JPH08262009A - Evaluation method of remaining life of high-temperature member - Google Patents

Evaluation method of remaining life of high-temperature member

Info

Publication number
JPH08262009A
JPH08262009A JP7063709A JP6370995A JPH08262009A JP H08262009 A JPH08262009 A JP H08262009A JP 7063709 A JP7063709 A JP 7063709A JP 6370995 A JP6370995 A JP 6370995A JP H08262009 A JPH08262009 A JP H08262009A
Authority
JP
Japan
Prior art keywords
high temperature
damage
temperature member
remaining life
evaluating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7063709A
Other languages
Japanese (ja)
Inventor
Hideki Tamaoki
英樹 玉置
明 ▲吉▼成
Akira Yoshinari
Mitsuru Kobayashi
満 小林
Noriyuki Watabe
典行 渡部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP7063709A priority Critical patent/JPH08262009A/en
Publication of JPH08262009A publication Critical patent/JPH08262009A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To evaluate the remaining life of a high-temperature member with high accuracy by a method wherein the relationship between the quantified value of a shape and the damage amount of the high-temperature member is found in advance and the shape of a eutectic structure is quantified by an image processing method. CONSTITUTION: The creep rupture test of a creep-damaged material by using an unused material which is the same as an actual-machine material is executed under several conditions of different stresses. In addition, a sample whose rupture time has been interrupted at 10 to 90% of the time is prepared. Samples, for structure observation, which have been sampled from interrupted materials and ruptured materials are observed with a scanning electron microscope, and their eutectic structure shape is quantified at an aspect ratio by using an image analyzer. Then, the relationship between the aspect ratio and a damage amount is registered as a master curve 7 in a database 6. Then, a sample actual-machine observation is sampled from an actual machine in which the main damage of a moving blade is creep damage due to the result of an investigation, and it is observed in the same manner as the creation of the curve 7 so as to be quantified. this quantified value is applied to the curve 7, and the damage amount of the actual-machine material is found. Thereby, a remaining life can be evaluated with high accuracy.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、共晶組織を有する状態
で使用される高温部材の余寿命評価法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for evaluating the remaining life of a high temperature member used in a state having a eutectic structure.

【0002】[0002]

【従来の技術】高温下で長時間使用されるガスタービン
等の高温機器の高温部材は、クリープ等の損傷の蓄積に
よって使用中に亀裂が発生し、これが進展することで最
終的には破損に至る危険性がある。従って、高温部材の
定期点検に際しては、材料の損傷量を高い精度で定量化
する必要がある。そのため、近年では、古典的な外観目
視あるいは硬さ計測等に替わる手法として、材料の組織
変化から該材料の損傷量を定量化する方法が用いられる
ようになってきた。例えば、優れた高温強度を有するた
め、ガスタービンの動翼あるいは静翼等の高温部材に広
く利用されているγ´相析出強化型Ni基超合金の特性
は、析出強化相であるγ´相の形状に依存する。そのた
め、γ´相の組織変化と材料の損傷度の関係を定量的に
見積もる方法として、特開平3−209162号,特開平4−25
745号及び特開平5−223809号の公知例が示されている。
2. Description of the Related Art A high temperature member of a high temperature equipment such as a gas turbine which is used for a long time under a high temperature causes cracks during use due to accumulation of damage such as creep, which eventually progresses to damage. There is a danger of reaching. Therefore, it is necessary to quantify the damage amount of the material with high accuracy in the periodic inspection of the high temperature member. Therefore, in recent years, a method of quantifying the amount of damage of a material from a structural change of the material has come to be used as a method replacing classical visual appearance or hardness measurement. For example, γ'phase precipitation-strengthened Ni-based superalloys, which are widely used for high-temperature members such as rotor blades or stationary blades of gas turbines because of their excellent high-temperature strength, are characterized by γ'phase which is a precipitation-strengthened phase. Depends on the shape of. Therefore, as a method for quantitatively estimating the relationship between the structural change of the γ'phase and the degree of damage to the material, Japanese Patent Laid-Open Nos. 3-209162 and 4-25
The publicly known examples of 745 and JP-A-5-223809 are shown.

【0003】[0003]

【発明が解決しようとする課題】ガスタービン等の高温
機器の高温部材には、鋳造材が用いられる場合が多い
が、鋳造材には合金元素の偏析が存在し、特に凝固速度
の小さい一方向凝固材は内部に大きな凝固偏析を有し、
これを熱処理で完全に均質化することは困難である。そ
のため、高温部材中には、凝固偏析により生じた共晶組
織が存在する。この共晶組織と熱処理でほぼ均質化され
たマトリックスとの界面は整合性が小さいため、局部的
な応力集中が起りやすい。しかし、上記3公知例は、い
ずれも、γ´相とγ相が整合に析出している熱処理で均
質化された部分の組織変化にのみ注目しているため、実
際に応力集中が起る、材料中の最も損傷が蓄積する部位
の損傷量を正確に定量化することは困難である。
A casting material is often used as a high temperature member of a high temperature equipment such as a gas turbine. However, segregation of alloying elements is present in the casting material. The solidified material has a large solidification segregation inside,
It is difficult to completely homogenize this by heat treatment. Therefore, a eutectic structure generated by solidification segregation exists in the high temperature member. Since the interface between the eutectic structure and the matrix that is almost homogenized by the heat treatment has a small compatibility, local stress concentration is likely to occur. However, in all of the above-mentioned three known examples, since attention is paid only to the structural change of the homogenized portion in which the γ ′ phase and the γ phase are coherently precipitated, stress concentration actually occurs, It is difficult to accurately quantify the amount of damage at the site where the most damage is accumulated in the material.

【0004】そこで、本発明の目的は、材料寿命に最も
影響を及ぼす局所的な領域の損傷を定量化し、凝固偏析
に起因した異なる組織が混在する材料に適した精度の高
い高温部材の余寿命評価法を提供することにある。
Therefore, the object of the present invention is to quantify the damage of the local region that most affects the life of the material, and to provide a highly accurate residual life of a high temperature member suitable for a material in which different structures due to solidification segregation coexist. To provide an evaluation method.

【0005】[0005]

【課題を解決するための手段】上記の課題を解決するた
めに検討を行った結果、鋳造材において、最も応力集中
が起りやすいのは、共晶組織内及び共晶組織とマトリッ
クスの界面であることが明らかになった。そこで本発明
は、凝固時に共晶組織を形成し、かつ、熱処理後におい
ても共晶組織が残存し、共晶組織を有する状態で使用さ
れる高温部材の余寿命を評価する方法において、該共晶
組織の形態を画像処理法により定量化する工程及び予め
求めてある該形態の定量値と前記高温部材の損傷量との
関係から該材料の損傷度及び余寿命を算出する工程から
なることを特徴とする高温部材の余寿命評価法である。
さらに、該共晶組織の形態以外にも、該共晶組織中とデ
ンドライトコア部の特定元素の濃度比及び該共晶組織中
の特定元素の濃度からも、高温部材の局所的な損傷量の
定量化が可能である。γ´相析出強化型Ni基超合金の
場合、γ´−γ相の共晶を用いて余寿命評価を行うこと
が有効である。特に一方向凝固されたγ´相析出強化型
Ni基超合金の場合に、γ´−γ相の共晶に局所的な損
傷が蓄積される傾向が顕著である。また、炭化物析出強
化型のCo基合金の場合は、共晶炭化物で精度の高い余
寿命評価が可能である。γ´相析出強化型Ni基超合金
の場合、上記特定元素として、γ´相形成元素であるA
l,Ti,Hf,Zr,Ta及びNbを用いることが有
効であるが、γ相形成元素であるW,Mo,Cr及びR
eやベースであるNi,Coを用いることも可能であ
る。また、共晶組織の最終凝固部側に偏析する、C又は
Bを用いることもできる。上記の濃度及び形態を定量化
することで、クリープ損傷,低サイクル疲労損傷あるい
は高サイクル疲労損傷等の損傷の定量化が可能となる。
また、これらの損傷が重畳した場合にも、適当なマスタ
ーカーブを用意することで余寿命評価が可能である。本
発明は主にガスタービンの動翼あるいは静翼の余寿命評
価法として有効であるが、同様の材料を用いている他の
高温部材の余寿命評価法としても用いることができる。
As a result of studies to solve the above-mentioned problems, in the cast material, the stress concentration is most likely to occur in the eutectic structure and at the interface between the eutectic structure and the matrix. It became clear. Therefore, the present invention provides a method for evaluating the remaining life of a high-temperature member used in a state where a eutectic structure is formed during solidification, and the eutectic structure remains even after heat treatment, and the eutectic structure is used. And a step of quantifying the morphology of the crystal structure by an image processing method and a step of calculating the degree of damage and the remaining life of the material from the relationship between the quantitative value of the morphology and the amount of damage of the high temperature member which is obtained in advance. This is a characteristic method for evaluating the remaining life of high temperature members.
Furthermore, in addition to the morphology of the eutectic structure, the concentration ratio of the specific element in the eutectic structure and the dendrite core portion and the concentration of the specific element in the eutectic structure also indicate the local damage amount of the high temperature member. Quantification is possible. In the case of a γ'-phase precipitation strengthened Ni-base superalloy, it is effective to evaluate the remaining life by using a eutectic of the γ'-γ phase. Particularly in the case of unidirectionally solidified γ'-phase precipitation strengthened Ni-base superalloy, the tendency that local damage is accumulated in the eutectic of the γ'-γ phase is remarkable. Further, in the case of a carbide precipitation strengthening type Co-based alloy, highly accurate residual life evaluation can be performed with a eutectic carbide. In the case of a γ'phase precipitation strengthened Ni-based superalloy, the specific element is A which is a γ'phase forming element.
It is effective to use 1, Ti, Hf, Zr, Ta and Nb, but W, Mo, Cr and R which are γ phase forming elements.
It is also possible to use e or the base Ni or Co. Further, C or B that segregates toward the final solidified portion side of the eutectic structure can also be used. By quantifying the above concentration and morphology, it becomes possible to quantify damage such as creep damage, low cycle fatigue damage or high cycle fatigue damage.
Further, even when these damages are superposed, the remaining life can be evaluated by preparing an appropriate master curve. The present invention is mainly effective as a residual life evaluation method for moving blades or stationary blades of a gas turbine, but can also be used as a residual life evaluation method for other high temperature members using the same material.

【0006】[0006]

【作用】本発明の余寿命評価法により、共晶組織を有す
る状態で使用される高温部材の余寿命を従来にない高い
精度で評価することが可能となる。また、本発明の余寿
命診断法でメンテナンスされる高温機器の信頼性は、従
来と比べ非常に高いものとなる。
According to the residual life evaluation method of the present invention, it is possible to evaluate the residual life of a high temperature member used in a state having a eutectic structure with a higher accuracy than ever before. Further, the reliability of the high-temperature equipment maintained by the residual life diagnosis method of the present invention is much higher than the conventional one.

【0007】[0007]

【実施例】【Example】

(実施例1)本発明法で一定時間使用したガスタービン
の初段タービン動翼の損傷量を評価した例を以下に示
す。この動翼は、一方向凝固されたγ´相析出強化型N
i基超合金でできている。
(Example 1) An example in which the amount of damage to the first-stage turbine rotor blade of a gas turbine used for a certain period of time was evaluated by the method of the present invention is shown below. This blade is a unidirectionally solidified γ'phase precipitation-strengthened N
Made of i-base superalloy.

【0008】図1に本発明のフローチャートを示す。こ
のフローチャートに従って、実機材料の評価に先立っ
て、データベースを作成する。最初に、クリープ損傷用
のデータベースの作成方法を示す。まず、実機使用材料
と同一の材料の未使用材を用いて、クリープ損傷材を作
製する(2)。温度及び応力の違う幾つかの条件でクリ
ープ破断試験を行い、さらに、クリープ破断試験と同一
の条件で破断時間の10,20,30,40,50,6
0,70,80,90%の時間で中断した試料を作製し
た。ここで、各中断材は、例えば破断時間の50%の時
間で中断した場合、50%損傷材と考えることとする。
これらの中断材及び破断材について、観察面が応力負荷
方向に平行な面になるように組織観察用の試料を採取し
(3b),共晶組織の形態を観察した(4b)。ここで
は、観察に走査型電子顕微鏡を用い、共晶組織の形態
は、画像解析装置を用いて、アスペクト比で定量化した
(5b)。図2に40%損傷材の観察例を示す。アスペク
ト比は、図2に示すとおり、共晶組織の主応力方向に垂
直方向をa軸、主応力方向に平行方向をb軸とし、b/
aで定義した。90%損傷材を観察すると共晶組織のア
スペクト比は、さらに増大しており、共晶組織とマトリ
ックスの界面を起点に亀裂が発生している。このことか
ら、共晶組織の形態変化と局所的な領域の損傷との間に
は密接な関係があることが分かる。また、本実施例に用
いた材料は、主応力軸方向と凝固方向が一致するように
凝固された一方向凝固材で、共晶組織は主応力軸方向に
平行に連なっている。そのため、共晶組織のアスペクト
比は、凝固条件及び結晶粒の違いの影響を受けにくく、
高い精度での損傷量評価が可能である。上記の結果を、
横軸に損傷量、縦軸に共晶組織のアスペクト比をとって
整理することができる。
FIG. 1 shows a flowchart of the present invention. According to this flowchart, a database is created prior to the evaluation of actual material. First, we show how to create a database for creep damage. First, a creep damage material is manufactured using an unused material that is the same as the material used in the actual machine (2). The creep rupture test was conducted under several conditions of different temperature and stress, and the rupture time was 10, 20, 30, 40, 50, 6 under the same conditions as the creep rupture test.
Samples that were interrupted at 0, 70, 80, 90% time were made. Here, each interrupted material is considered as a 50% damaged material when interrupted, for example, at 50% of the breaking time.
With respect to these interrupted materials and fractured materials, samples for microstructure observation were taken so that the observation surface was parallel to the stress loading direction (3b), and the morphology of the eutectic structure was observed (4b). Here, a scanning electron microscope was used for observation, and the morphology of the eutectic structure was quantified by the aspect ratio using an image analyzer.
(5b). FIG. 2 shows an observation example of a 40% damaged material. As shown in FIG. 2, the aspect ratio is as follows: b /
It was defined in a. When the 90% damaged material is observed, the aspect ratio of the eutectic structure is further increased, and cracks are generated starting from the interface between the eutectic structure and the matrix. From this, it is understood that there is a close relationship between the morphological change of the eutectic structure and the local damage of the region. The material used in this example is a unidirectionally solidified material that is solidified so that the principal stress axis direction and the solidification direction coincide with each other, and the eutectic structure is parallel to the principal stress axis direction. Therefore, the aspect ratio of the eutectic structure is less likely to be affected by differences in solidification conditions and crystal grains,
It is possible to evaluate the damage amount with high accuracy. The above result is
The horizontal axis shows the damage amount and the vertical axis shows the aspect ratio of the eutectic structure.

【0009】図3はアスペクト比と損傷量との関係を示
すものであり、図に示すとおり、試験条件が異なって
も、損傷量と共晶組織のアスペクト比の間には高い相関
性があることがわかる。この関係は、データベース
(6)中に、本材料のクリープ損傷に対するマスターカ
ーブ(7)として登録される。
FIG. 3 shows the relationship between the aspect ratio and the damage amount. As shown in the drawing, there is a high correlation between the damage amount and the aspect ratio of the eutectic structure even under different test conditions. I understand. This relationship is registered in the database (6) as the master curve (7) for creep damage of this material.

【0010】次に、低サイクル疲労損傷のデータベース
作成例を示す。クリープ損傷の場合と同様に、まず、実
機使用材料と同一の材料の未使用材料を用いて、低サイ
クル疲労損傷材を作成する(2)。温度及びひずみ範囲
の違う幾つかの条件で、試料が破断するまでの低サイク
ル疲労寿命を求める。そして、破断材と同じ条件で破断
回数の10,20,30,40,50,60,70,8
0,90%の回数で中断した試料を作製した。ここで、
各中断材は、例えば破断回数の50%の回数で中断した
場合、50%損傷材と考えることとする。これらの中断
材及び破断材について、クリープ損傷材と同一の方法で
共晶組織の形態を定量化した(3b,4b,5b)。こ
の結果、低サイクル疲労損傷においてもクリープ損傷と
同様に、損傷量と共晶組織のアスペクト比の間に高い相
関性があることがわかった。この関係は、データベース
(6)中に、本材料の低サイクル疲労損傷に対するマス
ターカーブ(7)として登録される。
Next, an example of creating a database of low cycle fatigue damage will be shown. Similar to the case of creep damage, first, a low cycle fatigue damage material is created using an unused material which is the same material as the material used in the actual machine (2). Under several conditions with different temperature and strain range, the low cycle fatigue life until the sample breaks is obtained. Then, under the same conditions as the fractured material, the number of fractures is 10, 20, 30, 40, 50, 60, 70, 8
A sample interrupted at a frequency of 0.90% was prepared. here,
Each interrupted material is considered to be 50% damaged if interrupted, for example, at 50% of the number of breaks. The morphology of the eutectic structure of these interrupted materials and fracture materials was quantified by the same method as the creep damage material (3b, 4b, 5b). As a result, it was found that even in low cycle fatigue damage, there is a high correlation between the damage amount and the aspect ratio of the eutectic structure, similar to creep damage. This relationship is registered in the database (6) as the master curve (7) for low cycle fatigue damage of the material.

【0011】次に、実機材料の評価法について述べる。
図1のフローチャートに従って、最初にこの動翼の主要
な損傷形態を調査する(1)。調査の結果、この動翼の
主要な損傷はクリープ損傷であることが明らかになっ
た。次に、実機からレプリカ転写法で実機観察用試料を
採取し(3a)、透過型電子顕微鏡で観察した(4
a)。この観察結果をマスターカーブ作成時と同様の方
法で定量化し(5a)、その定量値(42)を、データ
ベース(6)中のクリープ損傷のマスターカーブ(7)に
当てはめると、実機材料の観察部位の損傷量(43)が
求まる(8)。
Next, the evaluation method of the actual material will be described.
According to the flowchart of FIG. 1, first, the main damage forms of this rotor blade are investigated (1). The investigation revealed that the major damage to this blade was creep damage. Next, a sample for observing the actual device was taken from the actual device by the replica transfer method (3a) and observed with a transmission electron microscope (4).
a). This observation result was quantified by the same method as when creating the master curve (5a), and the quantitative value (42) was applied to the master curve for creep damage (7) in the database (6). The amount of damage (43) is calculated (8).

【0012】(実施例2)実施例1と同一の動翼を別の
方法で評価した例を示す。
(Embodiment 2) An example in which the same blade as in Embodiment 1 is evaluated by another method will be described.

【0013】実施例1中のマスターカーブ作成に用いた
試料の共晶組織とデンドライトコアにおけるAlの濃度
を、走査型電子顕微鏡に付属したエネルギー分散型X線
分光分析装置を用いて測定した。この結果を、横軸に損
傷量、縦軸にデンドライトコアのAlの濃度に対する共
晶組織のAl濃度の比を用いて整理することができる。
The eutectic structure of the sample used for preparing the master curve in Example 1 and the Al concentration in the dendrite core were measured using an energy dispersive X-ray spectroscopic analyzer attached to a scanning electron microscope. This result can be summarized by using the damage amount on the horizontal axis and the ratio of the Al concentration of the eutectic structure to the Al concentration of the dendrite core on the vertical axis.

【0014】図4はAl濃度と損傷量との関係を示すも
のであり、図に示すマスターカーブ(51)が得られる。
次に、動翼から走査型電子顕微鏡観察用の試験片を採取
し、マスターカーブ作成時と同様の方法でAl濃度の比
を測定した。この結果(52)をマスターカーブ(51)
に当てはめると、実機損傷量(53)が求まる。
FIG. 4 shows the relationship between the Al concentration and the amount of damage, and the master curve (51) shown in the figure is obtained.
Next, a test piece for scanning electron microscope observation was sampled from the rotor blade, and the Al concentration ratio was measured by the same method as when the master curve was created. This result (52) is the master curve (51)
Then, the actual machine damage amount (53) is obtained.

【0015】また、同様の方法で、共晶組織中のHf濃
度を測定することができ、図5に示す、マスターカーブ
(61)が得られる。このマスターカーブを用いて、実
機動翼のHf濃度(62)が求まれば、実機損傷量(6
3)を求めることができる。
Further, the Hf concentration in the eutectic structure can be measured by the same method, and the master curve (61) shown in FIG. 5 can be obtained. If the Hf concentration (62) of the actual machine blade is obtained using this master curve, the actual machine damage amount (6
3) can be obtained.

【0016】[0016]

【発明の効果】以上のとおり、本発明によれば、従来よ
り高い精度での損傷量の定量化及び寿命評価が可能とな
る。従って、高温機器の信頼性が向上する。代表的な高
温機器であるガスタービンにおいては、本発明により、
安定な電力の供給が可能となり、また、定期点検時の不
必要な材料の交換の防止,定期点検の周期の長期化等
で、経済的効果も大きい。
As described above, according to the present invention, it is possible to quantify the damage amount and evaluate the life with higher accuracy than ever before. Therefore, the reliability of the high temperature device is improved. In a gas turbine, which is a typical high-temperature device, according to the present invention,
It enables stable power supply, prevents unnecessary material replacement during regular inspections, and prolongs the period of regular inspections.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明における余寿命評価の工程を示すフロー
チャート。
FIG. 1 is a flowchart showing a process of evaluating a remaining life in the present invention.

【図2】実施例1において共晶組織の形態の定量化方法
を示す概念図。
FIG. 2 is a conceptual diagram showing a method for quantifying the morphology of a eutectic structure in Example 1.

【図3】実施例1において損傷量と、共晶組織のアスペ
クト比の関係を示す線図。
FIG. 3 is a diagram showing the relationship between the amount of damage and the aspect ratio of a eutectic structure in Example 1.

【図4】実施例2において損傷量とデンドライトコアの
Alの濃度に対する共晶組織のAl濃度の比の関係を示
す線図。
FIG. 4 is a diagram showing the relationship between the damage amount and the ratio of the Al concentration of the eutectic structure to the Al concentration of the dendrite core in Example 2.

【図5】実施例2において損傷量と共晶組織のHf濃度
の関係を示す線図。
5 is a graph showing the relationship between the amount of damage and the Hf concentration of a eutectic structure in Example 2. FIG.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 渡部 典行 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Noriyuki Watanabe 7-1-1 Omika-cho, Hitachi-shi, Ibaraki Hitachi Ltd. Hitachi Research Laboratory

Claims (17)

【特許請求の範囲】[Claims] 【請求項1】共晶組織を有する高温部材の余寿命を評価
する方法において、前記共晶組織の形態を画像処理法に
より定量化する工程及び予め求めてある該形態の定量値
と前記高温部材の損傷量との関係から該材料の損傷度又
は余寿命を算出する工程からなることを特徴とする高温
部材の余寿命評価法。
1. A method for evaluating the remaining life of a high temperature member having a eutectic structure, the step of quantifying the morphology of the eutectic structure by an image processing method, and the quantitative value of the morphology obtained in advance and the high temperature member. A method for evaluating the remaining life of a high temperature member, comprising the step of calculating the degree of damage or the remaining life of the material from the relationship with the amount of damage.
【請求項2】共晶組織を有する高温部材の余寿命を評価
する方法において、該共晶組織中とデンドライトコア部
の特定元素の濃度比を定量化する工程及び予め求めてあ
る該特定元素の濃度比の定量値と前記高温部材の損傷量
との関係から該材料の損傷度又は余寿命を算出する工程
からなることを特徴とする高温部材の余寿命評価法。
2. A method of evaluating the remaining life of a high temperature member having a eutectic structure, the step of quantifying the concentration ratio of the specific element in the eutectic structure and the dendrite core portion, and the previously determined specific element A method for evaluating the remaining life of a high temperature member, comprising the step of calculating the degree of damage or remaining life of the material from the relationship between the quantitative value of the concentration ratio and the amount of damage to the high temperature member.
【請求項3】共晶組織を有する高温部材の余寿命を評価
する方法において、該共晶組織中の特定元素の濃度を測
定する工程及び予め求めてある該特定元素の濃度と前記
高温部材の損傷量との関係から該材料の損傷度又は余寿
命を算出する工程からなることを特徴とする高温部材の
余寿命評価法。
3. A method for evaluating the remaining life of a high temperature member having a eutectic structure, the step of measuring the concentration of a specific element in the eutectic structure, and the concentration of the specific element previously obtained and the high temperature member. A method for evaluating the remaining life of a high-temperature member, comprising the step of calculating the degree of damage or the remaining life of the material in relation to the amount of damage.
【請求項4】共晶組織がγ´相析出強化型Ni基超合金
のγ´−γ相の共晶である請求項1〜3のいずれかに記
載の高温部材の余寿命評価法。
4. The residual life evaluation method for a high temperature member according to claim 1, wherein the eutectic structure is a γ′-γ phase eutectic of a γ ′ phase precipitation strengthened Ni-base superalloy.
【請求項5】共晶組織が一方向凝固組織を有するγ´相
析出強化型Ni基超合金のγ´−γ相の共晶である請求
項1〜3のいずれかに記載の高温部材の余寿命評価法。
5. The high temperature member according to claim 1, wherein the eutectic structure is a γ'-γ phase eutectic of a γ'phase precipitation strengthened Ni-base superalloy having a unidirectionally solidified structure. Remaining life assessment method.
【請求項6】共晶組織が炭化物析出強化型Co基合金の
共晶炭化物である請求項1〜3のいずれかに記載の高温
部材の余寿命評価法。
6. The residual life evaluation method for a high temperature member according to claim 1, wherein the eutectic structure is a eutectic carbide of a carbide precipitation strengthened Co-based alloy.
【請求項7】請求項2又は3における特定元素の濃度が
Al,Ti,Hf,Zr,Ta及びNbの中の1種の濃
度又はAl,Ti,Hf,Zr,Ta及びNbの中の2
種以上の元素の濃度の和である高温部材の余寿命評価
法。
7. The concentration of the specific element according to claim 2 or 3 is one of Al, Ti, Hf, Zr, Ta and Nb or 2 of Al, Ti, Hf, Zr, Ta and Nb.
A method for evaluating the remaining life of high-temperature members, which is the sum of the concentrations of at least one element.
【請求項8】請求項2又は3における特定元素の濃度が
Ni,Co,W,Mo,Cr及びReの中の1種の濃度
又はNi,Co,W,Mo,Cr及びReの中の2種以
上の元素の濃度の和である高温部材の余寿命評価法。
8. The concentration of the specific element according to claim 2 or 3 is one of Ni, Co, W, Mo, Cr and Re or 2 of Ni, Co, W, Mo, Cr and Re. A method for evaluating the remaining life of high-temperature members, which is the sum of the concentrations of at least one element.
【請求項9】請求項2又は3における特定元素の濃度が
C又はBの中の1種の濃度又はC又はBの中の2種以上
の元素の濃度の和である高温部材の余寿命評価法。
9. A residual life evaluation of a high temperature member, wherein the concentration of the specific element according to claim 2 or 3 is the concentration of one of C or B or the concentration of two or more of the elements of C or B. Law.
【請求項10】高温部材の損傷がクリープ損傷である請
求項1〜9のいずれかに記載の高温部材の余寿命評価
法。
10. The residual life evaluation method for a high temperature member according to claim 1, wherein the damage to the high temperature member is creep damage.
【請求項11】高温部材の損傷が低サイクル疲労損傷で
ある請求項1〜9のいずれかに記載の高温部材の余寿命
評価法。
11. The method for evaluating the remaining life of a high temperature member according to claim 1, wherein the damage to the high temperature member is low cycle fatigue damage.
【請求項12】高温部材の損傷が高サイクル疲労損傷で
ある請求項1〜9のいずれかに記載の高温部材の余寿命
評価法。
12. The method of evaluating the remaining life of a high temperature member according to claim 1, wherein the damage of the high temperature member is high cycle fatigue damage.
【請求項13】高温部材の損傷がクリープ損傷,低サイ
クル疲労損傷及び高サイクル疲労損傷のうちの2種以上
が重畳した損傷である請求項1〜9のいずれかに記載の
高温部材の余寿命評価法。
13. The residual life of the high temperature member according to claim 1, wherein the damage of the high temperature member is a damage in which two or more of creep damage, low cycle fatigue damage and high cycle fatigue damage are superposed. Evaluation method.
【請求項14】請求項1〜13のいずれかに記載の高温
部材がガスタービンの動翼である高温部材の余寿命評価
法。
14. A method for evaluating the remaining life of a high temperature member according to any one of claims 1 to 13, which is a moving blade of a gas turbine.
【請求項15】請求項1〜13のいずれかに記載の高温
部材がガスタービンの静翼である高温部材の余寿命評価
法。
15. A method for evaluating a remaining life of a high temperature member according to claim 1, which is a stationary blade of a gas turbine.
【請求項16】請求項1〜15のいずれかに記載の高温
部材の余寿命評価法によって前記損傷度又は余寿命表示
手段を有する高温機器。
16. A high temperature device having the damage degree or remaining life display means according to the remaining life evaluation method for a high temperature member according to claim 1.
【請求項17】請求項1〜15のいずれかに記載の高温
部材の余寿命評価法によって前記損傷度又は余寿命表示
手段を有するガスタービン。
17. A gas turbine having the damage degree or remaining life display means according to the remaining life evaluation method for a high temperature member according to claim 1.
JP7063709A 1995-03-23 1995-03-23 Evaluation method of remaining life of high-temperature member Pending JPH08262009A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7063709A JPH08262009A (en) 1995-03-23 1995-03-23 Evaluation method of remaining life of high-temperature member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7063709A JPH08262009A (en) 1995-03-23 1995-03-23 Evaluation method of remaining life of high-temperature member

Publications (1)

Publication Number Publication Date
JPH08262009A true JPH08262009A (en) 1996-10-11

Family

ID=13237185

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7063709A Pending JPH08262009A (en) 1995-03-23 1995-03-23 Evaluation method of remaining life of high-temperature member

Country Status (1)

Country Link
JP (1) JPH08262009A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018168633A1 (en) * 2017-03-14 2018-09-20 株式会社Ihi Method for evaluating corrosion of metal material, and probe
JP2019215185A (en) * 2018-06-11 2019-12-19 日本製鉄株式会社 Method for non-destructive inspection of bubble defects in cast slab
CN112525907A (en) * 2020-11-23 2021-03-19 华能国际电力股份有限公司 Method for evaluating residual creep life of high-temperature static component material of gas turbine in service

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018168633A1 (en) * 2017-03-14 2018-09-20 株式会社Ihi Method for evaluating corrosion of metal material, and probe
JP2019215185A (en) * 2018-06-11 2019-12-19 日本製鉄株式会社 Method for non-destructive inspection of bubble defects in cast slab
CN112525907A (en) * 2020-11-23 2021-03-19 华能国际电力股份有限公司 Method for evaluating residual creep life of high-temperature static component material of gas turbine in service
CN112525907B (en) * 2020-11-23 2022-11-08 华能国际电力股份有限公司 Method for evaluating residual creep life of high-temperature static component material of gas turbine in service

Similar Documents

Publication Publication Date Title
Cervellon et al. Crack initiation mechanisms during very high cycle fatigue of Ni-based single crystal superalloys at high temperature
Cervellon et al. VHCF life evolution after microstructure degradation of a Ni-based single crystal superalloy
Kumari et al. Failure analysis of gas turbine rotor blades
Sakaguchi et al. Crystal plasticity assessment of crystallographic Stage I crack propagation in a Ni-based single crystal superalloy
Han et al. Creep/fatigue accelerated failure of Ni-based superalloy turbine blade: Microscopic characteristics and void migration mechanism
Hyde et al. Small ring testing of a creep resistant material
RU2686745C1 (en) Recovered nickel-based alloy construction element and method of manufacturing thereof
Palmert et al. Thermomechanical fatigue crack growth in a single crystal nickel base superalloy
Liu et al. Effects of microporosity and precipitates on the cracking behavior in polycrystalline superalloy Inconel 718
Huang et al. Evaluation of service-induced microstructural damage for directionally solidified turbine blade of aircraft engine
Khan et al. Investigation of Intergranular Corrosion in 2nd stage gas turbine blades of an aircraft engine
Moverare et al. Thermomechanical fatigue of single-crystal superalloys: influence of composition and microstructure
JPH11248605A (en) Estimation device and method for creep remaining life of gas turbine vane
JPH08262009A (en) Evaluation method of remaining life of high-temperature member
He et al. Low-cycle fatigue behavior of a solution-treated and HIPped nickel-based single-crystal superalloy at 760° C
Attarian et al. Failure and metallurgical defects analysis of IN-738LC gas turbine blades
JP6093567B2 (en) Degradation diagnosis method for nickel-base superalloys
Ai et al. The creep behaviors of single crystal Ni-based superalloys with slant film cooling holes
JPH05223809A (en) Remaining service life estimating method for gamma' phase precipitation reinforcement type alloy
Szczotok et al. Stereological characterization of γ′ phase precipitation in CMSX-6 monocrystalline nickel-base superalloy
Sabri et al. Effect of rejuvenation heat treatment on the degraded turbine blades
JP2801741B2 (en) Damage diagnosis method for gas turbine hot parts.
Shajari et al. The effect of microstructural changes on the rupture behavior of gas turbine damping bolt superalloy (Nimonic 90) after long service time
JP2004012377A (en) Method for estimating strain of high-temperature component of gas turbine and strain estimation device
JP3441181B2 (en) Method for detecting deterioration of super heat resistant alloy steel