JPH08261806A - Edge tone flowmeter - Google Patents

Edge tone flowmeter

Info

Publication number
JPH08261806A
JPH08261806A JP6364895A JP6364895A JPH08261806A JP H08261806 A JPH08261806 A JP H08261806A JP 6364895 A JP6364895 A JP 6364895A JP 6364895 A JP6364895 A JP 6364895A JP H08261806 A JPH08261806 A JP H08261806A
Authority
JP
Japan
Prior art keywords
edge
fluid
flow
oscillation
internal void
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6364895A
Other languages
Japanese (ja)
Inventor
Daisuke Yamazaki
大輔 山崎
Hitoaki Tanaka
仁章 田中
Manabu Fueki
学 笛木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP6364895A priority Critical patent/JPH08261806A/en
Publication of JPH08261806A publication Critical patent/JPH08261806A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To realize a highly accurate edge tone flowmeter by restricting changes in a Reynolds number-strouhal curve over a wide range. CONSTITUTION: An oscillation frequency based on an edge tone oscillation of a measuring fluid is detected to measure a flow rate. This flowmeter includes an internal void 12 provided in the course of a measuring passage, a slit-shaped nozzle 13 which is provided on the upstream side of the internal void 12 to jet the measuring fluid into the internal void, a throttle 21 which is provided on the downstream side to choke the flow of the measuring fluid from the internal void, a flat sheet-shaped edge 22 having a plane arranged in the internal void parallel in the direction of a measuring path, a rod body 24 arranged almost at the right angle to the flow of the fluid roughly at the center in the course of the nozzle while facing the flat sheet-shaped edge along the length and an oscillation frequency detecting means which is arranged in the internal void to detect an oscillation frequency by an edge tone oscillation of the measuring fluid.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、安定な発振が得られダ
イナミツクレンジが大きいエッジトーン流量計に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an edge tone flowmeter which can obtain stable oscillation and has a wide dynamic range.

【0002】[0002]

【従来の技術】図3は、本出願人が平成5年12月27
日付けで出願したエッジトーン流量計である。図3にお
いて、11は測定流体が流れる管路、12は管路11の
途中に設けられた内部空所である。13は内部空所12
の上流に設けられ、内部空所12に測定流体を噴出する
スリット状のノズルである。21は、内部空所12の下
流に設けられ、内部空所12からの測定流体の流れを絞
る絞りである。
2. Description of the Related Art FIG.
It is an edge tone flow meter filed on the date. In FIG. 3, 11 is a pipe through which the measurement fluid flows, and 12 is an internal space provided in the middle of the pipe 11. 13 is an internal space 12
Is a slit-shaped nozzle that is provided upstream of the nozzle and ejects the measurement fluid to the internal space 12. Reference numeral 21 is a throttle provided downstream of the internal space 12 for restricting the flow of the measurement fluid from the internal space 12.

【0003】22は、内部空所12に管路11方向に平
面が平行に配置された薄平板状のエッジである。23
は、内部空所12に配置され、測定流体のエッジトーン
発振による圧力変動を検出する圧力変動検出手段であ
る。この場合は、圧力導入孔231と圧力導入孔231
から導かれた測定流体の圧力変動を検出する圧力検出器
232(図示せず)よりなる。
Reference numeral 22 is a thin flat plate-shaped edge which is arranged in the inner space 12 in parallel with the direction of the conduit 11. 23
Is a pressure fluctuation detecting means which is arranged in the internal space 12 and detects a pressure fluctuation due to edge tone oscillation of the measurement fluid. In this case, the pressure introducing hole 231 and the pressure introducing hole 231
And a pressure detector 232 (not shown) for detecting the pressure fluctuation of the measurement fluid introduced from.

【0004】以上の構成において、測定流体が管路11
の中を流れ、ノズル13よりでる噴出流は、エッジ22
の先端に衝突し、エッジトーン発振を起こす。この発振
周波数に基づく測定流体の圧力変動を、圧力変動検出手
段23により検出することにより測定流体の流速流量を
測定することができる。一般に、その発振周波数と噴出
流の平均流量との関係には、比例する範囲が存在する。
In the above structure, the fluid to be measured is the conduit 11
The jet flow flowing out of the nozzle 13 and exiting from the nozzle 13 is
It collides with the tip of and causes edge tone oscillation. By detecting the pressure fluctuation of the measurement fluid based on this oscillation frequency by the pressure fluctuation detection means 23, the flow velocity flow rate of the measurement fluid can be measured. Generally, the relationship between the oscillation frequency and the average flow rate of the jet flow has a proportional range.

【0005】図4に図3に示す従来装置のレイノルズ数
(Re)ーストロハル数(St)特性の実験データを示
す。このようなエッジトーン型の流量計は、他の発振型
流量計に比べて発振周波数が高く、安定な発振をするこ
とが特徴とされる。
FIG. 4 shows experimental data of Reynolds number (Re) -Strohal number (St) characteristics of the conventional device shown in FIG. Such an edge tone type flow meter has a higher oscillation frequency than other oscillation type flow meters and is characterized by stable oscillation.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、この様
な装置においては、レイノルズ数(Re)が1800以下の
流体に付いては非直線特性となり、そのような流体にお
いては補正手段を設けなければならないという問題があ
った。
However, in such a device, a fluid having a Reynolds number (Re) of 1800 or less has a non-linear characteristic, and a correction means must be provided in such a fluid. There was a problem.

【0007】本発明は、この問題点を解決するものであ
る。本発明の目的は、レイノルズ数(Re)が低い流体
において、非直線特性を改善したエッジトーン流量計を
提供するにある。
The present invention solves this problem. An object of the present invention is to provide an edge tone flowmeter with improved non-linear characteristics in a fluid having a low Reynolds number (Re).

【0008】[0008]

【課題を解決するための手段】この目的を達成するため
に、本発明は、測定流体のエッジトーン発振に基づく発
振周波数を検出して流量を測定するエッジトーン流量計
において、測定流路の途中に設けられた内部空所と、該
内部空所の上流に設けられ該内部空所に測定流体を噴出
するスリット状のノズルと、前記内部空所の下流に設け
られ該内部空所からの測定流体の流れを絞る絞りと、前
記内部空所に前記測定流路方向に平面が平行に配置され
た薄平板状のエッジと、前記ノズルの途中の略中央で流
体の流れに対して略直角方向に、かつ、前記薄平板状の
エッジと長手方向が対向して配置された棒体と、前記内
部空所に配置され測定流体のエッジトーン発振による発
振周波数を検出する発振周波数検出手段とを具備したこ
とを特徴とするものである。
In order to achieve this object, the present invention provides an edge tone flow meter which detects an oscillation frequency based on an edge tone oscillation of a measurement fluid to measure a flow rate, in the middle of a measurement flow path. An internal void provided in the internal void, a slit-shaped nozzle provided upstream of the internal void for ejecting a measurement fluid to the internal void, and a measurement from the internal void provided downstream of the internal void A throttle for narrowing the flow of fluid, a thin plate-like edge whose plane is arranged parallel to the measurement flow channel direction in the internal space, and a direction substantially perpendicular to the flow of fluid at approximately the center of the nozzle. And a rod arranged in the longitudinal direction opposite to the edge of the thin flat plate, and an oscillation frequency detecting means arranged in the internal space for detecting an oscillation frequency due to edge tone oscillation of the measurement fluid. It is also characterized by It is.

【0009】[0009]

【作用】以上の構成において、測定流体が管路の中を流
れ、ノズルに流体が流れると棒体の後方にカルマン渦が
発生する。この渦発生周波数と噴流の自励発振周波数と
の協調により、発振周波数が安定化されレイノズル数ー
ストローハル数曲線の変化が抑制される。以下、実施例
に基づき詳細に説明する。
With the above construction, when the fluid to be measured flows in the pipe and the fluid flows to the nozzle, Karman vortices are generated behind the rod. The cooperation between the vortex generation frequency and the self-excited oscillation frequency of the jet stream stabilizes the oscillation frequency and suppresses the change in the Reynolds number-Strohhal number curve. Hereinafter, detailed description will be given based on examples.

【0010】[0010]

【実施例】図1は本発明の一実施例の要部構成説明図で
ある。図において、図3と同一記号の構成は同一機能を
表わす。以下、図3と相違部分のみ説明する。24はノ
ズル13の途中に設けられ、カルマン渦を発生させるた
めの棒体であり、スリット状のノズルの略中央で流体の
流れに対して略直角方向に、かつ、薄平板状のエッジ2
2と長手方向が対向して配置されている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is an explanatory view of the essential structure of an embodiment of the present invention. In the figure, the same symbols as those in FIG. 3 represent the same functions. Only parts different from FIG. 3 will be described below. Reference numeral 24 denotes a rod body provided in the middle of the nozzle 13 for generating a Karman vortex. The rod body 24 has a thin plate-like edge 2 at a substantially central portion of the slit-shaped nozzle in a direction substantially perpendicular to the fluid flow.
2 is disposed so as to face the longitudinal direction.

【0011】以上の構成において、測定流体が管路11
の中を流れ、ノズル13の途中に配置された棒体の下流
にカルマン渦が発生する。この渦を含む流体はノズルの
先端から噴出してエッジ22の先端に衝突し、エッジト
ーン発振を起こす。この発振周波数に基づく測定流体の
圧力変動を、圧力変動検出手段23により検出すること
により測定流体の流速流量を測定することができる。
In the above structure, the fluid to be measured is the conduit 11
And a Karman vortex is generated downstream of the rod body disposed in the middle of the nozzle 13. The fluid containing this vortex is ejected from the tip of the nozzle and collides with the tip of the edge 22, causing edge tone oscillation. By detecting the pressure fluctuation of the measurement fluid based on this oscillation frequency by the pressure fluctuation detection means 23, the flow velocity flow rate of the measurement fluid can be measured.

【0012】発明者等は従来装置とノズルに棒体を配置
した本発明の装置を用いてレイノルズ数(Re)ースト
ロハル数(St)特性の実験を行った。なお、実験に用
いた装置は、ノズルおよび絞りの幅W1=2.5mm,
内部空所の幅W2=57mm,長さW3=80mm,エッ
ジの板厚0.4mm,棒体の直径0.8mm(噴出口の
上流側a=22mmの所に配置),流路の深さ(高さ)
30mmとしエッジおよび棒体の長さは流路の深さと同
じに形成した。
The inventors conducted an experiment of Reynolds number (Re) -Strohal number (St) characteristics using the conventional apparatus and the apparatus of the present invention in which a rod is arranged in the nozzle. The device used in the experiment was the width W 1 = 2.5 mm of the nozzle and the diaphragm,
Width W 2 = 57 mm, length W 3 = 80 mm, plate thickness of edge 0.4 mm, diameter of rod body 0.8 mm (arranged on the upstream side of the jet outlet a = 22 mm), of the flow passage Depth (height)
The length was 30 mm, and the lengths of the edges and rods were the same as the depth of the channel.

【0013】図2は実験結果を示すものでBで示す線分
は従来型、Aで示す線分は本発明の装置によるものであ
る。図から分かるように棒体を配置した本発明では低レ
イノルズ数領域における非直線性が改善されている。
FIG. 2 shows the experimental results. The line segment indicated by B is the conventional type, and the line segment indicated by A is the apparatus of the present invention. As can be seen from the figure, in the present invention in which the rods are arranged, the nonlinearity in the low Reynolds number region is improved.

【0014】なお、各部の寸法は上記実施例に限定され
ることは無い。例えばエッジ22の厚さは、ノズル13
の幅以下であれば、同様のエッジトーン発振が得られ
る。また、棒体24の形状も丸棒に限るものではない。
更に、内部空所12の形状も実施例に限ることなく内部
空所12内に、エッジ22が配置出来ればよい。
The size of each part is not limited to the above embodiment. For example, the thickness of the edge 22 is determined by the nozzle 13
If the width is less than or equal to, the same edge tone oscillation can be obtained. Further, the shape of the rod body 24 is not limited to the round bar.
Further, the shape of the inner space 12 is not limited to the embodiment, and it is sufficient that the edge 22 can be arranged in the inner space 12.

【0015】また、圧力導入孔231の位置も、図1に
示したものに限定されることは無い。但し、エッジ22
に近ければ近いほど、圧力の変動は大きく検出できるの
で、近い方が良い。
The position of the pressure introducing hole 231 is not limited to that shown in FIG. However, the edge 22
The closer it is to, the larger the fluctuation in pressure can be detected, so the closer it is, the better.

【0016】また、実施例においては、発振検出手段は
圧力変動検出手段23に就いて説明したが、これに限る
ことはなく、例えば、エッジ22に歪ゲージを取付て歪
の変動より検出するものでもでも良い。要するに、エッ
ジ22の発振を検出出来るものであればよい。
In the embodiment, the oscillation detecting means has been described as the pressure fluctuation detecting means 23, but the invention is not limited to this, and for example, a strain gauge is attached to the edge 22 to detect from the fluctuation of strain. But it's okay. In short, it is only necessary that the oscillation of the edge 22 can be detected.

【0017】[0017]

【発明の効果】以上説明したように、本発明は、測定流
体のエッジトーン発振に基づく発振周波数を検出して流
量を測定するエッジトーン流量計において、測定流路の
途中に設けられた内部空所と、この内部空所の上流に設
けられ内部空所に測定流体を噴出するスリット状のノズ
ルと、内部空所の下流に設けられ該内部空所からの測定
流体の流れを絞る絞りと、内部空所に前記測定流路方向
に平面が平行に配置された薄平板状のエッジと、前記ノ
ズルの途中の略中央で流体の流れに対して略直角方向
に、かつ、前記薄平板状のエッジと長手方向が対向して
配置された棒体と、前記内部空所に配置され測定流体の
エッジトーン発振による発振周波数を検出する発振周波
数検出手段とを具備しているので、棒体から発生するカ
ルマン渦の発生周波数と噴流の自励発振周波数との協調
により、広範囲にわたってレイノズル数ーストローハル
数曲線の変化を抑制することができ、高精度なエッジト
ーン流量計を実現することが出来る。
As described above, according to the present invention, in an edge tone flow meter which measures the flow rate by detecting the oscillation frequency based on the edge tone oscillation of the measurement fluid, an internal space provided in the middle of the measurement flow path is used. And a slit-shaped nozzle that is provided upstream of this internal space to eject the measurement fluid to the internal space, and a throttle that is provided downstream of the internal space and that restricts the flow of the measurement fluid from the internal space, A thin plate-shaped edge in which a plane is arranged parallel to the measurement flow path direction in an internal space, and at a substantially center in the middle of the nozzle, in a direction substantially perpendicular to the flow of fluid, and in the thin plate-like shape. It is provided with a rod body arranged so as to face the edge in the longitudinal direction, and an oscillation frequency detecting means arranged in the internal space for detecting an oscillation frequency due to edge tone oscillation of the measurement fluid. Generation frequency of the Karman vortex And by cooperation with the self-oscillating frequency of the jet, it is possible to suppress a change in Reynolds number over Strouhal number curve over a wide range, it is possible to realize highly accurate edge tones flowmeter.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の要部構成説明図である。FIG. 1 is an explanatory diagram of a main part configuration of an embodiment of the present invention.

【図2】本発明および従来装置におけるレイノルズ数
(Re)ーストロハル数(St)特性の実験結果を示す
図である。
FIG. 2 is a diagram showing experimental results of Reynolds number (Re) -Strohal number (St) characteristics in the present invention and the conventional device.

【図3】従来より一般に使用されている従来例の構成説
明図である。
FIG. 3 is an explanatory diagram of a configuration of a conventional example that is generally used in the past.

【図4】従来装置におけるレイノルズ数(Re)ースト
ロハル数(St)特性の実験結果を示す図である。
FIG. 4 is a diagram showing an experimental result of Reynolds number (Re) -Strohal number (St) characteristics in a conventional device.

【符号の説明】[Explanation of symbols]

11…管路 12…内部空所 13…ノズル 21…絞り 22…エッジ 24…棒体 11 ... Pipeline 12 ... Internal void 13 ... Nozzle 21 ... Restriction 22 ... Edge 24 ... Rod

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】測定流体のエッジトーン発振に基づく発振
周波数を検出して流量を測定するエッジトーン流量計に
おいて、 測定流路の途中に設けられた内部空所と、 該内部空所の上流に設けられ該内部空所に測定流体を噴
出するスリット状のノズルと、 前記内部空所の下流に設けられ該内部空所からの測定流
体の流れを絞る絞りと、 前記内部空所に前記測定流路
方向に平面が平行に配置された薄平板状のエッジと、 前記ノズルの途中の略中央で流体の流れに対して略直角
方向に、かつ、前記薄平板状のエッジと長手方向が対向
して配置された棒体と、 前記内部空所に配置され測定流体のエッジトーン発振に
よる発振周波数を検出する発振周波数検出手段と、 を具備したことを特徴とするエッジトーン流量計。
1. An edge-tone flowmeter for measuring a flow rate by detecting an oscillation frequency based on edge-tone oscillation of a measurement fluid, wherein an internal void provided in the middle of a measurement flow path and an upstream of the internal void. A slit-shaped nozzle provided to eject the measurement fluid to the internal space, a throttle provided downstream of the internal space to restrict the flow of the measurement fluid from the internal space, and the measurement flow to the internal space. A thin plate-shaped edge whose planes are arranged parallel to the road direction, and a substantially central part in the middle of the nozzle in a direction substantially perpendicular to the fluid flow, and the thin plate-shaped edge faces the longitudinal direction. An edge tone flowmeter, comprising: a rod body arranged in an inner space; and an oscillation frequency detecting means arranged in the internal space for detecting an oscillation frequency of an edge tone oscillation of a measurement fluid.
JP6364895A 1995-03-23 1995-03-23 Edge tone flowmeter Pending JPH08261806A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6364895A JPH08261806A (en) 1995-03-23 1995-03-23 Edge tone flowmeter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6364895A JPH08261806A (en) 1995-03-23 1995-03-23 Edge tone flowmeter

Publications (1)

Publication Number Publication Date
JPH08261806A true JPH08261806A (en) 1996-10-11

Family

ID=13235389

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6364895A Pending JPH08261806A (en) 1995-03-23 1995-03-23 Edge tone flowmeter

Country Status (1)

Country Link
JP (1) JPH08261806A (en)

Similar Documents

Publication Publication Date Title
US4464939A (en) Vortex flowmeter bluff body
US4003253A (en) Multi-range vortex-shedding flowmeter
GB2142725A (en) Fluid flow meter
JP2781063B2 (en) Fluidic flow meter
JP2001507786A (en) Fluid flow meter
JP3119782B2 (en) Flowmeter
KR950006014B1 (en) Fluid vibrating type flowmeter
JPH01321316A (en) Coupled trap vortex flow rate measuring apparatus and method
JPH08261806A (en) Edge tone flowmeter
EP0106881A1 (en) Narrow profile vortex shedding body.
JP3197352B2 (en) Vortex flow meter
JPS58189518A (en) Mass flowmeter
US4312237A (en) Vortex generating device
Lai et al. Instantaneous velocity measurements in a vane-excited plane jet
JP3227995B2 (en) Edge tone flow meter
JP3463241B2 (en) Vortex flow meter
EP0309607B1 (en) Fluidic oscillating diverter flow sensor
JP3090513B2 (en) Fluidic gas meter
JPH04262209A (en) Fluidic flowmeter having micro-flow sensor
JP3066144B2 (en) Fluidic gas meter
JP3025036B2 (en) Fluid vibration type flow meter
JPS6343687B2 (en)
JP2821650B2 (en) Fluid vibration type flow meter
JP2931198B2 (en) Fluidic flow meter
JPS6361604B2 (en)