JPH08262753A - Electrophotographic photoreceptive member - Google Patents

Electrophotographic photoreceptive member

Info

Publication number
JPH08262753A
JPH08262753A JP8455595A JP8455595A JPH08262753A JP H08262753 A JPH08262753 A JP H08262753A JP 8455595 A JP8455595 A JP 8455595A JP 8455595 A JP8455595 A JP 8455595A JP H08262753 A JPH08262753 A JP H08262753A
Authority
JP
Japan
Prior art keywords
receiving member
light
metal
present
atoms
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8455595A
Other languages
Japanese (ja)
Inventor
Junichiro Hashizume
淳一郎 橋爪
Tetsuya Takei
哲也 武井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP8455595A priority Critical patent/JPH08262753A/en
Publication of JPH08262753A publication Critical patent/JPH08262753A/en
Pending legal-status Critical Current

Links

Landscapes

  • Photoreceptors In Electrophotography (AREA)

Abstract

PURPOSE: To easily obtain a photoreceptive member ensuring very few image defects difficult to attain so far even by strict production in an environment having high cleanness without producing side effects such as the blurring of an image and the lowering of sensitivity. CONSTITUTION: At least the top part of this photoreceptive member 100 is made of an amorphous material contg. silicon atoms and regions 105 in which a transition metal exists and a region 106 in which the transition metal does not, practically exist are two-dimensionally distributed on the surface of this photoreceptive member.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、光等(ここでは広義の
光であって紫外線、可視光線、赤外線、X線、γ線など
を意味する)の電磁波に対して感受性のある電子写真用
光受容部材に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is for electrophotography which is sensitive to electromagnetic waves such as light (light in a broad sense, which means ultraviolet rays, visible rays, infrared rays, X-rays, γ-rays, etc.). The present invention relates to a light receiving member.

【0002】[0002]

【従来の技術】像形成分野において、電子写真用光受容
部材の光受容層を形成する光導電材料は、高感度で、S
N比が高く、照射する電磁波のスペクトル特性に適合し
た吸収スペクトル特性を有すること、光応答性が速く、
所望の暗抵抗値を有すること、使用時において人体に対
して無公害であること等の諸特性が要求される。こうし
た要求を満たす光導電材料としてアモルファスシリコン
(以後、A−Siと表記する)があり、例えば、特開昭
54−86341号公報には電子写真用光受容部材とし
てその応用が記載されている。
2. Description of the Related Art In the field of image formation, a photoconductive material forming a light-receiving layer of a light-receiving member for electrophotography has a high sensitivity and S
It has a high N ratio, has absorption spectral characteristics that match the spectral characteristics of the electromagnetic waves that it irradiates, and has a fast photoresponsiveness.
Various characteristics such as having a desired dark resistance value and being non-polluting to the human body during use are required. Amorphous silicon (hereinafter referred to as A-Si) is a photoconductive material that satisfies these requirements, and its application is described, for example, in JP-A-54-86341 as a light receiving member for electrophotography.

【0003】また、特開昭57−11556号公報に
は、A−Si堆積膜で構成された光導電層を有する光導
電部材の、暗抵抗値、光感度、光応答性等の電気的、光
学的、光導電的特性及び耐湿性等の使用環境特性、さら
には経時的安定性について改善を図るため、シリコン原
子を母体としたアモルファス材料で構成された光導電層
上に、シリコン原子及び炭素原子を含む非光導電性のア
モルファス材料で構成された表面障壁層を設ける技術が
記載されている。
Further, Japanese Patent Application Laid-Open No. 57-11556 discloses a photoconductive member having a photoconductive layer formed of an A-Si deposited film, which has electrical properties such as dark resistance, photosensitivity and photoresponsiveness. In order to improve the use environment characteristics such as optical and photoconductive characteristics and moisture resistance, and further the stability over time, silicon atoms and carbon are formed on the photoconductive layer composed of an amorphous material with silicon atoms as a base material. A technique for providing a surface barrier layer composed of a non-photoconductive amorphous material containing atoms is described.

【0004】更に、特開昭60−67951号公報に
は、A−Si、炭素、酸素及び弗素を含有してなる透光
絶縁性オーバーコート層を積層する感光体についての技
術が記載されている。また、特開昭62−168161
号公報には、表面層として、シリコン原子と炭素原子と
41〜70原子%の水素原子を構成要素として含む非晶
質材料を用いる技術が記載されている。特開昭59−1
02239号公報には、フリーデルクラフツ触媒でA−
Si系感光体の表面を処理する技術が開示されている。
また、特開昭59−102240号公報には、A−Si
系感光体の表面を有機金属化合物で処理する技術が開示
されている。
Further, Japanese Patent Application Laid-Open No. 60-67951 discloses a technique relating to a photoconductor in which a translucent insulating overcoat layer containing A-Si, carbon, oxygen and fluorine is laminated. . Also, JP-A-62-168161
The publication describes a technique of using, as the surface layer, an amorphous material containing silicon atoms, carbon atoms, and 41 to 70 atomic% hydrogen atoms as constituent elements. JP 59-1
No. 02239 discloses a Friedel-Crafts catalyst with A-
Techniques for treating the surface of a Si-based photoreceptor have been disclosed.
Further, Japanese Patent Application Laid-Open No. 59-102240 discloses A-Si.
A technique of treating the surface of a photoconductor with an organometallic compound is disclosed.

【0005】特開昭61−231558号公報には電子
写真感光体表面と固相反応を生じる金属を接触させて生
じる固相反応生成物の少なくとも一部を機械的に除去す
ることにより画像流れ特性を著しく向上させる技術が開
示されている。特開昭60−28658号公報には、金
属原子及び/又は金属イオンが含有されているA−Si
系の表面保護層が開示されており、金属としては周期律
表第IIIb族、第IVb族、第Vb族、第VIb族、
第VIIb族、第VIII族、第Ib族又は第IIb族
に属する遷移金属及びフリーデルクラフツ触媒を構成す
る金属が挙げられている。更に、特開平1−24612
0号公報にはマグネシウムやカルシウムのような2価の
金属元素を含有するA−Si膜が開示されている。
In Japanese Patent Laid-Open No. 61-231558, image flow characteristics are obtained by mechanically removing at least a part of a solid-phase reaction product generated by contacting a surface of an electrophotographic photoreceptor with a metal which causes a solid-phase reaction. A technique for significantly improving the above is disclosed. JP-A-60-28658 discloses that A-Si containing metal atoms and / or metal ions.
A surface protective layer of a system is disclosed, and as the metal, Group IIIb, Group IVb, Group Vb, Group VIb of the periodic table are used.
Mention is made of transition metals belonging to Group VIIb, Group VIII, Group Ib or Group IIb and the metals constituting the Friedel-Crafts catalyst. Furthermore, JP-A-1-24612
No. 0 discloses an A-Si film containing a divalent metal element such as magnesium or calcium.

【0006】ところで近年、電子写真装置により形成さ
れる画像について高画質化の要求が高まっている。この
要求に応えるべく、例えば現像プロセスについて、トナ
ーの小粒径化などの高画質化技術が提案されている。こ
うした高画質化技術が開発された結果、静電潜像につい
て、これまで問題とされなかった程度の欠陥が問題視さ
れるようになってきた。静電潜像の欠陥で特に問題とな
るのは静電潜像を形成する光受容部材の欠陥によるスポ
ット状の表面電位の不均一性である。こうした表面電位
の不均一性は、正現像プロセスにより黒い画像上で白点
に、また反転現像では白い画像上で黒点となって現れ
る。
By the way, in recent years, there is an increasing demand for higher image quality of images formed by electrophotographic apparatuses. In order to meet this demand, for example, in the developing process, a technique for improving the image quality such as reducing the particle diameter of the toner has been proposed. As a result of the development of such an image quality improving technique, a defect that has not been a problem up to now has become a problem with an electrostatic latent image. A particular problem in the defect of the electrostatic latent image is the nonuniformity of the spot-like surface potential due to the defect of the light receiving member forming the electrostatic latent image. Such non-uniformity of the surface potential appears as white spots on the black image due to the positive development process and as black spots on the white image during reversal development.

【0007】A−Siからなる層を含む電子写真用光受
容部材の場合、それを作製する際の堆積膜形成時に使用
する支持体上に何らかの異物が付着していると、該光受
容部材を使用して形成される画像は、前述した異物が原
因で画像欠陥が発生することは従来から知られていた。
従来はこれに対して堆積膜の形成前の支持体の取り扱い
時に支持体に異物が付着しないように、徹底したパーテ
ィクル対策を行い対処していた。しかし、電子写真用光
受容部材の場合、その電子写真用光受容部材を用いて形
成されるコピー画像上に一箇所でも欠陥があると他の部
分がどんなに良好な画像であっても商品としての価値を
失うという事情があり、他のデバイスに比較して支持体
の取り扱い時のクリーン度として高度なものが必要であ
った。そして、要求される画像品質が高度になるにつれ
て必要なクリーン度も高くなり、ついには超高密度半導
体デバイス製造時のレベルのクリーン度を常時要求され
るようになってきた。このようなクリーン度を維持する
ことは技術的にも困難であり、コスト的にも大きな負担
になっていた。更に、このようなクリーン度にしたにも
かかわらず、生産される光受容部材の画像品質、および
生産時の歩留まりは決して満足できるものではないのが
現状であった。このように、従来の電子写真用光受容部
材にも改良すべき余地が存在するのが実情である。
In the case of an electrophotographic light-receiving member containing a layer made of A-Si, if any foreign matter adheres to the support used during the formation of the deposited film in the production of the same, the light-receiving member will be damaged. It has been conventionally known that an image formed by use of the above-described image has image defects due to the above-mentioned foreign matter.
Conventionally, in order to prevent foreign matters from adhering to the support during the handling of the support before the formation of the deposited film, thorough countermeasures against particles have been taken. However, in the case of a photoreceptive member for electrophotography, if there is a defect in one place on a copy image formed using the electrophotographic light-receptive member, no matter how good the image may be on the other part, it will be a commercial product. There was a circumstance that the value was lost, and it was necessary to have a high degree of cleanliness when handling the support compared to other devices. Then, as the required image quality becomes higher, the required cleanliness level becomes higher, and finally, the cleanliness level at the time of manufacturing the ultra-high density semiconductor device is always required. It is technically difficult to maintain such cleanliness and it is a heavy burden on the cost. Further, in spite of such cleanliness, the present situation is that the image quality of the produced light-receiving member and the yield at the time of production are not satisfactory at all. As described above, there is room for improvement even in the conventional electrophotographic light-receiving member.

【0008】[0008]

【発明が解決しようとする課題】本発明は、上述のごと
きA−Siで構成された従来の光受容層を有する電子写
真用光受容部材における諸問題を解決することを目的と
するものである。即ち、本発明の主たる目的は、画像品
質が飛躍的に良好であり、特に画像欠陥が皆無に近いほ
ど少ない電子写真用光受容部材であり、低コストで生産
性の良い、電気的、光学的特性が優れ、耐久性が良好
な、少なくともその一部が、シリコン原子を含むアモル
ファス材料よりなる電子写真用光受容部材を提供するこ
とにある。
SUMMARY OF THE INVENTION An object of the present invention is to solve various problems in the electrophotographic light-receiving member having the conventional light-receiving layer composed of A-Si as described above. . That is, the main object of the present invention is a photoreceptive member for electrophotography, which has a dramatically improved image quality, and in particular, the number of image defects is as near to zero as possible, which is low in cost and good in productivity, electrical and optical. An object of the present invention is to provide a photoreceptive member for electrophotography, which has excellent characteristics and good durability, and at least a part of which is made of an amorphous material containing silicon atoms.

【0009】[0009]

【課題を解決するための手段】本発明の電子写真用光受
容部材は少なくとも最表面部がシリコン原子を含む非単
結晶質材料よりなり、該電子写真用光受容部材の最表面
の一部に遷移金属から選ばれる少なくとも1種の金属原
子が存在し、かつ、該金属原子が存在する領域と該金属
原子が実質的に存在しない領域が最表面において2次元
的に分布することを特徴としている。以上のような構成
をとるように設計された本発明の電子写真用光受容部材
は、前記した諸問題点の全てを解決し、飛躍的に欠陥の
少ない高品質の画像を得ることができ、生産時において
は非常に低コストで高い生産性を得ることができること
を特徴としている。
The electrophotographic light-receiving member of the present invention is made of a non-single crystalline material containing at least the outermost surface portion of a silicon atom, and is formed on a part of the outermost surface of the electrophotographic light-receiving member. At least one metal atom selected from transition metals is present, and a region where the metal atom exists and a region where the metal atom does not substantially exist are two-dimensionally distributed on the outermost surface. . The electrophotographic light-receiving member of the present invention designed to have the above-mentioned configuration solves all of the above-mentioned problems, and can dramatically obtain high-quality images with few defects, It is characterized by being able to obtain high productivity at a very low cost during production.

【0010】本発明者らは、従来技術の諸問題を克服す
べく、電子写真用光受容部材自身について詳細に検討を
加えた結果、以上のことを見い出した。即ち、本発明者
らも、当初は画像欠陥が少ない高画質の画像の電子写真
用光受容部材を得るために製造現場のクリーン度の向上
の検討を行っていた。しかし、要求される画質が上がる
につれクリーンルームのクラスも向上させる必要があ
り、また、画像品質、歩留まりは時代の要求に対して充
分に満足する結果は得られなかった。そこで本発明者ら
は、電子写真用光受容部材自身を改良することにより、
根本的に画像欠陥をなくすことはできないかという観点
に立ち検討を行った。
The present inventors have found the above as a result of detailed examination of the electrophotographic light-receiving member itself in order to overcome the problems of the prior art. That is, the inventors of the present invention initially investigated the improvement of cleanliness at the manufacturing site in order to obtain a high-quality image electrophotographic light-receiving member with few image defects. However, as the required image quality rises, it is necessary to improve the class of the clean room, and the image quality and yield cannot be sufficiently satisfied with the demands of the times. Therefore, the present inventors have improved the electrophotographic light-receiving member itself,
The study was conducted from the viewpoint of being able to eliminate image defects fundamentally.

【0011】本発明者らはこの検討に先立ち、なぜ、画
像欠陥が発生するかのメカニズムを明らかにするべく検
討を行った。従来の電子写真用光受容部材において、コ
ピー画像上の画像欠陥に対応する光受容部材表面の位置
を顕微鏡で観察したところ、直径20〜50μmを中心
に分布する、ほぼ円形に突起(以下、「球状突起」と呼
ぶ)が認められた。この球状突起の断面を切断して構造
を確認したところ、支持体近傍の数μm程度の異物があ
り、これを核として、逆円錐状に堆積膜の異常な成長を
起こしていた。一方、これらの球状突起に対応するコピ
ー画像上の画像欠陥は、直径0.1mm〜0.5mm程
度の白ポチとして確認でき、驚くべきことに球状突起の
大きさと全く一致しなかった。
Prior to this study, the present inventors conducted a study to clarify the mechanism of why an image defect occurs. In the conventional electrophotographic light-receiving member, the position of the light-receiving member surface corresponding to the image defect on the copy image was observed with a microscope, and as a result, a substantially circular protrusion having a diameter of 20 to 50 μm as a center (hereinafter, “ (Referred to as "spherical projections"). When the structure was confirmed by cutting the cross section of the spherical protrusion, there was a foreign substance of about several μm in the vicinity of the support, and abnormal growth of the deposited film occurred in an inverted conical shape with this foreign substance as a nucleus. On the other hand, image defects on the copy image corresponding to these spherical protrusions were confirmed as white spots having a diameter of about 0.1 mm to 0.5 mm, and surprisingly did not match the size of the spherical protrusions at all.

【0012】本発明者らは続いて、その矛盾点の原因を
明らかにするため、電子写真装置により、通常の電子写
真プロセスを行い、光受容部材上にトナーを乗せ、トナ
ー像を形成した後、プロセスを止め、光受容部材を取り
出し、光受容部材上に形成された転写前のトナー像を顕
微鏡により観察した。その結果、球状突起を中心にその
周辺の光受容部材表面上に、ほぼ円形の、トナーが付着
していない部分があることを発見した。
Next, in order to clarify the cause of the contradiction, the present inventors conducted a normal electrophotographic process with an electrophotographic apparatus, placed toner on the light receiving member, and formed a toner image. The process was stopped, the light receiving member was taken out, and the toner image before transfer formed on the light receiving member was observed with a microscope. As a result, it was discovered that there is a substantially circular portion on the surface of the light receiving member around the spherical protrusion, on which the toner is not attached.

【0013】通常、球状突起は直径が20〜50μm程
度である。一方、コピー画像上で人間の裸眼で確認でき
る画像欠陥は0.1mm〜0.2mm以上のものであ
る。球状突起の部分にトナーが付着しないとしても、本
来、この程度の大きさの白抜けを画像上では容易に認識
できないはずである。言い換えれば、この程度の大きさ
の球状突起であっても画像欠陥として画像上に表れてし
まうことが、A−Siを用いた電子写真用光受容部材の
生産が他の材料に比べて非常に高度なクリーン度を要求
する根本的な原因であった。
Usually, the spherical projection has a diameter of about 20 to 50 μm. On the other hand, the image defects that can be confirmed with the naked eye of the copied image are 0.1 mm to 0.2 mm or more. Even if the toner does not adhere to the spherical protrusions, it should be impossible to easily recognize white spots of this size on the image. In other words, even a spherical protrusion of this size may appear as an image defect on the image, which makes the production of the electrophotographic light-receiving member using A-Si much more difficult than production of other materials. It was the root cause of demanding a high degree of cleanliness.

【0014】これらの現象は、メカニズムとして不明な
点が多い。現時点では本発明者らは以下のように考えて
いる。すなわち、球状突起はダストなどの異物を核とし
て逆円錐状に成長する。球状突起と通常の膜の接する界
面の部分は異なる成長の接点であり、本質的にダングリ
ングボンドが高密度に存在し電気的に低抵抗である。感
光体表面に帯電した静電電荷は、この低抵抗部を通り基
板に逃げるため、その部分だけ帯電後も表面電位の低い
部分がある。
These phenomena have many unclear points as a mechanism. At the present time, the present inventors consider as follows. That is, the spherical protrusion grows in an inverted conical shape with a foreign substance such as dust as a nucleus. The interface between the spherical projection and the normal film is a contact point for different growth, and the dangling bonds are essentially present at high density and have low electrical resistance. Since the electrostatic charge charged on the surface of the photoconductor passes through the low resistance portion and escapes to the substrate, there is a portion having a low surface potential even after the charging.

【0015】一方、球状突起の部分は、正常な堆積膜の
部分に比べ、密度、成長速度が異なる。即ち、球状突起
は周りの堆積膜を押し分けるように成長していくのであ
る。このため、この球状突起と、通常の堆積膜の界面で
は互いに強い機械的な力が作用する。その結果、球状突
起の周辺の堆積膜は、特に、表面層近傍において、非常
に大きなストレスがかかっている。良質なA−Si膜は
このようなストレスによりバンドベンディングが発生す
るためホールに対して低抵抗となり、プラスの電界が掛
かった時に電荷の横流れが発生する。球状突起周辺の堆
積膜上に帯電した静電電荷はこのようなプロセスにより
まず横流れを起こし、球状突起部に集まり、続いて支持
体へ逃げていくのである。従来の取り組みは徹底したパ
ーティクル対策をすることにより、球状突起の発生率を
減らすことを行っていたが、本質的にこのストレスによ
る電荷の横流れを止めない限り、画像欠陥を皆無にする
ことは非常に困難であるというのが本発明者らの結論で
ある。
On the other hand, the density of the spherical projections and the growth rate are different from those of the normal deposited film. That is, the spherical protrusion grows so as to push the surrounding deposited film. Therefore, strong mechanical forces act on each other at the interface between the spherical protrusion and the ordinary deposited film. As a result, the deposited film around the spherical protrusion is subjected to a very large stress, especially in the vicinity of the surface layer. Since a high-quality A-Si film causes band bending due to such stress, it has a low resistance to holes, and a lateral charge flow occurs when a positive electric field is applied. The electrostatic charge charged on the deposited film around the spherical projections causes a lateral flow first by such a process, gathers on the spherical projections, and then escapes to the support. The conventional approach has been to reduce the incidence of spherical protrusions by taking thorough countermeasures against particles, but it is essentially impossible to eliminate image defects unless the lateral flow of charges due to this stress is essentially stopped. It is the conclusion of the present inventors that it is extremely difficult.

【0016】本発明者らは、この球状突起周辺のバンド
ベンディングの広がりを少なくする方法を鋭意検討した
結果、正帯電の電子写真用光受容部材においては光受容
部材表面に原子価を複数持つ金属原子を付着させること
が効果的であることを見いだした。特にこの効果は遷移
金属の場合、顕著であった。つまり、原子価を複数持つ
金属原子はいわゆるドナー性の不純物元素として振る舞
い、A−Siに電子を供給する。このため、このような
金属原子が接触している光受容部材最表面近傍のフェル
ミレベルは上昇し、結果的に表面近傍のバンドベンディ
ングを小さくするように働く。しかし、画像欠陥が十分
減少する、即ち球状突起周辺のトナーが付着しない領域
が実質上ないレベルまで金属を表面に含有させると、今
度は金属自身の導電性の高さのために再び帯電電荷が横
流れを始め、金属原子を付着させたがための画像流れが
発生するようになる。
As a result of intensive studies on the method of reducing the band bending spread around the spherical projections, the present inventors have found that in a positively charged photoreceptor member for electrophotography, a metal having a plurality of valences is present on the photoreceptor surface. It has been found that attaching atoms is effective. This effect was especially remarkable in the case of transition metals. That is, a metal atom having a plurality of valences behaves as a so-called donor impurity element and supplies an electron to A-Si. Therefore, the Fermi level in the vicinity of the outermost surface of the light receiving member in contact with such metal atoms is increased, and as a result, the band bending in the vicinity of the surface is reduced. However, when the metal is added to the surface to such a level that the image defects are sufficiently reduced, that is, there is substantially no toner-free area around the spherical projection, the charged electric charge is again caused by the high conductivity of the metal itself. The image flow occurs due to the deposition of metal atoms, which starts the lateral flow.

【0017】本発明者らは、金属原子を光受容部材表面
に付着させ、球状突起周辺のバンドベンディングを減ら
し、かつ、金属原子自身の導電性による画像流れを防ぐ
ために、最適な金属原子付着量、付着形態を鋭意検討し
た結果、金属原子が存在する領域と、実質的に金属原子
が存在しない領域が光受容部材の最表面で2次元的に分
布する構成をとる電子写真用光受容部材を用いることに
より目的を達成できるという知見を得た。即ち、球状突
起のストレスによるバンドベンディングを緩和するため
には比較的高密度の金属原子を表面付近に存在せしめる
必要があるが、金属原子として遷移金属を用いた場合、
光受容部材全面に渡って含有させる必要はなく局所的に
含有する部分があれば、画像上全く問題がないレベルま
でバンドベンディングを緩和することができることが判
明した。また、2次元的に分布させることにより帯電電
荷の横方向の移動も効果的に防ぐことができ、画像流れ
の副作用をなくすことができる。
The inventors of the present invention have made it possible for the metal atom to adhere to the surface of the light-receiving member to reduce band bending around the spherical protrusion and to prevent image deletion due to the conductivity of the metal atom itself, so that the optimum amount of metal atom attachment is obtained. As a result of diligent examination of the attachment form, an electrophotographic light-receiving member having a structure in which a region where metal atoms are present and a region where metal atoms are not substantially present are two-dimensionally distributed on the outermost surface of the light-receiving member. We obtained the finding that the purpose can be achieved by using it. That is, in order to alleviate the band bending due to the stress of the spherical projection, it is necessary to allow relatively high density metal atoms to exist near the surface, but when using a transition metal as the metal atom,
It was found that it is not necessary to contain the light-receiving member over the entire surface, and if there is a locally-containing portion, the band bending can be alleviated to a level where there is no problem on the image. Further, the two-dimensional distribution can effectively prevent the lateral movement of the charged electric charges, and eliminate the side effect of image deletion.

【0018】従来考慮されていなかった金属原子の2次
元的な分布状態を考慮し、従来不可能であった多量の金
属原子を、諸物性値を損なわずに光受容部材表面に含有
させたことは本発明者らの功績である。即ち、本発明で
は、金属原子が存在する領域と、実質的に金属原子が存
在しない領域とを2次元的に分布させることにより、電
子写真特性を損なわずに画像欠陥の防止に大きな効果の
ある電子写真用光受容部材を完成した。また、従来考え
られなかった多量の金属原子を存在せしめることができ
るため、金属原子の寿命を飛躍的に伸ばし、本発明の効
果を半永久的(電子写真装置などの本体寿命と同等ま
で)に伸ばすことが可能となった。
Considering the two-dimensional distribution state of metal atoms, which has not been taken into consideration in the past, a large amount of metal atoms, which was not possible in the past, was contained on the surface of the light receiving member without deteriorating various physical properties. Is an achievement of the present inventors. That is, according to the present invention, a region in which metal atoms are present and a region in which metal atoms are not substantially present are two-dimensionally distributed, which is very effective in preventing image defects without impairing electrophotographic characteristics. A light receiving member for electrophotography was completed. In addition, since a large amount of metal atoms, which has not been considered before, can be made to exist, the life of metal atoms is dramatically extended, and the effect of the present invention is extended semipermanently (to the same level as the life of the main body of an electrophotographic device). It has become possible.

【0019】本発明において表面層をSiCにすること
はさらに有効である。即ち、表面材質をSiCにするこ
とにより、SiC本来がもっている硬さ、耐摩耗性、耐
湿性により耐久性を飛躍的に伸ばすと同時に、本発明の
作用が有効に発現し、効果も一層顕著に得ることができ
るようになった。
In the present invention, it is more effective to use SiC for the surface layer. That is, when the surface material is SiC, the hardness, wear resistance, and moisture resistance originally possessed by SiC are drastically extended, and at the same time, the action of the present invention is effectively exhibited and the effect is more remarkable. You can now get to.

【0020】以下、図面に従って本発明の光受容部材に
ついて詳細に説明する。図1から図4は、本発明の電子
写真用光受容部材の層構成を説明するための模式的説明
図である。
The light receiving member of the present invention will be described in detail below with reference to the drawings. 1 to 4 are schematic explanatory views for explaining the layer structure of the electrophotographic light-receiving member of the present invention.

【0021】図1は、本発明の電子写真用光受容部材の
一例である。電子写真用光受容部材100は、光受容部
材用としての支持体101の上に、光受容層102が設
けられている。該光受容層102はA−Si(H,X)
からなり、光導電性を有する光導電層103で構成され
ている。光導電層103は支持体と反対側の最表面に金
属原子が存在する領域105と、それ以外の部分で、実
質的に金属原子が存在しない領域106が2次元的に分
布している。
FIG. 1 shows an example of the electrophotographic light-receiving member of the present invention. In the electrophotographic light-receiving member 100, a light-receiving layer 102 is provided on a support 101 for the light-receiving member. The light receiving layer 102 is made of A-Si (H, X).
And a photoconductive layer 103 having photoconductivity. In the photoconductive layer 103, a region 105 in which metal atoms are present on the outermost surface on the side opposite to the support, and a region 106 in which the metal atoms are substantially absent are two-dimensionally distributed in other regions.

【0022】図2は、支持体101上に光受容層102
が設けられている層構成であることは図1に示すものと
同じであるが、図1と異なる形状で金属原子が表面に存
在する本発明の電子写真用光受容部材の他の例である。
図3と図4は、支持体101上に光受容層102が設け
られている層構成であることは図1,図2に示すものと
同じであるが、図1,図2に示すものの金属原子量より
更に多量に金属原子を付着させた例である。この場合、
金属原子が存在する領域105の中に、実質的に金属原
子が存在しない領域106の2次元的分布を持つ電子写
真用光受容部材の例である。
FIG. 2 shows a light receiving layer 102 on a support 101.
1 has the same layer structure as that shown in FIG. 1, but is another example of the electrophotographic light-receiving member of the present invention in which metal atoms are present on the surface in a shape different from that shown in FIG. .
3 and 4 are the same as those shown in FIGS. 1 and 2 in the layer structure in which the light receiving layer 102 is provided on the support 101, but the metal of the one shown in FIGS. This is an example in which metal atoms are attached in a larger amount than the atomic weight. in this case,
This is an example of a light receiving member for electrophotography having a two-dimensional distribution of regions 106 in which metal atoms are substantially absent in regions 105 in which metal atoms are present.

【0023】図5は、本発明の電子写真用光受容部材の
他の層構成を説明するための模式的説明図である。図5
に示す電子写真用光受容部材100は、光受容部材用と
しての支持体101の上に、光受容層102が設けられ
ている。該光受容層102はA−Si(H,X)からな
り、光導電性を有する光導電層103と、A−Si系表
面層104とで構成されている。表面層104は、表面
に金属原子が存在する領域105と、実質的に金属原子
が存在しない領域106が2次元的に分布している。図
5の場合も、図2〜図4に示した形状で金属原子が光受
容部材の表面に存在していて良いのはいうまでもない。
FIG. 5 is a schematic explanatory view for explaining another layer structure of the light receiving member for electrophotography of the present invention. Figure 5
In the electrophotographic light-receiving member 100 shown in (1), a light-receiving layer 102 is provided on a support 101 for the light-receiving member. The light receiving layer 102 is made of A-Si (H, X), and is composed of a photoconductive layer 103 having photoconductivity and an A-Si based surface layer 104. The surface layer 104 has a two-dimensional distribution of regions 105 where metal atoms are present on the surface and regions 106 where metal atoms are substantially absent. In the case of FIG. 5 as well, it goes without saying that metal atoms may be present on the surface of the light receiving member in the shapes shown in FIGS.

【0024】[0024]

【表面金属原子】本発明においては、上記のようにして
作成された光受容部材の最表面に遷移金属が存在し、か
つ、この金属原子が存在する領域と、実質的に金属原子
が存在しない領域が2次元的に分布した構成をしてい
る。遷移金属が最表面において2次元的に分布してさえ
いればいかなる構成でも有効であり、図1,図2に示す
ように実質的に金属が存在しない領域中に金属が存在し
ている領域が島状に点在する構成、図3,図4に示すよ
うに金属が存在する領域中に実質的に金属が存在しない
領域が島状に点在する構成、モザイク状に金属が存在す
る領域と実質的に金属原子が存在しない領域が混在する
構成などが挙げられる。中でも、実質的に金属が存在し
ない領域中に、金属が存在している領域が島状に点在す
る図1,図2に示す構成が本発明の効果を有効に発現
し、かつ副作用の表れない構成として望ましい。
[Surface metal atom] In the present invention, a transition metal is present on the outermost surface of the light-receiving member produced as described above, and a region where the metal atom is present and substantially no metal atom is present. The regions are two-dimensionally distributed. Any structure is effective as long as the transition metal is two-dimensionally distributed on the outermost surface. As shown in FIGS. 1 and 2, a region where metal is present in a region where metal is substantially absent is Structures scattered in islands, structures where metal is substantially absent in regions where metal is present as shown in FIGS. 3 and 4, regions where metal is present in a mosaic, A configuration in which regions in which metal atoms are substantially absent are mixed is included. Among them, the structure shown in FIG. 1 and FIG. 2 in which the region where the metal is present is scattered like islands in the region where the metal is not substantially present effectively exhibits the effect of the present invention, and exhibits the side effect. Not desirable as a configuration.

【0025】本発明者らは、この金属原子の存在する領
域の割合、金属原子が存在する領域の直径、間隔は後述
する実験1乃至5の結果から決定した。すなわち、本発
明における金属原子が存在する領域と実質的に金属原子
が存在しない領域の割合としては、金属が存在する領域
が、好ましくは5%以上60%以下、さらに好ましくは
10%以上50%以下の範囲で本発明の効果が顕著に現
れる。
The inventors of the present invention determined the ratio of the region where the metal atom exists, the diameter of the region where the metal atom exists, and the interval from the results of Experiments 1 to 5 described later. That is, as the ratio of the region where metal atoms are present and the region where metal atoms are not substantially present in the present invention, the region where metal is present is preferably 5% or more and 60% or less, more preferably 10% or more and 50%. The effects of the present invention are remarkably exhibited in the following ranges.

【0026】実質的に金属が存在しない領域中に、金属
が存在している領域が島状に点在する構成を取る場合、
金属が存在している領域の大きさは、円または楕円に近
似した場合、直径または長径が200Å以上5000Å
以下、さらに好ましくは500Å以上2000Å以下で
ある。また、金属原子が存在している領域中に池状に金
属原子が存在しない構成をとる場合、金属原子が存在し
ていない領域の大きさは2000Å以上8000Å以
下、さらに好ましくは、3000Å以上5000Å以下
である。金属原子存在の分布が前記の範囲から外れる
と、電子写真用光受容部材の表面層の強度、透明度、耐
久性、耐候性、画像流れなどのうちのいずれかの特性に
弊害が発生する。
In the case where the region where the metal is present is scattered like islands in the region where the metal is not substantially present,
The size of the area where the metal is present is 200 Å or more and 5000 Å if the diameter or major axis is approximate to a circle or an ellipse.
Hereafter, it is more preferably 500 Å or more and 2000 Å or less. In addition, in the case where a pond-shaped metal atom does not exist in the region where the metal atom exists, the size of the region where the metal atom does not exist is 2000 Å or more and 8000 Å or less, more preferably 3000 Å or more and 5000 Å or less Is. If the distribution of the presence of metal atoms deviates from the above range, any adverse effect will occur on the properties of the surface layer of the electrophotographic light-receiving member, such as strength, transparency, durability, weather resistance and image deletion.

【0027】本発明において表面に含有される遷移金属
としては、周期律表第Ib族、第IIb族、第IIIa
族、第IVa族、第Va族、第VIa族、第VIIa
族、第III族から選ばれる少なくとも1種の元素が挙
げられる。特に、主遷移元素、ランタノイド元素、アク
チノイド元素から選ばれる少なくとも1種の元素が挙げ
られる。
In the present invention, the transition metal contained on the surface is a group Ib, a group IIb or a group IIIa of the periodic table.
Group, Group IVa, Group Va, Group VIa, Group VIIa
At least one element selected from Group III and Group III is mentioned. In particular, at least one element selected from a main transition element, a lanthanoid element, and an actinoid element is included.

【0028】主遷移元素としては、具体的には、スカン
ジウム(Sc),チタン(Ti),ジルコニウム(Z
r),バナジウム(V),ニオブ(Nb),クロム(C
r),モリブデン(Mo),タングステン(W),マン
ガン(Mn),鉄(Fe),コバルト(Co),ニッケ
ル(Ni),パラジウム(Pd),白金(Pt),銅
(Cu),銀(Ag),金(Au),亜鉛(Zn)など
を挙げることができる。ランタノイド元素としては、具
体的には、ランタン(La),セリウム(Ce)など
を、アクチノイド元素としては、具体的には、アクチニ
ウム(Ac)などをそれぞれ挙げることができる。また
本発明では前記の原子以外に微量(1原子%以下)であ
れば他のいかなる原子を含有することも可能である。
As the main transition element, specifically, scandium (Sc), titanium (Ti), zirconium (Z
r), vanadium (V), niobium (Nb), chromium (C
r), molybdenum (Mo), tungsten (W), manganese (Mn), iron (Fe), cobalt (Co), nickel (Ni), palladium (Pd), platinum (Pt), copper (Cu), silver ( Examples thereof include Ag), gold (Au) and zinc (Zn). Specific examples of the lanthanoid element include lanthanum (La) and cerium (Ce), and specific examples of the actinoid element include actinium (Ac). Further, in the present invention, in addition to the above-mentioned atoms, any other atom may be contained as long as it is in a trace amount (1 atom% or less).

【0029】本発明で、光受容部材表面に金属原子を付
着させる方法は、金属原子が表面で島状に凝縮しやすい
ように慎重に条件を選ばなければならない。例えばプラ
ズマCVD法や、スパッタリングなどの条件を厳密に調
整することにより、あらかじめ金属原子が充分なサーフ
ェイスモビリティを得られるだけのエネルギーを付与
し、金属原子が光受容部材の表面に達した時に移動し易
くして、そこで局在的に堆積させる方法がある。また、
CVD、真空蒸着、塗布などにより予め光受容部材の表
面に金属原子の薄膜を膜状に形成しておき、その後に熱
アニールを行い、膜表面で島状に凝縮させる方法があ
る。また、プラズマCVD法や、スパッタリング、CV
D、真空蒸着、塗布などを行う時にあらかじめ基体温度
を充分に高めておき、基体温度、圧力、蒸着時間などを
制御し、蒸着と同時に凝縮させる方法も適している。こ
の場合、あまり長時間基体を熱すると光導電層から水素
やハロゲンといったターミネーターが脱離し、特性を悪
化させる場合があるので蒸着時間は可能な限り短時間で
行うことが望ましい。
In the present invention, the method of attaching metal atoms to the surface of the light receiving member must be carefully selected so that the metal atoms easily condense on the surface into islands. For example, by strictly adjusting the conditions such as the plasma CVD method and sputtering, the metal atoms are provided with energy enough to obtain sufficient surface mobility in advance, and the metal atoms move when they reach the surface of the light receiving member. There is a method of facilitating and locally depositing there. Also,
There is a method in which a thin film of metal atoms is formed in a film shape on the surface of the light receiving member in advance by CVD, vacuum deposition, coating, or the like, and then thermal annealing is performed to condense the film surface into islands. In addition, plasma CVD method, sputtering, CV
A method is also suitable in which the substrate temperature is sufficiently raised in advance when performing D, vacuum vapor deposition, coating, etc., and the substrate temperature, pressure, vapor deposition time, etc. are controlled, and condensation is performed simultaneously with vapor deposition. In this case, if the substrate is heated for a too long time, the terminator such as hydrogen or halogen may be desorbed from the photoconductive layer and the characteristics may be deteriorated. Therefore, it is desirable to perform the vapor deposition time as short as possible.

【0030】更にはイオンインプラ、スパッタリング、
プラズマCVD、プラズマ溶射などで、マスクを用い局
所的に金属膜を堆積する方法、または局所的に金属イオ
ンの打ち込みをする方法などが挙げられる。
Furthermore, ion implantation, sputtering,
Examples include a method of locally depositing a metal film using a mask by plasma CVD, plasma spraying, or the like, a method of locally implanting metal ions, and the like.

【0031】他の方法としては堆積とエッチングを同時
または交互に行い局在的な堆積を助長する方法、予め均
一に堆積しておき、イオンビームなどで局所的に除去す
る方法、逆にイオンビームで局所的に蒸着する方法など
が挙げられる。また、光受容部材の前面に金属原子を付
着させ、その後に凸部に付着した金属原子を研磨で削り
落としても良い。
As other methods, a method of promoting local deposition by simultaneously or alternately performing deposition and etching, a method of preliminarily uniformly depositing and locally removing with an ion beam, and the like, conversely, an ion beam And a method of locally vapor-depositing. Alternatively, metal atoms may be attached to the front surface of the light receiving member and then the metal atoms attached to the convex portions may be scraped off by polishing.

【0032】特に、蒸着などにより薄膜を形成する際
に、堆積膜が形成の初期は、堆積膜が均一に形成せず
に、基板上の特異点(基板上を移動する活性種に対して
引力が強い点)に局所的に形成される性質を利用して、
島状の分布を容易に得ることができる。さらに、高濃度
の金属原子の分布を得たい場合は、前記のようにして得
た島状の分布を核にして、その後、堆積膜形成と、エッ
チングまたはスパッタリングなどを、同時または交互に
行い、核の部分にだけ選択的に金属膜を形成する方法
が、比較的大量の金属を島状に分布させる際に良好な結
果が得られた。例えば、比較的エッチングされにくい金
属原子を島状に高濃度で得たい場合、通常の蒸着などで
核となる金属原子の島を堆積膜表面に形成後、島自身の
3次元的の構造を利用して、斜め方向からの金属原子の
導入による膜形成と、垂直方向からのスパッタによる膜
の除去を同時に行うことにより、効果的に、局在的な分
布を残したまま、島を成長させることが可能である。
In particular, when a thin film is formed by vapor deposition or the like, in the initial stage of formation of the deposited film, the deposited film is not uniformly formed, and a singular point on the substrate (attracting to active species moving on the substrate is attracted). Point) is used locally,
An island-shaped distribution can be easily obtained. Furthermore, if you want to obtain a high-concentration distribution of metal atoms, the island-shaped distribution obtained as described above is used as a nucleus, and then deposited film formation and etching or sputtering are performed simultaneously or alternately, The method of selectively forming a metal film only on the core portion has been successful in distributing a relatively large amount of metal in an island shape. For example, if you want to obtain a high concentration of metal atoms that are relatively difficult to be etched into islands, use the three-dimensional structure of the island itself after forming islands of metal atoms that will serve as nuclei on the surface of the deposited film by ordinary vapor deposition. Then, by simultaneously forming a film by introducing metal atoms from an oblique direction and removing the film by sputtering from a vertical direction, it is possible to effectively grow islands while leaving a localized distribution. Is possible.

【0033】光受容層表面に、金属原子を含有した領域
が、2次元的に分布を持つように、金属膜を形成するに
は、図8に示す金属蒸着装置により行う。図8に示す真
空蒸着装置を用いての金属薄膜を形成するには以下のよ
うにして行う。まず真空ポンプ(図示せず)により排気
管808を介して、真空容器801を排気し、真空容器
801内の圧力を1×10-7Torr以下に調整する。
そこで金属原料803の入ったるつぼ802を加熱し、
金属蒸気流804を発生する。金属薄膜の形成中、必要
に応じてヒーター806により、支持体805の温度を
所定の温度に加熱保持する。また、円筒状基体の場合な
ど回転軸807を回転させることにより支持体805の
表面全面にわたって金属薄膜を蒸着することが可能であ
る。この時、基体温度、圧力、蒸着速度、蒸着時間など
を制御し、蒸着された金属膜が2次元的な分布を持つよ
うにする。
The metal vapor deposition apparatus shown in FIG. 8 is used to form the metal film on the surface of the light receiving layer so that the regions containing the metal atoms have a two-dimensional distribution. The metal thin film is formed using the vacuum vapor deposition apparatus shown in FIG. 8 as follows. First, a vacuum pump (not shown) evacuates the vacuum container 801 through the exhaust pipe 808, and the pressure in the vacuum container 801 is adjusted to 1 × 10 −7 Torr or less.
Therefore, the crucible 802 containing the metal raw material 803 is heated,
A metal vapor stream 804 is generated. During the formation of the metal thin film, the temperature of the support 805 is heated and maintained at a predetermined temperature by the heater 806 as necessary. Further, in the case of a cylindrical substrate, it is possible to deposit a metal thin film on the entire surface of the support 805 by rotating the rotary shaft 807. At this time, the substrate temperature, pressure, vapor deposition rate, vapor deposition time, etc. are controlled so that the vapor deposited metal film has a two-dimensional distribution.

【0034】[0034]

【支持体】本発明において使用される支持体としては、
導電性でも電気絶縁性であってもよい。導電性支持体と
しては、Al,Cr,Mo,Au,In,Nb,Te,
V,Ti,Pt,Pd,Feなどの金属、およびこれら
の合金、例えばステンレスなどが挙げられる。また、ポ
リエステル、ポリエチレン、ポリカーボネート、セルロ
ースアセテート、ポリプロピレン、ポリ塩化ビニル、ポ
リスチレン、ポリアミドなどの合成樹脂のフィルムまた
はシート、ガラス、セラミックなどの電気絶縁性支持体
の少なくとも光受容層を形成する側の表面を導電処理し
た支持体も用いることができる。
[Support] As the support used in the present invention,
It may be electrically conductive or electrically insulating. As the conductive support, Al, Cr, Mo, Au, In, Nb, Te,
Examples thereof include metals such as V, Ti, Pt, Pd, and Fe, and alloys thereof such as stainless steel. Also, at least the surface of the electrically insulating support such as polyester, polyethylene, polycarbonate, cellulose acetate, polypropylene, polyvinyl chloride, polystyrene, polyamide, or the like, on which the light receiving layer is formed, of the electrically insulating support such as glass or ceramic. It is also possible to use a support obtained by conducting a conductive treatment.

【0035】本発明において使用される支持体101の
形状は平滑表面あるいは凹凸表面の円筒状または板状無
端ベルト状であることができる。また、その厚さは、所
望通りの電子写真用光受容部材100を形成し得るよう
に適宜決定できるが、電子写真用光受容部材100とし
ての可撓性が要求される場合には、支持体101として
の機能が充分発揮できる範囲内で可能な限り薄くするこ
とができる。しかしながら、支持体101は製造上およ
び取り扱い上、機械的強度などの点から通常は10μm
以上とされる。
The shape of the support 101 used in the present invention may be a cylindrical or plate-like endless belt having a smooth surface or an uneven surface. Further, the thickness thereof can be appropriately determined so that the electrophotographic light-receiving member 100 can be formed as desired, but when flexibility as the electrophotographic light-receiving member 100 is required, a support is used. It can be made as thin as possible within a range in which the function of 101 can be sufficiently exhibited. However, the support 101 is usually 10 μm in terms of manufacturing and handling, mechanical strength and the like.
That is all.

【0036】特にレーザー光などの可干渉性光を用いて
像記録を行う場合には、可視画像において現われる、い
わゆる干渉縞模様による画像不良をより効果的に解消す
るために、支持体101の表面に凹凸を設けてもよい。
支持体101表面の凹凸は、特開昭60−168156
号公報、同60−178457号公報、同60−225
854号公報などに記載された公知の方法により作成さ
れる。
In particular, when image recording is performed using coherent light such as laser light, in order to more effectively eliminate image defects due to so-called interference fringe patterns that appear in a visible image, the surface of the support 101 is removed. You may provide unevenness in.
The unevenness of the surface of the support 101 is described in JP-A-60-168156.
No. 60-178457, No. 60-225.
It is created by a known method described in Japanese Patent Publication No. 854.

【0037】また、レーザー光などの可干渉光を用いた
場合の干渉縞模様による画像不良をより効果的に解消す
る別の方法として、支持体101の表面に複数の球状痕
跡窪みによる凹凸形状を設けてもよい。即ち、支持体1
01の表面が電子写真用光受容部材100に要求される
解像力よりも微少な凹凸を有し、しかも該凹凸は、複数
の球状痕跡窪みによるものである。支持体101表面の
複数の球状痕跡窪みによる凹凸は、特開昭61−231
561号公報に記載された公知の方法により作成され
る。
Further, as another method for more effectively eliminating the image defect due to the interference fringe pattern when the coherent light such as laser light is used, the surface of the support 101 is provided with a concavo-convex shape by a plurality of spherical trace depressions. It may be provided. That is, the support 1
The surface of No. 01 has unevenness smaller than the resolving power required for the electrophotographic light-receiving member 100, and the unevenness is due to a plurality of spherical trace depressions. Unevenness due to a plurality of spherical trace dents on the surface of the support 101 is disclosed in JP-A-61-231.
It is prepared by a known method described in Japanese Patent No. 561.

【0038】[0038]

【光導電層】本発明において、その目的を効果的に達成
するために支持体101上に形成され、光受容層102
の一部を構成する光導電層103は、真空堆積膜形成方
法によって、所望特性が得られるように適宜成膜パラメ
ーターの数値条件が設定されて作成される。具体的に
は、例えばグロー放電法(低周波CVD法、高周波CV
D法またはマイクロ波CVD法等の交流放電CVD法、
あるいは直流放電CVD法等)、スパッタリング法、真
空蒸着法、イオンプレーティング法、光CVD法、熱C
VD法などの数々の薄膜堆積などによって形成すること
ができる。これらの薄膜堆積法は、製造条件、設備資本
投資下の負荷程度、製造規模、作成される電子写真用光
受容部材に所望される特性などの要因によって適宜選択
されて採用されるが、所望の特性を有する電子写真用光
受容部材を製造するに当たっての条件の制御が比較的容
易であることからしてグロー放電法、スパッタリング
法、イオンプレーティング法が好適である。そしてこれ
らの方法を同一装置系内で併用して形成してもよい。
[Photoconductive layer] In the present invention, a light receiving layer 102 is formed on a support 101 to effectively achieve its purpose.
The photoconductive layer 103 constituting a part of the above is formed by a vacuum deposition film forming method by appropriately setting numerical conditions of film forming parameters so that desired characteristics can be obtained. Specifically, for example, a glow discharge method (low frequency CVD method, high frequency CV
AC discharge CVD method such as D method or microwave CVD method,
Or DC discharge CVD method), sputtering method, vacuum deposition method, ion plating method, photo CVD method, thermal C
It can be formed by various thin film deposition methods such as the VD method. These thin film deposition methods are appropriately selected and adopted depending on factors such as manufacturing conditions, load level under capital investment, manufacturing scale, and desired characteristics of the electrophotographic light-receiving member to be prepared. The glow discharge method, the sputtering method, and the ion plating method are preferable because it is relatively easy to control the conditions for producing a photoreceptive member having characteristics. These methods may be used together in the same system.

【0039】本発明において使用されるSi供給用ガス
となり得る物質としては、SiH4,Si26,Si3
8,Si410などのガス状態の、またはガス化し得る水
素化珪素(シラン類)が挙げられ、更に層作成時の取り
扱い易さ、Si供給効率の良さなどの点でSiH4,S
26が好ましいものとして挙げられる。また、これら
のSi供給用の原料ガスを必要に応じてH2,He,A
r,Neなどのガスにより希釈して使用してもよい。
The substances that can be used as the Si supply gas in the present invention include SiH 4 , Si 2 H 6 , and Si 3 H.
Silicon hydrides (silanes) in a gas state such as 8 and Si 4 H 10 or capable of being gasified may be mentioned. Further, SiH 4 , S in terms of easiness of handling at the time of layer formation and good Si supply efficiency.
i 2 H 6 is preferred. In addition, these raw material gases for supplying Si may be added with H 2 , He, A
It may be diluted with a gas such as r or Ne before use.

【0040】また、本発明において光導電層103中に
水素原子または/及びハロゲン原子が含有されることが
必要であるが、これはシリコン原子の未結合手を補償
し、層品質の向上、特に光導電性および電荷保持特性を
向上させるために必須不可欠であるからである。そして
水素原子またはハロゲン原子の含有量、または水素原子
とハロゲン原子の和の量はシリコン原子と水素原子また
は/及びハロゲン原子の和に対して1〜40原子%、よ
り好ましくは3〜35原子%、最適には5〜30原子%
とされるのが望ましい。
In the present invention, it is necessary for the photoconductive layer 103 to contain hydrogen atoms and / or halogen atoms, which compensates for dangling bonds of silicon atoms and improves layer quality, particularly This is because it is essential for improving photoconductivity and charge retention characteristics. The content of hydrogen atoms or halogen atoms, or the amount of the sum of hydrogen atoms and halogen atoms is 1 to 40 atom%, more preferably 3 to 35 atom% with respect to the sum of silicon atoms and hydrogen atoms and / or halogen atoms. Optimally 5 to 30 atom%
Is desirable.

【0041】光導電層103中に含有される水素原子ま
たは/及びハロゲン原子の量を制御するには、例えば支
持体101の温度、水素原子または/及びハロゲン原子
を含有させるために使用される原料物質の反応容器内へ
導入する量、放電電力などを制御すればよい。形成され
る光導電層103中に導入される水素原子の導入割合の
制御を一層容易にするために、これらのガスに更に水素
ガスまたは水素原子を含む珪素化合物のガスも所望量混
合して層形成することが好ましい。また、各ガスは単独
種のみでなく所定の混合比で複数種混合しても差し支え
ないものである。
To control the amount of hydrogen atoms and / or halogen atoms contained in the photoconductive layer 103, for example, the temperature of the support 101, the raw material used for containing hydrogen atoms and / or halogen atoms The amount of the substance introduced into the reaction container, the discharge power, etc. may be controlled. In order to more easily control the introduction ratio of hydrogen atoms introduced into the photoconductive layer 103 to be formed, a desired amount of hydrogen gas or a silicon compound gas containing hydrogen atoms is mixed with these gases to form a layer. It is preferably formed. Further, each gas may be mixed not only with one kind but also with plural kinds at a predetermined mixing ratio.

【0042】水素原子を光導電層103中に構造的に導
入するには、上記の他にH2、あるいはSiH4,Si2
6,Si38,Si410などの水素化珪素とSiを供
給するためのシリコンまたはシリコン化合物とを反応容
器中に共存させて放電を生起させることでも行うことが
できる。
In order to structurally introduce hydrogen atoms into the photoconductive layer 103, in addition to the above, H 2 or SiH 4 , Si 2
It is also possible to cause discharge by causing silicon hydride such as H 6 , Si 3 H 8 , and Si 4 H 10 and silicon or a silicon compound for supplying Si to coexist in the reaction vessel.

【0043】また本発明において有効に使用されるハロ
ゲン原子供給用の原料ガスとしては、たとえばハロゲン
ガス、ハロゲン化物、ハロゲンを含むハロゲン間化合
物、ハロゲンで置換されたシラン誘導体などのガス状の
またはガス化し得るハロゲン化合物が好ましく挙げられ
る。また、さらにはシリコン原子とハロゲン原子とを構
成要素とするガス状のまたはガス化し得る、ハロゲン原
子を含む水素化珪素化合物も有効なものとして挙げるこ
とができる。本発明において好適に使用し得るハロゲン
化合物としては、具体的には弗素ガス(F2),Br
F,ClF,ClF3,BrF3,BrF5,IF3,IF
7などのハロゲン間化合物を挙げることができる。ハロ
ゲン原子を含む珪素化合物、いわゆるハロゲン原子で置
換されたシラン誘導体としては、具体的には、たとえば
SiF4,Si26などの弗化珪素を好ましいものとし
て挙げることができる。
The source gas for supplying halogen atoms effectively used in the present invention is, for example, a gaseous or gas such as a halogen gas, a halide, an interhalogen compound containing halogen, a silane derivative substituted with halogen or the like. Preferred examples thereof include halogen compounds that can be converted. Further, a gaseous or gasifiable silicon hydride compound containing a halogen atom, which contains silicon atoms and a halogen atom as constituent elements, can also be cited as an effective one. Specific examples of the halogen compound preferably used in the present invention include fluorine gas (F 2 ), Br
F, ClF, ClF 3 , BrF 3 , BrF 5 , IF 3 , IF
There may be mentioned interhalogen compounds such as 7 . As a silicon compound containing a halogen atom, a so-called silane derivative substituted with a halogen atom, specifically, silicon fluorides such as SiF 4 and Si 2 F 6 can be preferably mentioned.

【0044】また光導電層に炭素原子及び/またはゲル
マニウム原子及び/または酸素原子及び/または窒素原
子を含有させることも有効である。炭素原子及び/また
はゲルマニウム原子及び/または酸素原子/及びまたは
窒素原子の含有量はシリコン原子、炭素原子、ゲルマニ
ウム原子、酸素原子及び窒素原子の和に対して好ましく
は0.00001〜50原子%、より好ましくは0.0
1〜40原子%、最適には1〜30原子%が望ましい。
炭素原子及び/またはゲルマニウム原子及び/または酸
素原子及び/または窒素原子は、光導電層中に万遍なく
均一に含有されても良いし、光導電層の層厚方向に含有
量が変化するような不均一な分布をもたせた部分があっ
ても良い。
It is also effective that the photoconductive layer contains carbon atoms and / or germanium atoms and / or oxygen atoms and / or nitrogen atoms. The content of carbon atom and / or germanium atom and / or oxygen atom / and / or nitrogen atom is preferably 0.00001 to 50 atom% with respect to the sum of silicon atom, carbon atom, germanium atom, oxygen atom and nitrogen atom, More preferably 0.0
1 to 40 atomic%, optimally 1 to 30 atomic% is desirable.
Carbon atoms and / or germanium atoms and / or oxygen atoms and / or nitrogen atoms may be evenly and uniformly contained in the photoconductive layer, or the content may change in the layer thickness direction of the photoconductive layer. There may be a portion having a non-uniform distribution.

【0045】さらに本発明においては、光導電層103
には必要に応じて伝導性を制御する原子を含有させるこ
とが好ましい。伝導性を制御する原子は、光導電層10
3中に万遍なく均一に分布した状態で含有されても良い
し、あるいは層厚方向には不均一な分布状態で含有して
いる部分があってもよい。そして、光導電層103に含
有される伝導性を制御する原子の含有量としては、好ま
しくは1×10-3〜5×104原子ppm、より好まし
くは1×10-2〜1×104原子ppm、最適には1×
10-1〜5×103原子ppmとされるのが望ましい。
Further, in the present invention, the photoconductive layer 103
It is preferable to contain an atom for controlling conductivity as necessary. Atoms that control conductivity are photoconductive layer 10
3 may be contained in a state of being uniformly distributed evenly in 3, or there may be a portion containing in an uneven distribution state in the layer thickness direction. The content of the atoms controlling the conductivity contained in the photoconductive layer 103 is preferably 1 × 10 −3 to 5 × 10 4 atomic ppm, more preferably 1 × 10 −2 to 1 × 10 4 Atomic ppm, optimally 1x
It is desirable that the concentration be 10 −1 to 5 × 10 3 atomic ppm.

【0046】前記の伝導性を制御する原子としては、半
導体分野における、いわゆる不純物を挙げることがで
き、p型伝導特性を与える周期律表第IIIb族に属す
る原子(以後「第IIIb族原子」と略記する)または
n型伝導特性を与える周期律表第Vb族に属する原子
(以後「第Vb族原子」と略記する)を用いることがで
きる。第IIIb族原子としては、具体的には、硼素
(B),アルミニウム(Al),ガリウム(Ga),イ
ンジウム(In),タリウム(Tl)などがあり、特に
B,Al,Gaが好適である。第Vb族原子としては、
具体的には燐(P),砒素(As),アンチモン(S
b),ビスマス(Bi)などがあり、特にP,Asが好
適である。これらの原子を構造的に導入するには、層形
成の際に、第IIIb族原子導入用の原料物質あるいは
第Vb族原子導入用の原料物質をガス状態で反応容器中
に、光導電層103を形成するための他のガスとともに
導入してやればよい。
As the atom for controlling the above-mentioned conductivity, there is a so-called impurity in the field of semiconductors, and an atom belonging to Group IIIb of the periodic table which gives a p-type conduction characteristic (hereinafter referred to as “Group IIIb atom”). Or an atom belonging to Group Vb of the periodic table (hereinafter abbreviated as “Group Vb atom”) that imparts n-type conductivity can be used. Specific examples of the group IIIb atom include boron (B), aluminum (Al), gallium (Ga), indium (In), and thallium (Tl), and B, Al, and Ga are particularly preferable. . As the group Vb atom,
Specifically, phosphorus (P), arsenic (As), antimony (S)
b), bismuth (Bi), etc., and P and As are particularly preferable. In order to introduce these atoms structurally, the raw material for introducing the group IIIb atom or the raw material for introducing the group Vb atom in a gas state in the reaction vessel is added to the photoconductive layer 103 during the layer formation. It may be introduced together with other gas for forming.

【0047】第IIIb族原子導入用の原料物質あるい
は第Vb族原子導入用の原料物質となり得るものとして
は、常温常圧でガス状のまたは、少なくとも層形成条件
下で容易にガス化し得るものが採用されるのが望まし
い。そのような第IIIb族原子導入用の原料物質とし
て、本発明において有効に使用されるのは、硼素原子導
入用としては、B26,B410,B59,B511,B
610,B612,B614などの水素化硼素、BF3,B
Cl3,BBr3などのハロゲン化硼素などが挙げられ
る。この他、AlCl3,GaCl3,Ga( CH33
InCl3,TlCl3なども挙げることができる。
Raw material for introducing group IIIb atoms
Is a raw material for introducing a group Vb atom.
Is a gas at room temperature and atmospheric pressure, or at least a layer forming condition
It is desirable that those that can be easily gasified under
Yes. As a raw material for introducing such a Group IIIb atom
In the present invention, the boron atom conductor is effectively used.
B is required2H6, BFourHTen, BFiveH9, BFiveH11, B
6HTen, B6H12, B6H14Such as boron hydride, BF3, B
Cl3, BBr3Such as boron halides
It In addition, AlCl3, GaCl3, Ga ( CH3)3,
InCl3, TlCl3And so on.

【0048】第Vb族原子導入用の原料物質として本発
明において、有効に使用されるのは、燐原子導入用とし
ては、PH3,P24などの水素化燐、PH4I,P
3,PF5,PCl3,PCl5,PBr3,PBr5,P
3などのハロゲン化燐が挙げられる。この他、As
3,AsF3,AsCl3,AsBr3,AsF5,Sb
3,SbF3,SbF5,SbCl3,SbCl5,Bi
3,BiCl3,BiBr3なども第Vb族原子導入用
の出発物質の有効なものとして挙げることができる。ま
た、これらの伝導性を制御する原子導入用の原料物質を
必要に応じてH2,He,Ar,Neなどのガスにより
希釈して使用してもよい。
In the present invention, a raw material for introducing a group Vb atom is effectively used. For introducing a phosphorus atom, phosphorus hydride such as PH 3 , P 2 H 4 or PH 4 I, P is used.
F 3 , PF 5 , PCl 3 , PCl 5 , PBr 3 , PBr 5 , P
Examples thereof include phosphorus halides such as I 3 . In addition, As
H 3, AsF 3, AsCl 3 , AsBr 3, AsF 5, Sb
H 3 , SbF 3 , SbF 5 , SbCl 3 , SbCl 5 , Bi
H 3 , BiCl 3 , BiBr 3 and the like can also be mentioned as effective starting materials for introducing a Group Vb atom. In addition, these raw material substances for atom introduction for controlling the conductivity may be diluted with a gas such as H 2 , He, Ar, or Ne as needed before use.

【0049】本発明において、光導電層103の層厚
は、所望の電子写真特性が得られることおよび経済的効
果などの点から適宜所望にしたがって決定されるが、好
ましくは3〜120μm、より好ましくは5〜100μ
m、最適には10〜80μmとされるのが望ましい。
In the present invention, the layer thickness of the photoconductive layer 103 is appropriately determined in accordance with the desire in view of obtaining desired electrophotographic characteristics and economical effects, but is preferably 3 to 120 μm, and more preferably Is 5-100μ
m, most preferably 10 to 80 μm.

【0050】本発明の目的を達成し得る特性を有する光
導電層103を形成するには、支持体101の温度、反
応容器内のガス圧を所望にしたがって、適宜設定する必
要がある。支持体101の温度(Ts)は、層設計にし
たがって適宜最適範囲が選択されるが、通常の場合、好
ましくは20〜500℃、より好ましくは50〜480
℃、最適には100〜450℃とするのが望ましい。ま
た、反応容器内のガス圧も同様に層設計にしたがって適
宜最適範囲が選択されるが、通常の場合、好ましくは1
×10-5〜100Torr、より好ましくは5×10-5
〜30Torr、最適には1×10-4〜10Torrと
するのが好ましい。そして、本発明においては、光導電
層を形成するための支持体温度、ガス圧の望ましい数値
範囲として前記した範囲が挙げられるが、条件は通常は
独立的に別々に決められるものではなく、所望の特性を
有する光受容部材を形成すべく相互的かつ有機的関連性
に基づいて最適値を決めるのが望ましい。
In order to form the photoconductive layer 103 having the characteristics capable of achieving the object of the present invention, it is necessary to appropriately set the temperature of the support 101 and the gas pressure in the reaction vessel as desired. The temperature (Ts) of the support 101 is appropriately selected according to the layer design, but in the normal case, it is preferably 20 to 500 ° C., more preferably 50 to 480.
It is desirable to set the temperature to 100 ° C, optimally 100 to 450 ° C. Similarly, the gas pressure in the reaction vessel is appropriately selected in accordance with the layer design, but in the normal case, it is preferably 1
× 10 -5 to 100 Torr, more preferably 5 × 10 -5
-30 Torr, optimally 1 * 10 < -4 > -10 Torr is preferable. In the present invention, the support temperature for forming the photoconductive layer and the above-mentioned ranges are mentioned as desirable numerical ranges of the gas pressure, but the conditions are not usually independently determined separately, and may be desired. It is desirable to determine the optimum value based on the mutual and organic relationships so as to form the light receiving member having the characteristics of.

【0051】本発明の光受容部材においては、光受容層
102の前記支持体101側に、少なくともアルミニウ
ム原子、シリコン原子、水素原子または/及びハロゲン
原子が層厚方向に不均一な分布状態で含有する層領域を
有することが望ましい。更に、本発明の電子写真用光受
容部材においては、支持体101と光導電層103との
間に密着性の一層の向上を図る目的で、例えば、Si3
4,SiO2,SiO,水素原子及びハロゲン原子の少
なくとも一方と、窒素原子及び酸素原子の少なくとも一
方と、シリコン原子とを含む非晶質材料などで構成され
る密着層を設けてもよい。また、支持体からの電荷の注
入を阻止する目的で電荷注入阻止層を設けてもよい。更
に、光の干渉を防止するために光吸収層を設けてもよ
い。
In the light receiving member of the present invention, at least aluminum atoms, silicon atoms, hydrogen atoms and / or halogen atoms are contained in a non-uniform distribution state in the layer thickness direction on the support 101 side of the light receiving layer 102. It is desirable to have a layer region that does. Further, in the electrophotographic light-receiving member of the present invention, for the purpose of further improving the adhesiveness between the support 101 and the photoconductive layer 103, for example, Si 3
An adhesion layer made of an amorphous material containing at least one of N 4 , SiO 2 , SiO, hydrogen atoms and halogen atoms, at least one of nitrogen atoms and oxygen atoms, and silicon atoms may be provided. A charge injection blocking layer may be provided for the purpose of blocking the injection of charges from the support. Further, a light absorption layer may be provided to prevent light interference.

【0052】[0052]

【表面層】本発明においては、上記のようにして支持体
101上に形成された光導電層103の更に上に、A−
Si系の表面層104を形成することも可能である。こ
の表面層104は自由表面106を有し、主に耐湿性、
連続繰り返し使用特性、電気的耐圧性、使用環境特性、
耐久性において本発明の目的を達成するために設けられ
る。また、本発明においては、光受容層102を構成す
る光導電層103と表面層104とを形成する非晶質材
料の各々がシリコン原子という共通の構成要素を有して
いるので、積層界面において化学的な安定性の確保が十
分なされている。本発明において、表面層104の作成
方法、原料ガスなどは基本的に光導電層の作成方法、原
料ガスがそのまま用いることができ、光受容部材の生産
性から光導電層と同等の堆積法によることが特に好まし
い。
[Surface Layer] In the present invention, A- is further formed on the photoconductive layer 103 formed on the support 101 as described above.
It is also possible to form the Si-based surface layer 104. This surface layer 104 has a free surface 106, which is mainly moisture resistant,
Continuous repeated use characteristics, electrical pressure resistance, usage environment characteristics,
It is provided to achieve the object of the present invention in durability. Further, in the present invention, since each of the amorphous materials forming the photoconductive layer 103 and the surface layer 104 forming the light receiving layer 102 has a common constituent element of silicon atom, at the stacking interface. Ensuring chemical stability is sufficient. In the present invention, the method of forming the surface layer 104, the raw material gas, etc. can be basically the same as the method of forming the photoconductive layer, and the raw material gas can be used as it is. Is particularly preferred.

【0053】本発明において用いる表面層の材質として
はシリコンを含有するアモルファス材料ならば何れでも
よいが、炭素、窒素、酸素より選ばれた元素を少なくと
も1つ含むシリコン原子との化合物が好ましく、特にS
iCを主成分としたものが好ましい。SiCの場合、炭
素の量は、シリコン原子と炭素原子の和に対して30%
から90%の範囲が好ましい。
The material of the surface layer used in the present invention may be any amorphous material containing silicon, but a compound with a silicon atom containing at least one element selected from carbon, nitrogen and oxygen is preferable, and particularly, S
It is preferable to use iC as a main component. In the case of SiC, the amount of carbon is 30% with respect to the sum of silicon atoms and carbon atoms.
To 90% is preferred.

【0054】また、本発明において表面層104中に水
素原子または/及びハロゲン原子が含有されることが必
要であるが、これはシリコン原子の未結合手を補償し、
層品質の向上、特に暗抵抗および電荷保持特性を向上さ
せるために必須不可欠であるからである。そして水素原
子またはハロゲン原子の含有量、または水素原子とハロ
ゲン原子の和の量はシリコン原子と水素原子または/及
びハロゲン原子の和に対して、41原子%以上71原子
%以下とされるのが望ましい。
In the present invention, it is necessary that the surface layer 104 contains hydrogen atoms and / or halogen atoms, which compensates for dangling bonds of silicon atoms,
This is because it is essential to improve the layer quality, particularly dark resistance and charge retention characteristics. The content of hydrogen atoms or halogen atoms or the sum of hydrogen atoms and halogen atoms is set to 41 atom% or more and 71 atom% or less with respect to the sum of silicon atoms and hydrogen atoms and / or halogen atoms. desirable.

【0055】すなわち、表面層内に存在する欠陥(主に
シリコン原子や炭素原子のダングリングボンド)は電子
写真用光受容部材としての特性に悪影響を及ぼすことが
知られている。例えば自由表面から電荷の注入による帯
電特性の劣化、使用環境、例えば高い湿度のもとで表面
構造が変化することによる帯電特性の変動、更にコロナ
帯電時や光照射時に光導電層により表面層に電荷が注入
され、前記表面層内の欠陥に電荷がトラップされること
により繰り返し使用時の残像現象の発生などがこの悪影
響として挙げられる。
That is, it is known that defects (mainly dangling bonds of silicon atoms and carbon atoms) existing in the surface layer adversely affect the characteristics as a light receiving member for electrophotography. For example, the deterioration of the charging characteristics due to the injection of electric charges from the free surface, the fluctuation of the charging characteristics due to the change of the surface structure under the usage environment, for example, high humidity. This adverse effect is caused by the injection of electric charges and the trapping of the electric charges in the defects in the surface layer, thereby causing an afterimage phenomenon during repeated use.

【0056】しかしながら表面層内の水素含有量を41
原子%以上に制御することで表面層内の欠陥が大幅に減
少し、その結果前記問題点はすべて解消し、従来に比べ
て電気的特性面および高速連続使用性において飛躍的な
向上を図ることができる。一方、前記表面層中の水素含
有量が71原子%以上になると表面層の硬度が低下する
ために、繰り返し使用に耐えられない。従って、表面層
中の水素含有量を前記の範囲内に制御することが格段に
優れた所望の電子写真特性を得る上で非常に重要な因子
の1つである。表面層中の水素含有量は、H2ガスの流
量、支持体温度、放電パワー、ガス圧などによって制御
し得る。
However, if the hydrogen content in the surface layer is 41
By controlling to over atomic%, the defects in the surface layer will be greatly reduced, and as a result all of the above problems will be solved, and a dramatic improvement in electrical characteristics and high-speed continuous usability will be achieved compared to the conventional one. You can On the other hand, when the hydrogen content in the surface layer is 71 atomic% or more, the hardness of the surface layer decreases, and the surface layer cannot withstand repeated use. Therefore, controlling the hydrogen content in the surface layer to be within the above range is one of the very important factors in obtaining the desired electrophotographic properties that are remarkably excellent. The hydrogen content in the surface layer can be controlled by the flow rate of H 2 gas, the support temperature, the discharge power, the gas pressure and the like.

【0057】本発明において使用される炭素供給用ガス
となり得る物質としては、CH4,C2 6,C38,C4
10などのガス状態の、またはガス化し得る炭化水素が
有効に使用されるものとして挙げられ、更に層作成時の
取り扱い易さ、Si供給効率の良さなどの点でCH4
26が好ましいものとして挙げられる。また、これら
のC供給用の原料ガスを必要に応じてH2,He,A
r,Neなどのガスにより希釈して使用してもよい。
Gas for supplying carbon used in the present invention
Possible substances are CHFour, C2H 6, C3H8, CFour
HTenHydrocarbons in the gas state, such as
It can be cited as one that can be used effectively, and when further layers are created
CH in terms of ease of handling and good Si supply efficiencyFour,
C2H6Are preferred. Also these
C as a raw material gas for supplying H if necessary2, He, A
It may be diluted with a gas such as r or Ne before use.

【0058】本発明において使用される窒素または酸素
供給用ガスとなり得る物質としては、NH3,NO,N2
O,NO2,H2O,O2,CO,CO2,N2などのガス
状態の、またはガス化し得る化合物が有効に使用される
ものとして挙げられる。また、これらの窒素、酸素供給
用の原料ガスを必要に応じてH2,He,Ar,Neな
どのガスにより希釈して使用してもよい。
The substances that can be used as the gas for supplying nitrogen or oxygen used in the present invention include NH 3 , NO and N 2.
The compounds in a gas state such as O, NO 2 , H 2 O, O 2 , CO, CO 2 , N 2 or the like that can be gasified are mentioned as being effectively used. In addition, these raw material gases for supplying nitrogen and oxygen may be diluted with a gas such as H 2 , He, Ar, and Ne as needed before use.

【0059】炭素原子及び/または酸素原子及び/また
は窒素原子は、表面層中に万遍なく均一に含有されても
良いし、表面層の層厚方向に含有量が変化するような不
均一な分布をもたせた部分があっても良い。
The carbon atom and / or the oxygen atom and / or the nitrogen atom may be uniformly contained in the surface layer, or may be nonuniform so that the content varies in the thickness direction of the surface layer. There may be a portion with a distribution.

【0060】さらに本発明においては、表面層104に
は必要に応じて伝導性を制御する原子を含有させること
が好ましい。伝導性を制御する原子は、表面層104中
に万遍なく均一に分布した状態で含有されても良いし、
あるいは層厚方向には不均一な分布状態で含有している
部分があってもよい。
Further, in the present invention, it is preferable that the surface layer 104 contains atoms for controlling the conductivity, if necessary. Atoms for controlling conductivity may be contained in the surface layer 104 in a state of being uniformly distributed.
Alternatively, there may be a portion containing a non-uniform distribution in the layer thickness direction.

【0061】本発明における表面層104の層厚として
は、通常20Å〜10μm、好適には100Å〜5μ
m、最適には500Å〜2μmとされるのが望ましいも
のである。すなわち、20Åよりも薄いと本発明の効果
が十分に得られず、更に光受容部材を使用中に摩耗など
の理由により表面層が失われてしまう場合もある。ま
た、層厚が10μmを越えると残留電位の増加などの電
子写真特性の低下がみられる。
The thickness of the surface layer 104 in the present invention is usually 20Å to 10 μm, preferably 100Å to 5 μm.
m, most preferably 500Å to 2 μm. That is, if the thickness is less than 20Å, the effect of the present invention cannot be sufficiently obtained, and the surface layer may be lost due to abrasion during use of the light receiving member. Further, when the layer thickness exceeds 10 μm, deterioration of electrophotographic characteristics such as increase of residual potential is observed.

【0062】本発明による表面層104は、その要求さ
れる特性が所望通りに与えられるように注意深く形成さ
れる。即ち、Si,C及び/またはN及び/またはO,
Hを構成要素とする物質はその形成条件によって構造的
には結晶からアモルファスまでの形態を取り、電気物性
的には導電性から半導体性、絶縁性までの間の性質を、
また、光導電的性質から非光導電的性質までの間の性質
を各々示すので、本発明においては、目的に応じた所望
の特性を有する化合物が形成されるように、所望に従っ
てその形成条件の選択が厳密になされる。例えば、表面
層104を耐圧性の向上を主な目的として設けるには、
使用環境において電気絶縁性的挙動の顕著な非単結晶材
料として作成される。また、連続繰り返し使用特性や使
用環境特性の向上を主たる目的として表面層104が設
けられる場合には、上記の電気絶縁性の度合はある程度
緩和され、硬度が高い、あるいは撥水性が高い非単結晶
材料として形成される。
The surface layer 104 according to the present invention is carefully formed to provide its desired properties as desired. That is, Si, C and / or N and / or O,
A substance having H as a constituent structurally takes a form from crystalline to amorphous depending on its forming condition, and has an electrical property ranging from conductive to semiconducting to insulating.
Further, since each of the properties from the photoconductive property to the non-photoconductive property is shown, in the present invention, the formation conditions of the compound having desired properties depending on the purpose are formed according to the desired conditions. The choice is made strictly. For example, in order to provide the surface layer 104 mainly for improving the pressure resistance,
It is made as a non-single-crystal material that has an electrically insulating behavior in the environment of use. Further, when the surface layer 104 is provided mainly for the purpose of improving continuous repeated use characteristics and use environment characteristics, the non-single crystal having a high degree of hardness or a high water repellency is relaxed to some extent in the degree of the electric insulation. Formed as a material.

【0063】本発明においては、光導電層と表面層の間
に、窒素原子の含有量を減らしたSiC(H,X)など
から成るもう1つのブロッキング層(下部表面層)を設
けることも帯電能などの特性を更に向上させるために有
効である。また本発明の表面層104と光導電層103
との間に炭素原子または/及び窒素原子の含有量が光導
電層103に向かって減少するように変化する領域を設
けても良い。これにより表面層と光導電層の界面での反
射光による干渉の影響をより少なくすることができる。
In the present invention, it is also possible to provide another blocking layer (lower surface layer) composed of SiC (H, X) having a reduced content of nitrogen atoms between the photoconductive layer and the surface layer. It is effective for further improving characteristics such as Noh. Further, the surface layer 104 and the photoconductive layer 103 of the present invention
A region in which the content of carbon atoms and / or nitrogen atoms changes so as to decrease toward the photoconductive layer 103 may be provided between and. This can further reduce the influence of interference due to the reflected light at the interface between the surface layer and the photoconductive layer.

【0064】[0064]

【製造方法】以下、高周波プラズマCVD法およびマイ
クロ波プラズマCVD法によって堆積膜を形成するため
の装置および形成方法について詳述する。図6は、高周
波プラズマCVD(以下「RF−PCVD」と表記す
る)法による電子写真用光受容部材の製造装置の一例を
示す模式的な説明図、図7はマイクロ波プラズマCVD
(以下「μW−PCVD」と表記する)法によって電子
写真用光受容部材用の堆積膜を形成するための堆積膜形
成用反応炉の一例を示す模式的な説明図である。
[Manufacturing Method] An apparatus and a forming method for forming a deposited film by a high frequency plasma CVD method and a microwave plasma CVD method will be described in detail below. FIG. 6 is a schematic explanatory view showing an example of a manufacturing apparatus of a photoreceptive member for electrophotography by a high frequency plasma CVD (hereinafter referred to as “RF-PCVD”) method, and FIG. 7 is a microwave plasma CVD.
FIG. 3 is a schematic explanatory view showing an example of a deposited film forming reaction furnace for forming a deposited film for an electrophotographic light receiving member by a method (hereinafter referred to as “μW-PCVD”).

【0065】図6に示すRF−PCVD法による堆積膜
の製造装置を用いた堆積膜の形成は例えば次のように行
う。この装置は大別すると、堆積装置6100、原料ガ
スの供給装置6200、反応容器6111内を減圧にす
るための排気装置(図示せず)から構成されている。ま
ず、反応容器6111内に円筒状支持体6112を設置
し、不図示の排気装置(例えば真空ポンプ)により反応
容器6111内を排気する。続いて、支持体加熱用ヒー
ター6113により円筒状支持体6112の温度を20
℃〜500℃の所定の温度に制御する。
The deposited film is formed by using the deposited film manufacturing apparatus by the RF-PCVD method shown in FIG. 6, for example, as follows. This apparatus is roughly divided into a deposition apparatus 6100, a source gas supply apparatus 6200, and an exhaust apparatus (not shown) for reducing the pressure inside the reaction vessel 6111. First, the cylindrical support 6112 is installed in the reaction container 6111, and the inside of the reaction container 6111 is exhausted by an exhaust device (not shown) (for example, a vacuum pump). Then, the temperature of the cylindrical support 6112 is set to 20 by the heater 6113 for heating the support.
The temperature is controlled to a predetermined temperature of ℃ to 500 ℃.

【0066】堆積膜形成用の原料ガスを反応容器611
1に流入させるには、ガスボンベのバルブ6231〜6
236、反応容器のリークバルブ6117が閉じられて
いることを確認し、また、流入バルブ6241〜624
6、流出バルブ6251〜6256、補助バルブ626
0が開かれていることを確認して、まずメインバルブ6
118を開いて反応容器6111およびガス配管内61
16を排気する。次に真空計6119の読みが約5×1
-6Torrになった時点で補助バルブ6260、流出
バルブ6251〜6256を閉じる。その後、ガスボン
ベ6221〜6226より各ガスをバルブ6231〜6
236を開いて導入し、圧力調整器6261〜6266
により各ガス圧を2Kg/cm2に調整する。次に、流
入バルブ6241〜6246を徐々に開けて、各ガスを
マスフローコントローラー6211〜6216内に導入
する。
A raw material gas for forming a deposited film is supplied to the reaction vessel 611.
In order to make it flow into 1, the gas cylinder valves 6231-6
236, make sure that the leak valve 6117 of the reaction vessel is closed, and check the inflow valves 6241 to 624.
6, outflow valves 6251 to 6256, auxiliary valve 626
Make sure 0 is open, then first open the main valve 6
118 is opened and the reaction vessel 6111 and the gas pipe 61 are opened.
Evacuate 16. Next, the reading of the vacuum gauge 6119 is about 5 × 1
When the pressure reaches 0 -6 Torr, the auxiliary valve 6260 and the outflow valves 6251 to 6256 are closed. After that, the gas cylinders 6221 to 6226 supply the gases to the valves 6231 to 632.
236 is opened and introduced, and pressure regulators 6261-6266
Each gas pressure is adjusted to 2 Kg / cm 2 by. Next, the inflow valves 6241 to 6246 are gradually opened to introduce each gas into the mass flow controllers 6211 to 6216.

【0067】以上のようにして成膜の準備が完了した
後、円筒状支持体6112上に光導電層、表面層の各層
の形成を行う。まず、円筒状支持体6112が所定の温
度になったところで流出バルブ6251〜6256のう
ちの必要なものおよび補助バルブ6260を徐々に開
き、ガスボンベ6221〜6226から所定のガスをガ
ス導入管6114を介して反応容器6111内に導入す
る。次にマスフローコントローラー6211〜6216
によって各原料ガスが所定の流量になるように調整す
る。その際、反応容器6111内の圧力が1Torr以
下の所定の圧力になるように真空計6119を見ながら
メインバルブ6118の開口を調整する。内圧が安定し
たところで、RF電源(図示せず)を所望の電力に設定
して、高周波マッチングボックス6115を通じて反応
容器6111内にRF電力を導入し、RFグロー放電を
生起させる。この放電エネルギーによって反応容器内に
導入された原料ガスが分解され、円筒状支持体6112
上に所定のシリコンを主成分とする堆積膜が形成される
ところとなる。所望の膜厚の形成が行われた後、RF電
力の供給を止め、流出バルブを閉じて反応容器へのガス
の流入を止め、堆積膜の形成を終える。そして、同様の
操作を複数回繰り返すことによって、所望の多層構造の
光受容層が形成される。
After the preparation for film formation is completed as described above, the photoconductive layer and the surface layer are formed on the cylindrical support 6112. First, when the cylindrical support 6112 reaches a predetermined temperature, the necessary ones of the outflow valves 6251 to 6256 and the auxiliary valve 6260 are gradually opened, and a predetermined gas is supplied from the gas cylinders 6221 to 6226 via the gas introduction pipe 6114. It is introduced into the reaction container 6111. Next, mass flow controllers 6211-6216
Is adjusted so that each source gas has a predetermined flow rate. At that time, the opening of the main valve 6118 is adjusted while observing the vacuum gauge 6119 so that the pressure in the reaction vessel 6111 becomes a predetermined pressure of 1 Torr or less. When the internal pressure is stable, the RF power source (not shown) is set to a desired power, and the RF power is introduced into the reaction vessel 6111 through the high frequency matching box 6115 to cause the RF glow discharge. The raw material gas introduced into the reaction vessel is decomposed by this discharge energy, and the cylindrical support 6112
This is where a predetermined deposited film containing silicon as a main component is formed. After the desired film thickness is formed, the supply of RF power is stopped, the outflow valve is closed to stop the gas from flowing into the reaction vessel, and the formation of the deposited film is completed. Then, by repeating the same operation a plurality of times, a light receiving layer having a desired multilayer structure is formed.

【0068】それぞれの層を形成する際には必要なガス
以外の流出バルブはすべて閉じられていることはいうま
でもなく、また、それぞれのガスが反応容器6111
内、流出バルブ6251〜6256から反応容器611
1に至る配管内に不必要なガスが残留することを避ける
ために、流出バルブ6251〜6256を閉じ、補助バ
ルブ6260を開き、さらにメインバルブ6118を全
開にして系内を一旦高真空に排気する操作を必要に応じ
て行う。
Needless to say, all the outflow valves other than the necessary gas are closed when forming the respective layers, and the respective gases are used for the reaction vessel 6111.
Inside, outflow valves 6251 to 6256 to reaction vessel 611
In order to avoid unnecessary gas remaining in the pipe reaching 1, the outflow valves 6251 to 6256 are closed, the auxiliary valve 6260 is opened, and the main valve 6118 is fully opened to once exhaust the system to a high vacuum. Perform operations as needed.

【0069】また、膜形成の均一化を図る場合は、膜形
成を行っている間は、円筒状支持体6112を駆動装置
(図示せず)によって所定の速度で回転させる。そし
て、上述のガス種およびバルブ操作は各々の層の作成条
件にしたがって変更が加えられることはいうまでもな
い。
In order to make the film formation uniform, the cylindrical support 6112 is rotated at a predetermined speed by a driving device (not shown) during the film formation. Needless to say, the above-mentioned gas species and valve operation may be changed according to the preparation conditions of each layer.

【0070】次に、μW−PCVD法によって形成され
る電子写真用光受容部材の製造方法について説明する。
図6に示した製造装置におけるRF−PCVD法による
堆積装置6100を図7に示す堆積装置7100に交換
して原料ガス供給装置6200と接続することによりμ
W−PCVD法による電子写真用光受容部材製造装置を
得ることができる。
Next, a method for manufacturing the electrophotographic light-receiving member formed by the μW-PCVD method will be described.
By replacing the deposition apparatus 6100 by the RF-PCVD method in the manufacturing apparatus shown in FIG. 6 with the deposition apparatus 7100 shown in FIG. 7 and connecting it to the source gas supply apparatus 6200, μ
It is possible to obtain an electrophotographic light-receiving member manufacturing apparatus by the W-PCVD method.

【0071】この装置を用いた堆積膜の形成は例えば次
のように行う。まず、反応容器7111内に円筒状支持
体7115を設置し、駆動装置7120によって支持体
7115を回転し、不図示の排気装置(例えば真空ポン
プ)により反応容器7111内を排気管7121を介し
て排気し、反応容器7111内の圧力を1×10-6To
rr以下に調整する。続いて、支持体加熱用ヒーター7
116により円筒状支持体7115の温度を20℃〜5
00℃の所定の温度に加熱保持する。
The deposited film is formed using this apparatus, for example, as follows. First, a cylindrical support 7115 is installed in the reaction container 7111, the support 7115 is rotated by a driving device 7120, and the reaction container 7111 is exhausted through an exhaust pipe 7121 by an exhaust device (not shown) (for example, a vacuum pump). Then, the pressure in the reaction vessel 7111 is set to 1 × 10 −6 To.
Adjust to rr or less. Then, the heater 7 for heating the support
116, the temperature of the cylindrical support 7115 is set to 20 ° C. to 5 ° C.
It is heated and maintained at a predetermined temperature of 00 ° C.

【0072】堆積膜形成用の原料ガスを反応容器711
1に流入させるには、ガスボンベのバルブ6231〜6
236、反応容器のリークバルブ(図示せず)が閉じら
れていることを確認し、また、流入バルブ6241〜6
246、流出バルブ6251〜6256、補助バルブ6
260が開かれていることを確認して、まずメインバル
ブ(図示せず)を開いて反応容器7111およびガス配
管7122内を排気する。次に真空計(図示せず)の読
みが約5×10-6Torrになった時点で補助バルブ6
260、流出バルブ6251〜6256を閉じる。その
後、ガスボンベ6221〜6226より各ガスをバルブ
6231〜6236を開いて導入し、圧力調整器626
1〜6266により各ガス圧を2Kg/cm2に調整す
る。次に、流入バルブ6241〜6246を徐々に開け
て、各ガスをマスフローコントローラー6211〜62
16内に導入する。
A source gas for forming a deposited film is supplied to a reaction vessel 711.
In order to make it flow into 1, the gas cylinder valves 6231-6
236, make sure that the leak valve (not shown) of the reaction vessel is closed, and check the inflow valves 6241-6
246, outflow valves 6251 to 6256, auxiliary valve 6
After confirming that 260 is open, first, a main valve (not shown) is opened to evacuate the inside of the reaction vessel 7111 and the gas pipe 7122. Next, when the reading of the vacuum gauge (not shown) reaches about 5 × 10 −6 Torr, the auxiliary valve 6
260, the outflow valves 6251-6256 are closed. After that, each gas is introduced from the gas cylinders 6221 to 6226 by opening the valves 6231 to 6236, and the pressure regulator 626.
Each gas pressure is adjusted to 2 Kg / cm 2 by 1-6266. Next, the inflow valves 6241 to 6246 are gradually opened to allow the respective gases to flow through the mass flow controllers 6211 to 62.
Installed in 16.

【0073】以上のようにして成膜の準備が完了した
後、円筒状支持体7115上に光導電層、表面層の各層
の形成を行う。まず、円筒状支持体7115が所定の温
度になったところで流出バルブ6251〜6256のう
ちの必要なものおよび補助バルブ6260を徐々に開
き、ガスボンベ6221〜6226から所定のガスをガ
ス導入管7117を介して反応容器7111内の放電空
間7130に導入する。次にマスフローコントローラー
6211〜6216によって各原料ガスが所定の流量に
なるように調整する。その際、放電空間7130内の圧
力が1Torr以下の所定の圧力になるように真空計
(図示せず)を見ながらメインバルブ(図示せず)の開
口を調整する。圧力が安定した後、マイクロ波電源(図
示せず)により周波数500MHz以上の、好ましくは
2.45GHzのマイクロ波を発生させ、マイクロ波電
源(図示せず)を所望の電力に設定し、導波管711
3、マイクロ波導入窓7112を介して放電空間713
0にμWエネルギーを導入して、μWグロー放電を生起
させる。それと同時併行的に、電源7119から電極7
118に例えば直流などの電気バイアスを印加する。か
くして支持体7115により取り囲まれた放電空間71
30において、導入された原料ガスは、マイクロ波のエ
ネルギーにより励起されて解離し、円筒状支持体711
5上に所定の堆積膜が形成される。この時、層形成の均
一化を図るため支持体回転用モーター7120によっ
て、所望の回転速度で回転させる。
After the preparation for film formation is completed as described above, the photoconductive layer and the surface layer are formed on the cylindrical support 7115. First, when the cylindrical support 7115 reaches a predetermined temperature, the necessary ones of the outflow valves 6251 to 6256 and the auxiliary valve 6260 are gradually opened, and a predetermined gas is supplied from the gas cylinders 6221 to 6226 via the gas introduction pipe 7117. And is introduced into the discharge space 7130 in the reaction vessel 7111. Next, the mass flow controllers 6211 to 6216 are adjusted so that each raw material gas has a predetermined flow rate. At that time, the opening of the main valve (not shown) is adjusted while observing the vacuum gauge (not shown) so that the pressure in the discharge space 7130 becomes a predetermined pressure of 1 Torr or less. After the pressure has stabilized, a microwave power source (not shown) generates microwaves having a frequency of 500 MHz or more, preferably 2.45 GHz, and the microwave power source (not shown) is set to a desired power to guide the waves. Tube 711
3, discharge space 713 through microwave introduction window 7112
The μW energy is introduced to 0 to generate the μW glow discharge. Simultaneously with this, the power source 7119 to the electrode 7
An electrical bias such as direct current is applied to 118. Thus, the discharge space 71 surrounded by the support body 7115.
In 30, the introduced source gas is excited by the energy of microwaves to dissociate, and the cylindrical support 711
A predetermined deposited film is formed on the film 5. At this time, in order to make the layer formation uniform, the support rotating motor 7120 is rotated at a desired rotation speed.

【0074】所望の膜厚の形成が行われた後、μW電力
の供給を止め、流出バルブを閉じて反応容器へのガスの
流入を止め、堆積膜の形成を終える。同様の操作を複数
回繰り返すことによって、所望の多層構造の光受容層が
形成される。
After the desired film thickness is formed, the supply of μW electric power is stopped, the outflow valve is closed to stop the gas from flowing into the reaction vessel, and the formation of the deposited film is completed. By repeating the same operation a plurality of times, a desired light-receiving layer having a multilayer structure is formed.

【0075】それぞれの層を形成する際には必要なガス
以外の流出バルブはすべて閉じられていることはいうま
でもなく、また、それぞれのガスが反応容器7111
内、流出バルブ6251〜6256から反応容器711
1に至る配管内に残留することを避けるために、流出バ
ルブ6251〜6256を閉じ、補助バルブ6260を
開き、さらにメインバルブ(図示せず)を全開にして系
内を一旦高真空に排気する操作を必要に応じて行う。そ
して、上述のガス種およびバルブ操作は各々の層の作成
条件にしたがって変更が加えられることはいうまでもな
い。
Needless to say, all the outflow valves other than the necessary gas are closed when forming each layer, and each gas is supplied to the reaction vessel 7111.
Inside, outflow valves 6251 to 6256 to reaction vessel 711
In order to avoid remaining in the pipe up to 1, the outflow valves 6251 to 6256 are closed, the auxiliary valve 6260 is opened, and the main valve (not shown) is fully opened to temporarily exhaust the system to a high vacuum. Do as needed. Needless to say, the above-mentioned gas species and valve operation may be changed according to the preparation conditions of each layer.

【0076】なお、上記のように形成された光受容層
に、金属原子を2次元の分布を持つように形成する方法
は、RF−PCVD法の場合も、μW−PCVD法の場
合も、表面金属原子のところで述べた方法と同様に行
う。
The method of forming the metal atoms in the light-receiving layer formed as described above so as to have a two-dimensional distribution is not limited to the RF-PCVD method and the μW-PCVD method. The method is the same as that described for the metal atom.

【0077】以下に、本発明に至った実験の内容を説明
する。
The contents of the experiment leading to the present invention will be described below.

【0078】[0078]

【実験1】図6に示す後述の高周波プラズマCVD(以
下「RF−PCVD」と表記する)法による堆積膜形成
装置を用いて次のように電子写真用感光ドラムの成膜を
行った。成膜にはまず、反応容器6111内に鏡面加工
を施したアルミニウムシリンダー(円筒状支持体)61
12を設置し、必要に応じて膜形成の均一化を図るため
に、円筒状支持体6112を駆動装置(図示せず)によ
って所定の速度で回転させる。次に不図示の排気装置
(例えば真空ポンプ)により反応容器6111内を排気
した。続いて、支持体加熱用ヒーター6113により円
筒状支持体6112の温度を20℃〜500℃の所定の
温度に制御した。
[Experiment 1] A photosensitive drum for electrophotography was formed as follows using a deposited film forming apparatus by a high-frequency plasma CVD (hereinafter referred to as "RF-PCVD") method shown in FIG. For film formation, first, an aluminum cylinder (cylindrical support) 61 having a mirror finish in a reaction vessel 6111.
12, the cylindrical support 6112 is rotated at a predetermined speed by a driving device (not shown) in order to make the film formation uniform if necessary. Next, the inside of the reaction vessel 6111 was exhausted by an exhaust device (not shown) (for example, a vacuum pump). Then, the temperature of the cylindrical support 6112 was controlled to a predetermined temperature of 20 ° C. to 500 ° C. by the heater 6113 for heating the support.

【0079】堆積膜形成用の原料ガスを反応容器611
1に流入させるために、ガスボンベのバルブ6231〜
6236、反応容器のリークバルブ6117が閉じられ
ていることを確認し、また、流入バルブ6241〜62
46、流出バルブ6251〜6256、補助バルブ62
60が開かれていることを確認して、まずメインバルブ
6118を開いて反応容器6111およびガス配管61
16内を排気した。次に真空計6119の読みが約5×
10-6Torrになった時点で補助バルブ6260、流
出バルブ6251〜6256を閉じた。その後、成膜に
必要なガスボンベ6221〜6226より各ガスをバル
ブ6231〜6236を開いて導入し、圧力調整器62
61〜6266により各ガス圧を2Kg/cm2に調整
した。次に、流入バルブ6241〜6246を徐々に開
けて、各ガスをマスフローコントローラー6211〜6
216内に導入した。以上のようにして成膜の準備が完
了した後、円筒状支持体6112上に表1に示す作製条
件に従って光導電層の形成を行った。
A raw material gas for forming a deposited film is supplied to the reaction vessel 611.
Gas cylinder valve 6231-
6236, make sure that the leak valve 6117 of the reaction vessel is closed, and check the inflow valves 6241-62.
46, outflow valves 6251 to 6256, auxiliary valve 62
After confirming that 60 is open, first open the main valve 6118 to open the reaction vessel 6111 and the gas pipe 61.
The inside of 16 was evacuated. Next, the reading of the vacuum gauge 6119 is about 5 ×
When the pressure reached 10 −6 Torr, the auxiliary valve 6260 and the outflow valves 6251 to 6256 were closed. After that, each gas is introduced from the gas cylinders 6221 to 6226 required for film formation by opening the valves 6231 to 6236, and the pressure regulator 62 is introduced.
Each gas pressure was adjusted to 2 Kg / cm <2> by 61-6266. Next, the inflow valves 6241 to 6246 are gradually opened to allow the respective gases to flow through the mass flow controllers 6211 to 621.
216. After the preparation for film formation was completed as described above, a photoconductive layer was formed on the cylindrical support 6112 under the manufacturing conditions shown in Table 1.

【0080】円筒状支持体6112が所定の温度になっ
たところで流出バルブ6251〜6256のうちの必要
なものおよび補助バルブ6260を徐々に開き、ガスボ
ンベ6221〜6226から所定のガスをガス導入管6
114を介して反応容器6111内に導入する。次にマ
スフローコントローラー6211〜6216によって各
原料ガスが所定の流量になるように調整した。その際、
反応容器6111内の圧力が1Torr以下の所定の圧
力になるように真空計6119を見ながらメインバルブ
6118の開口を調整した。内圧が安定したところで、
RF電源(図示せず)を所望の電力に設定して、高周波
マッチングボックス6115を通じて反応容器6111
内にRF電力を導入し、RFグロー放電を生起させた。
この放電エネルギーによって反応容器内に導入された原
料ガスが分解され、円筒状支持体6112上に所定のシ
リコンを主成分とする堆積膜が形成されるところとな
る。所望の膜厚の形成が行われた後、RF電力の供給を
止め、流出バルブを閉じて反応容器へのガスの流入を止
め、堆積膜の形成を終えた。
When the cylindrical support 6112 reaches a predetermined temperature, the necessary ones of the outflow valves 6251 to 6256 and the auxiliary valve 6260 are gradually opened to supply a predetermined gas from the gas cylinders 6221 to 6226 to the gas introduction pipe 6.
It is introduced into the reaction vessel 6111 via 114. Next, the mass flow controllers 6211 to 6216 were adjusted so that each raw material gas had a predetermined flow rate. that time,
The opening of the main valve 6118 was adjusted while observing the vacuum gauge 6119 so that the pressure inside the reaction vessel 6111 became a predetermined pressure of 1 Torr or less. When the internal pressure is stable,
An RF power source (not shown) is set to a desired power, and a reaction container 6111 is passed through a high frequency matching box 6115.
RF power was introduced into the chamber to cause RF glow discharge.
The source energy introduced into the reaction vessel is decomposed by this discharge energy, and a predetermined deposited film containing silicon as a main component is formed on the cylindrical support 6112. After the desired film thickness was formed, the supply of RF power was stopped, the outflow valve was closed to stop the gas from flowing into the reaction vessel, and the formation of the deposited film was completed.

【0081】同様の操作を複数回繰り返すことによっ
て、所望の多層構造の光受容層を形成した。それぞれの
層を形成する際には必要なガス以外の流出バルブはすべ
て閉じ、また、それぞれのガスが反応容器6111内、
流出バルブ6251〜6256から反応容器6111に
至る配管内に残留することを避けるために、流出バルブ
6251〜6256を閉じ、補助バルブ6260を開
き、さらにメインバルブ6118を全開にして系内を一
旦高真空に排気する操作を行った。
By repeating the same operation a plurality of times, a light receiving layer having a desired multilayer structure was formed. When forming each layer, all the outflow valves other than the necessary gas are closed, and each gas is stored in the reaction vessel 6111.
In order to avoid remaining in the pipe from the outflow valves 6251 to 6256 to the reaction vessel 6111, the outflow valves 6251 to 6256 are closed, the auxiliary valve 6260 is opened, and the main valve 6118 is fully opened to once bring the system into a high vacuum state. The operation to evacuate was performed.

【0082】上記のように形成された光受容層に、金属
原子を含有した領域が2次元的に分布を持つように、図
8に示す金属蒸着装置により亜鉛(Zn)の金属膜を表
面に形成した。まず真空ポンプ(図示せず)により排気
管808を介して、真空容器801を排気し、真空容器
801内の圧力を1×10-7Torr以下に調整した。
そこでZnの入ったるつぼ802を加熱し、金属蒸気流
804を発生させた。金属薄膜の形成中、Zn原子が光
受容層表面のダングリングボンドに容易に移動するよう
にヒーター806により、所定の温度に円筒状支持体8
05を加熱保持した。また、同時に回転軸807を回転
させることにより支持体805の表面全面にわたって金
属薄膜を蒸着した。この時、前述した基体温度はもとよ
り、圧力、蒸着速度、蒸着時間などを最適に制御し、蒸
着された金属膜が2次元的な分布を持つようにした。
In the light-receiving layer formed as described above, a metal film of zinc (Zn) is formed on the surface by a metal deposition apparatus shown in FIG. 8 so that regions containing metal atoms have a two-dimensional distribution. Formed. First, the vacuum vessel 801 was evacuated through the exhaust pipe 808 by a vacuum pump (not shown), and the pressure in the vacuum vessel 801 was adjusted to 1 × 10 −7 Torr or less.
Then, the Zn-containing crucible 802 was heated to generate a metal vapor flow 804. During formation of the metal thin film, the cylindrical support 8 is heated to a predetermined temperature by the heater 806 so that Zn atoms easily move to the dangling bond on the surface of the light receiving layer.
05 was kept heated. At the same time, the rotating shaft 807 was rotated to deposit a metal thin film on the entire surface of the support 805. At this time, not only the substrate temperature described above, but also the pressure, vapor deposition rate, vapor deposition time, etc. were optimally controlled so that the vapor deposited metal film had a two-dimensional distribution.

【0083】本実験では、各島の大きさはおおよそ直径
約3000Å程度を維持しつつ被覆面積を変えるために
ドラムの加熱温度と蒸着量を変化させた。金属の種類に
よって傾向は大幅に異なるが、おおよそドラム温度を上
げると島の直径が小さくなり、逆に蒸着量を多くすると
島の大きさ及び被覆率が大きくなる傾向があるので本実
験ではZnについての最適条件を選択した。
In this experiment, the heating temperature of the drum and the deposition amount were changed in order to change the coating area while maintaining the size of each island to be approximately 3000 Å in diameter. Although the tendency greatly differs depending on the type of metal, when the drum temperature is raised roughly, the diameter of the island becomes smaller, and conversely, when the deposition amount increases, the island size and the coverage rate tend to increase. The optimum conditions were selected.

【0084】本実験では金属の島の大きさ、被覆率はX
線マイクロ分析による面分析によって決定したが、オー
ジェ電子分光分析による面分析や、金属原子の付着量が
少ない場合にはSIMSによる面分析によっても同様の
情報が得られる。
In this experiment, the size of the metal island and the coverage are X.
Although it was determined by the surface analysis by the line micro analysis, the same information can be obtained by the surface analysis by the Auger electron spectroscopic analysis or the surface analysis by SIMS when the amount of adhered metal atoms is small.

【0085】このようにして金属の被覆率を変化させた
電子写真用光受容部材は、電子写真装置(キヤノン社製
NP6060を本テスト用に改造したもの)にセットし
て、種々の条件の元に、初期の帯電能、残留電位、画像
流れ等の電子写真特性に加え、画像欠陥拡大率及び白ポ
チレベルにより画像欠陥を次のように評価した。
The electrophotographic light-receiving member with the metal coverage changed in this way was set in an electrophotographic apparatus (NP6060 manufactured by Canon Inc. modified for this test) and subjected to various conditions. In addition, the image defects were evaluated as follows based on the image defect enlargement ratio and the white spot level in addition to the electrophotographic characteristics such as the initial chargeability, residual potential, and image deletion.

【0086】帯電能…電子写真用光受容部材を実験装置
に設置し、帯電器に+6kVの高電圧を印加しコロナ帯
電を行い、表面電位計により電子写真用光受容部材の暗
部表面電位を測定する。
Charging ability: The photoreceptive member for electrophotography was installed in the experimental apparatus, a high voltage of +6 kV was applied to the charger to perform corona charging, and the surface potential of the photoreceptive member for electrophotography in the dark area was measured. To do.

【0087】残留電位…電子写真用光受容部材を一定の
暗部表面電位に帯電させる。そして直ちに一定光量の比
較的強い光を照射する。光像はキセノンランプ光源を用
い、フィルターを用いて550nm以下の波長域の光を
除いた光を照射した。この時表面電位計により電子写真
用光受容部材の明部表面電位を測定する。
Residual potential: The electrophotographic light-receiving member is charged to a constant dark surface potential. Immediately, a relatively strong light of a constant light quantity is applied. The light image was emitted by using a xenon lamp light source and excluding light in a wavelength range of 550 nm or less using a filter. At this time, the surface potential of the light portion of the electrophotographic light-receiving member is measured with a surface potential meter.

【0088】それぞれについて、評価区分は次のとお
り。 ◎…非常に良好 ○…良好 △…従来レベルであり、実用上問題なし ×…濃度が薄くなる、或はかぶりが発生し、実用上問題
がある
The evaluation categories for each are as follows. A: Very good B: Good B: Conventional level, no problem in practical use X: Lighter density or fogging occurs, causing a problem in practical use

【0089】画像流れ…高湿環境(気温:40℃、湿
度:80%)下で、白地に全面文字よりなるキヤノン製
テストチャート(部品番号:FY9−9058)を原稿
台に置き通常の露光量で照射しコピーをとる。得られた
コピー画像を観察し、画像上の細線がぼけているか評価
した。但しこの時画像上でむらがある時は、全画像領域
で評価し一番悪い部分の結果を示した。評価区分は次の
通り。 ◎…全くぼけが見られず、非常に良好 ○…文字のエッジがわずかに鈍るが、良好である △…一部ぼけはあるが文字として認識でき、実用上問題
ない ×…認識不可能の文字があり、実用上問題あり
Image deletion ... Under a high humidity environment (temperature: 40 ° C., humidity: 80%), a Canon test chart (part number: FY9-9058) consisting of all letters on a white background is placed on a document table and the normal exposure amount is applied. Irradiate with and make a copy. The obtained copy image was observed, and it was evaluated whether the fine line on the image was blurred. However, at this time, when there was unevenness on the image, the evaluation was performed on the entire image area and the result of the worst part was shown. The evaluation categories are as follows. ⊚: Very good with no blur observed ○: Good with slightly blunted edges of the character △: Can be recognized as a character with some blur, but is not a problem in practice ×: Unrecognizable character There is a problem in practical use

【0090】画像欠陥拡大率…光受容部材上に乗った転
写前のトナー像を顕微鏡で観察し、球状突起の周辺のト
ナーの付着していない部分の面積を測定しておく。次
に、トナー像を除去して同じ部分の球状突起の面積を測
定する。その後、(トナーの乗っていない部分の面積/
球状突起の面積)の比率を計算する。評価区分は次のと
おり。 ◎…比率が実質上2以下 ○…比率が2を越え、10以下 △…10を越え、100以下 ×…100を越える
Image defect magnifying power: The toner image on the light receiving member before transfer is observed with a microscope, and the area of the area around the spherical protrusions where the toner is not adhered is measured. Next, the toner image is removed, and the area of the spherical protrusion in the same portion is measured. After that, (area of toner-free area /
The area of the spherical protrusions) is calculated. The evaluation categories are as follows. ⊚: the ratio is substantially 2 or less ∘: the ratio exceeds 2, and 10 or less Δ ... exceeds 10 and 100 or less × ... exceeds 100

【0091】白ポチ…キヤノン製全面黒チャート(部品
番号:FY9−9073)を原稿台に置きコピーしたと
きに得られたコピー画像の同一面積内にある直径0.2
mm以上の白ポチについて評価した。評価区分は次のと
おり。 ◎…非常に良好 ○…良好 △…白ポチはあるが、従来レベルで実用上問題なし ×…白ポチが多く、実用上問題あり
White Pochi ... A diameter 0.2 within the same area of a copy image obtained when a Canon full-face black chart (part number: FY9-9073) is placed on a platen and copied.
White spots having a size of mm or more were evaluated. The evaluation categories are as follows. ◎… Very good ○… Good △… There are white spots, but there is no problem in practical use at the conventional level ×… There are many white spots and there are problems in practical use

【0092】上記の評価結果を表2に示す。本実験によ
り、金属原子が存在する領域を表面の5%〜60%の範
囲にすることによって電子写真用感光ドラムとしての特
性が著しく向上することが認められた。
Table 2 shows the evaluation results. From this experiment, it was confirmed that the characteristics of the electrophotographic photosensitive drum were remarkably improved by making the region where the metal atoms exist in the range of 5% to 60% of the surface.

【0093】[0093]

【実験2】実験1と同様の製造装置、製造方法で表1に
示す作製条件で電子写真用光受容部材を形成した。但
し、本実験では金属元素はクロム(Cr)とし、感光ド
ラムの加熱温度や蒸着スピード、及び蒸着量を適宜変え
ることにより金属薄膜の島の分布形状を変化させた。
[Experiment 2] An electrophotographic light-receiving member was formed under the production conditions shown in Table 1 using the same production apparatus and production method as in Experiment 1. However, in this experiment, the metal element was chromium (Cr), and the distribution shape of the islands of the metal thin film was changed by appropriately changing the heating temperature of the photosensitive drum, the vapor deposition speed, and the vapor deposition amount.

【0094】サンプル1は図1に示したほぼ円形の島状
形状とした。サンプル2は図2に示したように、やや変
形した島状形状とした。サンプル3は図3に示したよう
に、金属被膜中にほぼ円形の池状に付着していない形状
とした。サンプル4は図4に示したように、金属被膜中
にやや変形した池状に付着していない形状とした。
The sample 1 had a substantially circular island shape shown in FIG. Sample 2, as shown in FIG. 2, had a slightly deformed island shape. As shown in FIG. 3, the sample 3 had a shape in which the metal coating did not adhere in a substantially circular pond shape. As shown in FIG. 4, Sample 4 had a shape in which the metal film was not slightly deformed and attached in a pond shape.

【0095】いずれのサンプルも、被覆率はほぼ50%
となるように調整し、実験1と同様にして帯電能、残留
電位、画像特性等の電子写真特性を評価した。結果を表
3に示す。この結果より、光受容部材は初期の状態では
いずれの形状に付着しても顕著な効果が得られることが
判明した。
The coverage of each sample was almost 50%.
And the electrophotographic characteristics such as charging ability, residual potential, and image characteristics were evaluated in the same manner as in Experiment 1. The results are shown in Table 3. From this result, it was found that the light receiving member, in the initial state, has a remarkable effect even if it is attached to any shape.

【0096】[0096]

【実験3】実験2で作成した電子写真用光受容部材を気
温40℃、湿度85%の高湿環境下で、再生紙を用い1
0万枚の複写を行う耐久テスト後、初期と同様の評価を
行った。評価結果を表4に示す。表4の結果から、光受
容部材の表面の金属原子の付着形状は島状の方がより顕
著な効果が得られることが判明した。
[Experiment 3] Using the electrophotographic light-receiving member prepared in Experiment 2 in a high-humidity environment at a temperature of 40 ° C. and a humidity of 85%, using recycled paper 1
After the endurance test of copying 0,000 sheets, the same evaluation as the initial stage was performed. Table 4 shows the evaluation results. From the results shown in Table 4, it was found that the island-shaped attachment shape of the metal atoms on the surface of the light receiving member is more effective.

【0097】[0097]

【実験4】実験1と同様の製造装置、製造方法で、鏡面
加工を施したアルミニウムシリンダー(支持体)上に電
子写真用光受容部材を形成した。この時、光導電層の作
製条件は表1に示す通りとした。但し、金属原子はニッ
ケル(Ni)とし、今回は、感光ドラムの加熱温度、蒸
着量などの蒸着条件を制御することにより被覆率をおお
よそ30%程度に維持しつつ、島の直径を変化させた。
このようにして作製した電子写真用光受容部材を、実験
1と同様にして帯電能、残留電位、画像特性等の電子写
真特性を評価した。結果を表5に示す。この結果から島
の直径は200Å〜5000Å程度が最も効果的である
ことが判明した。
[Experiment 4] Using the same production apparatus and production method as in Experiment 1, an electrophotographic light-receiving member was formed on a mirror-finished aluminum cylinder (support). At this time, the manufacturing conditions of the photoconductive layer were as shown in Table 1. However, the metal atom was nickel (Ni), and this time, the diameter of the island was changed while controlling the deposition conditions such as the heating temperature of the photosensitive drum and the deposition amount to maintain the coverage rate at about 30%. .
The electrophotographic light-receiving member thus produced was evaluated for electrophotographic characteristics such as charging ability, residual potential and image characteristics in the same manner as in Experiment 1. The results are shown in Table 5. From this result, it was found that the most effective diameter of the island is 200Å to 5000Å.

【0098】[0098]

【実験5】実験1と同様の製造装置、製造方法で表1の
条件で電子写真用光受容部材を形成した。但し、今回は
種々の金属原子を使用して選択的に2次元構造の金属薄
膜を形成した。いずれの試料も、金属元素の存在する領
域の形状は円、または楕円に近似した形状とし、大きさ
は直径(長径)5000Å、被覆率は40%程度となる
ように調整した。これらの光受容部材を実験1と同様の
評価にかけた。結果を表6に示す。この結果より、表面
に存在する金属原子の種類が周期律表第Ib、IIb、
IIIa、IVa、Va、VIa、VIIa、VIII
族から選ばれる少なくとも1種の元素である電子写真用
光受容部材が、より著しい効果を有することが明らかに
なった。
[Experiment 5] An electrophotographic light-receiving member was formed under the conditions shown in Table 1 using the same production apparatus and production method as in Experiment 1. However, this time, a metal thin film having a two-dimensional structure was selectively formed by using various metal atoms. In each of the samples, the shape of the region in which the metal element exists was a shape approximate to a circle or an ellipse, and the size was adjusted so that the diameter (major axis) was 5000Å and the coverage was about 40%. These light receiving members were subjected to the same evaluation as in Experiment 1. The results are shown in Table 6. From this result, the types of metal atoms present on the surface were determined to be Ib, IIb,
IIIa, IVa, Va, VIa, VIIa, VIII
It was revealed that the electrophotographic light-receiving member, which is at least one element selected from the group, has a more remarkable effect.

【0099】[0099]

【実施例】以下、本発明を、実施例を用いて具体的に説
明するが、本発明はこれらにより何ら限定されるもので
はない。
EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited thereto.

【0100】[0100]

【実施例1】図6に示すRF−PCVD法による製造装
置を用い、鏡面加工を施したアルミニウムシリンダー
(支持体)上に電子写真用光受容部材を形成した。この
時、光導電層の作製条件は表7に示す通りとした。この
ようにして作製した光受容部材表面に図8に示す蒸着装
置により蒸着の際の支持体温度、蒸着量などの蒸着条件
及び蒸着時間を制御することにより大きさは直径約50
00Å、被覆率約20%になるように選択的に島状に金
属薄膜を形成した。金属としては銅(Cu)を用いた。
Example 1 An electrophotographic light-receiving member was formed on a mirror-finished aluminum cylinder (support) using the manufacturing apparatus by the RF-PCVD method shown in FIG. At this time, the manufacturing conditions of the photoconductive layer were as shown in Table 7. By controlling the deposition conditions such as the temperature of the support and the deposition amount and the deposition time on the surface of the light receiving member thus produced by the deposition apparatus shown in FIG. 8, the size is about 50 mm in diameter.
A metal thin film was selectively formed in an island shape so that the coating ratio was 00Å and the coverage was about 20%. Copper (Cu) was used as the metal.

【0101】このようにして作製した電子写真用光受容
部材は、電子写真装置(キヤノン社製NP6060を本
テスト用に改造したもの)にセットして、種々の条件の
元に、初期の帯電能、残留電位、画像流れ等の電子写真
特性に加え、画像欠陥拡大率、白ポチを下記のように測
定した。
The electrophotographic light-receiving member thus manufactured was set in an electrophotographic apparatus (NP6060 manufactured by Canon Inc. was modified for this test), and the initial charging ability was set under various conditions. In addition to the electrophotographic characteristics such as residual potential and image deletion, the image defect enlargement ratio and white spot were measured as follows.

【0102】帯電能…電子写真用光受容部材を実験装置
に設置し、帯電器に+6kVの高電圧を印加しコロナ帯
電を行い、表面電位計により電子写真用光受容部材の暗
部表面電位を測定する。
Charging ability: A photoreceptive member for electrophotography is installed in an experimental apparatus, a high voltage of +6 kV is applied to a charger to carry out corona charging, and the surface potential of the photoreceptive member for electrophotography in a dark area is measured. To do.

【0103】残留電位…電子写真用光受容部材を一定の
暗部表面電位に帯電させる。そして直ちに一定光量の比
較的強い光を照射する。光像はキセノンランプ光源を用
い、フィルターを用いて550nm以下の波長域の光を
除いた光を照射した。この時表面電位計により電子写真
用光受容部材の明部表面電位を測定する
Residual potential: The photoreceptive member for electrophotography is charged to a constant dark surface potential. Immediately, a relatively strong light of a constant light quantity is applied. The light image was emitted by using a xenon lamp light source and excluding light in a wavelength range of 550 nm or less using a filter. At this time, the surface potential of the light receiving member for electrophotography is measured with a surface potential meter

【0104】それぞれについて、評価区分は次のとお
り。 ◎…非常に良好 ○…良好 △…特に優れた点はないが、実用上問題なし ×…濃度が薄くなる、或はかぶりが発生し、実用上問題
がある
The evaluation categories for each are as follows. A: Very good B: Good B: No particular advantage, but practically no problem X: Practical problem due to low density or fogging

【0105】画像流れ…高湿環境(気温:40℃、湿
度:80%)下で、白地に全面文字よりなるキヤノン製
テストチャート(部品番号:FY9−9058)を原稿
台に置き通常の露光量で照射しコピーをとる。得られた
コピー画像を観察し、画像上の細線がぼけているか評価
した。但しこの時画像上でむらがある時は、全画像領域
で評価し一番悪い部分の結果を示した。評価区分は次の
通り。 ◎…全くぼけが見られず、非常に良好 ○…文字のエッジがわずかに鈍るが、良好である △…一部ぼけはあるが文字として認識でき、実用上問題
ない ×…認識不可能の文字があり、実用上問題あり
Image deletion: In a high humidity environment (temperature: 40 ° C, humidity: 80%), a Canon test chart (part number: FY9-9058) consisting of all letters on a white background is placed on a document table and the normal exposure amount is applied. Irradiate with and make a copy. The obtained copy image was observed, and it was evaluated whether the fine line on the image was blurred. However, at this time, when there was unevenness on the image, the evaluation was performed on the entire image area and the result of the worst part was shown. The evaluation categories are as follows. ⊚: Very good with no blurring observed ○: Good with slightly blunted edges of the character △: Some blurring but recognizable as a character, practically no problem ×: Unrecognizable character There is a problem in practical use

【0106】画像欠陥拡大率…光受容部材上に乗った転
写前のトナー像を顕微鏡で観察し、球状突起の周辺のト
ナーの付着していない部分の面積を測定しておく。次
に、トナー像を除去して同じ部分の球状突起の面積を測
定する。その後、(トナーの乗っていない部分の面積/
球状突起の面積)の比率を計算する。評価区分は次のと
おり。 ◎…比率が実質上2以下 ○…比率が2を越え、10以下 △…10を越え、100以下 ×…100を越える
Image defect magnifying power: The toner image before transfer on the light receiving member is observed with a microscope, and the area of the area around the spherical protrusions where the toner is not attached is measured. Next, the toner image is removed, and the area of the spherical protrusion in the same portion is measured. After that, (area of toner-free area /
The area of the spherical protrusions) is calculated. The evaluation categories are as follows. ⊚: the ratio is substantially 2 or less ∘: the ratio exceeds 2, and 10 or less Δ ... exceeds 10 and 100 or less × ... exceeds 100

【0107】白ポチ…キヤノン製全面黒チャート(部品
番号:FY9−9073)を原稿台に置きコピーしたと
きに得られたコピー画像の同一面積内にある直径0.2
mm以上の白ポチについて評価した。評価区分は次のと
おり。 ◎…非常に良好 ○…良好 △…白ポチはあるが、従来レベルで実用上問題なし ×…白ポチが多く、実用上問題あり。 上記の評価結果を表8に示す。
White Pochi ... A diameter 0.2 within the same area of the copy image obtained when the Canon full-face black chart (part number: FY9-9073) is placed on the platen and copied.
White spots having a size of mm or more were evaluated. The evaluation categories are as follows. A: Very good O: Good B: White spots are present, but there is no problem in practical use at the conventional level. X ... Many white spots are present, and there are problems in practical use. Table 8 shows the evaluation results.

【0108】[0108]

【比較例1】図6に示す製造装置を用い、実施例1と同
様にして表7に示す作製条件で光受容部材を形成後、金
属原子を付着させずに(被覆率0%)、実施例1と同様
な評価を行った。その結果を同じく表8に示す。実施例
1、比較例1の結果から、本発明による光受容部材は本
発明の範囲外の光受容部材に対して著しい優位性が認め
られた。更に、本発明の光受容部材の銅(Cu)の光受
容部材表面での分布状態をX線マイクロ分析の2次元マ
ッピングによって分析したところ、Cuは本発明の特徴
であるように、光受容部材表面に2次元的に分布してい
る様子が見られた。
Comparative Example 1 Using the manufacturing apparatus shown in FIG. 6, after forming the light receiving member under the manufacturing conditions shown in Table 7 in the same manner as in Example 1, the operation was carried out without attaching metal atoms (coverage 0%). The same evaluation as in Example 1 was performed. The results are also shown in Table 8. From the results of Example 1 and Comparative Example 1, it was confirmed that the light receiving member according to the present invention was significantly superior to the light receiving members outside the scope of the present invention. Furthermore, when the distribution state of copper (Cu) of the light receiving member of the present invention on the surface of the light receiving member was analyzed by two-dimensional mapping by X-ray microanalysis, Cu was found to be a feature of the present invention. The two-dimensional distribution was observed on the surface.

【0109】[0109]

【比較例2】比較例1で作製した光受容部材を、特開昭
61−231558号公報に開示されている方法に従っ
て、研磨処理剤としてCuを用い研磨処理を行うことに
より、光受容部材表面と処理剤の固相反応により生成し
た反応生成物の少なくとも一部を機械的に除去した。こ
の処理の後に、実施例1と同様な評価を行った。その結
果を同じく表8に示す。表面処理を行っても本発明ほど
には帯電能、暗減衰は改善されなかった。更に、Cuの
光受容部材表面での分布状態をX線マイクロ分析の2次
元マッピングによって分析したところ、Cuは光受容部
材表面に均一に分布しており、本発明のように柱状構造
の柱と柱の間に局在する様子は見られなかった。
Comparative Example 2 The surface of the light receiving member was prepared by polishing the light receiving member produced in Comparative Example 1 according to the method disclosed in JP-A-61-231558 using Cu as a polishing agent. At least a part of the reaction product produced by the solid-phase reaction of the treating agent was mechanically removed. After this treatment, the same evaluation as in Example 1 was performed. The results are also shown in Table 8. Even if the surface treatment was performed, the charging ability and the dark decay were not improved as much as the present invention. Furthermore, when the distribution state of Cu on the surface of the light receiving member was analyzed by two-dimensional mapping by X-ray microanalysis, Cu was uniformly distributed on the surface of the light receiving member, and it was found that the columnar structure had columns as in the present invention. No localization was observed between the pillars.

【0110】[0110]

【実施例2】図6に示すRF−PCVD法による製造装
置を用い、鏡面加工を施したアルミニウムシリンダー
(支持体)上に電子写真用光受容部材を形成した。この
時、光導電層の作製条件は表9に示す通りとした。この
ようにして作製した光受容部材表面に図8に示す蒸着装
置により蒸着の際の支持体温度、蒸着量などの蒸着条件
および蒸着時間を制御することにより大きさは直径約3
000Å、被覆率約25%になるように選択的に島状に
金属薄膜を形成した。金属としてはチタン(Ti)を用
いた。このようにして作製した電子写真用光受容部材
は、実施例1と同様に評価した。その結果を表10に示
す。画像欠陥の少ない、コントラストの良好な光受容部
材が得られた。
Example 2 An electrophotographic light-receiving member was formed on a mirror-finished aluminum cylinder (support) using the manufacturing apparatus by the RF-PCVD method shown in FIG. At this time, the manufacturing conditions of the photoconductive layer were as shown in Table 9. On the surface of the light receiving member thus produced, the size is about 3 mm in diameter by controlling the deposition temperature and the deposition conditions such as the support temperature and the deposition time by the deposition apparatus shown in FIG.
A metal thin film was selectively formed in an island shape so that the coating rate was 000Å and the coverage was about 25%. Titanium (Ti) was used as the metal. The electrophotographic light-receiving member thus produced was evaluated in the same manner as in Example 1. The results are shown in Table 10. As a result, a light receiving member having a good contrast with few image defects was obtained.

【0111】[0111]

【比較例3】実施例2と同様の装置、手順で表11に示
す作製条件に従い、光受容部材を形成した。本比較例で
は特開昭60−28658号公報に開示されている技術
と同様に、成膜終了間際にミクロンオーダーに粉砕した
TiをArをキャリアガスとして導入することにより膜
中にTi金属を導入した。このようにして作製した電子
写真用光受容部材を実施例1と同様に評価した結果を同
じく表10に示す。帯電能、暗減衰は改善されなかっ
た。更に、Tiの光受容部材表面での分布状態をX線マ
イクロ分析の2次元マッピングによって分析したとこ
ろ、Tiは光受容部材表面に均一に分布しており、本発
明のように2次元状態に局在する様子は見られなかっ
た。
Comparative Example 3 A light-receiving member was formed according to the manufacturing conditions shown in Table 11 using the same apparatus and procedure as in Example 2. In this comparative example, similarly to the technique disclosed in JP-A-60-28658, Ti metal pulverized to the micron order is introduced as a carrier gas at the end of film formation to introduce Ti metal into the film. did. The electrophotographic light-receiving member thus produced was evaluated in the same manner as in Example 1 and the results are also shown in Table 10. The chargeability and dark decay were not improved. Furthermore, when the distribution state of Ti on the surface of the light receiving member was analyzed by two-dimensional mapping by X-ray microanalysis, Ti was uniformly distributed on the surface of the light receiving member, and it was localized in the two-dimensional state as in the present invention. I couldn't see him there.

【0112】[0112]

【比較例4】実施例2と同様の装置、手順で表12に示
す作製条件に従い、光受容部材を形成した。本比較例で
は成膜終了間際にB26を100ppm導入することに
より膜中にB原子を導入した。このようにして作製した
電子写真用光受容部材を実施例1と同様に評価した。結
果を同じく表10に示す。帯電能、暗減衰は改善されな
かった。更に、Bの光受容部材表面での分布状態をX線
マイクロ分析の2次元マッピングによって分析したとこ
ろ、Bは光受容部材表面に均一に分布しており、本発明
のように柱状構造の柱と柱の間に局在する様子は見られ
なかった。
Comparative Example 4 A light-receiving member was formed according to the manufacturing conditions shown in Table 12 using the same apparatus and procedure as in Example 2. In this comparative example, B atoms were introduced into the film by introducing 100 ppm of B 2 H 6 just before the completion of film formation. The electrophotographic light-receiving member thus produced was evaluated in the same manner as in Example 1. The results are also shown in Table 10. The chargeability and dark decay were not improved. Further, when the distribution state of B on the surface of the light receiving member was analyzed by two-dimensional mapping by X-ray microanalysis, B was uniformly distributed on the surface of the light receiving member, and thus, B having a columnar structure as in the present invention was obtained. No localization was observed between the pillars.

【0113】[0113]

【比較例5】実施例2と同様の装置、手順で表13に示
す作製条件に従い、光受容部材を形成した。本比較例で
は成膜終了間際にPH3を100ppm導入することに
より膜中にP原子を導入した。このようにして作製した
電子写真用光受容部材を実施例1と同様に評価した。結
果を同じく表10に示す。帯電能、暗減衰は改善されな
かった。更に、Pの光受容部材表面での分布状態をX線
マイクロ分析の2次元マッピングによって分析したとこ
ろ、Pは光受容部材表面に均一に分布しており、本発明
のように柱状構造の柱と柱の間に局在する様子は見られ
なかった。
[Comparative Example 5] A light-receiving member was formed according to the manufacturing conditions shown in Table 13 by the same apparatus and procedure as in Example 2. In this comparative example, P atoms were introduced into the film by introducing 100 ppm of PH 3 just before the completion of film formation. The electrophotographic light-receiving member thus produced was evaluated in the same manner as in Example 1. The results are also shown in Table 10. The chargeability and dark decay were not improved. Furthermore, when the distribution state of P on the surface of the light receiving member was analyzed by two-dimensional mapping by X-ray microanalysis, P was uniformly distributed on the surface of the light receiving member, and it was confirmed that the pillars having the columnar structure as in the present invention were formed. No localization was observed between the pillars.

【0114】[0114]

【実施例3】実施例1と同様の製造装置、製造方法で表
14に示す作製条件で電子写真用光受容部材を形成し
た。但し、今回は遷移金属原子を複数組み合わせて使用
して選択的に2次元構造の金属薄膜を形成した。金属は
あらかじめ溶解して合金を作製した後に図8に示す蒸着
器で薄膜を蒸着した。いずれの試料も、金属元素の存在
する領域の形状は円、または楕円に近似した形状とし、
大きさは直径(長径)4000Å、被覆率約50%にな
るように選択的に島状に金属薄膜を形成した。このよう
にして作製した電子写真用光受容部材を実施例1と同様
に評価した。結果を表15に示す。画像欠陥は良好であ
った。この結果より、本発明による光受容部材は、表面
に存在する金属原子が複数の元素であっても同様の効果
があることが認められた。
Example 3 An electrophotographic light-receiving member was formed under the manufacturing conditions shown in Table 14 by using the same manufacturing apparatus and manufacturing method as in Example 1. However, this time, a plurality of transition metal atoms were used in combination to selectively form a metal thin film having a two-dimensional structure. The metal was previously melted to prepare an alloy, and then a thin film was deposited by the vapor deposition device shown in FIG. In both samples, the shape of the region in which the metal element exists is a circle, or a shape close to an ellipse,
A metal thin film was selectively formed in an island shape with a diameter (major axis) of 4000Å and a coverage of about 50%. The electrophotographic light-receiving member thus produced was evaluated in the same manner as in Example 1. The results are shown in Table 15. Image defects were good. From these results, it was confirmed that the light receiving member according to the present invention has the same effect even if the metal atoms present on the surface are plural elements.

【0115】[0115]

【実施例4】図6に示すRF−PCVD法による製造装
置を用い、実施例1と同様にして電子写真用光受容部材
を形成した。この時、光導電層の作製条件は表16に示
す通りとし、光導電層の上に更にSiCによる表面保護
層を設けた。このようにして作製した光受容部材表面に
電子ビーム蒸着装置により選択的に島状に金属薄膜を形
成した。金属としては鉄(Fe)を用い、金属元素の存
在する領域の形状は円、または楕円に近似した形状と
し、大きさは直径(長径)約2500Å、被覆率を60
%とした。このようにして作製した電子写真用光受容部
材は、実施例1と同様にして帯電能、残留電位、画像流
れ、画像欠陥拡大率、白ポチ等の電子写真特性を評価し
た。上記の評価結果を表17に示す。本発明は表面層の
ある光受容部材に適用しても全く同様の効果が得られる
ことが判明した。
Example 4 An electrophotographic light-receiving member was formed in the same manner as in Example 1 using the manufacturing apparatus by the RF-PCVD method shown in FIG. At this time, the production conditions of the photoconductive layer were as shown in Table 16, and a surface protective layer made of SiC was further provided on the photoconductive layer. An island-shaped metal thin film was selectively formed on the surface of the light-receiving member thus produced by an electron beam evaporation apparatus. Iron (Fe) is used as the metal, and the shape of the region where the metal element exists is a shape close to a circle or an ellipse. The size is a diameter (major axis) of about 2500Å and the coverage is 60.
%. The electrophotographic light-receiving member thus produced was evaluated for electrophotographic characteristics such as charging ability, residual potential, image deletion, image defect enlargement ratio and white spots in the same manner as in Example 1. Table 17 shows the evaluation results. It was found that the same effect can be obtained when the present invention is applied to a light receiving member having a surface layer.

【0116】[0116]

【実施例5】実施例4で作製した電子写真用光受容部材
を電子写真装置(キヤノン社製NP6060)にセット
して、気温40℃、湿度85%の高湿環境下で、再生紙
を用い10万枚の複写を行う耐久テスト後に、初期と同
様の評価を行った。結果を表17に示すが、実施例4と
全く同様の結果が得られた。
Example 5 The electrophotographic light-receiving member produced in Example 4 was set in an electrophotographic apparatus (NP6060 manufactured by Canon Inc.), and recycled paper was used under a high humidity environment of a temperature of 40 ° C. and a humidity of 85%. After the durability test of copying 100,000 sheets, the same evaluation as the initial stage was performed. The results are shown in Table 17, and the same results as in Example 4 were obtained.

【0117】[0117]

【実施例6】図7に示すμW−PCVD法による堆積膜
形成装置を用い、表18に示す作製条件により光導電層
およびSiCからなる表面層を形成した。このようにし
て作製した光受容部材表面にイオンビーム蒸着装置によ
り蒸着条件、蒸着時間などを制御することにより選択的
に島状に金属薄膜を形成した。島の大きさは約1500
Å、被覆率10%、金属としては亜鉛(Zn)を用い
た。この電子写真用光受容部材を実施例1と同様の評価
にかけた結果、表17と同様良好な結果が得られた。こ
のことより、光受容層、及び表面層の作製方法によら
ず、本発明の範囲内の電子写真用光受容部材は本発明の
範囲外の電子写真用光受容部材に比べ著しい優位性が認
められることが確認できた。
Example 6 A photoconductive layer and a surface layer made of SiC were formed under the manufacturing conditions shown in Table 18 using the deposited film forming apparatus by the μW-PCVD method shown in FIG. A metal thin film was selectively formed in an island shape on the surface of the light-receiving member thus produced by controlling the vapor deposition conditions, vapor deposition time and the like with an ion beam vapor deposition apparatus. The size of the island is about 1500
Å, the coverage was 10%, and zinc (Zn) was used as the metal. When this electrophotographic light-receiving member was subjected to the same evaluations as in Example 1, the same favorable results as in Table 17 were obtained. From this, it is recognized that the electrophotographic light-receiving member within the scope of the present invention is significantly superior to the electrophotographic light-receiving member outside the scope of the present invention, regardless of the method for producing the light-receiving layer and the surface layer. I was able to confirm that.

【0118】[0118]

【実施例7】実施例6で作製した電子写真用光受容部材
を、電子写真装置(キヤノン社製NP6060)にセッ
トして、気温40℃、湿度85%の高湿環境下で、再生
紙を用い10万枚の複写を行う耐久テスト後、初期と同
様の評価を行ったところ、表17と全く同様の結果が得
られた。
Example 7 The electrophotographic light-receiving member produced in Example 6 was set in an electrophotographic apparatus (NP6060 manufactured by Canon Inc.), and recycled paper was placed in a high humidity environment at a temperature of 40 ° C. and a humidity of 85%. After an endurance test in which 100,000 copies were used, the same evaluation as in the initial stage was performed, and the same results as in Table 17 were obtained.

【0119】[0119]

【実施例8】図7に示すμW−PCVD法による堆積膜
形成装置を用い、表19に示す作製条件により電荷輸送
層、電荷発生層、及び表面層からなる機能分離型の光受
容部材を形成した。このようにして作製した光受容部材
表面にイオンビーム蒸着装置により蒸着条件、蒸着時間
などを制御することにより選択的に島状に金属薄膜を形
成した。島の大きさは約2000Å、被覆率30%、金
属としてはコバルト(Co)を用いた。このドラムを実
施例1と同様の評価を行ったところ、表17と同様良好
な結果が得られた。このことより、光受容部材の層構成
によらず、本発明の電子写真用光受容部材は著しく優れ
た特性が認められた。
[Embodiment 8] Using the deposition film forming apparatus by the μW-PCVD method shown in FIG. 7, a function-separated type light receiving member consisting of a charge transport layer, a charge generation layer, and a surface layer is formed under the manufacturing conditions shown in Table 19. did. A metal thin film was selectively formed in an island shape on the surface of the light-receiving member thus produced by controlling the vapor deposition conditions, vapor deposition time and the like with an ion beam vapor deposition apparatus. The size of the island was about 2000Å, the coverage was 30%, and cobalt (Co) was used as the metal. When this drum was evaluated in the same manner as in Example 1, the same good results as in Table 17 were obtained. From these facts, it was confirmed that the electrophotographic light-receiving member of the present invention has remarkably excellent characteristics regardless of the layer structure of the light-receiving member.

【0120】[0120]

【表1】 [Table 1]

【0121】[0121]

【表2】 [Table 2]

【0122】[0122]

【表3】(耐久前の評価) [Table 3] (Evaluation before endurance)

【0123】[0123]

【表4】(耐久後の評価) [Table 4] (Evaluation after endurance)

【0124】[0124]

【表5】 [Table 5]

【0125】[0125]

【表6】 [Table 6]

【0126】[0126]

【表7】 [Table 7]

【0127】[0127]

【表8】 [Table 8]

【0128】[0128]

【表9】 [Table 9]

【0129】[0129]

【表10】 [Table 10]

【0130】[0130]

【表11】 [Table 11]

【0131】[0131]

【表12】 [Table 12]

【0132】[0132]

【表13】 [Table 13]

【0133】[0133]

【表14】 [Table 14]

【0134】[0134]

【表15】 [Table 15]

【0135】[0135]

【表16】 [Table 16]

【0136】[0136]

【表17】 [Table 17]

【0137】[0137]

【表18】 [Table 18]

【0138】[0138]

【表19】 [Table 19]

【0139】[0139]

【発明の効果】本発明によれば従来、非常にクリーン度
の高い環境においても達成が困難であった、非常に画像
欠陥の少ない電子写真用光受容部材を容易に提供するこ
とが可能となった。本発明による電子写真用光受容部材
は最表面に遷移金属を2次元的に分布を持って存在させ
ることにより上記の効果を画像流れ、感度低下といった
副作用なく得ることができ、また、長期に渡ってその効
果が維持することを特徴としている。
According to the present invention, it is possible to easily provide an electrophotographic light-receiving member having very few image defects, which has hitherto been difficult to achieve even in an extremely clean environment. It was In the electrophotographic light-receiving member according to the present invention, the above-mentioned effects can be obtained without side effects such as image deletion and sensitivity deterioration by allowing a transition metal to be present on the outermost surface in a two-dimensional distribution. The feature is that the effect is maintained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の電子写真用光受容部材の層構成を説明
するための模式的層構成図である。
FIG. 1 is a schematic layer configuration diagram for explaining a layer configuration of a light receiving member for electrophotography of the present invention.

【図2】本発明の電子写真用光受容部材の層構成を説明
するための模式的層構成図である。
FIG. 2 is a schematic layer structure diagram for explaining the layer structure of the electrophotographic light-receiving member of the present invention.

【図3】本発明の電子写真用光受容部材の層構成を説明
するための模式的層構成図である。
FIG. 3 is a schematic layer structure diagram for explaining the layer structure of the electrophotographic light-receiving member of the present invention.

【図4】本発明の電子写真用光受容部材の層構成を説明
するための模式的層構成図である。
FIG. 4 is a schematic layer structure diagram for explaining the layer structure of the electrophotographic light-receiving member of the present invention.

【図5】本発明の電子写真用光受容部材の層構成を説明
するための模式的層構成図である。
FIG. 5 is a schematic layer structure diagram for explaining the layer structure of the electrophotographic light-receiving member of the present invention.

【図6】本発明の電子写真用光受容部材の光受容層を形
成するための高周波放電による電子写真用感光ドラムの
製造装置の一例を示す模式的説明図である。
FIG. 6 is a schematic explanatory view showing an example of an apparatus for manufacturing an electrophotographic photosensitive drum by high-frequency discharge for forming a light receiving layer of an electrophotographic light receiving member of the present invention.

【図7】本発明の電子写真用光受容部材の光受容層を形
成するためのマイクロ波放電による電子写真用感光ドラ
ムの製造装置の一例を示す模式的説明図である。
FIG. 7 is a schematic explanatory view showing an example of an apparatus for manufacturing an electrophotographic photosensitive drum by microwave discharge for forming a light receiving layer of the electrophotographic light receiving member of the present invention.

【図8】本発明の電子写真用光受容部材の金属原子を蒸
着するための蒸着装置の一例を示す模式的説明図であ
る。
FIG. 8 is a schematic explanatory view showing an example of an evaporation apparatus for evaporating metal atoms of the electrophotographic light-receiving member of the present invention.

【符号の説明】[Explanation of symbols]

100 光受容部材 101 支持体 102 光受容層 103 光導電層 104 表面層 105 表面に存在する金属原子 106 自由表面 100 Photoreceptive member 101 Support 102 Photoreceptive layer 103 Photoconductive layer 104 Surface layer 105 Metal atom existing on the surface 106 Free surface

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 少なくとも最表面部がシリコン原子を含
む非単結晶質材料より成る電子写真用光受容部材におい
て、該電子写真用光受容部材の最表面の少なくとも一部
に遷移金属から選ばれる少なくとも1種の金属原子が存
在し、かつ、該金属原子が存在する領域と該金属原子が
実質的に存在しない領域が最表面において2次元的に分
布していることを特徴とする電子写真用光受容部材。
1. A photoreceptive member for electrophotography, wherein at least the outermost surface portion is made of a non-single crystalline material containing silicon atoms. A light for electrophotography, wherein one kind of metal atom exists, and a region where the metal atom exists and a region where the metal atom does not substantially exist are two-dimensionally distributed on the outermost surface. Receiving member.
【請求項2】 前記電子写真用光受容部材が、支持体
と、該支持体上に配されたシリコン原子を母体とする非
単結晶材料からなり、該非単結晶材料が光導電性を示す
ことを特徴とする請求項1に記載の電子写真用光受容部
材。
2. The electrophotographic light-receiving member is composed of a support and a non-single-crystal material having a silicon atom as a base material arranged on the support, and the non-single-crystal material exhibits photoconductivity. The light-receiving member for electrophotography according to claim 1, characterized in that.
【請求項3】 前記非単結晶材料の上に表面保護層を有
することを特徴とする請求項1乃至2に記載の電子写真
用光受容部材。
3. The light receiving member for electrophotography according to claim 1, further comprising a surface protective layer on the non-single crystal material.
【請求項4】 前記電子写真用光受容部材の表面を覆う
前記金属の被覆率が5%以上、60%以下であることを
特徴とする請求項1乃至3に記載の電子写真用光受容部
材。
4. The light receiving member for electrophotography according to claim 1, wherein the coverage of the metal covering the surface of the light receiving member for electrophotography is 5% or more and 60% or less. .
【請求項5】 前記電子写真用光受容部材の最表面にお
いて、前記金属原子が存在する領域が、前記実質的に金
属原子が存在しない領域中に島状に分布して含有してい
ることを特徴とする請求項1乃至4に記載の電子写真用
光受容部材。
5. The outermost surface of the electrophotographic light-receiving member contains the region where the metal atom is present, distributed in an island shape in the region where the metal atom is substantially absent. The light-receiving member for electrophotography according to claim 1, wherein the light-receiving member is for electrophotography.
【請求項6】 前記金属原子が島状に存在する領域が、
円形に近似していて、該円形状領域が、直径200Å以
上、5000Å以下であることを特徴とする請求項5に
記載の電子写真用光受容部材。
6. The region where the metal atoms are present in an island shape,
The electrophotographic light-receiving member according to claim 5, wherein the light-receiving member for electrophotography is approximate to a circle and the circular region has a diameter of 200 Å or more and 5000 Å or less.
【請求項7】 前記金属原子が島状に存在する領域の大
きさが、楕円形に近似していて、該楕円形状領域が、長
径が200Å以上、5000Å以下であることを特徴と
する請求項5に記載の電子写真用光受容部材。
7. The size of the region where the metal atoms are present in an island shape is approximate to an ellipse, and the elliptical region has a major axis of 200 Å or more and 5000 Å or less. 5. The electrophotographic light-receiving member according to item 5.
JP8455595A 1995-03-17 1995-03-17 Electrophotographic photoreceptive member Pending JPH08262753A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8455595A JPH08262753A (en) 1995-03-17 1995-03-17 Electrophotographic photoreceptive member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8455595A JPH08262753A (en) 1995-03-17 1995-03-17 Electrophotographic photoreceptive member

Publications (1)

Publication Number Publication Date
JPH08262753A true JPH08262753A (en) 1996-10-11

Family

ID=13833898

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8455595A Pending JPH08262753A (en) 1995-03-17 1995-03-17 Electrophotographic photoreceptive member

Country Status (1)

Country Link
JP (1) JPH08262753A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8137878B2 (en) 2007-04-25 2012-03-20 Kyocera Corporation Electrophotographic photoreceptor, method for manufacturing the same, and image-forming apparatus using same
JP2013082388A (en) * 2011-10-12 2013-05-09 Denso Corp Vehicle electronic control device
JP2016038438A (en) * 2014-08-06 2016-03-22 キヤノン株式会社 Electrophotographic photoreceptor, process cartridge, and electrophotographic device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8137878B2 (en) 2007-04-25 2012-03-20 Kyocera Corporation Electrophotographic photoreceptor, method for manufacturing the same, and image-forming apparatus using same
JP2013082388A (en) * 2011-10-12 2013-05-09 Denso Corp Vehicle electronic control device
JP2016038438A (en) * 2014-08-06 2016-03-22 キヤノン株式会社 Electrophotographic photoreceptor, process cartridge, and electrophotographic device

Similar Documents

Publication Publication Date Title
EP0594453B1 (en) Process and apparatus for producing a light-receiving member
JP3530667B2 (en) Electrophotographic photoreceptor and method of manufacturing the same
EP0926560B1 (en) Electrophotographic photosensitive member
KR100340650B1 (en) Light-receiving member, image forming apparatus having the member, and image forming method utilizing the member
JPH1083091A (en) Electrophotographic photoreceptor and its production
US5656404A (en) Light receiving member with an amorphous silicon photoconductive layer containing fluorine atoms in an amount of 1 to 95 atomic ppm
EP0605972B1 (en) Light receiving member having a multi-layered light receiving layer with an enhanced concentration of hydrogen or/and halogen atoms in the vicinity of the interface of adjacent layers
JP3530676B2 (en) Method for manufacturing light receiving member, light receiving member, electrophotographic apparatus having light receiving member, and electrophotographic process using light receiving member
JP3152808B2 (en) Electrophotographic recording device
JP4562163B2 (en) Method for producing electrophotographic photosensitive member and electrophotographic photosensitive member
US4904556A (en) Electrophotographic process using light receiving member with buffer layer containing silicon and aluminum atoms on aluminum substrate
JPH08262753A (en) Electrophotographic photoreceptive member
EP0732630B1 (en) Electrophotographic light receiving member, electrophotographic apparatus provided with said light receiving member, and electrophotographic process using said light receiving member
EP2422239B1 (en) Electrophotographic photosensitive member and electrophotographic apparatus
US4668599A (en) Photoreceptor comprising amorphous layer doped with atoms and/or ions of a metal
JP3606395B2 (en) Light receiving member for electrophotography
KR19980081387A (en) Photoreceptor, method of manufacturing the same, image forming apparatus equipped with the photoreceptor, and image forming method
JPH08262768A (en) Electrophotographic photoreceptive member
JP4086391B2 (en) Electrophotographic photoreceptor
JPH08262767A (en) Electrophotographic photoreceptive member
JP3289011B2 (en) Cleaning method for deposited film forming apparatus
JP2001312085A (en) Electrophotographic photoreceptor and method for manufacturing the same
JP2006189822A (en) Electrophotographic photoreceptor
JP2528281B2 (en) Light receiving member having ultra-thin laminated structure layer
JPH08262754A (en) Electrophotographic photoreceptive member