面を観察した。
図2の(b)は比較例1の耐火物の切断面を示す。図2
から分かるように、比較例1の耐火物では内部のボイド
が上部に分散して分布しているのに対し、実施例1の耐
火物ではボイドが回転軸に近い上部湯口付近に偏在して
いる。図2に示した例はZrO2 を93.0重量%含む
場合の例であるが、遠心力を印加してボイドを偏在させ
る本発明による効果はAZS系の溶融鋳造耐火物につい
ても同様に得られる。
Further, regarding the refractory 8'of Comparative Example 1,
The cast refractory is cut in two at a plane that is perpendicular to the side surface 9 '(hereinafter referred to as "A'plane") that was in contact with the inner wall surface of the same mold, and is perpendicular to the bottom surface at the time of casting. I observed.
FIG. 2B shows a cut surface of the refractory material of Comparative Example 1. Figure 2
As can be seen from the figure, in the refractory material of Comparative Example 1, internal voids are dispersed and distributed in the upper portion, whereas in the refractory material of Example 1, the voids are unevenly distributed near the upper sprue close to the rotation axis. . The example shown in FIG. 2 is an example in which ZrO 2 is contained in an amount of 93.0% by weight. However, the effect of the present invention in which a centrifugal force is applied to unevenly distribute voids can be similarly obtained for an AZS-based molten cast refractory. To be

【0053】図3は、比較例1の耐火物8’の鋳型側面
に接していた表面であるA’面に直交する鋳造時の底面
に対して直角な耐火物を概ね2分する研磨された切断面
をEPMAの直径100μmの電子スポットで走査し、
検出されたWスポットをチャート紙にプロットした分布
図(6cm×6cmについての分布図)である。同分布
図には、Wスポットが筋状に集合しているWT12が
A’面9’におおむね平行に多数存在しているのに対
し、実施例1の耐火物ではA面から約13cmの距離の
位置までの耐火物の研磨された切断面にWTが認められ
なかった(ただし、A面から13cmを超える実施例1
の耐火物8の回転軸に近い側の研磨された切断面にはW
Tを多数認めた。)。
FIG. 3 shows that the refractory 8'of Comparative Example 1 is roughly bisected into a refractory 8'that is in contact with the side surface of the mold and is perpendicular to the bottom surface at the time of casting, which is orthogonal to the plane A '. Scan the cut surface with an electron spot with a diameter of 100 μm of EPMA,
It is the distribution map (distribution map about 6 cm x 6 cm) which plotted the detected W spot on the chart paper. In the distribution diagram, a large number of WTs 12 in which W spots are gathered in a streak pattern are present substantially in parallel with each other on the A ′ surface 9 ′, whereas in the refractory material of Example 1, a distance of about 13 cm from the A surface. No WT was observed on the polished cut surface of the refractory up to the position (however, in Example 1 in which the width exceeds 13 cm from the surface A).
W on the polished cut surface of the refractory 8 near the rotation axis
Many Ts were recognized. ).

【0054】次いで、図4に示すように、実施例1と比
較例1の耐火物を鋳造時の底面に対して直角な面で切断
したものから、その約1/2の高さの位置で厚さ約5c
m(寸法は6.5cm×26cm)の板11(実施例
1)、11’(比較例1)を切り取り、さらにこの板1
1、11’のA面9及びA’面9’位置から順に、厚さ
1cm、幅2.5cm、長さ5cm(板11の上下方向
の厚さに相当)の試験片(実施例1:a1〜a5、比較
例1:b1〜b5)を採取した。これらの試験片の2.
5cm×5cmの面をダイヤモンドペーストで研磨し、
この研磨面に真空中で炭素を蒸着し、その中央の2.5
cm×1.6cmの表面をEPMA(波長分散型の元素
分析機能付きのもの、電子の加速電圧15kV、試料電
流5×10-8nA)を用い直径約100μmの電子スポ
ットで走査して調べた。
Then, as shown in FIG. 4, the refractory materials of Example 1 and Comparative Example 1 were cut at a surface perpendicular to the bottom surface at the time of casting. Thickness about 5c
Plates 11 (Example 1) and 11 '(Comparative Example 1) of m (size 6.5 cm × 26 cm) were cut out, and the plate 1 was further cut.
Test pieces having a thickness of 1 cm, a width of 2.5 cm, and a length of 5 cm (corresponding to the thickness of the plate 11 in the vertical direction) (Example 1: a1 to a5 and Comparative Example 1: b1 to b5) were collected. 2. of these test pieces
Polish the 5 cm x 5 cm surface with diamond paste,
Carbon is vapor-deposited on this polishing surface in a vacuum, and the central 2.5
The surface of cm × 1.6 cm was examined by scanning with an electron spot having a diameter of about 100 μm using EPMA (wavelength dispersive element analysis function, electron acceleration voltage 15 kV, sample current 5 × 10 −8 nA). .

【0055】この解析では、走査した直径が約100μ
mの電子スポットの内、Wスポットと判別した割合
(%)を、各試験片の試料面について測定した。得られ
た結果を表1(実施例1)と表2(比較例1)に示す。
In this analysis, the scanned diameter was about 100 μm.
The ratio (%) of the m electron spots discriminated as W spots was measured on the sample surface of each test piece. The obtained results are shown in Table 1 (Example 1) and Table 2 (Comparative Example 1).

【0056】[0056]

【表1】 [Table 1]

【0057】[0057]

【表2】 [Table 2]

【0058】b1の試料面と比べてa1の試料面でWス
ポットの割合が顕著に少ないのは、鋳型への溶融物の注
入後A面から僅か(1cm程度と推定)しか冷却固化が
進んでいないタイミングで溶融物に遠心力を印加したた
めである。また、b2の試料面のWスポットの割合とa
2の試料面のWスポットの割合との間の差は小さいが、
肉眼で観察するとWTの有無は明瞭で、b2試料面では
WTが明らかに認められるのに対し、a2の試料面では
WTが認められなかった。すなわち、マトリックスガラ
スが分散して分布しているa2の試料面にはWTがな
い。
The ratio of the W spots on the sample surface of a1 is remarkably smaller than that of the sample surface of b1 because the cooling and solidification progressed only slightly (estimated to be about 1 cm) from the surface A after the molten material was injected into the mold. This is because the centrifugal force was applied to the melt at the timing when it was not. Also, the ratio of the W spot on the sample surface of b2 and a
The difference between the two spots on the sample surface and the proportion of W spots is small,
The presence or absence of WT was clear when observed with the naked eye, and WT was clearly observed on the b2 sample surface, whereas no WT was observed on the a2 sample surface. That is, there is no WT on the sample surface of a2 where the matrix glass is dispersed and distributed.

【0059】表1には、実施例1の耐火物8のA面9か
ら12.5cm以上離れた部分についてのデータが示さ
れていないが、耐火物8のA面9から13cm以上離れ
た耐火物8の切断研磨面では、Wスポットの占める割合
は3%以上あり、WTが観察された。
Although Table 1 does not show the data of the portion of the refractory material 8 of Example 1 which is separated from the A surface 9 by 12.5 cm or more, the fire resistance of the refractory material 8 which is separated by 13 cm or more from the A surface 9 is shown. On the cut and polished surface of the object 8, the proportion of W spots was 3% or more, and WT was observed.

【0060】上記の試験片を採取した板11、11’及
び鋳造された各耐火物の底部から耐火物の物性を調べる
ため円柱状の試料を採取した。すなわち、A面又はA’
面から0〜3cm、3〜6cm、6〜9cmの距離にあ
る部分と、各耐火物の底部の中央からそれぞれ直径3c
m、高さ3cmの円柱試料(実施例1:c1〜c4、比
較例1:d1〜d4)を採取し、各円柱試料について気
孔率と嵩比重を測定した。得られた結果を表3に示す。
表3の結果から、WTが観察されない耐火物部分では相
対的に気孔率が小さく、嵩比重が大きいことが分かる。
Cylindrical samples were taken from the plates 11 and 11 'from which the above test pieces were taken and the bottom of each cast refractory in order to examine the physical properties of the refractory. That is, side A or A '
3c in diameter from the center of the bottom of each refractory and the part at a distance of 0-3cm, 3-6cm, 6-9cm from the surface.
A cylindrical sample (Example 1: c1 to c4, Comparative example 1: d1 to d4) having a height of 3 cm and a height of 3 cm was sampled, and the porosity and the bulk specific gravity of each cylindrical sample were measured. Table 3 shows the obtained results.
From the results in Table 3, it can be seen that the refractory portion where WT is not observed has a relatively small porosity and a large bulk specific gravity.

【0061】[0061]

【表3】 [Table 3]

【0062】板11、11’から耐火物の耐食性を調べ
るための角柱状の試料を採取した。すなわち、上記試験
片と隣接する箇所の、A面又はA’面から0〜1.5c
m、1.5〜3.0cm及び3.0〜4.5cmの位置
から、断面が1.5cm×1.5cmで高さ5cmの角
柱をそれぞれ切り取った(実施例1:e1〜e3、比較
例1:f1〜f3)。
A prismatic sample for examining the corrosion resistance of the refractory was sampled from the plates 11 and 11 '. That is, 0 to 1.5c from the surface A or the surface A ', which is adjacent to the test piece.
From the positions of m, 1.5 to 3.0 cm and 3.0 to 4.5 cm, prisms each having a cross section of 1.5 cm × 1.5 cm and a height of 5 cm were cut (Example 1: e1 to e3, comparison). Example 1: f1 to f3).

【0063】次に、白金坩堝中に、無アルカリアルミノ
シリケートガラス(溶融温度が高く侵食性が大きい)の
カレットを入れ、各角柱試料を立てた状態で白金坩堝に
挿入し、1600℃に40時間保持して各角柱状の試料
を引き上げ、常温まで冷却後角柱状の試料を中央で縦方
向に切断し、溶融ガラスのフラックスライン(溶融ガラ
スの表面)の位置にあった侵食が最も激しかった部分
(切断面では両側にある)の侵食深さを切断面の両側で
測定して平均の侵食深さを求めた。得られた結果を表4
に示す。表4の結果から、WTが存在しない部分の耐火
物は溶融ガラスに対する耐食性についても優れているこ
とが分かる。
Next, a cullet of a non-alkali aluminosilicate glass (having a high melting temperature and a high erosiveness) was placed in the platinum crucible, and each prismatic sample was put into the platinum crucible in an upright state, and it was placed at 1600 ° C. for 40 hours. Hold and pull up each prismatic sample, cool to room temperature and cut the prismatic sample in the vertical direction at the center, where the most erosion was at the position of the flux line (surface of the molten glass) of the molten glass The erosion depth (on the cut surface on both sides) was measured on both sides of the cut surface to determine the average erosion depth. Table 4 shows the obtained results.
Shown in From the results in Table 4, it can be seen that the refractory in the portion where WT does not exist is also excellent in corrosion resistance to molten glass.

【0064】[0064]

【表4】 [Table 4]

【0065】板11、11’の、上記試験片と隣接する
箇所から耐火物の発泡性を調べる試料を採取した。すな
わち、A面又はA’面から0〜3.0cm、3.0〜
6.0cm及び6.0〜9.0cmの位置から直径3.
0cm、高さ1.0cmの円盤試料(実施例1:g1〜
g3、比較例1:h1〜h3)をそれぞれ採取した。次
いで、ZrO2 を93.5重量%含むジルコニア質溶融
鋳造耐火物を切断加工して作成した坩堝(内寸で内径3
0mm、深さ15mm)中に各円盤試料を入れ、各円盤
試料上に、ソーダ石灰ガラス(板ガラス)のカレット
を、カレットが溶融したときに厚さ5mmの溶融ガラス
層が円盤試料上に形成されるように載せ、1400℃で
48時間連続加熱した。
Samples for examining the foamability of the refractory were taken from the portions of the plates 11 and 11 'adjacent to the test piece. That is, 0-3.0 cm, 3.0-
Diameters from positions of 6.0 cm and 6.0 to 9.0 cm.
A disk sample having a height of 0 cm and a height of 0 cm (Example 1: g1 to g1
g3 and Comparative Example 1: h1 to h3) were collected. Next, a crucible made by cutting a zirconia-based melt-cast refractory containing 93.5% by weight of ZrO 2
0 mm, depth 15 mm), each disc sample was put in, and a soda lime glass (plate glass) cullet was formed on the disc sample, and a molten glass layer having a thickness of 5 mm was formed on the disc sample. So as to be heated continuously at 1400 ° C. for 48 hours.

【0066】気泡の発生状況を円盤試料の上面中央の2
cm2 の領域について48時間にわたってビデオ撮影に
より観察し、円盤試料の表面から発生する気泡(大部分
は径が0.05〜0.3mmの範囲にある)の数を数え
た。円盤試料の表面で発生する気泡の数は、24時間の
間に1cm2 当たりの表面に発生する気泡の数として求
め、表5に示した。
The state of bubbles generated was measured at 2 in the center of the upper surface of the disk sample.
The area of cm 2 was observed by videography for 48 hours, and the number of bubbles (mostly in the range of 0.05 to 0.3 mm in diameter) generated from the surface of the disk sample was counted. The number of bubbles generated on the surface of the disk sample was determined as the number of bubbles generated on the surface per cm 2 during 24 hours, and is shown in Table 5.

【0067】[0067]

【表5】 [Table 5]

【0068】表5から、実施例1の遠心力を印加して鋳
造されたWTが観察されない耐火物の部位では、比較例
1のWTが観察される耐火物の部位と比較して、溶融ガ
ラスと接触させたときの発泡が顕著に少ないことが分か
る。
From Table 5, in the part of the refractory in which the centrifugal force was applied and cast WT was not observed, the molten glass was compared with the part of the refractory in which the WT of Comparative Example 1 was observed. It can be seen that the foaming when contacted with is remarkably small.

【0069】[実施例2、3]図5は、実施例2、3で
使用した、一対の鋳型を回転軸の両側に設けた遠心鋳造
設備の一例を説明する縦断面図である。図5において3
は回転軸、2は黒鉛製の鋳型、4は保温材、5は保温材
と鋳型を入れる箱、6は回転軸3の上方に設けられた湯
口、13は鋳型の固定具、14は蓋である。回転軸3を
挟む対称位置には同じ寸法の鋳型2が同様に設けられて
おり、湯口6に注入される原料の溶融物は、同じ湯口6
から両方の鋳型2に同時に流れ込むように設けてある。
この図5の回転装置1の回転軸3はインバータ制御の電
動機で駆動されている。
[Embodiments 2 and 3] FIG. 5 is a vertical sectional view for explaining an example of a centrifugal casting facility used in Embodiments 2 and 3 in which a pair of molds are provided on both sides of a rotary shaft. 5 in FIG.
Is a rotary shaft, 2 is a graphite mold, 4 is a heat insulating material, 5 is a box for holding the heat insulating material and the mold, 6 is a spout provided above the rotary shaft 3, 13 is a fixture for the mold, and 14 is a lid. is there. The molds 2 having the same size are similarly provided at symmetrical positions with the rotary shaft 3 sandwiched therebetween, and the melt of the raw material injected into the gate 6 has the same gate 6
It is provided so as to flow into both molds 2 simultaneously.
The rotating shaft 3 of the rotating device 1 shown in FIG. 5 is driven by an inverter-controlled electric motor.

【0070】この構成の鋳造設備を使用すると、回転中
の鋳型2に湯口6から原料の溶融物を注入し、遠心力を
一貫して印加した状態で耐火物を鋳造できる。したがっ
て、アーク電気炉等から大量の原料の溶融物を供給でき
れば、高品質のジルコニア質溶融鋳造耐火物を生産性よ
く製造できる。
Using the casting equipment of this construction, the refractory can be cast while the molten material of the raw material is injected from the sprue 6 into the rotating mold 2 and the centrifugal force is consistently applied. Therefore, if a large amount of raw material melt can be supplied from an arc electric furnace or the like, a high-quality zirconia-based molten cast refractory can be manufactured with high productivity.

【0071】実施例2、3で使用した遠心鋳造設備で
は、回転軸から遠い側にある鋳型の側面までの距離を3
1.1cmとし、鋳型の内寸法は高さ35cm、厚さ1
3cm、幅(半径方向の寸法)26cmとした。実施例
2では84.8rpmで鋳型を回転させ、A面の中央部
に働く遠心力を2.5Gとし、実施例1と同じ組成の原
料の溶融物を回転軸の上部に設けた湯口6から注入し
た。鋳型をこの回転数で回転させた状態で約1時間冷却
し、鋳型の回転を停止して2昼夜放置後鋳造した耐火物
を鋳型から取り出した。また、実施例3では、鋳型を1
20rpmで回転させ、A面の中央部に働く遠心力を
5.0Gとし、他の条件は実施例2と同様にして耐火物
を鋳造した。
In the centrifugal casting equipment used in Examples 2 and 3, the distance from the rotary shaft to the side surface of the mold on the far side was set to 3
1.1 cm, the inner dimension of the mold is 35 cm in height and 1 in thickness
The width was 3 cm and the width (radial dimension) was 26 cm. In Example 2, the mold was rotated at 84.8 rpm, the centrifugal force acting on the central part of the A-side was 2.5 G, and the melt of the raw material having the same composition as in Example 1 was passed through the sprue 6 provided on the upper part of the rotating shaft. Injected. The mold was cooled at this rotation speed for about 1 hour, rotation of the mold was stopped, and the cast refractory was taken out from the mold after left standing for 2 days. Moreover, in Example 3, 1 mold was used.
A refractory was cast under the same conditions as in Example 2 except that the centrifugal force acting on the central portion of the surface A was 5.0 G while rotating at 20 rpm.

【0072】実施例2、3で鋳造した耐火物をA面に直
角な回転軸を含む面で切断した。切断面を研磨して肉眼
で観察した結果、WTが認められない組織の部分はA面
からそれぞれ、11cmと12cmの距離まで存在して
いた。次に、この切断物のA面の中央部付近(A面の中
央部から約2.5cmの距離にあるA面から5cm以内
の箇所)から実施例1と同様にしてWスポットの割合を
測定する厚さ1cm、幅2.5cm、長さ5cmの試験
片、気孔率とかさ比重を測定する直径3cm、高さ3c
mの円柱試料、耐食性を調べる1.5cm×1.5cm
×5cmの角柱試料、気泡の発生状況を調べる5cm×
5cm×2.5cmの角板の5cm×5cmの面の中央
に内径3.5cm、深さ1.5cmの穴を開けた角板試
料及び温度サイクル試験に供する4cm×4cm×4c
mの試験片をそれぞれ採取した。
The refractories cast in Examples 2 and 3 were cut along a plane including a rotation axis perpendicular to the A plane. As a result of polishing the cut surface and observing it with the naked eye, the tissue portions where WT was not observed were present up to a distance of 11 cm and 12 cm from the A surface, respectively. Next, in the same manner as in Example 1, the ratio of W spots was measured from the vicinity of the central portion of the A surface of the cut object (a portion within 5 cm from the A surface at a distance of about 2.5 cm from the central portion of the A surface). 1 cm thick, 2.5 cm wide, 5 cm long test piece, diameter 3 cm, height 3 c for measuring porosity and bulk specific gravity
m column sample, 1.5cm × 1.5cm for checking corrosion resistance
5cm x 5cm prismatic sample, 5cmx
A 5 cm x 2.5 cm square plate with a 5 cm x 5 cm face having a hole with an inner diameter of 3.5 cm and a depth of 1.5 cm in the center and a 4 cm x 4 cm x 4c sample to be subjected to a temperature cycle test.
m test pieces were collected.

【0073】[実施例4、5]図6は、対称軸に垂直な
断面が正方形である四角柱の鋳造空間を有し、回転軸3
を対称軸に設けた遠心鋳造鋳型の鋳造空間の概要を示す
斜視図である。図示していないが、この遠心鋳造鋳型で
は湯口が回転軸上に設けられている。実施例4では、図
6の構成を有する回転軸からA面までの距離が14.3
cmの鋳型を用い、A面の中央部における遠心力が1.
875Gとなるように鋳型を108rpmで回転させた
状態で実施例1と同じ組成の溶融物を湯口から鋳型に注
入し、他の条件は実施例2と同様にして耐火物を鋳造し
た。
[Embodiments 4 and 5] FIG. 6 has a casting space of a quadrangular prism having a square cross section perpendicular to the axis of symmetry, and the rotary shaft 3
FIG. 4 is a perspective view showing an outline of a casting space of a centrifugal casting mold in which the axis of symmetry is provided. Although not shown, in this centrifugal casting mold, the sprue is provided on the rotating shaft. In Example 4, the distance from the rotation axis having the configuration of FIG. 6 to the A surface was 14.3.
Centrifugal force at the center of the A-side is 1.
A melt having the same composition as in Example 1 was poured into the mold from the sprue while the mold was rotated at 108 rpm to obtain 875 G, and a refractory was cast under the other conditions similar to those in Example 2.

【0074】実施例5は、実施例4と同じ遠心鋳造鋳型
を使用し、A面の中央部における遠心力が2.5Gとな
るように鋳型を125rpmで回転させ、他の条件は実
施例4と同様にして耐火物を鋳造した。実施例4、5で
鋳造した耐火物をA面と直角で回転軸を含む鉛直な平面
で切断した。この切断面を研磨して肉眼で観察した結
果、WTが認められない組織の部分の厚さはA面からそ
れぞれ10cmと12.5cmであった。
In Example 5, the same centrifugal casting mold as in Example 4 was used, the mold was rotated at 125 rpm so that the centrifugal force in the central portion of the A surface was 2.5 G, and other conditions were the same as in Example 4. A refractory material was cast in the same manner as in. The refractory materials cast in Examples 4 and 5 were cut at a plane perpendicular to the plane A and containing the axis of rotation. As a result of polishing the cut surface and observing it with the naked eye, the thickness of the tissue portion where WT was not observed was 10 cm and 12.5 cm from the A surface, respectively.

【0075】実施例4、5で鋳造した耐火物から、実施
例2と同様の試験片を採取した。また、実施例1と比較
例1で鋳造した耐火物についても、実施例2と同様の試
験片を採取して以下の試験に供した。ただし、比較例1
で鋳造した耐火物については、A面でなくA’面を基準
とする位置から試験片を採取した。
Test pieces similar to those of Example 2 were taken from the refractory materials cast in Examples 4 and 5. Also, with respect to the refractory materials cast in Example 1 and Comparative Example 1, the same test pieces as in Example 2 were sampled and subjected to the following tests. However, Comparative Example 1
With respect to the refractory material cast in (1), test pieces were taken from a position based on the A ′ surface, not the A surface.

【0076】溶融ガラスを用いる侵食試験と発泡試験に
は、TVカラーパネル用ガラスのカレットを溶かして使
用した。すなわち、侵食試験では白金坩堝中にTVカラ
ーパネル用ガラスのカレットを入れ、角柱状試料を立て
た状態で1500℃に72時間保持し、各角柱状試料を
坩堝から引き上げ、冷却後縦方向に中央で切断して切断
面の両側のフラックスライン部における侵食深さを測定
し、その平均を求めた。
For the erosion test and the foaming test using the molten glass, the cullet of the glass for TV color panel was melted and used. That is, in the erosion test, the cullet of the glass for TV color panel was put in the platinum crucible, and the prismatic sample was held at 1500 ° C for 72 hours in an upright state, and each prismatic sample was pulled up from the crucible, and after cooling, was centered vertically. The erosion depths at the flux line portions on both sides of the cut surface were measured by cutting with, and the average was obtained.

【0077】発泡試験は次の方法で行った。すなわち、
試料に一面に設けた内径3.5cm、深さ1.5cmの
穴の中に、ガラスが溶けたときに5mmの厚さとなる量
のTVカラーパネル用ガラスのカレットを入れ、電気炉
中で1400℃に加熱して48時間保持した。その後、
30℃/hrで冷却し、穴の側壁の部分にある気泡を除
外し、直径3.5cmの冷却後のガラス中に残存してい
る気泡の数を、双眼顕微鏡で覗いて数えた。ガラス中に
観察された気泡は、その大部分の直径が0.05〜0.
3mmの範囲内にあった。
The foaming test was conducted by the following method. That is,
Put a cullet of glass for TV color panel in an amount of 5 mm when the glass melts into a hole having an inner diameter of 3.5 cm and a depth of 1.5 cm provided on one surface of the sample, and set it in an electric furnace at 1400. It was heated to ° C and held for 48 hours. afterwards,
After cooling at 30 ° C./hr, the bubbles on the side wall of the hole were removed, and the number of bubbles remaining in the cooled glass having a diameter of 3.5 cm was counted with a binocular microscope. Most of the bubbles observed in the glass have a diameter of 0.05-0.
It was within the range of 3 mm.

【0078】熱サイクル試験は次の方法で行った。すな
わち、先ず各耐火物から採取した4cm×4cm×4c
mの試験片の寸法をそれぞれについてノギスで測定し、
各試験片を電気炉に入れて800℃から1250℃に1
時間で昇温し、1250℃から800℃に1時間で降温
する温度サイクルを40回繰り返した。冷却後、電気炉
から取り出した各試験片の寸法をノギスで測定し、寸法
変化から各試験片の残存体積膨張率を求めた。
The heat cycle test was conducted by the following method. That is, first, 4 cm x 4 cm x 4c collected from each refractory
Measure the size of the m test piece with a caliper for each,
Put each test piece in an electric furnace and increase the temperature from 800 ℃ to 1250 ℃.
A temperature cycle of raising the temperature in 1 hour and decreasing the temperature from 1250 ° C. to 800 ° C. in 1 hour was repeated 40 times. After cooling, the size of each test piece taken out of the electric furnace was measured with a caliper, and the residual volume expansion coefficient of each test piece was obtained from the dimensional change.

【0079】EPMAによるWスポットの割合の測定は
次の方法で行った。すなわち、回転軸を含みA面と直交
し、耐火物を概ね2分する切断面を研磨した5cm×5
cmの試料面(一辺がA面の中央部と接するA面から5
cmの位置までの研磨された切断面)を有する厚さ1c
m×5cm×5cmの板状試料を採取し、この5cm×
5cmの試料面の中央部の2cm×2cmの研磨された
切断面を直径約100μmの電子スポットで走査した。
走査した電子スポットの内、ZrO2 の濃度が50%以
下とされたものをWスポットとし、2cm×2cmの切
断研磨面上のWスポットの割合を求めた。各耐火物の試
料について調べた結果を、表6にまとめて示す。
The W spot ratio was measured by EPMA by the following method. That is, the cut surface that includes the rotation axis and is orthogonal to the A-plane and divides the refractory material into approximately two is 5 cm × 5.
cm sample surface (5 from the A side where one side is in contact with the central part of the A side)
thickness 1c with polished cut surface up to cm
A plate sample of m × 5 cm × 5 cm was taken, and this 5 cm ×
A 2 cm × 2 cm polished cut surface in the center of the 5 cm sample surface was scanned with an electron spot having a diameter of about 100 μm.
Of the scanned electron spots, one having a ZrO 2 concentration of 50% or less was defined as a W spot, and the proportion of the W spot on the cut and polished surface of 2 cm × 2 cm was determined. Table 6 shows the results obtained by examining the samples of the respective refractories.

【0080】[0080]

【表6】 [Table 6]

【0081】図7は、図6に示した遠心鋳造鋳型の鋳造
空間の内部を、対称軸(回転軸でもある)を含むととも
に四角柱の側面に直角に設けた鋳型壁によって2つに仕
切った、遠心鋳造鋳型の鋳造空間の概略を示す斜視図で
ある。図示していないが、この鋳型では湯口を回転軸の
上方に設けている。この遠心鋳造設備を使用すると、大
部分がWTが少なく緻密な組織からなる2個の直方体形
状を有する耐火物を生産性よく鋳造できる。
FIG. 7 shows that the interior of the casting space of the centrifugal casting mold shown in FIG. 6 is divided into two parts by a mold wall that includes the axis of symmetry (which is also the axis of rotation) and is provided at a right angle to the side surface of the square pole. FIG. 3 is a perspective view showing an outline of a casting space of a centrifugal casting mold. Although not shown, in this mold, the sprue is provided above the rotary shaft. By using this centrifugal casting equipment, it is possible to cast a refractory having two rectangular parallelepiped shapes each having a small amount of WT and a dense structure with high productivity.

【0082】図8は表6に示した結果から、Wスポット
の割合%、発泡数及び残存体積膨張率%と鋳造時にA面
の中央部に印加した遠心力の大きさとの関係を図示した
グラフである。同図によると、Wスポット%と発泡数が
遠心力の印加によって顕著に小さくなることが分かる。
しかし、印加する遠心力が大きくなると残存体積膨張率
が増加する。残存体積膨張率が大きいと、耐火物の使用
時にその体積が増え、耐火物に亀裂が発生する原因とな
るので、1.5〜3.5Gの遠心力の印加が特に好まし
いことが分かる。
From the results shown in Table 6, FIG. 8 is a graph showing the relationship between the percentage W spot, the number of foams and the residual volume expansion percentage%, and the magnitude of the centrifugal force applied to the central portion of the A surface during casting. Is. According to the figure, it can be seen that the W spot% and the foaming number are significantly reduced by the application of the centrifugal force.
However, the residual volume expansion rate increases as the applied centrifugal force increases. When the residual volume expansion coefficient is large, the volume of the refractory material increases when it is used, which causes cracks in the refractory material. Therefore, it is understood that application of a centrifugal force of 1.5 to 3.5 G is particularly preferable.

【0083】[0083]

【発明の効果】本発明のジルコニア質溶融鋳造耐火物の
製造方法では、ジルコニア質溶融鋳造耐火物の溶融物を
鋳型に注入して固化させる際に、鋳型内の鋳造空間の少
なくとも一部分に1.2G以上の遠心力を印加する。こ
れによって、耐火物中に形成されるボイド群を、この遠
心力によって切除する予定の片隅に偏在させることがで
き、これによって鋳造する耐火物の製造歩留を顕著に高
められる。また、ZrO2 成分を88〜97重量%含む
耐火物にこの製造方法を適用すると、大きい遠心力を印
加した回転軸から離れた鋳造面(A面)の近傍に溶融ガ
ラス中に気泡を発生する起点となるWTが観察されない
10cm以上の厚さの緻密な組織を有する高ジルコニア
質溶融鋳造耐火物を製造できる。
According to the method for producing a zirconia-based melt cast refractory of the present invention, when the melt of the zirconia-based melt cast refractory is poured into the mold and solidified, at least a part of the casting space in the mold is 1. A centrifugal force of 2 G or more is applied. As a result, the group of voids formed in the refractory can be unevenly distributed in one corner to be cut by this centrifugal force, and the production yield of the refractory to be cast can be significantly increased. When this manufacturing method is applied to a refractory material containing 88 to 97% by weight of ZrO 2 component, bubbles are generated in the molten glass in the vicinity of the casting surface (A surface) away from the rotating shaft to which a large centrifugal force is applied. It is possible to manufacture a high-zirconia fused cast refractory having a dense structure with a thickness of 10 cm or more from which WT as a starting point is not observed.

【0084】本発明のジルコニア質溶融鋳造耐火物は、
ZrO2 成分を88〜97重量%含むとともに、耐火物
のA面から少なくとも10cmの距離の位置までの研磨
された切断面にWTが観察されない。WTが存在しない
組織を有する部分は耐食性も大きいので、耐火物のWT
が観察されない組織の部分をガラス窯の溶融ガラスと接
触する箇所に使用することによって、気泡や砂利等の欠
点が溶融ガラス中に導入されるのを顕著に少なくでき、
高品質のガラス製品を歩留よく製造できる。
The zirconia fused cast refractory material of the present invention is
WT is not observed in the polished cut surface including the ZrO 2 component in an amount of 88 to 97% by weight and extending from the surface A of the refractory material to a position at a distance of at least 10 cm. Since the portion having a structure without WT has a high corrosion resistance, the refractory WT
By using the portion of the tissue where is not observed in the glass kiln in contact with the molten glass, it is possible to significantly reduce the introduction of defects such as bubbles and gravel into the molten glass,
High quality glass products can be manufactured with good yield.

【0085】建築の窓の他、各種エレクトロニクス部品
に使用されるガラス板等、高品質を要求されるガラス製
品のガラスを溶融するガラス窯の要所に本発明によるジ
ルコニア質溶融鋳造耐火物を使用すると、ガラス製品の
品質の向上と歩留の向上が顕著である。
In addition to architectural windows, the zirconia-based fused cast refractory according to the present invention is used in the key points of a glass kiln that melts glass of glass products such as glass plates used for various electronic parts that require high quality. Then, the quality of glass products and the yield are remarkably improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例でジルコニア質溶融鋳造耐火物
を試作するのに使用された遠心鋳造設備の一例の概要を
示す縦断面図
FIG. 1 is a vertical cross-sectional view showing an outline of an example of a centrifugal casting equipment used to prototype a zirconia-based molten cast refractory in an embodiment of the present invention.

【図2】本発明の実施例と比較例におけるジルコニア質
溶融鋳造耐火物中のボイドの分布の例を示す縦断面図
FIG. 2 is a vertical cross-sectional view showing an example of void distribution in a zirconia melt-cast refractory material according to Examples and Comparative Examples of the present invention.

【図3】従来のジルコニア質溶融鋳造耐火物の側面
(A’面)に直角で鋳造時の底面に対して直角な研磨さ
れた切断面(A’面と接する一部分)をEPMAの電子
スポットで走査して検出したマトリックスガラス成分の
多いWスポットの分布図
FIG. 3 is an EPMA electron spot of a polished cut surface (a part in contact with the A ′ surface) that is perpendicular to the side surface (A ′ surface) of a conventional zirconia melt cast refractory and is perpendicular to the bottom surface during casting. Distribution map of W spot with many matrix glass components detected by scanning

【図4】本発明の実施例及び比較例で試作した耐火物を
評価するために試料を採取した位置を説明するための耐
火物の縦断面図
FIG. 4 is a vertical cross-sectional view of a refractory material for explaining a position where a sample is taken in order to evaluate refractory materials manufactured in Examples and Comparative Examples of the present invention.

【図5】本発明で使用するジルコニア質溶融鋳造耐火物
の製造設備の一例を示す縦断面図
FIG. 5 is a vertical cross-sectional view showing an example of a facility for manufacturing a zirconia melt cast refractory used in the present invention.

【図6】本発明で使用するジルコニア質溶融鋳造耐火物
の鋳造鋳型の鋳造空間の形状と回転軸の配置の一例の概
要を示す斜視図
FIG. 6 is a perspective view showing an outline of an example of the shape of the casting space and the arrangement of the rotating shaft of the casting mold of the zirconia-based molten cast refractory used in the present invention.

【図7】本発明で使用するジルコニア質溶融鋳造耐火物
の鋳造鋳型の鋳造空間の形状と回転軸の配置の他の一例
の概要を示す斜視図
FIG. 7 is a perspective view showing the outline of another example of the shape of the casting space and the arrangement of the rotating shaft of the casting mold of the zirconia-based molten cast refractory used in the present invention.

【図8】高ジルコニア質溶融鋳造耐火物の鋳造時に印加
した遠心力の大きさが耐火物の組織と特性に及ぼす影響
を示すグラフ
FIG. 8 is a graph showing the influence of the magnitude of centrifugal force applied during casting of a high-zirconia melt-cast refractory product on the structure and properties of the refractory product.

【符号の説明】[Explanation of symbols]

1:回転装置 2:鋳型 3:回転軸 4:保温材 5:箱 6:湯口 7:回転台 8,8’:ジルコニア質溶融鋳造耐火物 9,9’:A面とA面に対応するA’面 10:ボイド又はボイド群 11,11’:切り出した耐火物の板 12:WT(ワームトレーシング) 13:固定具 14:蓋 1: Rotating device 2: Mold 3: Rotating shaft 4: Insulating material 5: Box 6: Gate 7: Rotating table 8,8 ': Zirconia fusion casting refractory 9,9': A corresponding to A surface and A surface 'Surface 10: Void or group of voids 11, 11': Cut-out refractory plate 12: WT (worm tracing) 13: Fixture 14: Lid

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】鋳型を用いて鋳造する、ZrO2 成分を3
3重量%以上含むジルコニア質溶融鋳造耐火物の製造方
法において、 鋳型を回転軸の回りに回転させることによって鋳型内に
注入した原料の溶融物の少なくとも一部分に1.2G以
上の遠心力を与えた状態で溶融物を固化させることを特
徴とするジルコニア質溶融鋳造耐火物の製造方法。
1. A ZrO 2 component which is cast using a mold
In a method for producing a zirconia-based molten cast refractory containing 3% by weight or more, a centrifugal force of 1.2 G or more is applied to at least a part of a raw material melt injected into a mold by rotating the mold around a rotation axis. A method for producing a zirconia-based melt-cast refractory, which comprises solidifying the melt in a state.
【請求項2】遠心力が1.5〜3.5Gである請求項1
に記載のジルコニア質溶融鋳造耐火物の製造方法。
2. The centrifugal force is 1.5 to 3.5 G.
The method for producing a zirconia-based melt-cast refractory according to 1.
【請求項3】鋳型の湯口を回転軸上に設け、鋳型が回転
している状態で原料の溶融物を鋳型の湯口に注入する請
求項1又は2に記載のジルコニア質溶融鋳造耐火物の製
造方法。
3. A zirconia-based molten cast refractory product according to claim 1, wherein the gate of the mold is provided on a rotary shaft, and the melt of the raw material is injected into the gate of the mold while the mold is rotating. Method.
【請求項4】回転軸の周囲に、回転軸に対して対称的に
配置した複数の鋳型を回転させ、 同時に複数個の耐火物を鋳造する請求項3に記載のジル
コニア質溶融鋳造耐火物の製造方法。
4. A zirconia-based melt-cast refractory according to claim 3, wherein a plurality of molds arranged symmetrically with respect to the axis of rotation are rotated around the axis of rotation to simultaneously cast a plurality of refractories. Production method.
【請求項5】原料の溶融物が88〜97重量%のZrO
2 成分を含むものである請求項1〜4のいずれかに記載
のジルコニア質溶融鋳造耐火物の製造方法。
5. The raw material melt is 88 to 97% by weight of ZrO.
The method for producing a zirconia melt-cast refractory according to any one of claims 1 to 4, which comprises two components.
【請求項6】鋳型を、対称軸を有する四角柱の側面を構
成する鋳型面で囲まれた鋳造空間を有するものとし、 鋳造空間を対称軸に垂直な面で切断した切断面を正方形
又は正方形に近い長方形とし、 鋳造空間の対称軸を回転軸とする請求項3又は5に記載
のジルコニア質溶融鋳造耐火物の製造方法。
6. The mold has a casting space surrounded by a mold surface constituting a side surface of a quadrangular prism having an axis of symmetry, and a cutting surface obtained by cutting the casting space with a plane perpendicular to the axis of symmetry is a square or a square. The method for producing a zirconia melt-cast refractory according to claim 3 or 5, wherein the zirconia-based fused cast refractory has a rectangular shape close to, and a symmetry axis of the casting space is a rotation axis.
【請求項7】鋳型が、鋳造空間の内部に設けた、対称軸
を含むとともに四角柱の側面に直角に設けた鋳型壁によ
って鋳造空間を2つに仕切ったものである請求項6に記
載のジルコニア質溶融鋳造耐火物の製造方法。
7. The mold according to claim 6, wherein the mold is divided into two parts by a mold wall which is provided inside the casting space and which includes an axis of symmetry and is provided at a right angle to the side surface of the square pole. Method for producing zirconia-based fused cast refractories.
【請求項8】溶融物の冷却固化後に鋳型から取り出した
固化体から、溶湯の注入口付近にあるボイドが偏在する
耐火物部分を切除する請求項1〜7のいずれかに記載の
ジルコニア質溶融鋳造耐火物の製造方法。
8. The zirconia-based melt according to claim 1, wherein a refractory portion in which voids are unevenly distributed in the vicinity of the molten metal injection port is cut out from the solidified body taken out from the mold after the solidified material is cooled and solidified. Method for manufacturing cast refractories.
【請求項9】ZrO2 成分を88〜97重量%含み、Z
rO2 結晶相とSiO2 を主成分とする少量のマトリッ
クスガラス相とからなるジルコニア質溶融鋳造耐火物で
あって、 耐火物鋳造時の一耐火物側面と直交しかつ耐火物を凡そ
2分する鉛直な切断面と一致する、 前記側面から10cm以内の距離にある1.6cm×
2.5cmの矩形の研磨された試料面を、 EPMA(エレクトロンプローブマイクロアナライザ)
の直径約100μmの電子スポットで走査して調べると
き、 いずれの矩形の試料面についても、走査した電子スポッ
トの内でマトリックスガラスの含有量が50重量%以上
とされる電子スポットの存在割合が3%未満であること
を特徴とするジルコニア質溶融鋳造耐火物。
9. A ZrO 2 component is contained in an amount of 88 to 97% by weight, and Z
A zirconia melt-casting refractory consisting of a rO 2 crystal phase and a small amount of a matrix glass phase containing SiO 2 as a main component, which is orthogonal to one side of the refractory during casting of the refractory and divides the refractory roughly into two parts. 1.6 cm at a distance within 10 cm from the side surface, which coincides with the vertical cut surface
A 2.5 cm rectangular polished sample surface was measured with an EPMA (electron probe microanalyzer).
When scanning is performed with an electron spot having a diameter of about 100 μm, the existence ratio of electron spots having a matrix glass content of 50% by weight or more in the scanned electron spots is 3 for any rectangular sample surface. % Of zirconia melt-cast refractory.
【請求項10】ZrO2 成分を88〜97重量%含み、
ZrO2 結晶相とSiO2 を主成分とする少量のマトリ
ックスガラス相とからなるジルコニア質溶融鋳造耐火物
であって、 耐火物鋳造時の一耐火物側面と直交しかつ耐火物を凡そ
2分する鉛直な切断面と一致する、 前記側面から10cm以内の距離にある1.6cm×
2.5cmの矩形の研磨された試料面を、 EPMA(エレクトロンプローブマイクロアナライザ)
の直径約100μmの電子スポットで走査して調べると
き、 いずれの矩形の試料面についても、走査した電子スポッ
トの内でZrO2 成分の含有量が50重量%以下とされ
る電子スポットの存在割合が3%未満であることを特徴
とするジルコニア質溶融鋳造耐火物。
10. A ZrO 2 component is contained in an amount of 88 to 97% by weight,
A zirconia melt-cast refractory consisting of a ZrO 2 crystal phase and a small amount of a matrix glass phase containing SiO 2 as a main component, which is orthogonal to one side of the refractory at the time of casting the refractory and divides the refractory roughly into two parts. 1.6 cm at a distance within 10 cm from the side surface, which coincides with the vertical cut surface
A 2.5 cm rectangular polished sample surface was measured with an EPMA (electron probe microanalyzer).
When scanning is performed with an electron spot having a diameter of about 100 μm, the existence ratio of electron spots in which the ZrO 2 component content is 50 wt% or less in the scanned electron spots is observed for any rectangular sample surface. A zirconia melt-cast refractory characterized by being less than 3%.
【請求項11】ZrO2 成分を88〜97重量%含み、
ZrO2 結晶相とSiO2 を主成分とする少量のマトリ
ックスガラス相とからなるジルコニア質溶融鋳造耐火物
であって、 耐火物鋳造時の一耐火物側面と直交しかつ耐火物を凡そ
2分する鉛直な研磨された切断面を、 肉眼で観察するとき、 前記側面から10cmまでの距離にある前記研磨された
切断面上にマトリックスガラスと細かい気孔が集積した
層状組織が認められないことを特徴とするジルコニア質
溶融鋳造耐火物。
11. A ZrO 2 component is contained in an amount of 88 to 97% by weight,
A zirconia melt-cast refractory consisting of a ZrO 2 crystal phase and a small amount of a matrix glass phase containing SiO 2 as a main component, which is orthogonal to one side of the refractory at the time of casting the refractory and divides the refractory roughly into two parts. When observing a vertical polished cut surface with the naked eye, a layered structure in which matrix glass and fine pores are accumulated is not observed on the polished cut surface at a distance of 10 cm from the side surface. Zirconia fused cast refractory.
JP01598496A 1995-01-31 1996-01-31 Zirconia fusion cast refractory and method for producing the same Expired - Fee Related JP3877796B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01598496A JP3877796B2 (en) 1995-01-31 1996-01-31 Zirconia fusion cast refractory and method for producing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP1440595 1995-01-31
JP7-14405 1995-01-31
JP01598496A JP3877796B2 (en) 1995-01-31 1996-01-31 Zirconia fusion cast refractory and method for producing the same

Publications (2)

Publication Number Publication Date
JPH08268766A true JPH08268766A (en) 1996-10-15
JP3877796B2 JP3877796B2 (en) 2007-02-07

Family

ID=26350350

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01598496A Expired - Fee Related JP3877796B2 (en) 1995-01-31 1996-01-31 Zirconia fusion cast refractory and method for producing the same

Country Status (1)

Country Link
JP (1) JP3877796B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014129199A (en) * 2012-12-28 2014-07-10 Agc Ceramics Co Ltd High zirconia electrocast refractory material
JP2015205813A (en) * 2010-12-02 2015-11-19 サン−ゴバン セラミックス アンド プラスティクス,インコーポレイティド Refractory product

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015205813A (en) * 2010-12-02 2015-11-19 サン−ゴバン セラミックス アンド プラスティクス,インコーポレイティド Refractory product
JP2014129199A (en) * 2012-12-28 2014-07-10 Agc Ceramics Co Ltd High zirconia electrocast refractory material

Also Published As

Publication number Publication date
JP3877796B2 (en) 2007-02-07

Similar Documents

Publication Publication Date Title
KR101213241B1 (en) Raw material for zirconia/mullite refractory and plate brick
TWI537233B (en) High zirconia material electroformed refractory (1)
RU2458887C2 (en) Fusion-cast brick having high content of zirconium dioxide
KR101513730B1 (en) High-resistance high-zirconia cast refractory material
JP4059588B2 (en) Novel sintered material produced from zircon and zirconia, method for using the same, and method for producing a molded body of the sintered material
RU2243185C2 (en) Alumina-zirconia-silica-based materials with improved microstructure prepared with the aid of electric melting
BRPI0512515B1 (en) fused alumina-zirconia grain mix, abrasive tools and process of making a grain mix
US2842447A (en) Method of making a refractory body and article made thereby
CN1902142B (en) Fusion-cast refractory with high electrical resistivity
Gaddam et al. Role of manganese on the structure, crystallization and sintering of non-stoichiometric lithium disilicate glasses
KR20140000668A (en) High zirconia refractory product
US4294795A (en) Stabilized electrocast zirconia refractories
TW201527231A (en) Glass forming apparatus and methods of forming a glass ribbon
CN110002865A (en) Sintering zircon material for formed blocks
US5776397A (en) Method of producing zirconia fused cast refractories
JP3489588B2 (en) High alumina cast refractories
US11059752B2 (en) Zircon-based sintered concrete
JPH08268766A (en) Zirconia melt cast refractories and their production
US7011689B2 (en) Melted alumina-zirconia ceramic grains, abrasive tools and refractory parts produced from said grains
JPH0653604B2 (en) Ceramic material articles
JPH0672766A (en) Fused and cast high zirconia refractory
JP2003292382A (en) High zirconia fused refractory material
Kokubo Preparation and properties of glass-ceramics containing ferroelectric crystals
EP2394972B1 (en) Light-weight refractory aggregate
Southan The physical properties of modern dental porcelain

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060425

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060623

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060801

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060926

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061031

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061101

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091110

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091110

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101110

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111110

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111110

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121110

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131110

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees