JPH08259926A - Alumina-sintered abrasive grain and production thereof - Google Patents

Alumina-sintered abrasive grain and production thereof

Info

Publication number
JPH08259926A
JPH08259926A JP7090186A JP9018695A JPH08259926A JP H08259926 A JPH08259926 A JP H08259926A JP 7090186 A JP7090186 A JP 7090186A JP 9018695 A JP9018695 A JP 9018695A JP H08259926 A JPH08259926 A JP H08259926A
Authority
JP
Japan
Prior art keywords
alumina
abrasive grains
sol
added
calcium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7090186A
Other languages
Japanese (ja)
Other versions
JP3609144B2 (en
Inventor
Hiroshi Saegusa
浩 三枝
Tetsuo Hatanaka
哲雄 畠中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP09018695A priority Critical patent/JP3609144B2/en
Publication of JPH08259926A publication Critical patent/JPH08259926A/en
Application granted granted Critical
Publication of JP3609144B2 publication Critical patent/JP3609144B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Polishing Bodies And Polishing Tools (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

PURPOSE: To obtain alumina-sintered abrasive grains excellent in grinding performance and high in hardness and toughness by controlling the crystalline texture thereof in producing the abrasive grains according to a sol-gel method wherein alumina monohydrate is used as the starting material. CONSTITUTION: Lithium-free alumina-sintered abrasive grains have calcium-contg. platy crystal grains of at least 1μm in major axis diameter, and a submicron crystalline texture in the portions thereof other than the platy crystal grains. The abrasive grains are obtd. either by a method wherein fine α-alumina particles are added to an alumina sol contg. calcium ions, followed by gelation and subsequent sintering, or by a method wherein an alumina sol contg. α-alumina particles is turned into gel, dried, calcined, impregnated with calcium ions, and sintered. The amt. of calcium to be added is pref. 0.5 to 3wt.% in terms of CaO based on the alumina-sintered abrasive grains. The BET value of the fine α-alumina particles to be added is pref. at least 40m<2> /g, while the amt. thereof is pref. 0.3 to 3wt.% based on the wt. of alumina in the alumina sol.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は研削性能に優れ、硬度お
よび靭性値が高いアルミナ質焼結砥粒に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an alumina-based sintered abrasive grain having excellent grinding performance and high hardness and toughness.

【0002】[0002]

【従来の技術】従来のアルミナ質焼結砥粒にはアルミナ
1水和物(擬ベーマイト)を原料としたゾルゲル法によ
り造られた微細な結晶組織よりなる砥粒があり、それに
は種々の添加剤を用いて研磨材が造られている。特開昭
57−207672には、金属含有焼結助剤および0.
05重量%より高く1.8重量%より低いナトリウム+
カルシウムを含むゾルゲル法アルミナ質焼結砥粒および
その製造方法について記載されている。また特開平3−
234785には、酸化リチウムを含むゾルゲル法アル
ミナ質砥粒およびその製造方法が記載されており、この
際改質成分としてMg、Ca、Co、Ni、Cr、F
e、Si、Zn、Mn、TiおよびZrを添加しても良
いと記載されている。またカルシウムを含むアルミナ系
焼結体については、粉末焼結法によるものであるが特開
平6−157133に板状または棒状のアルミナ系化合
物組織と微細な粒状コランダム組織とが均一に分散して
いるアルミナ系複合焼結体およびその製造方法が記載さ
れており、この時結晶を成長させるためCaO、TiO
2 、B23 、ZnO、MnO2 、LiF、Y23
La23 の少なくとも1種を添加し、結晶成長を抑え
るためにZrO2 、MgOの1種を添加すると記載され
ている。またこの時の微細なコランダム組織の好ましい
大きさは1〜10μmであり、板状または棒状アルミナ
系化合物組織の好ましい大きさは10〜100μmであ
ると記載されている。
2. Description of the Related Art Conventional sintered alumina abrasive grains include abrasive grains having a fine crystal structure produced by a sol-gel method using alumina monohydrate (pseudo-boehmite) as a raw material, and various additives are added thereto. The abrasive is made using the agent. Japanese Patent Application Laid-Open No. 57-207672 discloses a metal-containing sintering aid and a metal-containing sintering aid.
Sodium higher than 05 wt% and lower than 1.8 wt% +
A sol-gel method alumina-based sintered abrasive grain containing calcium and a method for producing the same are described. In addition, Japanese Patent Laid-Open No. 3-
No. 234785 describes a sol-gel method alumina abrasive grain containing lithium oxide and a method for producing the same, in which Mg, Ca, Co, Ni, Cr and F are used as modifying components.
It is described that e, Si, Zn, Mn, Ti and Zr may be added. Regarding the alumina-based sintered body containing calcium, which is obtained by the powder sintering method, the plate-shaped or rod-shaped alumina-based compound structure and the fine granular corundum structure are uniformly dispersed in JP-A-6-157133. An alumina-based composite sintered body and a method for producing the same are described. At this time, in order to grow crystals, CaO, TiO
2 , B 2 O 3 , ZnO, MnO 2 , LiF, Y 2 O 3 ,
It is described that at least one kind of La 2 O 3 is added and one kind of ZrO 2 and MgO is added in order to suppress crystal growth. It is also described that the fine corundum structure at this time has a preferable size of 1 to 10 μm, and the plate-like or rod-shaped alumina compound structure has a preferable size of 10 to 100 μm.

【0003】[0003]

【発明が解決しようとする課題】粉末焼結法による場
合、ある程度の焼結体の硬度を得るためには焼結温度を
高くする必要があり、その結果、焼結体の結晶サイズは
かなり大きくなり、強度、靭性値で問題となり、砥粒と
して優れたものは得難い。そのためサブミクロン組織の
砥粒を得る目的で最近はゾルゲル法によるアルミナ質砥
粒の製造方法が主に検討されているが、砥粒の硬度およ
び靭性値をともに高くすることにはまだ改善が望まれて
いる。従って、ゾルゲル法によって均一な微細組織だけ
のものを造るのでなく、結晶組織を制御し、硬度をより
高くするとともに靭性値も高い砥粒を提供することを本
発明の目的とする。
In the powder sintering method, it is necessary to raise the sintering temperature in order to obtain a certain degree of hardness of the sintered body, and as a result, the crystal size of the sintered body is considerably large. However, it is difficult to obtain excellent abrasive grains because of problems in strength and toughness. For this reason, a method for producing alumina-based abrasive grains by the sol-gel method has recently been mainly studied for the purpose of obtaining abrasive grains having a submicron structure, but improvement is still desired to increase both hardness and toughness of the abrasive grains. It is rare. Therefore, it is an object of the present invention to provide an abrasive grain that controls the crystal structure, increases the hardness, and has a high toughness value, instead of producing only a uniform microstructure by the sol-gel method.

【0004】[0004]

【課題を解決するための手段】発明者は上記目的を達成
すべき努力し、いろいろ検討した結果、本発明を見出し
た。即ち、カルシウムを含有する長径1μm以上の板状
結晶粒を有し、板状結晶粒でない部分はサブミクロンの
結晶組織であり、リチウムを含有しないことを特徴とす
るアルミナ質焼結砥粒並びにその製造方法としてカルシ
ウムイオンを含有するアルミナゾルにαアルミナ微粒子
を添加し、ゲル化した後焼結することを特徴とするアル
ミナ質焼結砥粒の製造方法およびαアルミナ微粒子を含
有するアルミナゾルをゲル化し、乾燥、仮焼後、カルシ
ウムイオンを含浸し焼結することを特徴とするアルミナ
質焼結砥粒の製造方法を見出した。
The inventor has made an effort to achieve the above-mentioned object, and as a result of various studies, found the present invention. That is, a sintered alumina abrasive grain characterized by having plate-shaped crystal grains containing calcium and having a major axis of 1 μm or more, and a non-plate-shaped crystal grain having a submicron crystal structure and not containing lithium Α-alumina fine particles are added to an alumina sol containing calcium ions as a production method, and a method for producing an alumina-based sintered abrasive grain characterized by being gelled and then sintered and an alumina sol containing α-alumina fine particles are gelled, The present inventors have found a method for producing an alumina-based sintered abrasive grain characterized by impregnating with calcium ions and sintering after drying and calcination.

【0005】まず、本発明のうち製造方法につき述べ
る。(擬)ベーマイト(例えば、Condea社からS
B Pural Aluminaなる商品名で市販され
ている)を硝酸、その他の酸と混合して、まずゾル化す
る。このアルミナゾルにカルシウムイオンを入れる場
合、水溶性のカルシウム塩(例えば、硝酸塩、ハロゲン
化物、酢酸塩等)を溶液状態で添加する。この溶液は水
溶液で添加するのがコスト的に好ましいが、低級アルコ
ールの溶液でも可能であるが、上記の酢酸カルシウムは
アルコールには不溶である。本発明ではカルシウムの添
加はゾル状態で添加するか、または含浸処理で添加する
か、またはその両方で添加する方法がある。
First, the manufacturing method of the present invention will be described. (Pseudo) boehmite (eg S from Condea
(Commercially available under the trade name of B Pural Alumina) is mixed with nitric acid and other acids to form a sol. When calcium ions are added to this alumina sol, a water-soluble calcium salt (for example, nitrate, halide, acetate, etc.) is added in a solution state. It is preferable to add this solution as an aqueous solution in terms of cost, but it is also possible to use a solution of a lower alcohol, but the above calcium acetate is insoluble in alcohol. In the present invention, there is a method of adding calcium in a sol state, an impregnation treatment, or both.

【0006】好ましいカルシウムの添加量はアルミナ質
焼結砥粒としてCaO換算で0.5〜3wt%で、0.
5wt%未満では板状結晶粒の析出が少なく高靭性化の
効果が少なく、また3wt%を越えると板状結晶粒が多
くなりすぎ砥粒の密度が低く好ましくない。カルシウム
の添加が、ゾル状態かまたは含浸処理のみの場合はその
添加量は上記のアルミナ質焼結砥粒中の好ましい含有量
になるような値であり、両方の段階で添加する場合は総
量としてアルミナ質焼結砥粒中の含量を上記の好ましい
範囲になるようにそれぞれの段階での添加量を調整す
る。
[0006] The preferable amount of calcium added is 0.5 to 3 wt% in terms of CaO as alumina-based sintered abrasive grains.
If it is less than 5 wt%, the precipitation of plate-like crystal grains is small and the effect of increasing the toughness is small, and if it exceeds 3 wt%, the plate-like crystal grains are excessively large and the density of the abrasive grains is low, which is not preferable. When the addition of calcium is in the sol state or only in the impregnation treatment, the addition amount is a value such that it becomes a preferable content in the above alumina-based sintered abrasive grains, and when it is added in both stages, the total amount is The addition amount in each stage is adjusted so that the content in the alumina-based sintered abrasive grains is within the above-mentioned preferable range.

【0007】本発明ではアルミナゾルに必ずαアルミナ
微粒子を添加する。(擬)ベーマイトにαアルミナ微粒
子を混合し、酸でゾル化してもよい。添加するαアルミ
ナ微粒子は、好ましくはBET値40m2 /g以上、よ
り好ましくは60m2 /g以上の微粒子であり、その添
加量はアルミナゾル中のアルミナの重量に対し、0.3
〜3wt%が好ましい。0.3wt%未満では砥粒のア
ルミナ結晶サイズが微細にならず、また3wt%を越え
ても結晶の微細化がさらに向上することは殆ど認められ
ず好ましくない。
In the present invention, α-alumina fine particles are always added to alumina sol. It is also possible to mix α-alumina fine particles with (pseudo) boehmite and form a sol with an acid. The α-alumina fine particles to be added are preferably those having a BET value of 40 m 2 / g or more, more preferably 60 m 2 / g or more, and the addition amount thereof is 0.3 with respect to the weight of alumina in the alumina sol.
-3 wt% is preferable. If it is less than 0.3 wt%, the alumina crystal size of the abrasive grains will not become fine, and if it exceeds 3 wt%, further refinement of the crystal is hardly recognized, which is not preferable.

【0008】更にアルミナゾルに、砥粒のアルミナ結晶
サイズの成長抑制剤としてMg、Ni、Co、Zr等の
化合物を添加してもよい。アルミナゾルにカルシウム塩
を添加した場合、または、カルシウム塩を添加しなくて
も上記のMg化合物等の結晶成長抑制剤を添加するとゲ
ル化する。次に、アルミナゾルを乾燥するか、または上
記のようにゲル化したものを乾燥する。ともにその乾燥
条件は、80〜120℃で10〜72時間にて乾燥ゲル
内に内包しないようにゆっくり乾燥する。
Further, a compound such as Mg, Ni, Co or Zr may be added to the alumina sol as a growth inhibitor for the alumina crystal size of the abrasive grains. Gelation occurs when a calcium salt is added to the alumina sol, or when a crystal growth inhibitor such as the above Mg compound is added without adding the calcium salt. Next, the alumina sol is dried, or the gelled product as described above is dried. Both are dried at 80 to 120 ° C. for 10 to 72 hours so as not to be encapsulated in the dry gel.

【0009】乾燥ゲルを所定の砥粒の粒度になるように
粉砕、整粒する。その後、仮焼し、ゾル化に用いた酸や
結晶水を除去し、γアルミナ化する。仮焼条件としては
550〜900℃で全水分量の95wt%以上を除去さ
せることが好ましく、仮焼時間は2時間程度が好まし
い。仮焼温度が900℃を越えると仮焼ゲル中に十分に
細孔が形成されず、カルシウム塩溶液が粒子内に所定の
量含浸され難く、特に砥粒内部への含浸が困難となる。
また、仮焼ゲル中の残存水分が多くなり、乾燥ゲルの全
水分量の95wt%未満の除去率でも同様な困難を生じ
る。仮焼温度が550℃未満では水分の除去率が低いた
めまた好ましくない。
The dry gel is crushed and sized so that the grain size of the predetermined abrasive grain is obtained. After that, calcination is performed to remove the acid used for sol formation and water of crystallization to form γ-alumina. As calcination conditions, it is preferable to remove 95 wt% or more of the total water content at 550 to 900 ° C., and calcination time is preferably about 2 hours. When the calcination temperature exceeds 900 ° C., pores are not sufficiently formed in the calcination gel, and it becomes difficult to impregnate a predetermined amount of the calcium salt solution into the particles, and particularly it becomes difficult to impregnate the inside of the abrasive grains.
Further, the residual water content in the calcined gel increases, and the same difficulty occurs even when the removal rate is less than 95 wt% of the total water content of the dry gel. If the calcination temperature is less than 550 ° C, the removal rate of water is low, which is also not preferable.

【0010】次に上記のように造られた仮焼ゲルに対
し、ゾル状態で未添加の場合、前述の全量を、ゾル状態
で一部添加した場合は前述の残量分を前述のようなカル
シウム塩の溶液を含浸させる。該溶液の溶媒としては、
水、エタノール、アセトン等が使用できるが、表面張力
の小さな溶媒の方が砥粒内部への含浸効果が大きいの
で、エタノールが好ましく、生産コスト的には水が好ま
しい。また該溶液は、可能な限り濃度を高めるようにす
るのが望ましい。そのため、塩を溶かす溶媒は温度を上
げて溶解度を高めた状態で使用することが望ましい。塩
を溶解した溶液は濃度が高いため、その溶液を前述の仮
焼ゲルに含浸するには、その溶液と仮焼ゲルとを混合す
るような状態で行えばよいが、仮焼ゲルを網目上にのせ
て含浸溶液中に浸した後、この仮焼ゲルを網目ごと引き
上げる方法などがあり、特に限定されるものではない。
また含浸の際の雰囲気の加圧や脱気を行っても構わない
が、好ましい方法は所定量の含浸溶液をほぼ全体に行き
渡るように注入した後、この湿潤物をかき混ぜて均一化
するのが好ましい。より好ましい方法としては溶液をス
プレー滴下し、仮焼ゲルに接触させるのがよい。含浸後
乾燥するが、また含浸する操作を繰り返し、前記の所定
量のカルシウム塩溶液を含浸し、乾燥してもよい。仮焼
ゲルにカルシウム塩を含浸、乾燥後、または仮焼ゲルに
対して含浸していない場合は、仮焼ゲルを以下のように
焼結させる。
Next, with respect to the calcined gel produced as described above, when the sol state is not added, the above-mentioned whole amount is added, and when the sol state is partially added, the above-mentioned remaining amount is as described above. Impregnate with a solution of calcium salt. As the solvent of the solution,
Although water, ethanol, acetone or the like can be used, ethanol is preferable because the solvent having a small surface tension has a greater effect of impregnating the inside of the abrasive grains, and water is preferable in terms of production cost. Further, it is desirable that the concentration of the solution be as high as possible. Therefore, it is desirable to use the solvent that dissolves the salt in a state where the temperature is raised to increase the solubility. Since the solution in which the salt is dissolved has a high concentration, in order to impregnate the solution into the above-mentioned calcined gel, it is sufficient to mix the solution with the calcined gel. There is a method of picking up the calcinated gel together with the mesh after immersing it in the impregnating solution after placing it on, and the method is not particularly limited.
Although the atmosphere during the impregnation may be pressurized or degassed, a preferable method is to inject a predetermined amount of the impregnating solution so as to cover almost the entire area, and then stir this wet product to homogenize it. preferable. As a more preferable method, it is preferable to spray the solution and bring it into contact with the calcined gel. It may be dried after impregnation, but the operation of impregnation may be repeated to impregnate with the predetermined amount of the calcium salt solution and then dried. After the calcined gel is impregnated with calcium salt, dried, or if the calcined gel is not impregnated, the calcined gel is sintered as follows.

【0011】カルシウムを含んだ仮焼ゲルをロータリー
キルン等の炉で加熱し焼結させる。最高温度を1100
〜1400℃の温度範囲で焼結する。この際に、900
〜1100℃の温度範囲を90秒以内で急熱処理するこ
とが好ましい。急熱することにより、γアルミナからα
アルミナへの相変態が急激に起こるとともに組織の緻密
化が促進され、硬度も向上する。焼結温度での保持時間
は温度が高い程短くなり、1400℃で2分程度、12
00〜1400℃の範囲では2分ないし10分間、11
00〜1200℃の温度範囲では、10分ないし、10
時間の保持時間が必要である。また1100〜1300
℃の温度範囲で2分ないし10分間保持した後、更に1
000〜1200℃で1〜100時間保持するような2
段焼結処理をしてもよい。
The calcined gel containing calcium is heated and sintered in a furnace such as a rotary kiln. Maximum temperature is 1100
Sinter in the temperature range of ˜1400 ° C. At this time, 900
It is preferable to perform rapid heat treatment within a temperature range of ˜1100 ° C. within 90 seconds. By rapidly heating it
The phase transformation to alumina occurs rapidly, the densification of the structure is promoted, and the hardness is also improved. The higher the temperature, the shorter the holding time at the sintering temperature becomes.
2 to 10 minutes in the range of 00 to 1400 ° C., 11
In the temperature range of 00 to 1200 ° C., 10 minutes to 10 minutes
Hold time is necessary. Also 1100 to 1300
After holding for 2 to 10 minutes in the temperature range of ℃, 1 more
2 such as holding at 000 to 1200 ° C for 1 to 100 hours
Stage sintering treatment may be performed.

【0012】次に本発明のアルミナ質焼結砥粒について
説明する。添加されたカルシウムイオンは主にアルミナ
と反応しカルシウムアルミネートCaO・6Al23
となっている。サブミクロンである微細な結晶組織から
なるアルミナの粒界にCaOやCaO・6Al23
存在するかどうかは1000倍程度のEPMA分析では
不明である。本発明のアルミナ質焼結砥粒内に存在する
CaO・6Al23 は、長径が1μm以上であり、多
くの場合10μm以下であり、長径/短径比は多くの場
合1〜3であり、また長径/厚さ比も多くの場合2以上
であり、主には3〜10である。CaO・6Al23
よりなる板状結晶粒の長径は1μm以上であるが、アル
ミナ質焼結砥粒のうち板状結晶粒でない部分は平均粒径
が1μm以下であるサブミクロンのアルミナの微細な結
晶組織である。
Next, the alumina-based sintered abrasive grains of the present invention will be described. The added calcium ions mainly react with alumina, and calcium aluminate CaO ・ 6Al 2 O 3
Has become. Whether or not CaO or CaO.6Al 2 O 3 exists at the grain boundaries of alumina having a submicron fine crystal structure is unknown by a 1000 times EPMA analysis. CaO.6Al 2 O 3 present in the alumina-based sintered abrasive grains of the present invention has a major axis of 1 μm or more, often 10 μm or less, and a major axis / minor axis ratio of 1 to 3 in many cases. In addition, the major axis / thickness ratio is often 2 or more, mainly 3 to 10. CaO ・ 6Al 2 O 3
The major axis of the plate-shaped crystal grains is 1 μm or more, but the non-plate-shaped crystal grains in the alumina-based sintered abrasive grains have a fine crystal structure of submicron alumina having an average grain size of 1 μm or less.

【0013】本発明のアルミナ質焼結砥粒は上記のよう
な結晶組織のため非常に高い靭性および硬度などを有
し、優れた研削性能を発揮する。概して、その靭性値
(タフネス;測定法は実施例1にて後述する)であるC
係数は0.7以下、硬度(ヌープ、100g荷重、保持
時間10秒)は15.5GPa以上、密度は理論値の9
0%以上である。
The alumina-based sintered abrasive grain of the present invention has extremely high toughness and hardness due to the above-mentioned crystal structure, and exhibits excellent grinding performance. Generally, its toughness value (toughness; measuring method will be described later in Example 1) is C.
The coefficient is 0.7 or less, the hardness (Knoop, 100 g load, holding time 10 seconds) is 15.5 GPa or more, and the density is 9 of the theoretical value.
It is 0% or more.

【0014】[0014]

【実施例】以下に、実施例および比較例により説明す
る。 実施例1 Condea社製擬ベーマイト(SB Pural A
lumina)500gを水1.9リットルに分散し
た。次に硝酸カルシウム・4水和物16.84g(アル
ミナに対しCaO換算量で1.1wt%)を水200g
に溶解し、この水溶液を擬ベーマイト分散液に加えた。
さらにαアルミナ微粒子(BET=64.7m2 /g)
を5.0g(アルミナゾル中のアルミナ重量に対し、
1.33wt%相当)を含む分散水溶液30.1gを添
加した後、67.5%HNO3 水溶液21.4mlと水
21.4mlとの混合液を添加し、アルミナゾルを造っ
た。このゾルをSUS製バットにて100℃で24時間
静置乾燥を行い、乾燥ゲルを得た。それを粉砕し、焼成
後JIS R 6001−1987の#60に相当する
ように、350〜500μmの粒に製粒した。この粒子
を650℃で2時間仮焼した。そしてこれをロータリー
キルンにて60秒で常温から急熱し、1350℃で2分
間滞留させ焼結した。得られた砥粒の組織を走査型電子
顕微鏡で観察したところ、平均長径3.25μmの板状
結晶粒と平均0.23μmの微細結晶粒からなってい
た。得られた砥粒の密度は、表1に示すように、水系の
アルキメデス法による測定では3.88g/cm3 、ヌ
ープ硬度(100g荷重、保持時間10秒)は20.1
GPaであった。
EXAMPLES Hereinafter, examples and comparative examples will be described. Example 1 Pseudo-boehmite manufactured by Condea (SB Pural A
500 g of lumina) was dispersed in 1.9 liters of water. Next, 16.84 g of calcium nitrate tetrahydrate (1.1 wt% in terms of CaO based on alumina) of 200 g of water
, And this aqueous solution was added to the pseudo-boehmite dispersion.
Furthermore, α-alumina fine particles (BET = 64.7 m 2 / g)
5.0 g (based on the weight of alumina in the alumina sol,
After adding 30.1 g of a dispersion aqueous solution containing 1.33 wt% (corresponding to 1.33 wt%), a mixed solution of 21.4 ml of a 67.5% HNO 3 aqueous solution and 21.4 ml of water was added to prepare an alumina sol. This sol was allowed to stand and dry for 24 hours at 100 ° C. in a SUS vat to obtain a dry gel. After crushing and firing, it was granulated into particles of 350 to 500 μm so as to correspond to # 60 of JIS R 6001-1987. The particles were calcined at 650 ° C. for 2 hours. Then, this was rapidly heated from room temperature in a rotary kiln for 60 seconds, retained at 1350 ° C. for 2 minutes and sintered. When the structure of the obtained abrasive grains was observed with a scanning electron microscope, it was found to be composed of plate crystal grains having an average major axis of 3.25 μm and fine crystal grains having an average diameter of 0.23 μm. As shown in Table 1, the density of the obtained abrasive grains was 3.88 g / cm 3 as measured by the water-based Archimedes method, and the Knoop hardness (100 g load, holding time 10 seconds) was 20.1.
It was GPa.

【0015】得られた#60の砥粒の靭性値はJIS
R 6128−1987(人造研削材のじん性の試験方
法)に準じたC係数にて求めた。C係数の測定法につい
て述べる。測定しようとする#60の砥粒約250gを
JIS R 6128−1987に測定した#60に相
当する標準ふるいの編成のロータップ試験機にて試料の
調製をする。次にこの試験試料100gを内径114m
mφ×120mmの約1.2リットル容量のボールミル
ポットに入れ、更に1/2インチφの鉄製ボール180
個を入れ、95rpm の回転にて粉砕する。その後、JI
S R 6128−1987に規定の操作、手順4〜7
に従い、212μmのふるいに留まった試料重量を求
め、それをR(X)とする。次に、標準試料として黒色
炭化けい素質研削材の#60につき上記と同様の操作を
行い、粉砕後、212μmのふるいに留まった試料重量
を求め、それをR(S)とし、次式にてC係数を算出す
る。 C係数=log(100/R(X))÷log(100
/R(S))
The toughness value of the resulting # 60 abrasive grains is JIS
It was determined by the C coefficient according to R 6128-1987 (a test method for toughness of artificial abrasives). The method of measuring the C coefficient will be described. Approximately 250 g of # 60 abrasive grains to be measured is measured by JIS R 6128-1987. A sample is prepared with a low-tap tester having a standard sieve knitting corresponding to # 60. Next, 100 g of this test sample is used for 114 m inside diameter.
It is put in a ball mill pot of mφ x 120 mm with a capacity of about 1.2 liters, and then a 1/2 inch φ iron ball 180
Put in pieces and grind at a rotation of 95 rpm. Then JI
Operation specified in SR 6128-1987, steps 4 to 7
According to the above, the weight of the sample retained on the sieve of 212 μm is determined, and it is defined as R (X). Next, the same operation as above was performed for # 60 of the black silicon carbide abrasive as a standard sample, and after crushing, the weight of the sample retained on the 212 μm sieve was obtained. Calculate the C coefficient. C coefficient = log (100 / R (X)) ÷ log (100
/ R (S))

【0016】この値が小さい程、靭性が高いことになる
が、実施例1の得られた#60の砥粒のC係数は0.6
3であった。また、得られた砥粒につき1000倍のE
PMA分析の結果、Caはカルシウムアルミネートから
なる板状結晶粒に主に存在し、サブミクロンである微細
な結晶組織からなるアルミナの粒界に存在するかどうか
はよく分からなかった。
The smaller this value is, the higher the toughness is, but the C coefficient of the # 60 abrasive grain obtained in Example 1 is 0.6.
It was 3. In addition, 1000 times E for the obtained abrasive grains
As a result of PMA analysis, it was not clear whether Ca was mainly present in the plate-like crystal grains composed of calcium aluminate and was present in the grain boundaries of alumina composed of a submicron fine crystal structure.

【0017】実施例2 実施例1において硝酸カルシウムを添加する際に、さら
に硝酸マグネシウム・6水和物5.7g(アルミナゾル
中のアルミナ重量に対しMgO量で0.25wt%)を
添加したこと以外は実施例1と同一条件、同一処理を行
い砥粒を得た。その結果、得られた砥粒特性は表1に示
すように、組織粒径は平均長径3.02μmの板状結晶
粒と平均0.21μmの微細結晶粒であった。また密度
は3.89g/cm3 、ヌープ硬度は20.6GPaで
あり、C係数は0.65であった。
Example 2 Except that 5.7 g of magnesium nitrate hexahydrate (0.25 wt% in terms of MgO content relative to the weight of alumina in the alumina sol) was added when calcium nitrate was added in Example 1. Was subjected to the same conditions and treatments as in Example 1 to obtain abrasive grains. As a result, the obtained abrasive grain characteristics were, as shown in Table 1, the structure grain size was a plate-like crystal grain with an average major axis of 3.02 μm and a fine crystal grain with an average of 0.21 μm. The density was 3.89 g / cm 3 , the Knoop hardness was 20.6 GPa, and the C coefficient was 0.65.

【0018】実施例3 Condea社製擬ベーマイト(SB Pural A
lumina)400gを水1.6リットルに分散し、
αアルミナ微粒子(BET=64.7m2 /g)を4.
0g(アルミナゾル中のアルミナ重量に対し、1.33
wt%相当)を含む分散水溶液24.1gを添加し、6
7.5%HNO3 水溶液16.8mlと水16.8ml
との混合液を添加し、アルミナゾルを造った。このゾル
をSUS製バットにて100℃で24時間静置乾燥を行
い、乾燥ゲルを得た。それを粉砕し、焼成後JIS R
6001−1987の#60の砥粒粒度にするため、
350〜500μmの粒に粉砕乾燥ゲルを製粒した。こ
の粒子を650℃で2時間仮焼し、硝酸にともなうNO
x および結晶水を除去した。次に硝酸カルシウム・4水
和物14.27g(アルミナに対しCaO量で2.2w
t%)および硝酸マグネシウム・6水和物4.90g
(アルミナに対しMgO量で0.5wt%)を水70g
に溶解し、この水溶液を150gの仮焼ゲルに含浸し
た。乾燥後再び仮焼した。そしてこれをロータリーキル
ンにて60秒で常温から1350℃に急熱し、その温度
に2分間保持した。得られた砥粒特性は表1に示すよう
に、組織粒径は平均長径2.67μmの板状結晶粒と平
均0.19μmの微細結晶粒であった。また密度は3.
60g/cm3 、ヌープ硬度は15.8GPaであり、
C係数は0.63であった。
Example 3 Pseudo-boehmite (SB Pural A manufactured by Condea Corporation)
lumina) 400 g in water 1.6 liter,
3. Add α-alumina fine particles (BET = 64.7 m 2 / g) to 4.
0 g (1.33 relative to the weight of alumina in the alumina sol)
24.1 g of a dispersion aqueous solution containing (wt% equivalent) was added, and 6
7.5% HNO 3 aqueous solution 16.8 ml and water 16.8 ml
A mixed solution of and was added to produce an alumina sol. This sol was allowed to stand and dry for 24 hours at 100 ° C. in a SUS vat to obtain a dry gel. JIS R after crushing and firing
In order to obtain a grain size of # 60 of 6001-1987,
The crushed dry gel was granulated into 350 to 500 μm particles. The particles were calcined at 650 ° C for 2 hours to remove NO due to nitric acid.
The x and water of crystallization were removed. Next, 14.27 g of calcium nitrate tetrahydrate (2.2 w in CaO amount relative to alumina)
t%) and magnesium nitrate hexahydrate 4.90 g
70 g of water (0.5 wt% MgO based on alumina)
And was impregnated with 150 g of the calcined gel. After drying, it was calcined again. Then, this was rapidly heated from room temperature to 1350 ° C. in a rotary kiln for 60 seconds and kept at that temperature for 2 minutes. The obtained abrasive grain characteristics are shown in Table 1, and the grain size of the grains was a plate crystal grain having an average major axis of 2.67 μm and a fine crystal grain having an average diameter of 0.19 μm. The density is 3.
60 g / cm 3 , Knoop hardness of 15.8 GPa,
The C coefficient was 0.63.

【0019】実施例4 仮焼ゲルに含浸する際、硝酸カルシウム・4水和物7.
04g(アルミナに対しCaO量で1.1wt%)、硝
酸マグネシウム・6水和物2.42g(アルミナに対し
MgO量で0.25wt%)としたこと以外は実施例3
と同一条件、同一処理を行った。その結果、得られた砥
粒特性は表1に示すように、組織粒径は平均長径3.1
4μmの板状結晶粒と平均0.19μmの微細結晶粒で
あった。また密度は3.90g/cm3 、ヌープ硬度は
21.1GPaであり、C係数は0.60であった。こ
こで得られた砥粒の破断面の走査型電子顕微鏡写真(倍
率1万倍)を図1に示す。板状結晶粒と微細結晶粒とが
混在していることが分かる。
Example 4 When impregnating a calcined gel, calcium nitrate tetrahydrate 7.
Example 3 except that the amount was 04 g (1.1 wt% in CaO content with respect to alumina) and 2.42 g of magnesium nitrate hexahydrate (0.25 wt% in MgO content with respect to alumina).
The same conditions and the same treatments were performed. As a result, the obtained abrasive grain characteristics are shown in Table 1, and the grain size of the structure is 3.1.
It was a plate crystal grain of 4 μm and a fine crystal grain of 0.19 μm on average. The density was 3.90 g / cm 3 , Knoop hardness was 21.1 GPa, and C coefficient was 0.60. A scanning electron micrograph (magnification: 10,000 times) of the fracture surface of the abrasive grains obtained here is shown in FIG. It can be seen that plate crystal grains and fine crystal grains are mixed.

【0020】比較例1 カルシウムを含有するが、αアルミナ微粒子をゾル段階
で添加しない砥粒との比較のため、カルシウム(アルミ
ナに対しCaO量で2.2wt%)およびマグネシウム
(アルミナに対しMgO量で0.5wt%)を含むアル
ミナ質焼結砥粒を造った。すなわち、αアルミナ微粒子
を添加しなかったこと以外は実施例3と同一条件、同一
処理を行った。得られた砥粒特性は表1に示すように、
組織粒径は平均長径2.20μmの板状結晶粒だけであ
った。また密度は3.61g/cm3 、ヌープ硬度は1
5.9GPaであり、C係数は0.88であった。
Comparative Example 1 For comparison with abrasive grains containing calcium but not adding α-alumina fine particles at the sol stage, calcium (2.2% by weight of CaO based on alumina) and magnesium (amount of MgO based on alumina). Alumina-based sintered abrasive grains containing 0.5 wt. That is, the same conditions and the same treatments as in Example 3 were performed except that the α-alumina fine particles were not added. The obtained abrasive grain characteristics are as shown in Table 1.
The texture grain size was only plate-like crystal grains having an average major axis of 2.20 μm. The density is 3.61 g / cm 3 and the Knoop hardness is 1
It was 5.9 GPa and the C coefficient was 0.88.

【0021】比較例2 カルシウムを含有しない砥粒との比較のため、ゾル段階
でのαアルミナ微粒子入りアルミナ焼結砥粒を作成し
た。すなわち、実施例3の方法で含浸前のαアルミナ微
粒子入り仮焼アルミナゲルを造り、含浸を行わずにロー
タリーキルンにて1280℃で2分間保持して焼結し
た。得られた砥粒特性は表1に示すように、組織は実質
的に結晶粒子が全て1μm以下で、平均0.15μmの
微細結晶粒であり、板状結晶粒はなかった。また密度は
3.91g/cm3 、ヌープ硬度は22.4GPaであ
り、C係数は0.75であった。
Comparative Example 2 For comparison with abrasive grains containing no calcium, alumina sintered abrasive grains containing α-alumina fine particles at the sol stage were prepared. That is, a calcined alumina gel containing α-alumina fine particles before impregnation was prepared by the method of Example 3, and was sintered in a rotary kiln at 1280 ° C. for 2 minutes without impregnation. As for the characteristics of the obtained abrasive grains, as shown in Table 1, substantially all the crystal grains of the structure were 1 μm or less, and the grains were fine crystal grains of 0.15 μm on average, and there were no plate-like crystal grains. Further, the density was 3.91 g / cm 3 , the Knoop hardness was 22.4 GPa, and the C coefficient was 0.75.

【0022】[0022]

【表1】 [Table 1]

【0023】実施例5〜8 10重量部のレゾルシノール(1,3−ジオキシベンゼ
ン)を10重量部のエタノールに溶解し、これと4種類
の実施例1〜4で得られた砥粒100重量部とをそれぞ
れ混合し、それぞれにつき100℃にて1時間乾燥して
エタノールを蒸発させ、表面がレゾルシノールでコーテ
ィングされた4種類の研磨材を得た。圧縮不織布基材に
フェノール樹脂接着剤BRL−2867(固形分約70
%、昭和高分子(株)製)を100g/m2 の割合で均
一に塗布した後、その上に上記コーティング処理された
研磨材を散布し、過剰の研磨材を除去した。なおこの時
の研磨材の基材への付着量は、4種類とも250g/m
2 であった。それぞれのものにつき80℃で4時間乾燥
した後、更にその上に前記接着剤を200g/m2 の割
合で均一に塗布し、80℃で4時間乾燥させた後、2時
間で80℃から135℃まで昇温し、135℃で30分
保持して4種類の研磨布を得た。それぞれの研磨布をパ
ンチ抜きし、180mmφのディスク状研磨布を造り下
記の条件にて乾式研削を行った。
Examples 5 to 8 10 parts by weight of resorcinol (1,3-dioxybenzene) was dissolved in 10 parts by weight of ethanol, and 100 parts by weight of the abrasive grains obtained in the four kinds of Examples 1 to 4 were dissolved. Parts and each of them were mixed, dried at 100 ° C. for 1 hour, and ethanol was evaporated to obtain four kinds of abrasives whose surfaces were coated with resorcinol. Phenolic resin adhesive BRL-2867 (solid content about 70
%, Manufactured by Showa High Polymer Co., Ltd. at a rate of 100 g / m 2 , and the above-mentioned coated abrasive was sprinkled thereon to remove excess abrasive. At this time, the adhesion amount of the abrasive to the base material was 250 g / m for all four types.
Was 2 . Each of them was dried at 80 ° C. for 4 hours, and then the adhesive was evenly applied thereon at a rate of 200 g / m 2 , dried at 80 ° C. for 4 hours, and then dried at 80 ° C. to 135 minutes in 2 hours. The temperature was raised to ℃ and held at 135 ℃ for 30 minutes to obtain four kinds of polishing cloths. Each polishing cloth was punched out to prepare a disk-shaped polishing cloth of 180 mmφ, and dry grinding was performed under the following conditions.

【0024】 サンダー:日立PHD−180C 研削時間:1分×10回 被削材 :(イ)S−45C 250mm□×10mmt (ロ)SUS 304 250mm□×9mmt 荷重 :3 lb. 研削量値を表2、表3に示す。Thunder: Hitachi PHD-180C Grinding time: 1 minute × 10 times Work material: (a) S-45C 250 mm □ × 10 mmt (b) SUS 304 250 mm □ × 9 mmt Load: 3 lb. The grinding amount values are shown in Tables 2 and 3.

【0025】比較例3〜4 比較例1、2で得られた2種類のそれぞれの砥粒に対
し、実施例5と同様の条件、操作にて、ディスク状不織
布基材研磨布を造り、研削試験を行った。研削量値を表
2、表3に示す。
Comparative Examples 3 to 4 Disc-shaped non-woven fabric-based abrasive cloths were made and ground under the same conditions and operations as in Example 5 for the two types of abrasive grains obtained in Comparative Examples 1 and 2, respectively. The test was conducted. The grinding amount values are shown in Tables 2 and 3.

【0026】[0026]

【表2】 [Table 2]

【0027】[0027]

【表3】 [Table 3]

【0028】[0028]

【発明の効果】本発明は、リチウムを含有することな
く、カルシウムを含有する長径1μm以上の板状結晶粒
を有し、板状結晶粒でない部分はサブミクロンの結晶組
織であるアルミナ質焼結砥粒であって、従来よりも高靭
性なアルミナ質焼結砥粒が得られ、優れた研削性能を発
揮する。
INDUSTRIAL APPLICABILITY The present invention has an alumina-based sintered body which does not contain lithium but has calcium-containing plate-like crystal grains with a major axis of 1 μm or more, and the non-plate-like crystal grains have a submicron crystal structure. As the abrasive grains, alumina-based sintered abrasive grains having higher toughness than conventional ones can be obtained and exhibit excellent grinding performance.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例4によって得られた砥粒の破断面の結晶
の構造または形状を表わしている走査型電子顕微鏡写真
である。(倍率10,000倍)
FIG. 1 is a scanning electron micrograph showing a crystal structure or shape of a fracture surface of an abrasive grain obtained in Example 4. (Magnification 10,000 times)

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 カルシウムを含有する長径1μm以上の
板状結晶粒を有し、板状結晶粒でない部分はサブミクロ
ンの結晶組織であり、リチウムを含有しないことを特徴
とするアルミナ質焼結砥粒。
1. An alumina-based sintered abrasive characterized in that it has plate-like crystal grains containing calcium and having a major axis of 1 μm or more, and the non-plate-like crystal grains have a submicron crystal structure and does not contain lithium. grain.
【請求項2】 カルシウムイオンを含有するアルミナゾ
ルにαアルミナ微粒子を添加し、ゲル化した後焼結する
ことを特徴とするアルミナ質焼結砥粒の製造方法。
2. A method for producing alumina-based sintered abrasive grains, which comprises adding α-alumina fine particles to an alumina sol containing calcium ions, gelling the mixture, and then sintering.
【請求項3】 αアルミナ微粒子を含有するアルミナゾ
ルをゲル化し、乾燥、仮焼後、カルシウムイオンを含浸
し焼結することを特徴とするアルミナ質焼結砥粒の製造
方法。
3. A process for producing sintered alumina abrasive grains, which comprises gelling an alumina sol containing α-alumina fine particles, drying and calcination, impregnating with calcium ions and sintering.
JP09018695A 1995-03-22 1995-03-22 Alumina sintered abrasive grains and manufacturing method thereof Expired - Lifetime JP3609144B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09018695A JP3609144B2 (en) 1995-03-22 1995-03-22 Alumina sintered abrasive grains and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09018695A JP3609144B2 (en) 1995-03-22 1995-03-22 Alumina sintered abrasive grains and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH08259926A true JPH08259926A (en) 1996-10-08
JP3609144B2 JP3609144B2 (en) 2005-01-12

Family

ID=13991466

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09018695A Expired - Lifetime JP3609144B2 (en) 1995-03-22 1995-03-22 Alumina sintered abrasive grains and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3609144B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005205542A (en) * 2004-01-22 2005-08-04 Noritake Co Ltd Sapphire polishing grinding wheel and sapphire polishing method
JP2019119009A (en) * 2018-01-05 2019-07-22 スリーエム イノベイティブ プロパティズ カンパニー Abrasive member and method for manufacturing abrasive member
TWI689484B (en) * 2017-12-25 2020-04-01 日商昭和電工股份有限公司 Alumina sintered body, abrasive grain, and grinding wheel
TWI694978B (en) * 2017-12-25 2020-06-01 日商昭和電工股份有限公司 Method for producing alumina sintered body
CN115155591A (en) * 2022-07-04 2022-10-11 中国石油大学(北京) Co-based catalyst for propane dehydrogenation and preparation method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR112014007089A2 (en) 2011-09-26 2017-03-28 Saint-Gobain Ceram & Plastics Inc abrasive articles including abrasive particulate materials, abrasives coated using abrasive particle materials and forming methods

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5571697A (en) * 1978-11-18 1980-05-29 Giulini Chemie Hexagonal boarddlike alphaaaluminum oxide single crystal*its manufacture*surface treatment employing it and manufacture of ceramic oxide
JPS5617980A (en) * 1979-07-20 1981-02-20 Ngk Spark Plug Co Manufacture of alumina sintered body
JPS57207672A (en) * 1981-05-27 1982-12-20 Kennecott Corp High sodium and calcium sol gel abrasive and manufacture
JPS60231462A (en) * 1984-01-19 1985-11-18 ノ−トン カンパニ− Abrasive material and manufacture
JPH03234785A (en) * 1990-02-09 1991-10-18 Nippon Kenmazai Kogyo Kk Abrasive grain of sintered alumina and preparation thereof
JPH06157133A (en) * 1992-11-19 1994-06-03 Yoshida Kogyo Kk <Ykk> High toughness alumina base composite sintered compact and production thereof
JPH09507169A (en) * 1993-12-28 1997-07-22 ミネソタ・マイニング・アンド・マニュファクチュアリング・カンパニー Abrasive grains based on alpha-alumina
JPH09507168A (en) * 1993-12-28 1997-07-22 ミネソタ・マイニング・アンド・マニュファクチュアリング・カンパニー Alpha-alumina based abrasive with a sintered outer surface

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5571697A (en) * 1978-11-18 1980-05-29 Giulini Chemie Hexagonal boarddlike alphaaaluminum oxide single crystal*its manufacture*surface treatment employing it and manufacture of ceramic oxide
JPS5617980A (en) * 1979-07-20 1981-02-20 Ngk Spark Plug Co Manufacture of alumina sintered body
JPS57207672A (en) * 1981-05-27 1982-12-20 Kennecott Corp High sodium and calcium sol gel abrasive and manufacture
JPS60231462A (en) * 1984-01-19 1985-11-18 ノ−トン カンパニ− Abrasive material and manufacture
JPH03234785A (en) * 1990-02-09 1991-10-18 Nippon Kenmazai Kogyo Kk Abrasive grain of sintered alumina and preparation thereof
JPH06157133A (en) * 1992-11-19 1994-06-03 Yoshida Kogyo Kk <Ykk> High toughness alumina base composite sintered compact and production thereof
JPH09507169A (en) * 1993-12-28 1997-07-22 ミネソタ・マイニング・アンド・マニュファクチュアリング・カンパニー Abrasive grains based on alpha-alumina
JPH09507168A (en) * 1993-12-28 1997-07-22 ミネソタ・マイニング・アンド・マニュファクチュアリング・カンパニー Alpha-alumina based abrasive with a sintered outer surface

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005205542A (en) * 2004-01-22 2005-08-04 Noritake Co Ltd Sapphire polishing grinding wheel and sapphire polishing method
TWI689484B (en) * 2017-12-25 2020-04-01 日商昭和電工股份有限公司 Alumina sintered body, abrasive grain, and grinding wheel
TWI694978B (en) * 2017-12-25 2020-06-01 日商昭和電工股份有限公司 Method for producing alumina sintered body
JP2019119009A (en) * 2018-01-05 2019-07-22 スリーエム イノベイティブ プロパティズ カンパニー Abrasive member and method for manufacturing abrasive member
CN115155591A (en) * 2022-07-04 2022-10-11 中国石油大学(北京) Co-based catalyst for propane dehydrogenation and preparation method thereof
CN115155591B (en) * 2022-07-04 2023-08-18 中国石油大学(北京) Co-based catalyst for propane dehydrogenation and preparation method thereof

Also Published As

Publication number Publication date
JP3609144B2 (en) 2005-01-12

Similar Documents

Publication Publication Date Title
US5215551A (en) Alumina-based ceramics materials, abrasive materials and method for the manufacture of the same
JP3560341B2 (en) Abrasives containing alumina and zirconia
JP4410850B2 (en) Abrasives based on alpha alumina containing silica and iron oxide
US5431704A (en) Ceramic abrasive grains, method of producing the same and abrasive products made of the same
EP0603715B1 (en) Abrasive grain comprising calcium oxide and/or strontium oxide
US5282875A (en) High density sol-gel alumina-based abrasive vitreous bonded grinding wheel
EP0662110B1 (en) Abrasive grain including rare earth oxide therein
JPH08502305A (en) Method for producing abrasive grains containing alumina and ceria
US5690707A (en) Abrasive grain comprising manganese oxide
US5304226A (en) Abrasive grain and manufacture for the same
JPH03234785A (en) Abrasive grain of sintered alumina and preparation thereof
EP0675860B1 (en) Abrasive grain containing manganese oxide
JP3138277B2 (en) Alumina sintered abrasive and abrasive products
JPH08259926A (en) Alumina-sintered abrasive grain and production thereof
JPH05117636A (en) Polycrystalline sintered abrasive particle based on alpha-aluminum trioxide, abrasive comprising the abrasive particle, preparation of the abrasive particle and preparation of fire-resistant ceramic product
WO1990002160A1 (en) Abrasive grain and method of producing same
JPH0553751B2 (en)
JPH0297457A (en) Production of abrasive grain of abrasive material
JPH05509285A (en) α-phase seeding of transition alumina using chromium oxide-based nucleating agents
US5141527A (en) Ceramic sintered body and method of producing it
JPH05163060A (en) Alumina sintered whetstone granule and its production
JPH04159386A (en) Production of abrasive grain for polishing
JPH07173457A (en) Sintered abrasive alumina grain and its production
JP2554758B2 (en) Abrasive grain and method for producing the same
AU670667C (en) Abrasive grain containing manganese oxide

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040511

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040712

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040712

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040914

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041013

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101022

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131022

Year of fee payment: 9

EXPY Cancellation because of completion of term