JPH08260064A - Continuous heating and melting method - Google Patents

Continuous heating and melting method

Info

Publication number
JPH08260064A
JPH08260064A JP8096424A JP9642496A JPH08260064A JP H08260064 A JPH08260064 A JP H08260064A JP 8096424 A JP8096424 A JP 8096424A JP 9642496 A JP9642496 A JP 9642496A JP H08260064 A JPH08260064 A JP H08260064A
Authority
JP
Japan
Prior art keywords
melted
furnace
heating
melting
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8096424A
Other languages
Japanese (ja)
Other versions
JP3263928B2 (en
Inventor
Shigeo Hashida
榮夫 橋田
Shuichi Takase
修一 高瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP09642496A priority Critical patent/JP3263928B2/en
Publication of JPH08260064A publication Critical patent/JPH08260064A/en
Application granted granted Critical
Publication of JP3263928B2 publication Critical patent/JP3263928B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Manufacture And Refinement Of Metals (AREA)
  • Vertical, Hearth, Or Arc Furnaces (AREA)
  • Furnace Details (AREA)

Abstract

PURPOSE: To enable use of powdery iron scrap and to produce molten pig iron excellent in the quality in good electric power efficiency by piling lumpy cokes as heating medium at the bottom part and using a cylindrical type melting furnace having a high-frequency boil for controllable induction heating at the outer side. CONSTITUTION: A molten iron tapping hole 5 is arranged at the bottom part 13 of the refractory-made cylindrical type melting furnace 12, and the coil 3 for high-frequency induction heating connected with a high-frequency power source 9 and a power control unit 110 is arranged at the outer periphery of the furnace. The lumpy cokes 1 as the heating medium are piled at the furnace bottom part and the electricity is conducted to the coil 3 for heating to induction-heat the cokes 1. The iron sources 2 mixed with fine size of turning iron waste, etc., are charged on the heated cokes 1, heated, melted and sufficiently reduced by flowing down while passing through between the cokes 1 to make the good quality pig iron having extremely little oxide content. In this case, the temp. of molten iron discharged from the iron tapping hole 5 is adjusted to a prescribed temp. by controlling the high-frequency power supplied into the coil 3 to the constant with the power control unit 110.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、金属や鉱石等の被溶解
材を連続的に加熱溶解して所望温度の溶湯を連続的に得
ることのできる加熱溶解方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heating and melting method capable of continuously melting a material to be melted such as metal or ore by heating to obtain a molten metal having a desired temperature.

【0002】[0002]

【従来の技術】鋳鉄の溶解装置としては、キュポラ及
び、るつぼ型誘導炉がよく知られており広く利用されて
いる。キュポラは精錬された良質の金属溶湯(以下、溶
湯と略称)が連続的に得られる連続溶解炉であり、誘導
炉は細かい材料も使用できる成分調節が容易な間欠溶解
炉である。これらは、それぞれ一長一短があり、現在で
はこれら両者を併用した二重溶解法も広く用いられてい
る。
2. Description of the Related Art Cupola and crucible induction furnaces are well known and widely used as cast iron melting devices. The cupola is a continuous melting furnace in which a refined high-quality metal melt (hereinafter abbreviated as melt) is continuously obtained, and the induction furnace is an intermittent melting furnace in which fine materials can be easily adjusted. Each of these has advantages and disadvantages, and at present, a double dissolution method using both of them is widely used.

【0003】なお、この種の技術に関連するものとして
は、例えば、特公昭52−48564号公報が挙げられ
る。
As a technique related to this type of technique, there is, for example, Japanese Patent Publication No. 52-48564.

【0004】[0004]

【発明が解決しようとする課題】キュポラはコークスを
高温燃焼させるために、炉内に大量の空気を吹き込む必
要があり、したがって炉内のガス流速が大きく、例え
ば、銑ダライのような細かい材料は酸化されたり溶融す
る前にガスの流れによって溶解装置外に排出されるため
溶解困難である。また、材料を加熱溶融する熱源はコー
クスの燃焼によるため高温にするには不完全燃焼が伴
い、特に1,500℃以上の出湯温度を得るためには効
率が下がり温度制御も困難である。
The cupola requires a large amount of air to be blown into the furnace in order to burn the coke at a high temperature. Therefore, the gas flow velocity in the furnace is high, and a fine material such as pig iron It is difficult to dissolve because it is discharged out of the melting apparatus by the gas flow before it is oxidized or melted. Further, since the heat source for heating and melting the material is due to the combustion of coke, incomplete combustion accompanies the high temperature, and in particular, the efficiency is lowered and it is difficult to control the temperature in order to obtain the tapping temperature of 1,500 ° C or higher.

【0005】一方、誘導炉は単なる材料の誘導加熱のみ
で溶解を行うため精錬効果は望めない。また、基本的に
間欠溶解法であり連続的な鋳造装置に溶湯を供給するに
は不便であるという問題点がある。
On the other hand, in the induction furnace, the refining effect cannot be expected because the melting is performed only by the induction heating of the material. Further, there is a problem that it is basically an intermittent melting method and it is inconvenient to supply the molten metal to a continuous casting apparatus.

【0006】また、従来の技術に挙げた特公昭52−4
8564号公報では、キュポラの上部に誘導コイルを設
置して材料を加熱しようとしているが、コークス層の加
熱は何ら考慮されておらず、従って大量の空気を吹き込
む為の不利、高温を効率良く得るための方策については
改善されていない。
Further, Japanese Patent Publication No. 52-4 mentioned in the prior art.
In Japanese Patent No. 8564, an induction coil is installed above the cupola to heat the material, but heating of the coke layer is not considered at all, and therefore a disadvantage for blowing a large amount of air and high temperature can be obtained efficiently. There is no improvement in the measures to be taken.

【0007】つまり、誘導炉と燃焼炉を併用した上記従
来の溶解法は、低温部加熱に電磁誘導加熱を、そして高
温部加熱にコークスによる燃焼加熱を行う連続溶解技術
に関する提案であるが、以下に述べるような問題点があ
り、実用レベルに達していない。
That is, the above-mentioned conventional melting method using both an induction furnace and a combustion furnace is a proposal regarding a continuous melting technique in which electromagnetic induction heating is used for low temperature heating and combustion heating is performed with coke for high temperature heating. However, it has not reached the practical level.

【0008】すなわち、この種の従来技術においては、
溶解材料が投入される炉内上部の低温部加熱において誘
導加熱が用いられているが、流動する被溶解材である金
属材料のみを誘導加熱するいわば予備加熱手段として用
いるものであり、電力での予備加熱は経済的に高価であ
り実用的でない。また、炉内下部に位置する高温部加熱
は、コークスによる燃焼方式であるため、コークスの不
完全燃焼によるCOの生成に伴う効率の低下、大量の排
ガス発生に伴う装置の大型化と公害防止対策の必要性、
細かい被溶解材料がガス流で飛散し溶解困難となる点、
さらには燃焼に伴い、ガス中の酸素による金属の酸化が
起こり、十分な還元が進行せず、酸化物がスラグとなる
といった問題があった。
That is, in this type of conventional technique,
Induction heating is used in the low temperature heating of the upper part of the furnace where the molten material is charged, but it is used as a so-called preheating means for inductively heating only the flowing metallic material that is the material to be melted. Preheating is economically expensive and impractical. Further, since the high temperature part located in the lower part of the furnace is a combustion system using coke, the efficiency is reduced due to the generation of CO due to the incomplete combustion of the coke, the device is enlarged due to the generation of a large amount of exhaust gas, and pollution prevention measures are taken. Need of,
The point that the fine material to be melted is scattered by the gas flow and it becomes difficult to melt,
Further, there is a problem that the metal is oxidized by oxygen in the gas with the combustion, the reduction does not proceed sufficiently, and the oxide becomes slag.

【0009】したがって、本発明の目的は、上記従来の
問題点を解消することにあり、その目的は銑ダライのよ
うな細かい材料も使用でき、酸素、窒素等の含有ガス量
の少ない高品質の溶湯を連続的に、しかも安定に温度調
製されて得られる改良された電磁誘導加熱による溶解方
法を提供することにある。
Therefore, an object of the present invention is to solve the above-mentioned conventional problems, and the object is to use a fine material such as pig iron and to provide a high quality product containing a small amount of gas such as oxygen and nitrogen. An object of the present invention is to provide an improved melting method by electromagnetic induction heating, which is obtained by continuously and stably adjusting the temperature of a molten metal.

【0010】[0010]

【課題を解決するための手段】上記目的を達成するため
の本発明の連続的加熱溶解方法は、炉底部に出湯口が設
けられ、上部に被溶解材投入口が設けられている炉の底
部上に炭素材及び導電性のある耐火物の少なくとも一方
の材料を加熱媒体として積層し、炉壁の外周に設けられ
た電磁コイルに電力を供給することにより、この積層し
た加熱媒体を電磁誘導加熱によって加熱し、加熱されて
いるこの加熱媒体上に被溶解材を連続的に投入して被溶
解材を加熱溶解し、この溶湯を出湯口から流出させる被
溶解材の連続的加熱溶解方法であって、前記電磁誘導加
熱においては、電磁コイルに給電する電力を電源側の電
力制御装置により溶解に必要とされる一定値に制御する
と共に、加熱媒体及び被溶解材がそれぞれ発熱する熱量
の比率を予め一定値に定めておき、しかも被溶解材の溶
解に基づいて変動する電流及び電圧からなるパラメータ
のうちの何れか一つが所定の基準値を維持することがで
きるように制御し、この基準値に基づいて炉内に投入す
る被溶解材の投入量を調整し、それによって出湯口から
流出する溶湯の温度を所定温度に調節するように構成す
ることを特徴としている。
In the continuous heating and melting method of the present invention for achieving the above object, a bottom part of a furnace is provided with a tap hole at the bottom of the furnace and an inlet for the material to be melted at the top. At least one of the carbon material and conductive refractory material is laminated on top as a heating medium, and electric power is supplied to the electromagnetic coil provided on the outer periphery of the furnace wall to electromagnetically heat the laminated heating medium. Is a continuous heating and melting method of the melted material in which the melted material is continuously charged into the heated heating medium to melt the melted material, and the melt is discharged from the tap hole. In the electromagnetic induction heating, the power supplied to the electromagnetic coil is controlled to a constant value required for melting by the power control device on the power source side, and the ratio of the amount of heat generated by the heating medium and the material to be melted is adjusted. Constant in advance In addition, any one of the parameters consisting of current and voltage that fluctuates based on the melting of the material to be melted is controlled to maintain a predetermined reference value, and based on this reference value, It is characterized in that the amount of the melted material to be charged into the furnace is adjusted so that the temperature of the molten metal flowing out from the tap hole is adjusted to a predetermined temperature.

【0011】そして好ましくは、上記電力に対応する電
圧を受け、この電圧を基準電圧と比較して大きい場合に
は炉内に被溶解材を投入し、小さい場合には投入を停止
させるよう自動的に投入量を制御し、それによって出湯
口から流出する溶湯の温度を所定温度に調節するように
構成することである。
Preferably, the voltage corresponding to the electric power is received, and when the voltage is higher than the reference voltage, the material to be melted is charged into the furnace, and when the voltage is lower, the charging is stopped automatically. The amount of the molten metal is controlled so that the temperature of the molten metal flowing out from the tap hole is adjusted to a predetermined temperature.

【0012】さらに具体的には、炉底部に出湯口が設け
られ、上部に被溶解材投入口が設けられている炉の底部
上に炭素材及び導電性のある耐火物の少なくとも一方の
材料を加熱媒体として積層し、炉壁の外周に設けられた
電磁コイルに電力を供給することにより、この積層した
加熱媒体を電磁誘導加熱によって加熱し、加熱されてい
るこの加熱媒体上に被溶解材を連続的に投入して被溶解
材を加熱溶解し、この溶湯を出湯口から連続的に流出さ
せる被溶解材の連続的加熱溶解方法であって、前記電磁
誘導加熱においては、電磁コイルに供給する電力を電源
側の電力制御装置により一定に制御すると共に、加熱媒
体及び被溶解材がそれぞれ発熱する熱量の比率を予め一
定値に定めておき、投入された被溶解材が溶解するに伴
い変動する電磁コイルのインピーダンス変動分を、電磁
コイルに印加する電圧もしくは電流の何れか一方を変化
させることによって補償し、前記電力に対応する電圧を
受け、この電圧を基準電圧と比較して大きい場合には炉
内に被溶解材を投入し、小さい場合には投入を停止させ
るよう投入量を制御し、それによって出湯口から流出す
る溶湯の温度を所定温度に調節するように構成すること
を特徴としている。
More specifically, at least one of the carbon material and the electrically conductive refractory material is provided on the bottom of the furnace, which has a tap hole at the bottom of the furnace and an inlet for the material to be melted at the top. By laminating as a heating medium and supplying electric power to an electromagnetic coil provided on the outer periphery of the furnace wall, the laminated heating medium is heated by electromagnetic induction heating, and the material to be melted is heated on this heating medium. A method for continuously heating and melting a material to be melted by continuously charging and melting the material to be melted, and continuously flowing out the melt from a tap hole. In the electromagnetic induction heating, the material is supplied to an electromagnetic coil. The power is controlled to be constant by the power control device on the power source side, and the ratio of the amount of heat generated by the heating medium and the material to be melted is set to a fixed value in advance, and changes as the material to be melted is melted. Electromagnetic The impedance variation of the electromagnetic coil is compensated by changing either the voltage or the current applied to the electromagnetic coil, the voltage corresponding to the electric power is received, and if this voltage is larger than the reference voltage, the furnace It is characterized in that the material to be melted is charged into the inside, and when the amount is small, the amount to be charged is controlled so as to stop the charging, and thereby the temperature of the molten metal flowing out from the tap hole is adjusted to a predetermined temperature.

【0013】そして、上記電圧を監視して被溶解材投入
口から複数種類の被溶解材をそれぞれ所定量秤量して炉
内に投入するに際しては、前記複数種類の被溶解材のそ
れぞれの秤量データを受領して演算装置により各秤量デ
ータを積算するとともに、それらの積算量の配合比率が
所定の範囲内にあるか否かを判断して、任意の被溶解材
の積算値がこの所定の範囲を越えた場合に、その被溶解
材の取り出し作業を停止させるように被溶解材の取り出
し動作を制御することである。
When the above-mentioned voltage is monitored and a plurality of kinds of materials to be melted are weighed by a predetermined amount from the material-to-be-melted material inlet and charged into the furnace, the weighing data of each of the plurality of materials to be melted is measured. Upon receipt of the data, the calculation device integrates each weighing data, and it is judged whether the blending ratio of the integrated amounts is within a predetermined range, and the integrated value of any material to be melted is within the predetermined range. When the temperature exceeds the limit, the operation of taking out the material to be melted is controlled so as to stop the operation of taking out the material to be melted.

【0014】そしてさらに好ましくは、上記積層した材
料(加熱媒体)上に被溶解材を投入する前に、この積層
した加熱媒体を予熱することであり、そのためには例え
ば被溶解材を積層した加熱媒体上に投入する前に、上記
出湯口から炉の内部のガスを吸引することにより積層し
た加熱媒体の下部を加熱し、加熱媒体の上部が被溶解材
の溶解温度に達した時に出湯口を閉塞し、加熱媒体の重
量を越えない量の金属材料を投入して溶解し、この金属
材料の投入から所定時間の後に出湯口を開放するととも
に、被溶解材を加熱媒体上に投入することである。
More preferably, the layered heating medium is preheated before the material to be melted is put on the layered material (heating medium). For this purpose, for example, heating by layering the material to be melted is performed. Before charging onto the medium, the lower part of the laminated heating medium is heated by sucking the gas inside the furnace from the tap, and when the upper part of the heating medium reaches the melting temperature of the material to be melted, the tap is opened. By closing and pouring an amount of metal material that does not exceed the weight of the heating medium to melt, opening the tap hole a predetermined time after the introduction of the metal material, and pouring the material to be melted onto the heating medium. is there.

【0015】電磁誘導加熱は、炉の外壁に装架された電
磁コイルに高周波エネルギーを印加することにより行わ
れる。通常使用される高周波エネルギーは、周波数が5
00〜5,000Hzであり、出力が100〜10,0
00kWである。
The electromagnetic induction heating is performed by applying high-frequency energy to an electromagnetic coil mounted on the outer wall of the furnace. Normally used high frequency energy has a frequency of 5
0 to 5,000 Hz and output is 100 to 10,0
It is 00 kW.

【0016】代表的な電磁誘導加熱による好ましい発熱
量の配分は、炉底部に積層した加熱媒体の発熱量が20
〜50%であり、その上に投入した被溶解材の発熱量が
残りの80〜50%である。これにより出湯口から1,
400〜1,600℃の溶融鋳鉄を連続的に得ることが
できる。
A preferable distribution of the calorific value by the typical electromagnetic induction heating is that the calorific value of the heating medium laminated on the bottom of the furnace is 20.
.About.50%, and the amount of heat generated by the material to be melted is 80% to 50%. As a result, 1,
It is possible to continuously obtain molten cast iron at 400 to 1,600 ° C.

【0017】加熱媒体として炉底部に積層する材料は、
好ましくはコークスであり、例えば3,000〜10,
000μΩcmの固有抵抗を有するものが使用される。
また、被溶解材料は、例えば通常屑鉄と称されているス
クラップ、プレス屑、さらには銑ダライのような細かい
金属材料が使用される。銑ダライのような細かい材料は
単独でも使用できるが、通常はスクラップやプレス屑に
例えば20〜60%混合したものが使用される。
The material laminated on the bottom of the furnace as the heating medium is
Coke is preferable, for example, 3,000 to 10,
A material having a specific resistance of 000 μΩcm is used.
Further, as the material to be melted, for example, a scrap usually called scrap iron, a press scrap, and a fine metal material such as pig dalai are used. Although a fine material such as pig iron can be used alone, it is usually used as a mixture of scrap and press waste, for example, 20 to 60%.

【0018】[0018]

【作用】発熱媒体となる炭素材又は導電性のある耐火物
は、金属に比較して電気抵抗が大きいが、例えば、約
5,000μΩcmの固有抵抗を有するコークスは高周
波誘導加熱にて充分加熱できることから、被溶解材、例
えば金属を溶解するための誘導加熱量の一部を炉底部に
充填されたコークスに与えることにより、空気が全く存
在しない雰囲気で、従って燃焼を利用しないで、このコ
ークスを加熱媒体として金属溶解に必要な温度にまで加
熱することができる。
The carbonaceous material or conductive refractory which is the heat generating medium has a higher electric resistance than metal, but for example, coke having a specific resistance of about 5,000 μΩcm can be sufficiently heated by high frequency induction heating. Therefore, by giving a part of the induction heating amount for melting the material to be melted, for example, the metal, to the coke charged in the bottom of the furnace, the coke can be treated in an atmosphere where there is no air, and therefore without utilizing combustion. The heating medium can be heated to a temperature required for melting the metal.

【0019】この方法は燃焼法と異なり酸素・窒素の殆
ど存在しない高温の雰囲気を作ることができるととも
に、コークスに与える加熱量の比率を変えることにより
温度を制御することができる。
Unlike the combustion method, this method can create a high temperature atmosphere in which oxygen and nitrogen hardly exist, and the temperature can be controlled by changing the ratio of the amount of heat given to the coke.

【0020】具体的には炉内の誘導加熱領域内のコーク
スの量と金属の量との比率を一定に保つことにより、こ
のコークスと金属が吸収する電力の比率を一定にして溶
解速度に関係なく一定の温度の雰囲気を得ることができ
る。例えば、コークスに誘導加熱量の20〜50%を与
え、残りの80〜50%を金属に与えることにより、こ
の雰囲気中に溶融した金属を滴下接触させて加熱・精錬
を行うことができ、銑ダライのような酸化され易い材料
を使用しても殆どスラグを発生させることなく一定温度
で溶解することができる。
Specifically, by keeping the ratio of the amount of coke and the amount of metal in the induction heating region in the furnace constant, the ratio of the electric power absorbed by the coke and the metal is kept constant and is related to the melting rate. Instead, it is possible to obtain an atmosphere of a constant temperature. For example, by giving 20 to 50% of the induction heating amount to the coke and giving the remaining 80 to 50% to the metal, the molten metal can be dropped and contacted in this atmosphere to perform heating and refining. Even if a material such as Dalai that is easily oxidized is used, it can be melted at a constant temperature with almost no slag.

【0021】なお、炭素材はいずれのものでも使用でき
るが、固定抵抗3,000μΩcm未満のコークスは価
格が高く経済的に見合わないばかりか、黒鉛化が進んで
いるため溶解した金属(例えば鋳鉄)中の炭素が多くな
り過ぎ、また、10,000μΩcm超過のコークスは
加熱するのが困難なため固有抵抗は3,000〜10,
000μΩcmのものを使用するのが好ましい。
Although any carbon material can be used, coke having a fixed resistance of less than 3,000 μΩcm is expensive and not economically suitable, and is also melted due to the progress of graphitization (for example, cast iron). The carbon content in) is too much, and the coke having an excess of 10,000 μΩcm is difficult to heat, so the specific resistance is 3,000 to 10,
It is preferable to use the one of 000 μΩcm.

【0022】また、本発明は連続溶解装置を使用するた
め材料の予熱が連続的に効率良く行えることも特長であ
る。なお、本発明の電磁誘導加熱においては、予熱によ
る加熱量を含めた全加熱量に対し、加熱媒体となる炭素
材部分への誘導加熱量の割合を20%未満にすると、溶
融後の加熱量が減少するため出湯する溶湯の温度が1,
400℃未満と低くなり過ぎ、逆に50%を越えると溶
融後の加熱量が増加して1,600℃を越え、過熱を引
き起こす。このため、出湯温度を1,400〜1,60
0℃に設定したい場合には、炭素材部分への誘導加熱量
の割合を上述のごとく20〜50%の範囲とするのが実
用上好適な運転条件となる。
The present invention is also characterized in that the continuous melting apparatus is used so that the material can be preheated continuously and efficiently. In the electromagnetic induction heating of the present invention, when the ratio of the induction heating amount to the carbon material portion as the heating medium is less than 20% with respect to the total heating amount including the heating amount by preheating, the heating amount after melting The temperature of the molten metal is 1,
If it is less than 400 ° C, which is too low, and if it exceeds 50%, the amount of heat after melting increases and exceeds 1,600 ° C, causing overheating. For this reason, the tap water temperature should be 1,400-1,60.
When it is desired to set the temperature to 0 ° C., it is a practically suitable operating condition that the ratio of the amount of induction heating to the carbon material portion is in the range of 20 to 50% as described above.

【0023】さらに高周波エネルギーの電源出力100
kW未満、周波数5,000Hz超過では装置が小さく
なり過ぎ、また出力10,000kW超過、周波数50
0Hz未満では装置が大きくなり過ぎる傾向にある。し
たがって、鋳鉄溶解の場合には、電源出力100〜1
0,000kW、周波数500〜5,000Hzの範囲
で行なうのが望ましい。
Further, the power output 100 of high frequency energy
If the power is less than kW and the frequency exceeds 5,000 Hz, the device becomes too small, and the output exceeds 10,000 kW and the frequency is 50.
Below 0 Hz, the device tends to be too large. Therefore, in the case of melting cast iron, the power output is 100 to 1
It is desirable that the operation is performed at a frequency of 50,000 kW and a frequency of 500 to 5,000 Hz.

【0024】また、作業開始時には炉が充分加熱されて
いないため出湯温度が低くなる傾向にあるが、この場合
には出湯口を一時的に閉鎖し、予め銑ダライの如き金属
材料を投入し、炉内に溶融金属を溜め、この金属を誘導
加熱することにより、温度を上げることができる。
At the beginning of the work, the temperature of the hot water tends to be low because the furnace is not sufficiently heated. In this case, the hot water outlet is temporarily closed and a metallic material such as pig iron is put in advance. The temperature can be raised by accumulating molten metal in the furnace and inductively heating this metal.

【0025】なお、誘導加熱において、高周波エネルギ
ー印加手段(電源)と誘導加熱用電磁コイルとの間に高
周波エネルギー制御手段を接続することは、出力変動を
安定化する上で有効である。つまり、炉内に被溶解材を
投入すると、その材質及び投入状態によりコイルのイン
ピーダンスが変動するが、この変動分を、この制御手段
の電圧または電流変動で安定に補償し、出力等を一定に
するものである。
In the induction heating, connecting the high frequency energy control means between the high frequency energy applying means (power source) and the induction heating electromagnetic coil is effective in stabilizing the output fluctuation. That is, when the material to be melted is put into the furnace, the impedance of the coil varies depending on the material and the state of introduction, but this variation is stably compensated by the voltage or current variation of this control means to make the output constant. To do.

【0026】[0026]

【実施例】以下、図面を用いて本発明の一実施例を説明
する。図1は本発明の連続的加熱溶解方法を実施するの
使用する溶解装置の全体構成を、図2は誘導加熱部の断
面構造をそれぞれ模式的に示している。はじめに使用す
る装置の全体構成について説明し、それに続いて実際の
連続的加熱溶解方法の一例を説明する。
An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 schematically shows the overall structure of a melting apparatus used for carrying out the continuous heating and melting method of the present invention, and FIG. 2 schematically shows the sectional structure of an induction heating section. First, the overall configuration of the apparatus used will be described, and subsequently, an example of an actual continuous heating and melting method will be described.

【0027】(1)溶解装置の構成 炉12は、炉底部13に開閉自在の出湯口5が設けら
れ、上部に被溶解材投入口11が設けられた、ほぼ円筒
上の耐火材4で構成されている。耐火材4の内径は40
0mm、高さは700mmである。被溶解材投入口11
の上方には、一般のガス、又は液体燃料を使用するバー
ナ14を備えた環状の予熱手段8が備えられている。
(1) Structure of Melting Device The furnace 12 is composed of a substantially cylindrical refractory material 4 having an openable / closable tap hole 5 in the furnace bottom 13 and a melted material inlet 11 in the upper part. Has been done. Refractory 4 has an inner diameter of 40
The height is 0 mm and the height is 700 mm. Dissolved material inlet 11
Above the above, an annular preheating means 8 having a burner 14 using a general gas or liquid fuel is provided.

【0028】また、この予熱手段8を通して被溶解材投
入口11に被溶解材2を供給するための供給手段6が予
熱手段8の上方に配設されている。この供給手段6につ
いては、後に図3及び図4を参照して詳細に説明する。
炉12の耐火材4の外周には、電磁コイル3が、炉12
の軸線のまわりに巻回された形態で備えられている。こ
の電磁コイル3には高周波エネルギー印加手段、すなわ
ち電源9から電力制御装置110を介して電力が供給さ
れる。
A supply means 6 for supplying the material to be melted 2 to the material to be melted inlet 11 through the preheating means 8 is arranged above the preheating means 8. The supply means 6 will be described later in detail with reference to FIGS. 3 and 4.
On the outer circumference of the refractory material 4 of the furnace 12, the electromagnetic coil 3
It is provided in a form wound around the axis of the. Electric power is supplied to the electromagnetic coil 3 from a high frequency energy applying means, that is, a power source 9 via a power control device 110.

【0029】電源9と材料供給手段6との間には高周波
エネルギーを制御するための制御手段10が介在されて
いる。この制御手段10は、炉内に投入した被溶解材2
の溶解によって生じる電磁コイル3のインピーダンス変
動分を電圧変動で補償する高周波エネルギー制御手段で
ある。
A control means 10 for controlling high frequency energy is interposed between the power source 9 and the material supply means 6. The control means 10 controls the melted material 2 charged into the furnace.
Is a high-frequency energy control means for compensating for the impedance variation of the electromagnetic coil 3 caused by the melting of the.

【0030】電源9からの高周波エネルギーの周波数は
3,000Hzであり、出力は175kWである。出湯
口5から流出する溶湯は、容量150Kgである前炉7
によって受けられる。
The frequency of the high frequency energy from the power source 9 is 3,000 Hz, and the output is 175 kW. The molten metal flowing out from the tap hole 5 has a capacity of 150 kg for the front furnace 7
Received by.

【0031】炉12の内部の炉底部13上には加熱媒体
として炭素材1が積層され、この炭素材1の上に材料供
給手段6によって被溶解材2が供給されるようになって
いる。炭素材1は、例えばコークスであり、このコーク
スの固有抵抗は5,000μΩcmである。被溶解材2
は、例えばリターンスクラップ4部、銑ダライ3部、電
磁鋼板プレス屑3部、その他珪化鉄など少量の添加材を
含んだ混合物である。なお、被溶解材2の銑ダライと電
磁鋼板プレス屑等の細かい材料の使用比率は全溶解材2
に対し、0から100%が使用可能であるが誘導加熱、
炉内雰囲気の遮断の為には20〜60%の使用が好まし
い。
The carbon material 1 is laminated as a heating medium on the furnace bottom portion 13 inside the furnace 12, and the material to be melted 2 is supplied onto the carbon material 1 by the material supply means 6. The carbon material 1 is, for example, coke, and the specific resistance of this coke is 5,000 μΩcm. Material to be melted 2
Is a mixture containing, for example, 4 parts of return scrap, 3 parts of pig iron, 3 parts of electromagnetic steel plate press scraps, and a small amount of additives such as iron silicide. It should be noted that the use ratio of the small material such as the pig iron of the material to be melted 2 and the electromagnetic steel plate press scrap is the total material 2 to be melted.
In contrast, 0 to 100% can be used, but induction heating,
Use of 20 to 60% is preferable for shutting off the atmosphere in the furnace.

【0032】(2)連続的加熱溶解方法の一例 上述したような連続的加熱溶解装置によって溶解作業を
開始するに当たって、先ず前回の作業後、炉12内に残
留しているコークス層の厚さを炉底部13から約250
mmに調節する。250mmに満たない場合は新しいコ
ークスを補給する。この時のコークスは総重量約30k
g、個数約100個、1個の最大重量は2kgであっ
た。コークスの投入が終了した後、電源9から電磁コイ
ル3に電力を供給する。
(2) Example of continuous heating and melting method When starting the melting operation by the above-mentioned continuous heating and melting apparatus, first, after the last operation, the thickness of the coke layer remaining in the furnace 12 is measured. About 250 from the bottom 13
Adjust to mm. If it is less than 250 mm, replenish with fresh coke. The total weight of coke at this time is about 30k.
The maximum weight of g, the number of about 100, and one was 2 kg. After the charging of the coke is completed, the power supply 9 supplies power to the electromagnetic coil 3.

【0033】なお、制御手段10は前述したように電磁
コイル3のインピーダンス変動分を電圧変動で補償する
役目を果たす。コークス層上部のサイズの大きいコーク
スは効率良く電力を吸収して発熱するが、下部のサイズ
の小さいコークスは発熱し難いため、出湯口5から炉内
のガスを吸引し、この高温のガスでコークス層下部を加
熱することが効果的である。
The control means 10 serves to compensate the impedance variation of the electromagnetic coil 3 by the voltage variation as described above. Large coke in the upper part of the coke layer efficiently absorbs electric power to generate heat, but small coke in the lower part does not easily generate heat. Therefore, the gas in the furnace is sucked from the tap 5 and the coke is heated by this high temperature gas. It is effective to heat the lower part of the layer.

【0034】この時の電圧は1,120V、入力は82
kWであった。コークス層上部が約1,600℃になっ
た時、出湯口5を塞ぎ、金属材料として20kgの銑ダ
ライを投入溶解し、これを炉底部13に貯めて所定時間
加熱する。この作業により炉12内は急速に加熱され作
業開始時から高温の溶湯が得られる。この時の電圧は
1,130V、入力は136kWであった。
At this time, the voltage is 1,120 V and the input is 82
It was kW. When the temperature of the upper part of the coke layer reaches about 1,600 ° C., the tap hole 5 is closed, 20 kg of pig dalaai as a metal material is charged and melted, and this is stored in the furnace bottom part 13 and heated for a predetermined time. By this operation, the inside of the furnace 12 is rapidly heated, and a high temperature molten metal is obtained from the start of the operation. At this time, the voltage was 1,130 V and the input was 136 kW.

【0035】溶融した銑ダライが1,500℃以上にな
った時点で出湯口5を開き溶湯を前炉7に入れると同時
に材料供給手段6により被溶解材2の投入を開始する。
被溶解材2が投入されるとコークス層の上部は被溶解材
で閉鎖され、外部と通じているのは出湯口5のみとな
る。出湯口5も出湯が開始されると溶湯にて閉鎖状態に
なるので、炉内への空気の流通は実質的に遮断される。
When the temperature of the molten pig iron rises to 1,500 ° C. or higher, the tap hole 5 is opened and the molten metal is introduced into the pre-furnace 7, and at the same time, the material supply means 6 starts the introduction of the material 2 to be melted.
When the melted material 2 is charged, the upper part of the coke layer is closed by the melted material, and only the tap hole 5 communicates with the outside. Since the tap hole 5 is also closed by the molten metal when tapping is started, the flow of air into the furnace is substantially cut off.

【0036】投入された被溶解材2は、特に塊状のリタ
ーンスクラップが電磁コイル3によって誘導加熱され温
度上昇しながら下降し、最下層に到達すると下部のコー
クス層1からも熱の供給を受けて溶融する。溶融して液
滴状となった被溶解材2はコークスの間を縫って滴下す
るうちに更に加熱され、また高温のコークスと酸素が殆
ど存在しない還元性雰囲気とにより精錬を受けた後出湯
口5より出湯される。
The melted material 2 charged into the melted material 2 is inductively heated by the electromagnetic coil 3 and is lowered in temperature while rising, and when it reaches the lowermost layer, it is also supplied with heat from the lower coke layer 1. To melt. The melted material 2 in the form of liquid droplets is further heated while the space between the cokes is sewn and dropped, and is refined by the high temperature coke and the reducing atmosphere in which oxygen hardly exists. Hot water is discharged from 5.

【0037】なお、出力は電源9で一定に調整されてい
るので、炉12中の被溶解材2が減少し電磁コイル3の
インピーダンスが大きくなり電圧が1,000V(基準
電圧)を越えると、制御手段10によって制御されて、
材料供給手段6により被溶解材2が炉内に供給される。
Since the output is constantly adjusted by the power source 9, when the melted material 2 in the furnace 12 decreases and the impedance of the electromagnetic coil 3 increases and the voltage exceeds 1,000 V (reference voltage), Controlled by the control means 10,
The material to be melted 2 is supplied into the furnace by the material supply means 6.

【0038】一方、炉内の被溶解材2が増加するとそれ
に伴って電磁コイル3のインピーダンスが低下し電圧が
基準電圧の1,000Vより低下すると、材料供給手段
6は被溶解材2の供給を自動的に停止し、作業中の出
力、電圧はそれぞれ約173kW、1,000Vに制御
され連続溶解が維持される。
On the other hand, when the melted material 2 in the furnace is increased, the impedance of the electromagnetic coil 3 is reduced accordingly, and when the voltage is lower than the reference voltage of 1,000 V, the material supply means 6 supplies the melted material 2. It automatically stops and the output and voltage during work are controlled to about 173 kW and 1,000 V, respectively, and continuous melting is maintained.

【0039】この定常状態における出湯温度は約1,4
50℃であった。また、1トンの被溶解材を溶解するに
必要な時間は3.27時間、電力量は入力で566kW
h、コークス補給量は11kg、スラグの発生量は測定
できなかったが極く微量であり、また、耐火材4の損傷
も非常に少なかった。この実施例の場合は、バーナ14
を備えた予熱手段8を使用しなかったが、これを使用す
ると、その加熱量に応じて電力を節約し、また、出湯速
度をも増加させることができる。しかも一般のるつぼ炉
における電力の節約量が20%以下であるのに対し、本
発明において予備手段8を使用(重油バーナを使用)し
たとき、電力の節約量は30%まで可能であった。
In this steady state, the tap water temperature is about 1,4
It was 50 ° C. Also, the time required to dissolve 1 ton of material to be melted is 3.27 hours, and the electric energy is 566 kW at input.
h, the amount of coke replenished was 11 kg, and the amount of slag generated could not be measured, but was extremely small, and the damage to the refractory material 4 was also very small. In the case of this embodiment, the burner 14
Although the preheating means 8 provided with was not used, if this is used, electric power can be saved and the tapping speed can be increased depending on the heating amount. Moreover, while the amount of electric power saved in a general crucible furnace is 20% or less, when the auxiliary means 8 is used (the heavy oil burner is used) in the present invention, the amount of electric power saved can be up to 30%.

【0040】表1は、炉底部に積層したコークス層1の
厚さを変化させ、且つ基準電圧1,000Vで加熱した
時の、コークス層1の厚さと入力電力との関係を示す表
である(被溶解材は供給していない)。
Table 1 is a table showing the relationship between the thickness of the coke layer 1 laminated on the bottom of the furnace and the input power when the coke layer 1 is heated at a reference voltage of 1,000 V. (The material to be melted is not supplied).

【0041】[0041]

【表1】 [Table 1]

【0042】表2は、基準電圧を1,000V、且つ入
力電力を173kWに保つように制御して、被溶解材2
を炉内に供給して実際に溶解したときの、コークス層1
の厚さと出湯温度との関係を示す表である。
Table 2 shows that the material to be melted 2 was controlled so that the reference voltage was 1,000 V and the input power was 173 kW.
Coke layer 1 when it is actually melted by supplying
2 is a table showing the relationship between the thickness of molten iron and the temperature of tapping water.

【0043】[0043]

【表2】 [Table 2]

【0044】表2に見るごとく、コークス層1の厚さを
変化させるだけで出湯温度を所定温度に制御できるの
で、溶解が進行し炉内の被溶解材2のレベルが低下する
に応じて、被溶解材2を投入するだけで一定温度の溶湯
を得るための連続溶解が維持できる。
As shown in Table 2, the tapping temperature can be controlled to a predetermined temperature simply by changing the thickness of the coke layer 1. Therefore, as melting progresses and the level of the material 2 to be melted in the furnace decreases, Continuous melting for obtaining a molten metal having a constant temperature can be maintained only by adding the material 2 to be melted.

【0045】なお、実際の作業においては、後述するよ
うにこれとは逆にコークス層1の厚さを一定にして、所
望の出湯温度が得られるよう基準電圧を設定し、溶解が
進行して炉内の被溶解材2が少なくなり、電圧が設定値
より上昇した場合にのみそれを補償するように材料供給
手段6から一定量の被溶解材2が自動的に炉内に投入さ
れ、その結果、出湯口5から常時一定温度の溶湯が得ら
れるように連続溶解が維持される。
In the actual work, on the contrary, as will be described later, the coke layer 1 has a constant thickness and the reference voltage is set so that a desired tapping temperature can be obtained, and melting progresses. A certain amount of the material 2 to be melted is automatically charged from the material supply means 6 into the furnace so as to compensate only when the amount of the material 2 to be melted in the furnace decreases and the voltage rises above a set value. As a result, continuous melting is maintained so that molten metal having a constant temperature can always be obtained from the tap hole 5.

【0046】また、表3に一般的なキュポラ溶解およ
び、るつぼ型誘導炉溶解と、本発明による連続的加熱溶
解方法で得られた鋳鉄のチル深さと含有ガス量の分析結
果を示す。なお、このときの被溶解材2の配合は鋼屑3
0%を含み、出湯した溶湯の成分は炭素3.3%、珪素
2.0%を含むようにして、ほぼ同一条件のもとで測定
した。周知のとおり鋳鉄の品質は、チル深さが浅いもの
ほど、また、含有ガス量の少ないものほど優れており、
この表3から本発明方法が、他の溶解方法に比較してい
かに優れているか明らかであろう。
Table 3 shows the analysis results of the chill depth and the gas content of the cast iron obtained by the general cupola melting and melting in a crucible induction furnace and the continuous heating melting method according to the present invention. At this time, the composition of the melted material 2 is steel scrap 3
It was measured under substantially the same conditions such that the content of the molten metal containing 0% was 3.3% of carbon and 2.0% of silicon. As is well known, the quality of cast iron is better as the chill depth is shallower and the content of gas is smaller.
From this Table 3, it will be clear how the method of the present invention is superior to other dissolution methods.

【0047】[0047]

【表3】 [Table 3]

【0048】以上の説明ではコークスを用いて鋳鉄を溶
解する場合について述べたが、本発明はコークスの代り
に導電性のある耐火物(例えば、導電性セラミックス)
を用いること、銅合金等の他の金属類及び鉱石類(導電
性を有するものが望ましい)を溶解することが可能であ
る。
In the above description, the case where coke is used to melt cast iron has been described, but in the present invention, a refractory material having conductivity (eg, conductive ceramics) is used instead of coke.
It is possible to dissolve other metals such as copper alloys and ores (preferably having conductivity) by using.

【0049】なお、亜鉛等の蒸発し易い不純物を更に減
らしたい場合は、炉内に通気口を設け、不活性ガスもし
くは還元性ガスを吹き込み、積極的に不純物の蒸発を促
すことも可能である。
If it is desired to further reduce easily evaporated impurities such as zinc, it is possible to provide a vent in the furnace and blow an inert gas or a reducing gas to positively promote the evaporation of the impurities. .

【0050】かかる実施例から明らかなように、本発明
によれば、ガス流動の少ない還元性の雰囲気内で被溶解
材が溶解・加熱されるため粉末状の材料を使用しても従
来の酸化に基づくスラグの発生が殆ど認められず、酸素
・窒素などのガス含有量の少ない良質の溶湯が得られ
る。
As is clear from the above examples, according to the present invention, the material to be melted is melted and heated in a reducing atmosphere with a small gas flow, so that even if a powdery material is used, conventional oxidation is performed. Almost no generation of slag based on the above is observed, and a good quality molten metal with a small gas content of oxygen, nitrogen, etc. can be obtained.

【0051】ここで前述したように図3及び図4を参照
して、被溶解材2の材料供給手段6(以下、単に供給手
段6と略称)の構成と作用及びこれと高周波エネルギー
印加手段9並びに制御手段10との関係について詳細に
説明する。図3は被溶解材2を炉内に投入するための供
給手段6の動作を説明するための制御系ブロック図、そ
して図4は供給手段6の構成を示す斜視図である。
As described above, referring to FIGS. 3 and 4, the structure and operation of the material supplying means 6 (hereinafter, simply referred to as supplying means 6) for the material to be melted 2 and the high-frequency energy applying means 9 Also, the relationship with the control means 10 will be described in detail. FIG. 3 is a block diagram of a control system for explaining the operation of the supply means 6 for charging the melted material 2 into the furnace, and FIG. 4 is a perspective view showing the configuration of the supply means 6.

【0052】図4に示すように、供給手段6はベルトコ
ンベア又は振動コンベアから成る投入装置103を含
み、投入すべき被溶解材2の必要量を計量してこの投入
装置103から被溶解材2を炉12内に投入する。すな
わち、ここに例示した供給手段6は、材料ホッパ201
内の例えば3種の被溶解材2をピックアップするリフテ
ィングマグネット(200L、200M、200N)か
ら成る取り出し手段200と、これら取り出し手段によ
りホッパ201から取り出された3種の被溶解材2のそ
れぞれを計量するための歪みゲージを利用した電子制御
秤202(202A、202B、202C)とを有して
いる。
As shown in FIG. 4, the supply means 6 includes a charging device 103 composed of a belt conveyor or a vibration conveyor, and measures the required amount of the material to be melted 2 to be charged, and from this charging device 103, the material to be melted 2 is fed. Is charged into the furnace 12. That is, the feeding means 6 illustrated here is the material hopper 201.
For example, each of the three types of the material to be melted 2 taken out from the hopper 201 by the extracting means 200 including a lifting magnet (200L, 200M, 200N) for picking up the three types of material to be melted 2 is measured. The electronically controlled balance 202 (202A, 202B, 202C) using a strain gauge for

【0053】図3に示すように、制御手段10は、高周
波エネルギー印加手段9から送られてくる電圧の高低を
判断する電圧比較装置105と、この判断に供する基準
電圧を発生する基準電圧発生装置106と、各秤202
(202A、202B、202C)からの秤量データに
基づき3種類の被溶解材を所定の比率に配合するための
演算装置107とを有している。
As shown in FIG. 3, the control means 10 comprises a voltage comparison device 105 for judging the level of the voltage sent from the high frequency energy applying means 9, and a reference voltage generation device for generating a reference voltage used for this judgment. 106 and each scale 202
It has an arithmetic unit 107 for blending three kinds of materials to be melted in a predetermined ratio based on the weighing data from (202A, 202B, 202C).

【0054】電圧比較装置105は、材料取り出し手段
(200L、200M、200N)をそれぞれ制御する
ための制御ライン(114、115)を有し、基準電圧
に比して、ライン104から送られた電圧が高い場合に
は、制御ライン115に信号を出力し、低い場合には制
御ライン114に信号を出力する。
The voltage comparison device 105 has control lines (114, 115) for controlling the material take-out means (200L, 200M, 200N), respectively, and compares the voltage sent from the line 104 with the reference voltage. When is high, a signal is output to the control line 115, and when it is low, a signal is output to the control line 114.

【0055】演算装置107は、各秤202(202
A、202B、202C)からライン112を介してデ
ータを受領し、ライン113を介して各取り出し手段2
00(200L、200M、200N)を制御する。
The computing device 107 includes the balances 202 (202
(A, 202B, 202C) via line 112 and each fetching means 2 via line 113.
00 (200L, 200M, 200N) is controlled.

【0056】炉12の電磁コイル3は炉12内の被溶解
材2が減少するとインピーダンスが増大し、被溶解材2
が増大するとインピーダンスが減少するという特性を有
している。電磁コイル3には高周波エネルギー印加手段
9から導線108を介して高周波電力が供給される。供
給電力を一定に制御する電力制御装置110が、高周波
エネルギー印加手段9に備えられている。
In the electromagnetic coil 3 of the furnace 12, the impedance increases as the melted material 2 in the furnace 12 decreases, and the melted material 2
Has a characteristic that the impedance decreases as the value increases. The electromagnetic coil 3 is supplied with high-frequency power from the high-frequency energy applying means 9 via the lead wire 108. The high frequency energy applying means 9 is provided with a power control device 110 for controlling the supplied power to be constant.

【0057】また、高周波エネルギー印加手段9には、
導線108を介して炉12の電磁コイル3に供給されて
いる電圧を、対応する低い直流電圧に変換して、この変
換された直流電圧を制御手段10の電圧比較装置105
に送る電圧変換装置111が備えられている。
Further, the high frequency energy applying means 9 includes
The voltage supplied to the electromagnetic coil 3 of the furnace 12 via the lead wire 108 is converted into a corresponding low DC voltage, and the converted DC voltage is converted into the voltage comparison device 105 of the control means 10.
The voltage conversion device 111 for sending to

【0058】図3のブロック図の動作を具体的に説明す
ると次の通りである。溶解が進行して炉12内の被溶解
材2が減少すると電磁コイル3のインピーダンスが増大
する。電力制御装置110は、炉12の電磁コイル3に
供給する電力を一定となるように制御しているので、電
磁コイル3のインピーダンスが増大すると電磁コイル3
に印加される電圧は上昇する。この電圧は電圧変換装置
111によって対応する低い直流電圧に変換され、電圧
比較装置105に供給される。
The operation of the block diagram of FIG. 3 will be specifically described as follows. When the melting progresses and the material 2 to be melted in the furnace 12 decreases, the impedance of the electromagnetic coil 3 increases. The electric power control device 110 controls the electric power supplied to the electromagnetic coil 3 of the furnace 12 so as to be constant, so that when the impedance of the electromagnetic coil 3 increases, the electromagnetic coil 3 is increased.
The voltage applied to it rises. This voltage is converted into a corresponding low DC voltage by the voltage conversion device 111 and supplied to the voltage comparison device 105.

【0059】電圧比較装置105には基準電圧発生装置
106から基準電圧が与えられている。かくて、電圧変
換装置111からの電圧が基準電圧に比して大となる
と、ライン115から信号が各取り出し手段200(2
00L、200M、200N)に発せられて、各取り出
し手段200が作動し、被溶解材2の取り出し作業が行
われる。
A reference voltage is applied to the voltage comparator 105 from the reference voltage generator 106. Thus, when the voltage from the voltage conversion device 111 becomes higher than the reference voltage, a signal is output from the line 115 to each extraction means 200 (2).
00L, 200M, 200N), each take-out means 200 is activated, and the work 2 for taking out the material 2 to be melted is performed.

【0060】これらの取り出し手段200は、前記リフ
ティングマグネットの代りに被溶解材2のホッパーに振
動を加え被溶解材2を秤202A〜202C上へ移送す
る移動装置で構成してもよい。この取り出しは、必ずし
も正確に定量を取り出す必要はなく、前者においては電
流値を、後者においてはホッパー201に振動を加える
加振時間を設定するだけでよい。
These take-out means 200 may be constituted by a moving device which moves the material to be melted 2 onto the scales 202A to 202C by vibrating the hopper of the material to be melted 2 instead of the lifting magnet. In this extraction, it is not always necessary to accurately extract the fixed amount, and in the former case, the current value may be set, and in the latter case, the vibration time for applying vibration to the hopper 201 may be set.

【0061】かようにして、ある一定の条件のもとに取
り出された各被溶解材2は、それぞれ電子制御秤202
(202A、202B、202C)によって正確に測定
され、それぞれの秤量データは演算装置107に送られ
る。
In this way, the respective melted materials 2 taken out under a certain constant condition are respectively controlled by the electronically controlled scale 202.
Accurately measured by (202A, 202B, 202C), each weighing data is sent to the arithmetic unit 107.

【0062】演算装置107は、炉12に投入する各溶
解材2の配合比率の所望値を記憶している。ライン11
2を介して送られてくる各溶解材2の測定データの積算
量の比率が所望値に対して或る一定の範囲内にある限
り、また、電圧比較装置105からライン115を介し
て信号が出ている限り、各取り出し手段200(200
L、200M、200N)は作動し続ける。然し、3種
の被溶解材のうち、いずれかの積算量が配合比率の所望
値に対して一定の範囲を越えると、演算装置107は、
配合比率の所望値に対して一定の範囲内になるまで、そ
の被溶解材2の取り出し作業を停止させるようにライン
113を介してその被溶解材2の取り出し手段200に
信号を送る。各被溶解材2は、秤量が終わり次第、投入
装置103によって炉12に供給される。
The arithmetic unit 107 stores a desired value of the mixing ratio of each melting material 2 to be charged into the furnace 12. Line 11
As long as the ratio of the integrated amount of the measurement data of each melting material 2 sent via 2 is within a certain range with respect to the desired value, the signal from the voltage comparison device 105 is transmitted via the line 115. As long as it is out, each take-out means 200 (200
L, 200M, 200N) continue to operate. However, if the integrated amount of any of the three types of materials to be melted exceeds a certain range with respect to the desired value of the mixing ratio, the arithmetic unit 107
A signal is sent to the means 200 for taking out the material 2 to be melted through the line 113 so as to stop the operation for taking out the material 2 to be melted until the mixing ratio is within a certain range with respect to the desired value. Each material 2 to be melted is supplied to the furnace 12 by the charging device 103 as soon as the weighing is completed.

【0063】炉12内の被溶解材2の量が増大すると、
電磁コイル3のインピーダンスが減少し、電磁コイル3
に印加される電圧が下降すると、電圧変換装置111か
らライン104を介して電圧比較装置105に送られる
電圧は低くなる。この電圧が基準電圧より低くなると、
電圧比較装置105はライン114を介して各取り出し
手段200(200L、200M、200N)に信号を
発し、各取り出し手段の作動を停止させる。
When the amount of the melted material 2 in the furnace 12 increases,
The impedance of the electromagnetic coil 3 decreases, and the electromagnetic coil 3
When the voltage applied to the voltage comparator 111 decreases, the voltage sent from the voltage converter 111 to the voltage comparator 105 via the line 104 decreases. When this voltage becomes lower than the reference voltage,
The voltage comparison device 105 sends a signal to each take-out means 200 (200L, 200M, 200N) via the line 114 to stop the operation of each take-out means.

【0064】かように操作されるので、本発明の装置
は、キュポラの被溶解材供給装置のように各被溶解材を
秤量装置で一回ごとに一定量ずつ秤量することなく、供
給手段6の各取り出し手段200で取り出された被溶解
材2を正確に秤量するだけで迅速且つ正確に各被溶解材
2を炉12に供給することができる。
Since the apparatus of the present invention is operated in this manner, the supply means 6 does not have to weigh each of the materials to be melted by the weighing device each time, like the material to be melted supply of the cupola. It is possible to quickly and accurately supply each melted material 2 to the furnace 12 simply by accurately weighing the melted material 2 taken out by each take-out means 200.

【0065】秤量装置202(202A、202B、2
02C)は、例えばロードセルを装備した上皿秤であっ
て、秤量データを電気信号に変換して送り出す手段を含
んだものを使用することができる。
Weighing device 202 (202A, 202B, 2
02C) is, for example, an upper balance equipped with a load cell, which can include means for converting the weighing data into an electric signal and sending it out.

【0066】以上のとおり、本発明の溶解方法では炭素
材1は電磁誘導加熱による発熱体(加熱媒体)として、
また精錬における還元剤として作用する。したがって、
従来の燃焼方式による加熱溶解法と異なり、炭素材又は
導電性のある耐火物自身が燃焼ガスにさらされることが
ないため、その消耗量が著しく少ない。また、炭素材又
は導電性のある耐火物の加熱に燃焼ガスを用いず、炭素
材又は導電性のある耐火物を実質的に炉内の空気の流通
を遮断した状態で電磁誘導加熱するので、好ましい状態
の還元雰囲気が実現される。結果として酸素、窒素等の
ガス含有量の少ない上質の溶湯の製造を可能とし、特別
の排ガス処理設備を要しないので、公害防止対策上も好
ましい。
As described above, in the melting method of the present invention, the carbon material 1 is used as a heating element (heating medium) by electromagnetic induction heating.
It also acts as a reducing agent in refining. Therefore,
Unlike the conventional heating and melting method by the combustion method, the carbon material or the electrically conductive refractory itself is not exposed to the combustion gas, so that the consumption amount is extremely small. Further, without using a combustion gas for heating the carbon material or the conductive refractory material, since the carbon material or the conductive refractory material is heated by electromagnetic induction in a state where the flow of air in the furnace is substantially cut off, A reducing atmosphere in a preferable state is realized. As a result, it is possible to manufacture a high-quality molten metal having a low gas content of oxygen, nitrogen, etc., and no special exhaust gas treatment equipment is required, which is preferable in terms of pollution prevention measures.

【0067】[0067]

【発明の効果】以上詳述したように本発明により所期の
目的を達成することができた。すなわち、銑ダライのよ
うな微細な材料をも効率良く溶解することができると共
に、酸化物も加熱された炭素材と還元性の雰囲気の精錬
作業により還元することができ、スラグを殆ど発生させ
ることなくガス含有量の少ない良質の金属を連続的に、
しかも工業的に得ることができるという効果を奏する。
As described above in detail, according to the present invention, the intended purpose can be achieved. That is, it is possible to efficiently dissolve even fine materials such as pig iron, and oxides can also be reduced by refining work of a heated carbon material and a reducing atmosphere, and almost no slag is generated. Continuous, high quality metal with low gas content,
Moreover, there is an effect that it can be industrially obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の溶解方法を実施するために使用する溶
解装置の全体構成の要部を示す斜視図。
FIG. 1 is a perspective view showing a main part of an overall configuration of a melting apparatus used for carrying out a melting method of the present invention.

【図2】同じく炉の詳細を示す要部縦断面図。FIG. 2 is a vertical cross-sectional view of the essential parts showing the details of the furnace.

【図3】同じく被溶解材の供給手段の動作を説明するた
めの制御系ブロック図。
FIG. 3 is a block diagram of a control system for explaining the operation of the supply means of the material to be melted.

【図4】同じく供給手段の構成を示す斜視図。FIG. 4 is a perspective view showing the structure of the supply means.

【符号の説明】[Explanation of symbols]

1…炭素材、 2…被溶解材、 3…電磁コイル、 4…耐火材、 5…出湯口、 6…供給手段、 7…前炉、 8…予熱手段、 9…高周波エネルギー印加手段、 10…制御手段、 11…被溶解材投入口、 12…炉、 13…炉底部、 14…バーナー、 103…コンベア、 104、108、112、113…ライン、 105…電圧比較装置、 106…基準電圧発生装置、 107…演算装置、 110…電力制御装置、 111…電圧変換装置、 114、115…制御ライン、 200…材料取り出し手段、 201…ホッパー、 202…電子制御秤。 DESCRIPTION OF SYMBOLS 1 ... Carbon material, 2 ... Melting material, 3 ... Electromagnetic coil, 4 ... Refractory material, 5 ... Gate, 6 ... Supply means, 7 ... Front furnace, 8 ... Preheating means, 9 ... High frequency energy applying means, 10 ... Control means, 11 ... Melted material charging port, 12 ... Furnace, 13 ... Furnace bottom part, 14 ... Burner, 103 ... Conveyor, 104, 108, 112, 113 ... Line, 105 ... Voltage comparison device, 106 ... Reference voltage generation device , 107 ... Arithmetic device, 110 ... Power control device, 111 ... Voltage conversion device, 114, 115 ... Control line, 200 ... Material extracting means, 201 ... Hopper, 202 ... Electronically controlled balance.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 F27D 7/06 F27D 7/06 C ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Office reference number FI technical display location F27D 7/06 F27D 7/06 C

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】炉底部に出湯口が設けられ、上部に被溶解
材投入口が設けられている炉の底部上に炭素材及び導電
性のある耐火物の少なくとも一方の材料を加熱媒体とし
て積層し、炉壁の外周に設けられた電磁コイルに電力を
供給することにより、この積層した加熱媒体を電磁誘導
加熱によって加熱し、加熱されているこの加熱媒体上に
被溶解材を連続的に投入して被溶解材を加熱溶解し、こ
の溶湯を出湯口から流出させる被溶解材の連続的加熱溶
解方法であって、前記電磁誘導加熱においては、電磁コ
イルに給電する電力を電源側の電力制御装置により溶解
に必要とされる一定値に制御すると共に、加熱媒体及び
被溶解材がそれぞれ発熱する熱量の比率を予め一定値に
定めておき、しかも被溶解材の溶解に基づいて変動する
電流及び電圧からなるパラメータのうちの何れか一つが
所定の基準値を維持することができるように制御し、こ
の基準値に基づいて炉内に投入する被溶解材の投入量を
調整し、それによって出湯口から流出する溶湯の温度を
所定温度に調節するように構成して成る連続的加熱溶解
方法。
1. A carbon material and at least one material of a conductive refractory material are laminated as a heating medium on the bottom of a furnace having a tap hole at the bottom of the furnace and an inlet for the material to be melted at the top. Then, by supplying electric power to the electromagnetic coil provided on the outer periphery of the furnace wall, the laminated heating medium is heated by electromagnetic induction heating, and the material to be melted is continuously put on the heated heating medium. A method of continuously heating and melting a material to be melted by heating and melting the material to be melted, and causing the melt to flow out from a tap hole. In the electromagnetic induction heating, power supplied to an electromagnetic coil is controlled by a power supply side. While controlling the constant value required for melting by the device, the ratio of the amount of heat generated by the heating medium and the material to be melted is set in advance to a constant value, and the current and the current that fluctuate based on the melting of the material to be melted From voltage One of the parameters is controlled so that it can maintain a predetermined reference value, and based on this reference value, the amount of the melted material to be charged into the furnace is adjusted, and the A continuous heating and melting method constituted so that the temperature of the molten metal flowing out is adjusted to a predetermined temperature.
【請求項2】上記電力に対応する電圧を受け、この電圧
を基準電圧と比較して大きい場合には炉内に被溶解材を
投入し、小さい場合には投入を停止させるよう自動的に
投入量を制御し、それによって出湯口から流出する溶湯
の温度を所定温度に調節するように構成して成る請求項
1記載の連続的加熱溶解方法。
2. A voltage corresponding to the electric power is received, and when the voltage is larger than a reference voltage, the material to be melted is charged into the furnace, and when the voltage is smaller than the reference voltage, the material is automatically charged so as to stop the charging. The continuous heating and melting method according to claim 1, wherein the amount is controlled so that the temperature of the molten metal flowing out from the tap hole is adjusted to a predetermined temperature.
【請求項3】炉底部に出湯口が設けられ、上部に被溶解
材投入口が設けられている炉の底部上に炭素材及び導電
性のある耐火物の少なくとも一方の材料を加熱媒体とし
て積層し、炉壁の外周に設けられた電磁コイルに電力を
供給することにより、この積層した加熱媒体を電磁誘導
加熱によって加熱し、加熱されているこの加熱媒体上に
被溶解材を連続的に投入して被溶解材を加熱溶解し、こ
の溶湯を出湯口から連続的に流出させる被溶解材の連続
的加熱溶解方法であって、前記電磁誘導加熱において
は、電磁コイルに供給する電力を電源側の電力制御装置
により一定に制御すると共に、加熱媒体及び被溶解材が
それぞれ発熱する熱量の比率を予め一定値に定めてお
き、投入された被溶解材が溶解するに伴い変動する電磁
コイルのインピーダンス変動分を、電磁コイルに印加す
る電圧もしくは電流の何れか一方を変化させることによ
って補償し、前記電力に対応する電圧を受け、この電圧
を基準電圧と比較して大きい場合には炉内に被溶解材を
投入し、小さい場合には投入を停止させるよう投入量を
制御し、それによって出湯口から流出する溶湯の温度を
所定温度に調節するように構成して成る連続的加熱溶解
方法。
3. A carbon material or at least one material of a conductive refractory material is laminated as a heating medium on the bottom of a furnace having a tap hole provided at the bottom of the furnace and an inlet for the material to be melted provided at the top. Then, by supplying electric power to the electromagnetic coil provided on the outer periphery of the furnace wall, the laminated heating medium is heated by electromagnetic induction heating, and the material to be melted is continuously put on the heated heating medium. A method for continuously heating and melting a material to be melted by heating and melting the material to be melted, and continuously flowing out the molten metal from a tap hole. In the electromagnetic induction heating, power supplied to an electromagnetic coil is supplied to a power source side. Of the electromagnetic coil that varies with the melting of the melted material, which is controlled by the electric power control device of FIG. The fluctuation is compensated by changing either the voltage or the current applied to the electromagnetic coil, and the voltage corresponding to the electric power is received. If this voltage is larger than the reference voltage, it is stored in the furnace. A continuous heating and melting method in which a melting material is charged, and when it is small, the charging amount is controlled so as to stop the charging, and thereby the temperature of the molten metal flowing out from the tap hole is adjusted to a predetermined temperature.
【請求項4】上記電圧を監視して被溶解材投入口から複
数種類の被溶解材をそれぞれ所定量秤量して炉内に投入
するに際しては、前記複数種類の被溶解材のそれぞれの
秤量データを受領して演算装置により各秤量データを積
算するとともに、それらの積算量の配合比率が所定の範
囲内にあるか否かを判断して、任意の被溶解材の積算値
がこの所定の範囲を越えた場合に、その被溶解材の取り
出し作業を停止させるように被溶解材の取り出し動作を
制御するようにして成る請求項3記載の連続的加熱溶解
装置。
4. The weighing data of each of the plurality of types of melted materials when the plurality of types of melted materials are weighed by predetermined amounts from the melted material charging ports and charged into the furnace by monitoring the voltage. Upon receipt of the data, the calculation device integrates each weighing data, and it is judged whether the blending ratio of the integrated amounts is within a predetermined range, and the integrated value of any material to be melted is within the predetermined range. 4. The continuous heating and melting apparatus according to claim 3, wherein the operation of taking out the material to be melted is controlled so that the operation of taking out the material to be melted is stopped when the temperature exceeds the value.
【請求項5】上記被溶解材を上記積層した材料上に投入
する前に、前記積層した材料を予熱して成る請求項1乃
至4いずれか一つに記載の連続的加熱溶解方法。
5. The continuous heating and melting method according to claim 1, wherein the layered material is preheated before the material to be melted is put on the layered material.
【請求項6】上記被溶解材を上記積層した材料上に投入
する前に、上記出湯口から炉の内部のガスを吸引するこ
とにより前記積層した材料の下部を加熱し、前記積層し
た材料の上部が前記被溶解材の溶解温度に達した時に前
記出湯口を閉塞し、前記積層した材料の重量を越えない
量の金属材料を投入して溶解し、この金属材料の投入か
ら所定時間の後に前記出湯口を開放するとともに、被溶
解材を前記積層した材料上に投入して成る請求項1乃至
4いずれか一つに記載の連続的加熱溶解方法。
6. Prior to charging the material to be melted onto the layered material, the lower part of the layered material is heated by sucking gas inside the furnace from the tap hole to heat the layered material. When the upper portion reaches the melting temperature of the material to be melted, the tap hole is closed, and a quantity of metal material that does not exceed the weight of the stacked materials is charged and melted, and after a predetermined time from the charging of the metal material. The continuous heating and melting method according to any one of claims 1 to 4, wherein the molten metal is put on the laminated material while the tap hole is opened.
【請求項7】上記電磁誘導加熱は、上記炉の外壁に装架
された電磁コイルに高周波エネルギーを印加することに
より行われる請求項1乃至6いずれか一つに記載の連続
的加熱溶解方法。
7. The continuous heating and melting method according to claim 1, wherein the electromagnetic induction heating is performed by applying high-frequency energy to an electromagnetic coil mounted on the outer wall of the furnace.
【請求項8】上記炉底部に積層した加熱媒体は3,00
0〜10,000μΩcmの固有抵抗を有すると共に、
上記被溶解材は金属材料から成る請求項1乃至6いずれ
か一つに記載の連続的加熱溶解方法。
8. The heating medium laminated on the bottom of the furnace is 3,000.
While having a specific resistance of 0 to 10,000 μΩcm,
7. The continuous heat melting method according to claim 1, wherein the material to be melted is made of a metal material.
【請求項9】上記被溶解材は鉄材であり、電磁誘導加熱
による加熱媒体の発熱量を20〜50%であり、鉄材の
発熱量を残部の80〜50%に調整して上記出湯口から
1,400〜1,600℃の溶融鋳鉄を得るように構成
して成る請求項1乃至6いずれか一つに記載の連続的加
熱溶解方法。
9. The material to be melted is an iron material, the heat generation amount of a heating medium by electromagnetic induction heating is 20 to 50%, and the heat generation amount of the iron material is adjusted to 80 to 50% of the balance, and the heat is generated from the tap hole. The continuous heating and melting method according to any one of claims 1 to 6, which is configured to obtain molten cast iron at 1,400 to 1,600 ° C.
【請求項10】上記高周波エネルギーの周波数が500
〜5,000Hzであり、出力が100〜10,000
kWである請求項7記載の連続的加熱溶解方法。
10. The frequency of the high frequency energy is 500.
~ 5,000 Hz, output is 100-10,000
The continuous heating and melting method according to claim 7, which is kW.
JP09642496A 1996-04-18 1996-04-18 Continuous heating melting method Expired - Fee Related JP3263928B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09642496A JP3263928B2 (en) 1996-04-18 1996-04-18 Continuous heating melting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09642496A JP3263928B2 (en) 1996-04-18 1996-04-18 Continuous heating melting method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP11754390A Division JP2914717B2 (en) 1990-05-09 1990-05-09 Continuous heating and melting equipment

Publications (2)

Publication Number Publication Date
JPH08260064A true JPH08260064A (en) 1996-10-08
JP3263928B2 JP3263928B2 (en) 2002-03-11

Family

ID=14164614

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09642496A Expired - Fee Related JP3263928B2 (en) 1996-04-18 1996-04-18 Continuous heating melting method

Country Status (1)

Country Link
JP (1) JP3263928B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012180572A (en) * 2011-03-02 2012-09-20 Nippon Steel Corp Method for temperature elevation of molten metal by induction heating

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5075977A (en) * 1973-04-30 1975-06-21 Boliden Ab

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5075977A (en) * 1973-04-30 1975-06-21 Boliden Ab

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012180572A (en) * 2011-03-02 2012-09-20 Nippon Steel Corp Method for temperature elevation of molten metal by induction heating

Also Published As

Publication number Publication date
JP3263928B2 (en) 2002-03-11

Similar Documents

Publication Publication Date Title
KR930007137B1 (en) Apparatus for continuous steelmaking
EP2409101B1 (en) Steel production facility
CA2219763C (en) Process for producing foundry iron
JPS61502899A (en) Continuous steel making process and equipment
JP5236926B2 (en) Manufacturing method of molten steel
US20220389529A1 (en) Direct current electric arc furnace
US4996402A (en) Method and apparatus for continuously melting material by induction heating
JP3263928B2 (en) Continuous heating melting method
EP0116405A1 (en) Steel production using channel induction furnace
JP2914717B2 (en) Continuous heating and melting equipment
US3413401A (en) Method and apparatus for melting metals by induction heating
JPH08273826A (en) Computing method for optimum target total quantity of electricity supply for electric furnace and electric furnace installation
US3891427A (en) Method for melting prereduced ore and scrap
US4023962A (en) Process for regenerating or producing steel from steel scrap or reduced iron
JPH09165613A (en) Scrap melting method
SE438730B (en) PROCEDURE AND DEVICE FOR MELTING AND EVEN REFINING, AND HEATING OF SA MOLD
JPH08233468A (en) Melting apparatus
CN117501059A (en) Improved hybrid smelting system
JPH05231777A (en) Method and device for heating and melting material
JP2003268433A (en) Process for operating converter equipped with heating- type storage furnace for storing molten iron

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees