JPH08266807A - Counter flow washing mechanism for deaerator - Google Patents

Counter flow washing mechanism for deaerator

Info

Publication number
JPH08266807A
JPH08266807A JP9606695A JP9606695A JPH08266807A JP H08266807 A JPH08266807 A JP H08266807A JP 9606695 A JP9606695 A JP 9606695A JP 9606695 A JP9606695 A JP 9606695A JP H08266807 A JPH08266807 A JP H08266807A
Authority
JP
Japan
Prior art keywords
water supply
switching means
flow path
treated water
membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9606695A
Other languages
Japanese (ja)
Inventor
Takashi Sugano
孝志 菅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Miura Co Ltd
Original Assignee
Miura Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Miura Co Ltd filed Critical Miura Co Ltd
Priority to JP9606695A priority Critical patent/JPH08266807A/en
Publication of JPH08266807A publication Critical patent/JPH08266807A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To prevent the reduction of capacity of a deaerator without stopping the deaerator for the washing or the like of a membrane type deaeration module and to save resources (water). CONSTITUTION: In a deaerator, a membrane type deaeration module 3 is connected to a water supply line between a raw water feed part 1 and a treated water distribution part 2. The 1st flow passage switching means 6 for switching the flow direction of raw water into the membrane type deaeration module 3 and the 2nd flow passage switching means 11 for switching between a treated water feed line 19 and a sewage discharge line 20 are installed. A control means 15 for controlling the flow passage switching means 6, 11 is installed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、ビル給水配管および
冷熱機器等に適用される脱気装置の逆通水洗浄機構の改
良に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement of a reverse water washing mechanism of a deaerator applied to building water supply pipes, cooling / heating equipment and the like.

【0002】[0002]

【従来の技術】近年では、ビル,マンション等の建造物
における赤水防止対策として、脱気装置が用いられるよ
うになってきている。また、ボイラ,温水器および冷却
器等の冷熱機器類への給水ライン中にも、これら機器類
の内部腐食の防止を目的として脱気装置が組み込まれて
いる。
2. Description of the Related Art In recent years, a deaerator has come to be used as a measure for preventing red water in buildings such as buildings and condominiums. Further, a deaerator is also installed in a water supply line for cooling and heating equipment such as a boiler, a water heater and a cooler for the purpose of preventing internal corrosion of these equipment.

【0003】前記脱気装置としては、気体分離膜を用い
たものが、装置のコンパクトさ,取扱いの簡便さから多
用されている。この種の脱気装置は、使用機器等への給
水ライン中に中空糸膜等の気体分離膜を収納してなる膜
式脱気モジュールを接続し、この膜式脱気モジュール内
に原水を通水し、この通水過程において前記膜式脱気モ
ジュール内を真空引きして、原水中の溶存気体を脱気除
去する構成となっている。
As the degassing device, a device using a gas separation membrane is widely used because of its compactness and easy handling. In this type of deaerator, a membrane degassing module containing a gas separation membrane such as a hollow fiber membrane is connected to the water supply line to the equipment used, and raw water is passed through the membrane degassing module. The inside of the membrane-type degassing module is evacuated during the passage of water, and the dissolved gas in the raw water is degassed and removed.

【0004】[0004]

【発明が解決しようとする課題】前記従来の構成におい
て、脱気装置内への原水の通水は一方向より行うため、
前記膜式脱気モジュールの原水の流入口にはゴミが付着
して目詰まりを起こし、能力(流量やDO値)低下の原
因となっている。そのため定期的に前記脱気装置を停止
させ、手動で原水を前記膜式脱気モジュールの反対側よ
り通水して逆洗浄を行ったり、汚れのひどい場合は薬品
等で洗浄しなければならない。
In the above conventional structure, since the raw water is introduced into the deaerator from one direction,
Dust adheres to the raw water inflow port of the membrane type degassing module to cause clogging, which causes a decrease in capacity (flow rate and DO value). Therefore, it is necessary to periodically stop the deaerator and manually pass the raw water from the opposite side of the membrane deaerator to carry out backwashing, or to wash with chemicals or the like when it is extremely dirty.

【0005】そこで、この発明は、前記脱気装置の能力
低下を防止するとともに、前記膜式脱気モジュールの洗
浄等のために前記脱気装置を停止させることなく、しか
も資源(水)の節約をすることを解決課題とするもので
ある。
Therefore, the present invention prevents the capacity of the deaerator from lowering, does not stop the deaerator for cleaning the membrane type deaerator, and saves resources (water). It is a problem to be solved.

【0006】[0006]

【課題を解決するための手段】この発明は、前記課題を
解決するためになされたもので、請求項1に記載の発明
は、原水供給部と処理水配給部との間の給水ライン中に
膜式脱気モジュールを接続してなる脱気装置において、
前記原水供給部と前記膜式脱気モジュールとの間に、前
記膜式脱気モジュール内への原水の流通方向を切り替え
る第一流路切替手段を設け、前記膜式脱気モジュールと
前記処理水配給部との間の処理水供給ラインから汚水排
出ラインを分岐し、該分岐点に前記処理水供給ラインと
前記汚水排出ラインとを切り替える第二流路切替手段を
設け、前記第一流路切替手段および前記第二流路切替手
段の制御を行う検知手段を設けたことを特徴とし、また
請求項2に記載の発明は、原水供給部と処理水配給部と
の間の給水ライン中に膜式脱気モジュールを接続してな
る脱気装置において、前記原水供給部と前記膜式脱気モ
ジュールとの間に、前記膜式脱気モジュール内への原水
の流通方向を切り替える第一流路切替手段を設け、前記
膜式脱気モジュールと前記処理水配給部との間の処理水
供給ラインから汚水排出ラインを分岐し、該分岐点に前
記処理水供給ラインと前記汚水排出ラインとを切り替え
る第二流路切替手段を設け、前記第一流路切替手段およ
び前記第二流路切替手段の制御を行う検知手段を設け、
さらに前記汚水排出ラインを前記原水供給部に接続する
とともに、前記汚水排出ライン中に瀘過装置を設けたこ
とを特徴としている。
The present invention has been made to solve the above-mentioned problems, and the invention according to claim 1 provides a water supply line between a raw water supply section and a treated water distribution section. In the degassing device that connects the membrane degassing module,
Between the raw water supply unit and the membrane degassing module, a first flow path switching means for switching the flow direction of raw water into the membrane degassing module is provided, and the membrane degassing module and the treated water distribution A sewage discharge line from a treated water supply line between the two parts, and a second flow path switching means for switching the treated water supply line and the sewage discharge line at the branch point, and the first flow path switching means and The invention according to claim 2 is characterized in that detection means for controlling the second flow path switching means is provided, and the invention according to claim 2 is a membrane type dewatering system in a water supply line between the raw water supply section and the treated water distribution section. In a degassing apparatus having an air module connected, a first flow path switching means for switching a flow direction of raw water into the membrane degassing module is provided between the raw water supply unit and the membrane degassing module. , The membrane degassing module A sewage discharge line from a treated water supply line between the treated water supply unit and the treated water distribution unit, and a second flow path switching means for switching the treated water supply line and the sewage discharge line at the branch point, Providing a detection means for controlling the one flow path switching means and the second flow path switching means,
Further, the sewage discharge line is connected to the raw water supply part, and a filtration device is provided in the sewage discharge line.

【0007】[0007]

【作用】この発明によれば、膜式脱気モジュール内への
原水の流入口にゴミが付着して目詰まりを起こし、脱気
装置の能力が低下する前に、検知手段により前記膜式脱
気モジュールの流入口の目詰まり状態を検知し、自動的
に前記膜式脱気モジュール内への原水の通水方向を適時
選択的に切替え、この切り替え時、処理水供給ラインと
汚水排出ラインとを切り替える。また、汚水排出ライン
へ流入した汚水は、瀘過装置により瀘過されて原水供給
部へ還流する。
According to the present invention, before the dewatering device is reduced in performance, dust is attached to the inlet of the raw water into the membrane degassing module to cause clogging, and the membrane degassing device detects the degassing apparatus before the capacity is reduced. Detecting the clogging state of the inlet of the air module, automatically and selectively switching the water flow direction of the raw water into the membrane type degassing module at the appropriate time, and at the time of this switching, the treated water supply line and the waste water discharge line Switch. In addition, the sewage that has flowed into the sewage discharge line is filtered by the filtration device and is returned to the raw water supply unit.

【0008】[0008]

【実施例】以下、この発明の具体的実施例を図面に基づ
いて詳細に説明する。まず、この発明の第一実施例を示
す図1について説明すると、この発明は、基本的に原水
供給部1と処理水配給部2との間の給水ライン中に真空
ポンプ22により真空吸引される膜式脱気モジュール3
を接続した脱気装置として実現されている。図1におい
て、原水供給部1に第一流路切替手段(以下、四方弁と
いう)6の第一ポート7を原水供給ライン16を介して
接続し、前記四方弁6の第二ポート8に膜式脱気モジュ
ール3の一端4を第一配管17を介して接続し、前記膜
式脱気モジュール3の他端5に前記四方弁6の第三ポー
ト9を第二配管18を介して接続する。そして、前記四
方弁6の第四ポート10に処理水供給ライン19を介し
て処理水配給部2を接続し、前記処理水供給ライン19
から汚水排出ライン20を分岐し、この分岐点に前記処
理水供給ライン19と前記汚水排出ライン20とを切り
替える第二流路切替手段(以下、三方弁という)11を
設けている。すなわち、前記三方弁11の第一ポート1
2と第二ポート13とが連通されると処理水は処理水配
給部2に供給され、前記三方弁11の前記第一ポート1
2と第三ポート14とが連通されると汚水は汚水排出ラ
イン20より排出される。さらに、前記処理水供給ライ
ン19には、前記三方弁11を設けた地点より下流位置
において、前記処理水供給ライン19を通過する処理水
の総量を検出する検知手段15を設け、この検知手段1
5の検出値に基づいて前記四方弁6および前記三方弁1
1の制御を行う構成となっている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Specific embodiments of the present invention will be described in detail below with reference to the drawings. First, referring to FIG. 1 showing a first embodiment of the present invention, the present invention is basically vacuum suctioned by a vacuum pump 22 into a water supply line between a raw water supply unit 1 and a treated water distribution unit 2. Membrane degassing module 3
It has been realized as a degassing device connected with. In FIG. 1, a raw water supply unit 1 is connected to a first port 7 of a first flow path switching means (hereinafter referred to as a four-way valve) 6 via a raw water supply line 16, and a membrane port is connected to a second port 8 of the four-way valve 6. One end 4 of the degassing module 3 is connected via a first pipe 17, and the other end 5 of the membrane degassing module 3 is connected to a third port 9 of the four-way valve 6 via a second pipe 18. Then, the treated water supply unit 2 is connected to the fourth port 10 of the four-way valve 6 via the treated water supply line 19, and the treated water supply line 19 is connected.
A sewage discharge line 20 is branched from this, and a second flow path switching means (hereinafter, referred to as a three-way valve) 11 for switching the treated water supply line 19 and the sewage discharge line 20 is provided at this branch point. That is, the first port 1 of the three-way valve 11
When the 2 and the second port 13 are communicated with each other, the treated water is supplied to the treated water distribution unit 2 and the first port 1 of the three-way valve 11 is connected.
When the 2 and the third port 14 are communicated with each other, the sewage is discharged from the sewage discharge line 20. Further, the treated water supply line 19 is provided with a detection means 15 for detecting the total amount of the treated water passing through the treated water supply line 19 at a position downstream of the point where the three-way valve 11 is provided.
Based on the detected value of 5, the four-way valve 6 and the three-way valve 1
It is configured to perform the control of 1.

【0009】この実施例において、前記検知手段15
は、前記三方弁11の下流位置において、前記処理水供
給ライン19に設けられているが、この発明はこれに限
定されるものではなく、たとえば前記四方弁6と前記三
方弁11との間や前記原水供給ライン16に設ける構成
も、実施に応じて好適である。
In this embodiment, the detecting means 15
Is provided in the treated water supply line 19 at a position downstream of the three-way valve 11, but the present invention is not limited to this. For example, between the four-way valve 6 and the three-way valve 11 or The configuration provided in the raw water supply line 16 is also suitable depending on the implementation.

【0010】また、前記検知手段15としては、タイ
マ,流量計および圧力計等が考えられ、場合によって
は、脱気装置(図示省略)を運転する際の電気信号を検
知(電気信号のON−OFFから運転時間,流量等を判
断できる)し、その電気信号に基づいて前記各流路切替
手段6,11を制御する検知手段15を設けることも、
実施に応じて好適である。
The detecting means 15 may be a timer, a flow meter, a pressure gauge, or the like. In some cases, an electric signal when operating a deaerator (not shown) is detected (electric signal ON- The operating time, the flow rate, etc. can be determined from OFF), and the detection means 15 for controlling the flow path switching means 6, 11 based on the electric signal can be provided.
It is suitable depending on the implementation.

【0011】ここで、前記膜式脱気モジュール3内の原
水の流通方向の切り替えは、前記四方弁6により行わ
れ、前記処理水供給ライン19と前記汚水排出ライン2
0との切り替えは、前記三方弁11により行われる。図
1において、前記四方弁6は、前記第一ポート7と前記
第二ポート8とが連通され、前記第三ポート9と前記第
四ポート10とが連通されており、前記三方弁11は、
前記第一ポート12と前記第二ポート13とが連通され
ている。
Here, the flow direction of raw water in the membrane degassing module 3 is switched by the four-way valve 6, and the treated water supply line 19 and the waste water discharge line 2 are switched.
Switching to 0 is performed by the three-way valve 11. In FIG. 1, in the four-way valve 6, the first port 7 and the second port 8 are in communication, the third port 9 and the fourth port 10 are in communication, and the three-way valve 11 is
The first port 12 and the second port 13 are in communication with each other.

【0012】以上の構成において、当初の運転状態を図
1に基づいて説明する。原水供給部1から供給された原
水は、前記四方弁6を介して、前記膜式脱気モジュール
3の一端4を流入口として前記膜式脱気モジュール3内
に通水され、その通水過程において脱気処理される。脱
気処理された処理水は、前記膜式脱気モジュール3の他
端5から流出し、前記四方弁6および前記三方弁11を
介して、処理水供給ライン19を経て処理水配給部2に
供給される。
The initial operating condition of the above structure will be described with reference to FIG. Raw water supplied from the raw water supply unit 1 is passed through the four-way valve 6 into the membrane degassing module 3 with one end 4 of the membrane degassing module 3 as an inlet, and the water passing process Is degassed. The degassed treated water flows out from the other end 5 of the membrane type deaerating module 3, passes through the four-way valve 6 and the three-way valve 11, and through the treated water supply line 19 to the treated water distributor 2. Supplied.

【0013】さて、この状態で脱気装置(図示省略)の
運転を続けると、前記膜式脱気モジュール3の流入口と
なっている一端4に、原水中に混入したゴミ等が付着し
て目詰まりを起こし、脱気装置の性能が低下する。した
がって、この実施例においては、前記膜式脱気モジュー
ル3内への原水の流入口にゴミ等が付着して目詰まりを
起こし、脱気装置の能力が低下する前に、前記検知手段
15により前記膜式脱気モジュール3の流入口の目詰ま
り状態を検知し、その検知信号に基づき自動的に前記各
流路切替手段6,11を制御して、前記膜式脱気モジュ
ール3内への原水の流通方向を逆転させ、前記膜式脱気
モジュール3の目詰まりを解消し、その際排出される汚
水を汚水排出ライン20より排出し、汚水排出完了後、
再び処理水を通常通り供給する。
When the deaerator (not shown) continues to operate in this state, dust or the like mixed in the raw water adheres to the end 4 which is the inlet of the membrane deaerator module 3. It causes clogging and reduces the performance of the deaerator. Therefore, in this embodiment, before the degassing device is reduced in performance by the detection means 15, dust or the like is attached to the raw water inflow port into the membrane type degassing module 3 to cause clogging, and the degassing device 15 is activated. The clogging state of the inlet of the membrane type degassing module 3 is detected, and based on the detection signal, the flow path switching means 6 and 11 are automatically controlled so that the inside of the membrane type degassing module 3 is controlled. By reversing the flow direction of the raw water to eliminate the clogging of the membrane degassing module 3, the waste water discharged at that time is discharged from the waste water discharge line 20, and after the discharge of the waste water is completed,
The treated water is supplied again as usual.

【0014】具体的には、前記膜式脱気モジュール3の
流入口の目詰まり状態を判断するための検知手段15を
処理水供給ライン19に設け、前記検知手段15にあら
かじめある値を設定しておき、その値以上になると前記
検知手段15から各流路切替手段6,11に信号が発信
され、前記四方弁6および前記三方弁11が作動(前記
四方弁6は、第一ポート7と第三ポート9とが連通さ
れ、第二ポート8と第四ポート10とが連通される。そ
して、前記三方弁11は、第一ポート12と第三ポート
14とが連通される。)し、前記膜式脱気モジュール3
内への原水の流通方向は、当初の状態と逆転し、前記膜
式脱気モジュール3の流入口は他端5となる。こうする
ことにより、前記膜式脱気モジュール3の一端4の目詰
まりが解消され、目詰まりの原因となっていたゴミ等
は、汚水として前記汚水排出ライン20より排出され
る。これを示しているのが図2であり、この状態はゴミ
等が除去されるまでのある一定時間を定めて保持される
(前記検知手段15の設置位置および方法によっては、
時間ではなく、流量値,圧力値等でゴミ等が除去された
ことを判断する)。そして、この一定時間が経過する
と、前記検知手段15は、ゴミ等が除去されたと判断す
る。
Specifically, a detection means 15 for determining the clogging state of the inlet of the membrane type degassing module 3 is provided in the treated water supply line 19, and a predetermined value is set in the detection means 15 in advance. When the value is equal to or more than that value, a signal is transmitted from the detection means 15 to each of the flow path switching means 6 and 11, and the four-way valve 6 and the three-way valve 11 are operated (the four-way valve 6 is connected to the first port 7). The third port 9 communicates with the second port 8 and the fourth port 10 communicates with each other, and the three-way valve 11 communicates with the first port 12 and the third port 14). Membrane type degassing module 3
The flow direction of the raw water to the inside is reversed from the initial state, and the inlet of the membrane degassing module 3 becomes the other end 5. By doing so, the clogging of the one end 4 of the membrane type degassing module 3 is eliminated, and the dust or the like that has caused the clogging is discharged from the sewage discharge line 20 as sewage. This is shown in FIG. 2, and this state is maintained for a certain period of time until dust or the like is removed (depending on the installation position and method of the detection means 15,
Judge that dust etc. is removed not by time but by flow rate value, pressure value, etc.). Then, after the elapse of this fixed time, the detection means 15 determines that dust or the like has been removed.

【0015】ゴミ等が除去されたことを前記検知手段1
5が判断すると、この検知手段15から前記三方弁11
に信号が発信され、前記三方弁11の前記第一ポート1
2と前記第二ポート13とが連通される。これを示して
いるのが図3であり、前記膜式脱気モジュール3の流入
口(この場合は、前記膜式脱気モジュール3の他端5)
に再びゴミ詰まりが起こるまでは、この状態で処理水の
供給が行われる。
The detection means 1 detects that dust or the like has been removed.
When the determination is made by 5, the detection means 15 determines the three-way valve 11
Signal is transmitted to the first port 1 of the three-way valve 11.
2 and the second port 13 are communicated with each other. This is shown in FIG. 3, which is the inlet of the membrane degassing module 3 (in this case, the other end 5 of the membrane degassing module 3).
The treated water is supplied in this state until dust clogging occurs again.

【0016】脱気装置を一定期間運転後、前記膜式脱気
モジュール3の流入口へのゴミ詰まりを再び前記検知手
段15が検知したら、この検知手段15からの信号に基
づき、各流路切替手段6,11を作動させ、前記膜式脱
気モジュール3内への原水の流通方向を切り替え、ゴミ
詰まりを解消し、ゴミ等の混入している汚水を前記汚水
排出ライン20から排出する。この状態を示しているの
が、図4である。ゴミ等の除去が完了したら、前記三方
弁11の第一ポート12と第二ポート13とを連通さ
せ、処理水の供給を行う。すなわち、図1の状態に戻る
わけである。
After the deaeration device has been operated for a certain period of time, when the detection means 15 detects again the clogging of dust at the inlet of the membrane deaeration module 3, each flow path is switched based on the signal from the detection means 15. The means 6 and 11 are activated to switch the flow direction of the raw water into the membrane type degassing module 3 to clear the clogging of dust and to discharge the wastewater containing dust and the like from the wastewater discharge line 20. FIG. 4 shows this state. When the removal of dust and the like is completed, the first port 12 and the second port 13 of the three-way valve 11 are communicated with each other to supply the treated water. That is, it returns to the state of FIG.

【0017】以上のように、この実施例においては、前
記検知手段15により、前記各流路切替手段6,11を
自動制御し、前記膜式脱気モジュール3の逆洗浄行程を
自動的に行うので、脱気装置の性能低下を防止し、脱気
装置を停止させての定期的な逆洗浄等の手間を省くこと
が可能となり、これと同時に前記膜式脱気モジュール3
自体の寿命(耐久性)を向上させることができる。
As described above, in this embodiment, the detecting means 15 automatically controls the flow path switching means 6 and 11 to automatically perform the backwashing process of the membrane degassing module 3. Therefore, it is possible to prevent the performance of the degassing device from deteriorating, and to save the time and effort such as periodic back washing after stopping the degassing device. At the same time, the membrane type degassing module 3
The life (durability) of itself can be improved.

【0018】つぎに、この発明の第二実施例を示す図5
について説明する。この実施例は、前記第一実施例にお
ける汚水排出ライン20を前記原水供給部1に接続する
とともに、前記汚水排出ライン20中にフィルタ等によ
り構成された瀘過装置21を設けた構成としたものであ
る。この構成により、汚水を前記瀘過装置21を用いて
瀘過し再使用するので、資源の節約となる。
Next, FIG. 5 showing a second embodiment of the present invention.
Will be described. In this embodiment, the sewage discharge line 20 in the first embodiment is connected to the raw water supply unit 1, and the sewage discharge line 20 is provided with a filter device 21 composed of a filter or the like. Is. With this configuration, waste water is filtered by the filtering device 21 and reused, so that resources are saved.

【0019】以上の各実施例においては、第一流路切替
手段6としては四方弁,第二流路切替手段11としては
三方弁を用いた構成のものについて説明したが、この発
明は、これらの実施例に限定されるものではなく、実施
に応じてさらに他の構成とすることもできる。たとえ
ば、第三実施例を示す図6のように、第一流路切替手段
6を2個の三方弁30,31で構成するものや、第四実
施例を示す図7のように、第一流路切替手段6を、第一
バルブ40,第二バルブ41,第三バルブ42および第
四バルブ43によって構成し、第二流路切替手段11を
第五バルブ44と第六バルブ45とによって構成するも
のも、実施に応じて好適である。
In each of the embodiments described above, the four-way valve is used as the first flow path switching means 6 and the three-way valve is used as the second flow path switching means 11, but the present invention is not limited thereto. The present invention is not limited to the embodiment, and may have another configuration depending on the implementation. For example, as shown in FIG. 6 showing the third embodiment, the first passage switching means 6 is composed of two three-way valves 30 and 31, and as shown in FIG. 7 showing the fourth embodiment, the first passage The switching means 6 is composed of a first valve 40, a second valve 41, a third valve 42 and a fourth valve 43, and the second flow path switching means 11 is composed of a fifth valve 44 and a sixth valve 45. Are also suitable depending on the implementation.

【0020】また、前記第二〜四実施例においても、前
記第一実施例と同様に、前記検知手段15は処理水供給
ライン19に設けられているが、この発明はこれに限定
されるものではなく、たとえば第一流路切替手段6と第
二流路切替手段11との間や、原水供給ライン16に設
ける構成も実施に応じて好適である。
Also in the second to fourth embodiments, the detecting means 15 is provided in the treated water supply line 19 as in the first embodiment, but the present invention is not limited to this. Instead, for example, a configuration provided between the first flow path switching means 6 and the second flow path switching means 11 or in the raw water supply line 16 is also suitable depending on the implementation.

【0021】さらに、前記第二〜四実施例における前記
検知手段15も、前記第一実施例と同様に、タイマ,流
量計および圧力計等が考えられ、場合によっては、脱気
装置を運転する際の電気信号を検知し、その電気信号に
基づいて前記各流路切替手段6,11を制御する検知手
段15を設けることも、実施に応じて好適である。
Further, the detecting means 15 in the second to fourth embodiments may be a timer, a flow meter, a pressure gauge, etc., as in the first embodiment, and in some cases, the deaerator is operated. It is also suitable to detect the electric signal at that time and to provide the detecting means 15 for controlling each of the flow path switching means 6 and 11 based on the electric signal depending on the implementation.

【0022】[0022]

【発明の効果】この発明によれば、膜式脱気モジュール
内への原水の流通方向を切り替えることを可能とする第
一流路切替手段および処理水供給ラインと汚水排出ライ
ンとを切り替える第二流路切替手段を設け、これらの各
流路切替手段を検知手段に基づき自動制御することによ
り、膜式脱気モジュール内への原水の通水方向を適時選
択的に切り替える構成としたので、膜式脱気モジュール
に対する目詰まりによる脱気装置の能力低下を未然に防
ぎ、従来定期的に行っていた脱気装置を停止させてから
行う膜式脱気モジュールの逆洗浄等を行う必要がなくな
った。また、処理水供給ラインから分岐した汚水排出ラ
インを設けたことにより、汚水の処理水配給部への混入
防止が確実となった。さらに、汚水排出ラインに瀘過装
置を設け、この瀘過装置を介して汚水を瀘過した後に原
水供給部に戻す構成としたので、資源を節約することが
できるとともに、汚水処理設備の簡略化を図ることがで
きる。
According to the present invention, the first flow path switching means for switching the flow direction of the raw water into the membrane type degassing module and the second flow for switching the treated water supply line and the waste water discharge line. By providing a path switching means and automatically controlling each of these flow path switching means based on the detection means, the flow direction of the raw water into the membrane degassing module is selectively switched at a suitable time. It is possible to prevent deterioration of the capacity of the degassing device due to clogging of the degassing module, and it is no longer necessary to perform the back-cleaning of the membrane degassing module after stopping the degassing device, which has been regularly performed in the past. In addition, the provision of a sewage discharge line branched from the treated water supply line made it possible to reliably prevent sewage from entering the treated water distribution unit. Furthermore, a filter is installed in the sewage discharge line, and after filtering the sewage through this filter, it is returned to the raw water supply section, which saves resources and simplifies the sewage treatment facility. Can be achieved.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の第一実施例の通水(処理水供給)状
態を示す概略説明図である。
FIG. 1 is a schematic explanatory view showing a water flow (supply of treated water) according to a first embodiment of the present invention.

【図2】この発明の第一実施例の逆通水(汚水排出)状
態を示す概略説明図である。
FIG. 2 is a schematic explanatory view showing a reverse water flow (discharging waste water) state of the first embodiment of the present invention.

【図3】この発明の第一実施例の逆通水(処理水供給)
状態を示す概略説明図である。
FIG. 3 Reverse water flow (supply of treated water) of the first embodiment of the present invention
It is a schematic explanatory drawing which shows a state.

【図4】この発明の第一実施例の通水(汚水排出)状態
を示す概略説明図である。
FIG. 4 is a schematic explanatory view showing a water flow (discharging wastewater) state of the first embodiment of the present invention.

【図5】この発明の第二実施例を示す概略説明図であ
る。
FIG. 5 is a schematic explanatory view showing a second embodiment of the present invention.

【図6】この発明の第三実施例を示す概略説明図であ
る。
FIG. 6 is a schematic explanatory view showing a third embodiment of the present invention.

【図7】この発明の第四実施例を示す概略説明図であ
る。
FIG. 7 is a schematic explanatory view showing a fourth embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 原水供給部 2 処理水配給部 3 膜式脱気モジュール 6 第一流路切替手段(四方弁) 11 第二流路切替手段(三方弁) 15 検知手段 19 処理水供給ライン 20 汚水排出ライン 21 瀘過装置 1 Raw Water Supply Part 2 Treated Water Distributor 3 Membrane Degassing Module 6 First Flow Path Switching Means (Four Way Valve) 11 Second Flow Path Switching Means (Three Way Valve) 15 Detecting Means 19 Treated Water Supply Line 20 Waste Water Discharge Line 21 Filtration Excess device

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 原水供給部1と処理水配給部2との間の
給水ライン中に膜式脱気モジュール3を接続してなる脱
気装置において、前記原水供給部1と前記膜式脱気モジ
ュール3との間に、前記膜式脱気モジュール3内への原
水の流通方向を切り替える第一流路切替手段6を設け、
前記膜式脱気モジュール3と前記処理水配給部2との間
の処理水供給ライン19から汚水排出ライン20を分岐
し、該分岐点に前記処理水供給ライン19と前記汚水排
出ライン20とを切り替える第二流路切替手段11を設
け、前記第一流路切替手段6および前記第二流路切替手
段11の制御を行なう検知手段15を設けたことを特徴
とする脱気装置の逆通水洗浄機構。
1. A deaerator comprising a membrane degassing module 3 connected in a water supply line between a raw water supply unit 1 and a treated water distribution unit 2, wherein the raw water supply unit 1 and the membrane degassing unit are provided. A first flow path switching means 6 for switching the flow direction of the raw water into the membrane type degassing module 3 is provided between the module 3 and the module 3.
A sewage discharge line 20 is branched from a treated water supply line 19 between the membrane type degassing module 3 and the treated water distribution unit 2, and the treated water supply line 19 and the sewage discharge line 20 are branched to the branch point. Reverse flow water cleaning of a deaerator characterized in that a second flow path switching means 11 for switching is provided, and a detection means 15 for controlling the first flow path switching means 6 and the second flow path switching means 11 is provided. mechanism.
【請求項2】 原水供給部1と処理水配給部2との間の
給水ライン中に膜式脱気モジュール3を接続してなる脱
気装置において、前記原水供給部1と前記膜式脱気モジ
ュール3との間に、前記膜式脱気モジュール3内への原
水の流通方向を切り替える第一流路切替手段6を設け、
前記膜式脱気モジュール3と前記処理水配給部2との間
の処理水供給ライン19から汚水排出ライン20を分岐
し、該分岐点に前記処理水供給ライン19と前記汚水排
出ライン20とを切り替える第二流路切替手段11を設
け、前記第一流路切替手段6および前記第二流路切替手
段11の制御を行う検知手段15を設け、さらに前記汚
水排出ライン20を前記原水供給部1に接続するととも
に、前記汚水排出ライン20中に瀘過装置21を設けた
ことを特徴とする脱気装置の逆通水洗浄機構。
2. A deaerator comprising a membrane degassing module 3 connected in a water supply line between a raw water supply unit 1 and a treated water distribution unit 2, wherein the raw water supply unit 1 and the membrane degassing unit are connected. A first flow path switching means 6 for switching the flow direction of the raw water into the membrane type degassing module 3 is provided between the module 3 and the module 3.
A sewage discharge line 20 is branched from a treated water supply line 19 between the membrane type degassing module 3 and the treated water distribution unit 2, and the treated water supply line 19 and the sewage discharge line 20 are branched to the branch point. A second flow path switching means 11 for switching is provided, a detection means 15 for controlling the first flow path switching means 6 and the second flow path switching means 11 is provided, and further, the waste water discharge line 20 is provided to the raw water supply section 1. A reverse water washing mechanism for a deaerator, which is connected to and provided with a filtration device 21 in the wastewater discharge line 20.
JP9606695A 1995-03-28 1995-03-28 Counter flow washing mechanism for deaerator Pending JPH08266807A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9606695A JPH08266807A (en) 1995-03-28 1995-03-28 Counter flow washing mechanism for deaerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9606695A JPH08266807A (en) 1995-03-28 1995-03-28 Counter flow washing mechanism for deaerator

Publications (1)

Publication Number Publication Date
JPH08266807A true JPH08266807A (en) 1996-10-15

Family

ID=14155059

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9606695A Pending JPH08266807A (en) 1995-03-28 1995-03-28 Counter flow washing mechanism for deaerator

Country Status (1)

Country Link
JP (1) JPH08266807A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020209036A1 (en) * 2019-04-10 2020-10-15 野村マイクロ・サイエンス株式会社 Method for cleaning membrane degassing devices and system for producing ultrapure water

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020209036A1 (en) * 2019-04-10 2020-10-15 野村マイクロ・サイエンス株式会社 Method for cleaning membrane degassing devices and system for producing ultrapure water
JP2020171883A (en) * 2019-04-10 2020-10-22 野村マイクロ・サイエンス株式会社 Washing method of membrane degasifier and ultrapure water production system

Similar Documents

Publication Publication Date Title
JP2004249168A (en) Operation method for water treatment device
EP0688593B1 (en) Filter system for a liquid stream with automatic rapid back flush capability
CN101730577B (en) Operating method of water purifier
SE503918C2 (en) Apparatus for purifying water comprising a pressurized membrane chamber and a method for determining the flushing time of a pressurized membrane chamber
KR101109014B1 (en) A Pipe Connector for Automatic Back Washing of Filter
JPH08266874A (en) Method for operating water filter device
JPH08266807A (en) Counter flow washing mechanism for deaerator
JPH06226059A (en) Filter device
KR19990018165A (en) Reverse osmosis circulating filtration water purification system
JP2737468B2 (en) Degassing device with backwash function
CN211367271U (en) Water purifier
KR20080003990A (en) System for recovering heat of waste water using auto-filtering apparatus
JP4419178B2 (en) Control method of drainage process in water softener
JPH0760073A (en) Membrane separation apparatus
JP3084795B2 (en) Bathtub water purification equipment
JP2002126468A (en) Method of cleaning membrane module and membrane filter apparatus
CN212594177U (en) Shallow sand filter with bypass pressure reducing device
CN210915437U (en) Water purification system
JP2008055290A (en) Operation support system of water treatment plant
KR0172705B1 (en) Drainage system of a water purifier
RU2243022C1 (en) Filtration installation
US5536417A (en) Methods and systems for prewashing automatic backwashing filters
JPH06134460A (en) Recycling device of contaminated water using hollow yarn membrane module
JPH04326927A (en) Membrane separator
CN117414707A (en) Control method of water purification system with flushing function