JPH08259330A - Material containing boron nitride and its production - Google Patents

Material containing boron nitride and its production

Info

Publication number
JPH08259330A
JPH08259330A JP7059337A JP5933795A JPH08259330A JP H08259330 A JPH08259330 A JP H08259330A JP 7059337 A JP7059337 A JP 7059337A JP 5933795 A JP5933795 A JP 5933795A JP H08259330 A JPH08259330 A JP H08259330A
Authority
JP
Japan
Prior art keywords
aln
alon
boron nitride
sic
sio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7059337A
Other languages
Japanese (ja)
Other versions
JP3194344B2 (en
Inventor
Hiroaki Nishio
浩明 西尾
Akira Kato
加藤  明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP05933795A priority Critical patent/JP3194344B2/en
Publication of JPH08259330A publication Critical patent/JPH08259330A/en
Application granted granted Critical
Publication of JP3194344B2 publication Critical patent/JP3194344B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

PURPOSE: To obtain a material containing boron nitride extremely excellent in corrosion resistance against a molten metal or a molten slag by not using expensive BN and AlN powders but using inexpensive B4 C and Al as starting materials. CONSTITUTION: This material containing boron nitride is obtained by heating a mixed powder containing 10-70wt.% B4 C, 30-90wt.% Al and 10-60wt.% Si or SiO2 up to 1300-2300 deg.C in a nitrogenizing atmosphere, and contains 22-90wt.% BN, 4-48wt.% AlN and 6-30wt.% SiC, or 22-90wt.% BN, 4-48wt.% AlN and/or AlON, 6-30wt.% SiC and 4-30wt.% Al2 O3 .

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明はBNの他にAlNおよ
び/またはAlONを含有する窒化ホウ素含有材料およ
びその製造方法に関し、特に溶融金属、溶融スラグに対
する耐食性に優れた窒化ホウ素含有材料およびその製造
方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a boron nitride-containing material containing AlN and / or AlON in addition to BN and a method for producing the same, and particularly to a boron nitride-containing material excellent in corrosion resistance against molten metal and molten slag and its production. Regarding the method.

【0002】[0002]

【従来の技術】六方晶の窒化ホウ素は高い熱伝導度、優
れた電気絶縁性、および優れた潤滑性を有し、鉄、銅、
ニッケル、亜鉛、ガリウム、砒素、ガラス、氷晶石など
の溶融体と反応しない化学的に安定な材料として知られ
ている。そして、空気中では950℃まで、不活性ガス
または窒素ガス雰囲気下では2200℃まで安定であ
り、熱衝撃にも強い。また、金属と同様に、切削および
研削などの機械加工が容易にできるという特長を有して
いる。このような特長を生かして窒化ホウ素単体、ある
いは窒化ホウ素含有複合材料として多岐に亘る用途に供
されている。
BACKGROUND OF THE INVENTION Hexagonal boron nitride has high thermal conductivity, excellent electrical insulation, and excellent lubricity, and is suitable for iron, copper,
It is known as a chemically stable material that does not react with a melt such as nickel, zinc, gallium, arsenic, glass and cryolite. It is stable up to 950 ° C. in air and up to 2200 ° C. in an inert gas or nitrogen gas atmosphere, and is resistant to thermal shock. Further, like metal, it has a feature that machining such as cutting and grinding can be easily performed. Utilizing these features, it is used in various applications as a simple substance of boron nitride or a composite material containing boron nitride.

【0003】焼結体としての用途には、絶縁部品、耐熱
部品、溶融金属用坩堝、水平連続鋳造用ブレークリン
グ、放熱部品、金属あるいはセラミックスの粉末成形体
焼結用セッター、型材等がある。また、上ノズル、浸漬
ノズル等の鋳造用耐火物にも適用が試みられている。
Applications as sintered bodies include insulating parts, heat resistant parts, crucibles for molten metal, break rings for horizontal continuous casting, heat radiating parts, setters for sintering powder compacts of metal or ceramics, and mold materials. Further, it is also attempted to be applied to a refractory for casting such as an upper nozzle and a dipping nozzle.

【0004】特開昭63−84750号公報には脱酸鋼
の連続鋳造に用いて好適な、窒化ホウ素20〜70重量
部、窒化アルミニウム10〜40重量部および黒鉛10
〜30重量部を配合した連続鋳造ノズルが開示されてい
る。そして、この窒化ホウ素、窒化アルミニウムおよび
黒鉛を所定の割合で配合したノズルは、溶鋼に対する濡
れ性が小さいことから、ノズル内面への介在物付着を防
止することができるといった効果が挙げられている。ま
た、Interceram,Special Issue(1987)70頁には、窒化
ホウ素基の連続鋳造用ノズルとして、52.6wt%B
N、27.0wt%AlN、2.0wt%SiO2 、C
とSiCの合計で17.5wt%の組成のものが開示さ
れている。これら材料は、通常、製品を構成する成分に
対応する粉末を出発物質として用いる。
JP-A-63-84750 discloses a material suitable for continuous casting of deoxidized steel, 20 to 70 parts by weight of boron nitride, 10 to 40 parts by weight of aluminum nitride and graphite 10.
Disclosed is a continuous casting nozzle containing -30 parts by weight. The nozzle in which boron nitride, aluminum nitride and graphite are blended at a predetermined ratio has low wettability with molten steel, and therefore has an effect of preventing inclusions from adhering to the inner surface of the nozzle. In addition, Interceram, Special Issue (1987) page 70, 52.6 wt% B as a boron nitride-based continuous casting nozzle.
N, 27.0 wt% AlN, 2.0 wt% SiO 2 , C
And SiC in total of 17.5 wt% are disclosed. These materials usually use a powder corresponding to the components constituting the product as a starting material.

【0005】これに対して、反応により焼結体中に六方
晶窒化ホウ素を生成させる方法が知られており、例え
ば、特開平4−325461号公報には、ケイ素とB4
Cとの混合粉末を成形し、窒素雰囲気中で加熱すること
により、B4 Cの窒化によって生じたBNとC、ケイ素
の炭化によって生じたSiC、ケイ素の窒化によって生
じたSi34 を含有する焼結体について開示されてい
る。
On the other hand, a method of producing hexagonal boron nitride in a sintered body by a reaction is known, and for example, in JP-A-4-325461, silicon and B 4 are contained.
By molding a mixed powder with C and heating it in a nitrogen atmosphere, BN and C produced by nitriding B 4 C, SiC produced by carbonizing silicon, and Si 3 N 4 produced by nitriding silicon are contained. The sintered body is disclosed.

【0006】[0006]

【発明が解決しようとする課題】六方晶窒化ホウ素材料
は上述のような特異な特性により市場拡大が期待されて
きたが、期待されたほど伸びていない。その主因として
出発物質の六方晶窒化ホウ素粉末が高価なことが挙げら
れる。BNとAlNとを含有する材料については、Al
Nも高価なことから一層高価なものとなってしまう。
The hexagonal boron nitride material has been expected to expand in the market due to the above-mentioned unique properties, but it has not grown as much as expected. The main reason for this is that the starting hexagonal boron nitride powder is expensive. For materials containing BN and AlN, see Al
Since N is also expensive, it becomes more expensive.

【0007】一方、六方晶窒化ホウ素は軟質のセラミッ
クスであり、摩耗に弱い。このため、窒化ホウ素含有材
料は機械的な摩擦、例えば溶融金属、溶融スラグの流動
によって摩耗しやい欠点を有しており、AlNおよび/
またはAlONを含有させても、耐摩耗性が十分でない
場合が生じる。
On the other hand, hexagonal boron nitride is a soft ceramic and is weak against wear. Therefore, the boron nitride-containing material has a drawback that it is easily worn by mechanical friction such as flow of molten metal or molten slag.
Even if AlON is contained, the abrasion resistance may not be sufficient.

【0008】この発明はかかる事情に鑑みてなされたも
のであって、高価なBNおよびAlN粉末を使用するこ
となく得ることができ、かつ溶融金属、溶融スラグに対
する耐食性に優れた窒化ホウ素含有材料およびその製造
方法を提供することを目的とする。また、さらに溶融金
属、溶融スラグに対する耐食性に優れた窒化ホウ素含有
材料およびその製造方法を提供することを目的とする。
The present invention has been made in view of the above circumstances, and a boron nitride-containing material which can be obtained without using expensive BN and AlN powders and which has excellent corrosion resistance to molten metal and molten slag, and It is an object to provide a manufacturing method thereof. Another object of the present invention is to provide a boron nitride-containing material having excellent corrosion resistance against molten metal and molten slag, and a method for producing the same.

【0009】[0009]

【課題を解決するための手段及び作用】本発明は、上記
課題を解決するために、第1に、10〜70wt%のB
4 C、30〜90wt%のAl、10〜60wt%のS
iを含む混合粉末を窒化性雰囲気中で1300〜230
0℃にまで加熱して得られる材料であって、22〜90
wt%のBN、4〜48wt%のAlN、6〜30wt
%のSiCを含むことを特徴とする窒化ホウ素含有材料
を提供する。
In order to solve the above-mentioned problems, the present invention firstly requires 10 to 70 wt% of B.
4 C, 30-90 wt% Al, 10-60 wt% S
a mixed powder containing i in a nitriding atmosphere at 1300 to 230
A material obtained by heating to 0 ° C., which is 22 to 90
wt% BN, 4-48 wt% AlN, 6-30 wt%
Provided is a boron nitride-containing material, characterized in that it comprises% SiC.

【0010】第2に、10〜70wt%のB4 C、30
〜90wt%のAl、10〜60wt%のSiを含む混
合粉末を窒化性雰囲気中で1300〜2300℃にまで
加熱し、22〜90wt%のBN、4〜48wt%のA
lN、6〜30wt%のSiCを含む窒化ホウ素含有材
料を得ることを特徴とする窒化ホウ素含有材料の製造方
法を提供する。
Second, 10 to 70 wt% B 4 C, 30
A mixed powder containing ˜90 wt% Al and 10-60 wt% Si is heated to 1300 to 2300 ° C. in a nitriding atmosphere, and BN is 22 to 90 wt% and A is 4 to 48 wt%.
Provided is a method for producing a boron nitride-containing material, which comprises obtaining a boron nitride-containing material containing 1N and 6 to 30 wt% SiC.

【0011】第3に、22〜90wt%のBN、4〜4
8wt%のAlNおよび/またはAlON、6〜30w
t%のSiC、4〜30wt%のAl23 を含むこと
を特徴とする窒化ホウ素含有材料を提供する。
Third, 22-90 wt% BN, 4-4
8 wt% AlN and / or AlON, 6-30w
Provided is a boron nitride-containing material, characterized in that it contains t% SiC and 4 to 30 wt% Al 2 O 3 .

【0012】第4に、10〜70wt%のB4 C、30
〜90wt%のAl、10〜60wt%のSiO2 を含
む混合粉末を窒化性雰囲気中で1300〜2300℃に
まで加熱して得られる材料であって、22〜90wt%
のBN、4〜48wt%のAlNおよび/またはAlO
N、6〜30wt%のSiC、4〜30wt%のAl2
3 を含むことを特徴とする窒化ホウ素含有材料を提供
する。
Fourth, 10 to 70 wt% B 4 C, 30
A material obtained by heating a mixed powder containing ˜90 wt% Al and 10 to 60 wt% SiO 2 to 1300 to 2300 ° C. in a nitriding atmosphere.
BN, 4-48 wt% AlN and / or AlO
N, 6 to 30 wt% SiC, 4 to 30 wt% Al 2
Provided is a boron nitride-containing material characterized by containing O 3 .

【0013】第5に、10〜70wt%のB4 C、30
〜90wt%のAl、10〜60wt%のSiO2 を含
む混合粉末を窒化性雰囲気中で1300〜2300℃に
まで加熱し、22〜90wt%のBN、4〜48wt%
のAlNおよび/またはAlON、6〜30wt%のS
iC、4〜30wt%のAl23 を含む窒化ホウ素含
有材料を得ることを特徴とする窒化ホウ素含有材料の製
造方法を提供する。
Fifth, 10 to 70 wt% B 4 C, 30
~ 90wt% Al, mixed powder containing 10 ~ 60wt% SiO 2 was heated to 1300 ~ 2300 ° C in a nitriding atmosphere, 22 ~ 90wt% BN, 4 ~ 48wt%
AlN and / or AlON, 6-30 wt% S
Provided is a method for producing a boron nitride-containing material, which comprises obtaining a boron nitride-containing material containing iC and 4 to 30 wt% of Al 2 O 3 .

【0014】第6に、22〜90wt%のBN、4〜4
8wt%のAlON、6〜30wt%のSiCを含むこ
とを特徴とする窒化ホウ素含有材料を提供する。第7
に、10〜70wt%のB4 C、30〜90wt%のA
l、10〜60wt%のSiO2 を含む混合粉末を窒化
性雰囲気中で1700〜2300℃にまで加熱して得ら
れる材料であって、22〜90wt%のBN、4〜48
wt%のAlON、6〜30wt%のSiCを含むこと
を特徴とする窒化ホウ素含有材料を提供する。
Sixth, 22-90 wt% BN, 4-4
Provided is a boron nitride-containing material characterized by containing 8 wt% AlON and 6 to 30 wt% SiC. Seventh
10 to 70 wt% of B 4 C and 30 to 90 wt% of A
1, a material obtained by heating a mixed powder containing 10 to 60 wt% of SiO 2 to 1700 to 2300 ° C. in a nitriding atmosphere, and 22 to 90 wt% of BN, 4 to 48
Provided is a boron nitride-containing material characterized by containing wt% AlON and 6 to 30 wt% SiC.

【0015】第8に、10〜70wt%のB4 C、30
〜90wt%のAl、10〜60wt%のSiO2 を含
む混合粉末を窒化性雰囲気中で1700〜2300℃に
まで加熱し、22〜90wt%のBN、4〜48wt%
のAlON、6〜30wt%のSiCを含む窒化ホウ素
含有材料を得ることを特徴とする窒化ホウ素含有材料の
製造方法を提供する。
Eighth, 10 to 70 wt% B 4 C, 30
~ 90wt% Al, mixed powder containing 10 ~ 60wt% SiO 2 was heated to 1700 ~ 2300 ° C in a nitriding atmosphere, 22 ~ 90wt% BN, 4 ~ 48wt%
The present invention provides a method for producing a boron nitride-containing material, characterized in that the boron nitride-containing material containing AlON and 6 to 30 wt% SiC is obtained.

【0016】第9に、22〜90wt%のBN、4〜4
8wt%のAlNおよび/またはAlON、6〜30w
t%のSiCを含む材料であって、表面に厚さ2〜10
mmのAlNおよび/またはAlONの濃縮層を有する
ことを特徴とする窒化ホウ素含有材料を提供する。
Ninth, 22-90 wt% BN, 4-4
8 wt% AlN and / or AlON, 6-30w
A material containing t% SiC and having a thickness of 2 to 10 on the surface.
Provided is a boron nitride-containing material characterized by having a concentrated layer of AlN and / or AlON of mm.

【0017】第10に、10〜70wt%のB4 C、3
0〜90wt%のAl、10〜60wt%のSiまたは
SiO2 を含む混合粉末を窒化性雰囲気中で1300〜
2300℃にまで加熱して得られる材料であって、22
〜90wt%のBN、4〜48wt%のAlNおよび/
またはAlON、6〜30wt%のSiCを含み、表面
に厚さ2〜10mmのAlNおよび/またはAlONの
濃縮層を有することを特徴とする窒化ホウ素含有材料を
提供する。
Tenth, 70% by weight of B 4 C, 3
A mixed powder containing 0 to 90 wt% of Al and 10 to 60 wt% of Si or SiO 2 in a nitriding atmosphere at 1300 to
A material obtained by heating to 2300 ° C.
˜90 wt% BN, 4-48 wt% AlN and /
Alternatively, there is provided a boron nitride-containing material comprising AlON and 6 to 30 wt% of SiC, and having a concentrated layer of 2 to 10 mm thick AlN and / or AlON on the surface.

【0018】第11に、10〜70wt%のB4 C、3
0〜90wt%のAl、10〜60wt%のSiまたは
SiO2 を含む混合粉末を窒化性雰囲気中で1300〜
2300℃にまで加熱し、22〜90wt%のBN、4
〜48wt%のAlNおよび/またはAlON、6〜3
0wt%のSiCを含み、表面に厚さ2〜10mmのA
lNおよび/またはAlONの濃縮層を有する窒化ホウ
素含有材料を得ることを特徴とする窒化ホウ素含有材料
の製造方法を提供する。
Eleventh, 10 to 70 wt% of B 4 C, 3
A mixed powder containing 0 to 90 wt% of Al and 10 to 60 wt% of Si or SiO 2 in a nitriding atmosphere at 1300 to
Heated up to 2300 ° C., 22-90 wt% BN, 4
~ 48 wt% AlN and / or AlON, 6-3
A containing 0 wt% SiC and having a thickness of 2-10 mm on the surface
Provided is a method for producing a boron nitride-containing material, which comprises obtaining a boron nitride-containing material having a concentrated layer of 1N and / or AlON.

【0019】以下、本発明について具体的に説明する。
本発明では、基本的にB4 C、Al、Siまたは/およ
びSiO2 を出発原料として用い、窒化性雰囲気中で所
定の温度に加熱することにより、BN、SiC、並びに
AlN、Al23 およびAlONの1種以上を含む窒
化ホウ素含有材料を得るものである。
The present invention will be specifically described below.
In the present invention, basically, B 4 C, Al, Si or / and SiO 2 is used as a starting material and heated to a predetermined temperature in a nitriding atmosphere to obtain BN, SiC and AlN, Al 2 O 3 And a boron nitride-containing material containing at least one of AlON.

【0020】本発明において、AlN、Al23 、A
lONの各結晶相の生成割合は、雰囲気温度、その温度
での保持時間、雰囲気の窒素分圧、窒化に供される充填
体あるいは保形性のある成形体の密度、寸法、形状、充
填体あるいは成形体を構成する粉末の粒径等に支配され
るが、これらのうち最も大きな影響を及ぼす因子は雰囲
気温度である。例えば、肉厚30mm以下の成形体で保
持時間を3時間以上とると、1300〜1500℃では
生成相はAlN、Al23 が主体となる。また、14
00〜1900℃では、AlNとAl23 の固溶が進
行し、AlN、AlON、Al23 が共存する。さら
に1700〜2100℃では、AlN、AlONが主体
となる。そして2000〜2300℃ではAlONが主
体となる。肉厚がもっと大きくなると、表面に比べて内
部の固溶が遅れ、全体としては上記のような温度区分に
よる生成相の特徴が不明確となり、高温域で多相が併存
する傾向を示す。例えば2000〜2300℃でも、A
lNのほか、AlN、Al23 がX線回折で検出され
ることがある。
In the present invention, AlN, Al 2 O 3 , A
The production ratio of each crystal phase of 1ON depends on the ambient temperature, the holding time at that temperature, the nitrogen partial pressure of the atmosphere, the density, size, shape, and packing of the filling body or shape-retaining shaped body used for nitriding Alternatively, the temperature is controlled by the particle size of the powder forming the compact, and the most influential factor among these is the ambient temperature. For example, when a molded body having a wall thickness of 30 mm or less and a holding time of 3 hours or more, AlN and Al 2 O 3 are the main production phases at 1300 to 1500 ° C. Also, 14
At 00 to 1900 ° C., solid solution of AlN and Al 2 O 3 progresses, and AlN, AlON, and Al 2 O 3 coexist. Further, at 1700 to 2100 ° C., AlN and AlON are the main components. Then, at 2000 to 2300 ° C., AlON becomes the main component. When the wall thickness becomes larger, the solid solution inside is delayed compared to the surface, and the characteristics of the generated phase due to the above temperature division become unclear as a whole, and there is a tendency that multiple phases coexist in the high temperature region. For example, even at 2000 to 2300 ° C, A
In addition to 1N, AlN and Al 2 O 3 may be detected by X-ray diffraction.

【0021】このように、種々の因子があるものの、少
なくとも後述する各態様のように原料を選択して、各態
様において1300〜2300℃の中で選択される温度
範囲に加熱することにより、後述する反応を有効に生じ
させることができ、各態様の窒化ホウ素含有材料を得る
ことが可能となる。
Although there are various factors as described above, the raw materials are selected at least as in each of the embodiments described below, and the materials are heated to a temperature range selected from 1300 to 2300 ° C. in each of the embodiments to be described later. The above reaction can be effectively caused, and the boron nitride-containing material of each aspect can be obtained.

【0022】また、本発明では原料として用いられるB
4 C、Al、Siまたは/およびSiO2 の粉末の粒径
が大きすぎるとこれらの反応物質が未反応のまま残留す
るので好ましくない。粉末の粒径は本発明の反応を完結
させるために細かいほうがよく、150メッシュ篩目通
過粉が好ましい。さらに好ましいのは200メッシュ篩
目通過粉である。この中でAlは溶融後液相で窒化する
ので反応は比較的容易である。一方、B4 C、Si、S
iO2 は固相で反応するので、粒内への窒素の拡散が反
応率に重大な影響を及ぼす。したがって、これらの原料
は、上記メッシュ篩目を規定するのに加えて、平均粒径
で10μm以下とすることが一層好ましい。
B used as a raw material in the present invention
If the particle size of the powder of 4 C, Al, Si or / and SiO 2 is too large, these reactants remain unreacted, which is not preferable. The particle size of the powder is preferably fine in order to complete the reaction of the present invention, and a 150-mesh sieve mesh powder is preferable. More preferred is a 200 mesh sieve mesh powder. Among them, Al is nitrided in the liquid phase after melting, so that the reaction is relatively easy. On the other hand, B 4 C, Si, S
Since iO 2 reacts in the solid phase, diffusion of nitrogen into the grains has a significant effect on the reaction rate. Therefore, it is more preferable that these raw materials have an average particle size of 10 μm or less in addition to defining the mesh screen.

【0023】次に、本発明の各態様について個別的に説
明する。まず本発明の第1の態様は、10〜70wt%
4 C、30〜90wt%のAl、10〜60wt%の
Siを含む混合粉末を窒化性雰囲気中で1300〜23
00℃にまで加熱することにより、22〜90wt%の
BN、4〜48wt%のAlN、6〜30wt%のSi
Cを含む窒化ホウ素含有材料を得るものである。
Next, each aspect of the present invention will be described individually. First, the first aspect of the present invention is 10 to 70 wt%.
A mixed powder containing B 4 C, 30 to 90 wt% of Al, and 10 to 60 wt% of Si was added to a nitrogen-containing atmosphere at 1300 to 23
By heating up to 00 ° C., 22-90 wt% BN, 4-48 wt% AlN, 6-30 wt% Si
A boron nitride-containing material containing C is obtained.

【0024】ここで、加熱の際の窒化性雰囲気は特に制
約はないが、窒素、アンモニア、アンモニア分解ガス、
これらを含むガス等を適用することができる。このよう
な雰囲気下で以下の反応を生じさせる。
Here, the nitriding atmosphere at the time of heating is not particularly limited, but nitrogen, ammonia, ammonia decomposition gas,
A gas containing these can be applied. The following reactions occur in such an atmosphere.

【0025】Al+(1/2)N2 → AlN B4 C+2N2 +Si → 4BN+SiC まず、出発物質のAlを窒化させるのであるが、Alの
窒化には雰囲気温度で650℃以上とすることが好まし
い。これは650℃未満では反応が遅く窒化時間が過大
になるからである。一方このAlの窒化は2300℃以
下で終了することが好ましい。なぜならば、Alの窒化
は大きな発熱を伴うので、処理物の温度が雰囲気温度よ
り高くなり、雰囲気温度が2300℃を超えると揮散損
失が大きくなるからである。これらの反応が生じる温度
サイクルのなかで最高到達温度は1300℃以上にする
ことが必要であり、好ましくは1400℃以上である。
この温度が1300℃未満の場合には、Alの一部はB
4 Cと反応してAlB2 とCまたはAl43 を生成す
るに留まり、またSiの一部はSi34 になり、目的
とするBN、AlN、SiCの生成が不十分となるから
である。
Al + (1/2) N 2 → AlN B 4 C + 2N 2 + Si → 4BN + SiC First, Al, which is a starting material, is nitrided. For nitriding Al, the ambient temperature is preferably 650 ° C. or higher. This is because if the temperature is lower than 650 ° C., the reaction is slow and the nitriding time becomes too long. On the other hand, the nitriding of Al is preferably completed at 2300 ° C. or lower. This is because the nitridation of Al is accompanied by a large amount of heat generation, so that the temperature of the processed material becomes higher than the atmospheric temperature, and the volatilization loss becomes large when the atmospheric temperature exceeds 2300 ° C. In the temperature cycle in which these reactions occur, the highest temperature reached needs to be 1300 ° C or higher, preferably 1400 ° C or higher.
When this temperature is lower than 1300 ° C, a part of Al is B
Since it only reacts with 4 C to form AlB 2 and C or Al 4 C 3, and a part of Si becomes Si 3 N 4 , resulting in insufficient formation of the target BN, AlN, and SiC. Is.

【0026】生成される材料は、溶融金属、特に溶鋼に
対する耐食性の優れたAlNと、耐スラグ性に優れたS
iCと、耐食性および機械加工性に優れたBNを組み合
わせた材料であり、22〜90wt%のBN、4〜48
wt%のAlN、6〜30wt%のSiCを少なくとも
含む必要がある。なぜならば、この組成から外れると、
上述したような多様な材料特性が十分に発現しないから
である。
The materials produced are AlN which has excellent corrosion resistance to molten metal, especially molten steel, and S which has excellent slag resistance.
It is a material that combines iC and BN having excellent corrosion resistance and machinability, and has 22 to 90 wt% BN and 4 to 48
It is necessary to include at least wt% AlN and 6 to 30 wt% SiC. Because when it comes out of this composition,
This is because the various material properties described above are not sufficiently exhibited.

【0027】次に、本発明の第2の態様は、10〜70
wt%B4 C、30〜90wt%のAl、10〜60w
t%のSiO2 を含む混合粉末を窒化性雰囲気中で13
00〜2300℃にまで加熱し、22〜90wt%のB
N、4〜48wt%のAlNまたはAlON、6〜30
wt%のSiC、4〜30wt%のAl23 を含む窒
化ホウ素含有材料を得るものである。
Next, a second aspect of the present invention is 10 to 70.
wt% B 4 C, 30-90 wt% Al, 10-60w
13% of mixed powder containing t% of SiO 2 in a nitriding atmosphere
Heated to 00 to 2300 ° C., 22 to 90 wt% B
N, 4-48 wt% AlN or AlON, 6-30
A boron nitride-containing material containing wt% SiC and 4 to 30 wt% Al 2 O 3 is obtained.

【0028】ここで、本態様の窒化ホウ素含有材料の組
成を満足する限り、原料のSi源としてSiO2 の他に
Siが含まれていてもよい。また、加熱の際の窒化性雰
囲気は特に制約はないが、窒素、アンモニア、アンモニ
ア分解ガス、これらを含むガス等を適用することができ
る。このような雰囲気下で以下の反応を生じさせる。
Here, Si may be contained in addition to SiO 2 as a raw material Si source as long as the composition of the boron nitride-containing material of the present embodiment is satisfied. The nitriding atmosphere during heating is not particularly limited, but nitrogen, ammonia, ammonia decomposition gas, gas containing these, or the like can be applied. The following reactions occur in such an atmosphere.

【0029】Al+(1/2)N2 → AlN B4 C+2N2 +SiO2 → 4BN+SiC+(2
/3)Al23 まず、出発物質のAlを窒化させるのであるが、Alの
窒化には雰囲気温度で650℃以上とすることが好まし
い。これは650℃未満では反応が遅く窒化時間が過大
になるからである。一方このAlの窒化は2300℃以
下で終了することが好ましい。なぜならば、Alの窒化
は大きな発熱を伴うので、処理物の温度が雰囲気温度よ
り高くなり、雰囲気温度が2300℃を超えると揮散損
失が大きくなるからである。これらの反応が生じる温度
サイクルのなかで最高到達温度は1300℃以上にする
ことが必要であり、好ましくは1400℃以上である。
この温度が1300℃未満の場合には、Alの一部はB
4 Cと反応してAlB2 とCまたはAl43 を生成
し、またSiO2 を還元してAl23 とSiを生成し
てSiの一部はSi34 になり、目的とするBN、A
lN、SiCの生成が不十分となるからである。AlN
とAl23 の一部が固溶してAlONに転化してもよ
い。ここでAlONは、Al、O、Nの固溶体の総称で
あるが組成については、特に限定されるものではなく、
いかなる組成であってもよい。
Al + (1/2) N 2 → AlN B 4 C + 2N 2 + SiO 2 → 4BN + SiC + (2
/ 3) Al 2 O 3 First, the starting material, Al, is nitrided. For nitriding Al, the ambient temperature is preferably 650 ° C. or higher. This is because if the temperature is lower than 650 ° C., the reaction is slow and the nitriding time becomes too long. On the other hand, the nitriding of Al is preferably completed at 2300 ° C. or lower. This is because the nitridation of Al is accompanied by a large amount of heat generation, so that the temperature of the processed material becomes higher than the atmospheric temperature, and the volatilization loss becomes large when the atmospheric temperature exceeds 2300 ° C. In the temperature cycle in which these reactions occur, the highest temperature reached needs to be 1300 ° C or higher, preferably 1400 ° C or higher.
When this temperature is lower than 1300 ° C, a part of Al is B
It reacts with 4 C to produce AlB 2 and C or Al 4 C 3 , and also reduces SiO 2 to produce Al 2 O 3 and Si, and a part of Si becomes Si 3 N 4. BN, A
This is because the production of 1N and SiC becomes insufficient. AlN
And a part of Al 2 O 3 may form a solid solution and be converted into AlON. Here, AlON is a general term for a solid solution of Al, O, and N, but the composition is not particularly limited,
It may have any composition.

【0030】生成される材料は、溶融金属、特に溶鋼に
対する耐食性の優れたAlNまたはAlONと、耐スラ
グ性に優れたSiCと、耐食性および機械加工性に優れ
たBNと、耐酸化性に優れたAl23 を組み合わせた
材料であり、22〜90wt%のBN、4〜48wt%
のAlNまたはAlON、6〜30wt%のSiCを少
なくとも含む必要がある。なぜならば、この組成から外
れると、上述したような多様な材料特性が十分に発現し
ないからである。
The materials produced were AlN or AlON having excellent corrosion resistance to molten metal, particularly molten steel, SiC having excellent slag resistance, BN having excellent corrosion resistance and machinability, and excellent oxidation resistance. A material that combines Al 2 O 3 and has 22 to 90 wt% BN and 4 to 48 wt%
AlN or AlON of 6 to 30 wt% SiC must be included. This is because, if the composition is out of this range, the various material properties as described above are not sufficiently exhibited.

【0031】さらに、本発明の第3の態様は、10〜7
0wt%B4 C、30〜90wt%のAl、10〜60
wt%のSiO2 を含む混合粉末を窒化性雰囲気中で1
700〜2300℃にまで加熱し、22〜90wt%の
BN、4〜48wt%のAlON、6〜30wt%のS
iCを含む窒化ホウ素含有材料を得るものである。
Further, the third aspect of the present invention is 10 to 7
0 wt% B 4 C, 30 to 90 wt% Al, 10 to 60
Mixed powder containing 1 wt% SiO 2 in nitriding atmosphere
Heated to 700-2300 ° C., 22-90 wt% BN, 4-48 wt% AlON, 6-30 wt% S
A boron nitride-containing material containing iC is obtained.

【0032】上記BN、AlNまたはAlON、SiC
を含む材料が1700〜2300℃の高温で好ましくは
2時間以上、さらに好ましくは3時間以上保持されるこ
とにより、AlNとAl23 の固溶が十分行われ、A
lONへの転化率が高まる。AlONは、AlNの溶融
金属に対する耐食性とAl23 の耐酸化性とを合わせ
持ち、材料の溶融金属に対する耐食性と酸化性とを向上
させる。
BN, AlN or AlON, SiC
The material containing Al is kept at a high temperature of 1700 to 2300 ° C. for preferably 2 hours or more, more preferably 3 hours or more, so that AlN and Al 2 O 3 are sufficiently dissolved to form A.
The conversion rate to ON increases. AlON has both the corrosion resistance of AlN against molten metal and the oxidation resistance of Al 2 O 3 , and improves the corrosion resistance and oxidation resistance of the material against molten metal.

【0033】ここで、本態様においても本態様の窒化ホ
ウ素含有材料の組成を満足する限り、原料のSi源とし
てSiO2 の他にSiが含まれていてもよい。生成され
る材料は、溶融金属、特に溶鋼に対する耐食性の優れた
AlONと、耐スラグ性に優れたSiCと、耐食性およ
び機械加工性に優れたBNとを組み合わせた材料であ
り、22〜90wt%のBN、4〜48wt%のAlO
N、6〜30wt%のSiCを少なくとも含む必要があ
る。なぜならば、この組成から外れると、上述したよう
な多様な材料特性が十分に発現しないからである。
Here, also in this embodiment, Si may be contained in addition to SiO 2 as the source Si source as long as the composition of the boron nitride-containing material of this embodiment is satisfied. The produced material is a material in which AlON having excellent corrosion resistance to molten metal, particularly molten steel, SiC having excellent slag resistance, and BN having excellent corrosion resistance and machinability are combined, and the content is 22 to 90 wt%. BN, 4-48 wt% AlO
It is necessary to contain at least N and SiC of 6 to 30 wt%. This is because, if the composition is out of this range, the various material properties as described above are not sufficiently exhibited.

【0034】さらにまた、本発明の第4の態様は、10
〜70wt%のB4 C、30〜90wt%のAl、10
〜60wt%のSiまたはSiO2 を含む混合粉末を窒
化性雰囲気中で1300〜2300℃にまで加熱するこ
とにより、22〜90wt%のBN、4〜48wt%の
AlNおよび/またはAlON、6〜30wt%のSi
Cを含み、表面に厚さ2〜10mmのAlNおよび/ま
たはAlONの濃縮層を有する窒化ホウ素含有材料を得
るものである。
Still further, according to the fourth aspect of the present invention,
To 70 wt% of B 4 C, 30~90wt% of Al, 10
By heating a mixed powder containing ˜60 wt% Si or SiO 2 to 1300 to 2300 ° C. in a nitriding atmosphere, 22 to 90 wt% BN, 4 to 48 wt% AlN and / or AlON, 6 to 30 wt % Si
A boron nitride-containing material containing C and having a concentrated layer of AlN and / or AlON having a thickness of 2 to 10 mm on the surface thereof.

【0035】この材料を溶融金属、特に溶鋼に対する耐
食性の優れたAlNおよび/またはAlONと、耐スラ
グ性に優れたSiCと、耐食性、機械加工性に優れたB
Nとを組み合わせた材料であり、22〜90wt%のB
N、4〜48wt%のAlNおよび/またはAlON、
6〜30wt%のSiCを少なくとも含む必要がある。
なぜならば、この組成から外れると、上述したような多
様な材料特性が十分に発現しないからである。
This material is made of AlN and / or AlON having excellent corrosion resistance to molten metal, especially molten steel, SiC having excellent slag resistance, and B having excellent corrosion resistance and machinability.
It is a material that combines N and is 22 to 90 wt% of B
N, 4-48 wt% AlN and / or AlON,
It is necessary to contain at least 6 to 30 wt% of SiC.
This is because, if the composition is out of this range, the various material properties as described above are not sufficiently exhibited.

【0036】また、本発明者らの研究の結果、全体の組
成が上記組成の範囲内であってかつ表面に厚さ2〜10
mmのAlNおよび/またはAlONの濃縮層を形成す
ることによって材料の耐摩耗性が著しく改善されること
が見出された。
Further, as a result of the study by the present inventors, the total composition is within the range of the above composition and the surface has a thickness of 2 to 10.
It has been found that by forming a concentrated layer of AlN and / or AlON of mm, the wear resistance of the material is significantly improved.

【0037】従って、本態様では表面に厚さ2〜10m
mのAlNおよび/またはAlONの濃縮層を有するこ
とを要件としている。具体的には、表面から2mmまで
の範囲のBNのX線回折の最大ピークの回折強度に対す
るAlNとAlONのX線回折の最大ピークの回折強度
の和の比(AlN+AlON)/BNの値と、表面から
10mm以上内部の(AlN+AlON)/BNの値と
の比が1.3以上になるようにすることが好ましい。こ
のように濃縮層を形成することによって、表面部分が本
発明の窒化ホウ素含有材料が本質的に有している溶融金
属および溶融スラグに対する耐食性に加え、これらに対
する耐摩耗性をも兼備したものとなるのである。
Therefore, in this embodiment, the surface has a thickness of 2 to 10 m.
It is required to have a concentrated layer of mN AlN and / or AlON. Specifically, the ratio of the sum of the diffraction intensities of the maximum peaks of X-ray diffraction of AlN and AlON to the maximum intensity of the X-ray diffraction of BN in the range of 2 mm from the surface (AlN + AlON) / BN value, It is preferable that the ratio of (AlN + AlON) / BN within 10 mm or more from the surface is 1.3 or more. By forming the concentrated layer in this way, in addition to the corrosion resistance to the molten metal and the molten slag that the surface portion of the boron nitride-containing material of the present invention essentially has, it also has wear resistance to them. It will be.

【0038】この濃縮層はAlNおよび/またはAlO
Nが濃縮されているため内部よりも硬く、もって耐摩耗
性を向上させるものであるが、この濃縮層の厚さが2m
mよりも小さいか、または10mmを超えると以下に示
すような不都合がある。すなわち、その厚さが2mm未
満であると材料表面に荷重が加わった際に濃縮層に亀裂
が入りやすく耐摩耗性が不十分となる。一方、濃縮層を
構成する材料の耐熱衝撃性は内部を構成する材料よりも
耐熱衝撃性が劣るため、その厚さが10mm以内では熱
衝撃によって濃縮層に発生する熱応力が材料内部の変形
によって緩和されるが、10mmを超えると緩和が困難
となり、亀裂が発生しやすくなる。従って、耐摩耗性の
観点および耐熱衝撃性の観点から、この濃縮層の厚さを
2〜10mmと規定したのである。
This concentrated layer is made of AlN and / or AlO.
Since N is concentrated, it is harder than the inside and thus improves wear resistance, but the thickness of this concentrated layer is 2 m.
If it is smaller than m or exceeds 10 mm, the following inconvenience occurs. That is, if the thickness is less than 2 mm, the concentrated layer is likely to crack when a load is applied to the surface of the material, resulting in insufficient wear resistance. On the other hand, the thermal shock resistance of the material forming the concentrated layer is inferior to that of the material forming the inside, so if the thickness is less than 10 mm, the thermal stress generated in the concentrated layer due to thermal shock may be caused by the deformation inside the material. Although it is relaxed, if it exceeds 10 mm, it becomes difficult to relax and cracks easily occur. Therefore, from the viewpoint of wear resistance and thermal shock resistance, the thickness of this concentrated layer is defined as 2 to 10 mm.

【0039】この態様の材料は、AlNおよび/または
AlONの濃縮層の厚さが2〜10mmの範囲になりさ
えすれば、成形体の厚さ、形状には特に制限はないが、
厚さが薄くなると相対的に成形体内部から散逸する後述
する成形体を加熱する際に発生するガスの量が少なくな
るのでAlの拡散が不十分となり、表面に2〜10mm
の濃縮層を形成しにくくなる。このため成形体の厚さは
8mm以上が好ましい。
The material of this embodiment is not particularly limited in the thickness and shape of the molded body as long as the thickness of the concentrated layer of AlN and / or AlON is in the range of 2 to 10 mm.
As the thickness becomes thinner, the amount of gas that is dissipated from the inside of the molded body relatively when heating the molded body to be described later decreases, so Al diffusion becomes insufficient, and 2-10 mm on the surface.
It becomes difficult to form a concentrated layer. Therefore, the thickness of the molded body is preferably 8 mm or more.

【0040】次に、この態様の材料を製造する方法につ
いて述べる。上述したように、この態様においては、1
0〜70wt%のB4 C、30〜90wt%のAl、1
0〜60wt%のSiまたはSiO2 を含む混合粉末を
窒化性雰囲気中で1300〜2300℃にまで加熱する
ことにより、上述の窒化ホウ素含有材料を得る。
Next, a method for producing the material of this embodiment will be described. As described above, in this aspect, 1
0-70 wt% B 4 C, 30-90 wt% Al, 1
The above-mentioned boron nitride-containing material is obtained by heating a mixed powder containing 0 to 60 wt% of Si or SiO 2 to 1300 to 2300 ° C. in a nitriding atmosphere.

【0041】ここで、加熱の際の窒化性雰囲気は特に制
約はないが、窒素、アンモニア、アンモニア分解ガス、
これらを含むガス等を適用することができる。このよう
な雰囲気下で以下の反応を生じさせる。
Here, the nitriding atmosphere at the time of heating is not particularly limited, but nitrogen, ammonia, ammonia decomposition gas,
A gas containing these can be applied. The following reactions occur in such an atmosphere.

【0042】Al+(1/2)N2 → AlN B4 C+2N2 +Si → 4BN+SiC および/
または B4 C+2N2 +SiO2 → 4BN+SiC+(2
/3)Al23 まず、出発物質のAlを窒化させるのであるが、Alの
窒化には雰囲気温度で650℃以上とすることが好まし
い。これは650℃未満では反応が遅く窒化時間が過大
になるからである。一方このAlの窒化は2300℃以
下で終了することが好ましい。なぜならば、Alの窒化
は大きな発熱を伴うので、処理物の温度が雰囲気温度よ
り高くなり、雰囲気温度が2300℃を超えると揮散損
失が大きくなるからである。これらの反応が生じる温度
サイクルのなかで最高到達温度は1300℃以上にする
ことが必要であり、好ましくは1400℃以上である。
この温度が1300℃未満の場合には、Alの一部はB
4 Cと反応してAlB2 とCまたはAl43 を生成
し、Siの一部はSi34 になり、目的とするBN、
AlN、SiCの生成が不十分となるからである。Al
NとAl23 の一部が固溶してAlONに転化しても
よい。AlONの組成については、特に限定されるもの
ではなく、いかなる組成であってもよい。また、AlO
NのAlの一部がSiで置換されていてもよい。ただ
し、Si/Alのモル比で1.0以下であることが耐食
性の観点から好ましい。これが1.0を超えると溶融
物、特に溶鋼、溶融スラグに対する耐食性が低下するか
らである。このようなAlONの例としては、Al11
15N、AlON、Al1982884 、Al2739N、
Al1083 、Al937 、SiAl72
7 、Si3 Al3455 等が挙げられる。
Al + (1/2) N 2 → AlN B 4 C + 2N 2 + Si → 4BN + SiC and /
Or B 4 C + 2N 2 + SiO 2 → 4BN + SiC + (2
/ 3) Al 2 O 3 First, the starting material, Al, is nitrided. For nitriding Al, the ambient temperature is preferably 650 ° C. or higher. This is because if the temperature is lower than 650 ° C., the reaction is slow and the nitriding time becomes too long. On the other hand, the nitriding of Al is preferably completed at 2300 ° C. or lower. This is because the nitridation of Al is accompanied by a large amount of heat generation, so that the temperature of the processed material becomes higher than the atmospheric temperature, and the volatilization loss becomes large when the atmospheric temperature exceeds 2300 ° C. In the temperature cycle in which these reactions occur, the highest temperature reached needs to be 1300 ° C or higher, preferably 1400 ° C or higher.
When this temperature is lower than 1300 ° C, a part of Al is B
It reacts with 4 C to form AlB 2 and C or Al 4 C 3, and a part of Si becomes Si 3 N 4 .
This is because the generation of AlN and SiC becomes insufficient. Al
A part of N and Al 2 O 3 may form a solid solution and be converted into AlON. The composition of AlON is not particularly limited and may be any composition. In addition, AlO
A part of Al of N may be replaced by Si. However, the Si / Al molar ratio is preferably 1.0 or less from the viewpoint of corrosion resistance. This is because if it exceeds 1.0, the corrosion resistance to the melt, particularly the molten steel and the molten slag, is lowered. An example of such AlON is Al 11 O
15 N, AlON, Al 198 O 288 N 4 , Al 27 O 39 N,
Al 10 N 8 O 3 , Al 9 O 3 N 7 , SiAl 7 O 2 N
7 , Si 3 Al 3 O 45 N 5 and the like.

【0043】成形体を加熱すると、その成形体を構成す
る粉末の表面に吸着した湿分の蒸発、あるいは600℃
を超えるとB23 の分圧が上昇する等によりガスが発
生し、成形体表面へ拡散し、外部へ散逸する。このた
め、Alは650℃以上では溶融して液相となるためガ
スの移動に伴って表面へ移動する。このAlの表面への
移動現象を利用して、表面にAlを濃縮させる。そし
て、表面に濃縮されたAlを窒化させることによりAl
Nとし、またAlとSiO2 とを反応させてAl23
とする。条件によっては、これらがAlONに転化す
る。このようにして、AlNおよび/またはAlONの
濃縮層を材料表面に形成するのである。
When the molded body is heated, the moisture adsorbed on the surface of the powder forming the molded body is evaporated or 600 ° C.
When it exceeds, the gas is generated due to the increase of the partial pressure of B 2 O 3 , etc., diffuses to the surface of the molded body, and is diffused to the outside. For this reason, Al melts at 650 ° C. or higher and becomes a liquid phase, and thus moves to the surface as the gas moves. Utilizing this phenomenon of movement of Al to the surface, Al is concentrated on the surface. Then, by nitriding the concentrated Al on the surface, Al
N, and Al and SiO 2 are reacted to form Al 2 O 3
And Depending on the conditions, these are converted to AlON. In this way, a concentrated layer of AlN and / or AlON is formed on the surface of the material.

【0044】なお、上記いずれの態様においても、本発
明で規定された組成を満足する範囲内で、AlB2
C、Si34 が含有されていてもよいし、また、Ti
2 、ZrO2 、Cr23 、Al23 、SiO2
中から選択された1種または2種以上の酸化物、または
これらの酸化物の少なくとも1種を含む複合酸化物が含
有されていてもよい。また、MgB2 、CaB6 、Ti
2 、ZrB2 、CrB2 、CrBの中から選択された
1種または2種以上のホウ化物が含有されていてもよ
い。さらに、TiC、ZrC、Cr32 、Al43
の中から選択された1種または2種以上の炭化物が含有
されていてもよい。さらにまたTiN、ZrN、Cr2
Nの中から選択された1種または2種以上の窒化物が含
有されていてもよい。
In any of the above-mentioned embodiments, within the range satisfying the composition specified in the present invention, AlB 2 ,
C, Si 3 N 4 may be contained, or Ti
One or more oxides selected from O 2 , ZrO 2 , Cr 2 O 3 , Al 2 O 3 and SiO 2 or a composite oxide containing at least one of these oxides is contained. It may have been done. In addition, MgB 2 , CaB 6 , Ti
One or more borides selected from B 2 , ZrB 2 , CrB 2 , and CrB may be contained. Furthermore, TiC, ZrC, Cr 3 C 2 , Al 4 C 3
One or two or more kinds of carbides selected from the above may be contained. Furthermore, TiN, ZrN, Cr 2
One or more nitrides selected from N may be contained.

【0045】[0045]

【実施例】以下、この発明の実施例について説明する。 (実施例1)325メッシュの篩目通過(粒径44μm
以下)のB4 C、200メッシュの篩目通過(粒径74
μm以下)のAl、325メッシュの篩目通過(粒径4
4μm以下)のSiをそれぞれ28.9wt%、56.
4wt%、14.7wt%の割合で混合し、直径60m
m、高さ50mmのキャビティを持つ黒鉛容器に100
g充填し、直径60mm、厚さ5mmの黒鉛板を介して
面圧10MPaをかけて圧密した。このようにして密度
1.43g/cm3 の成形体が得られた。これを黒鉛ヒ
ーター炉に配設し、真空ポンプで排気後、窒素ガスを導
入し、窒素圧力0.14MPa(絶対圧)とし、昇温速
度15℃/min で700℃まで加熱し3時間保持後、再
び昇温速度15℃/min で1500℃まで加熱し3時間
保持後放冷した。
Embodiments of the present invention will be described below. (Example 1) Passing through 325 mesh sieve mesh (particle size 44 μm)
Below) B 4 C, 200 mesh sieve mesh pass (particle size 74
Al, 325 mesh screen mesh (particle size 4)
4 μm or less) 28.9 wt% Si, 56.
Mixing at a ratio of 4 wt% and 14.7 wt%, diameter 60m
m in a graphite container with a cavity of 50 mm in height and 100 in
g, and a surface pressure of 10 MPa was applied through a graphite plate having a diameter of 60 mm and a thickness of 5 mm for consolidation. Thus, a molded body having a density of 1.43 g / cm 3 was obtained. This was placed in a graphite heater furnace, exhausted with a vacuum pump, nitrogen gas was introduced, the nitrogen pressure was 0.14 MPa (absolute pressure), the temperature was raised to 700 ° C. at a heating rate of 15 ° C./min, and after holding for 3 hours The sample was again heated to 1500 ° C. at a temperature rising rate of 15 ° C./min, kept for 3 hours and then left to cool.

【0046】このようにして得られた焼結体の重量は1
42g、嵩密度は2.27g/cm3 であった。X線回
折により、BN、AlN、SiCが同定された。計算に
よる推定組成は、BN:32.7wt%、AlN:5
4.1wt%、SiC:13.2wt%であった。
The weight of the sintered body thus obtained is 1
42 g, and the bulk density was 2.27 g / cm 3 . BN, AlN, and SiC were identified by X-ray diffraction. The composition estimated by calculation is BN: 32.7 wt%, AlN: 5
It was 4.1 wt% and SiC: 13.2 wt%.

【0047】この焼結体を大気炉に設置し、1500℃
に加熱して1時間保持後放冷し、重量増加を測定した。
その結果、重量増加は0.12%とわずかであった。こ
の焼結体から1/4に分割した試料2個と、1/2分割
した試料1個を用意し、前者を耐食性試験に供し、後者
から3mm×4mm×40mmの曲げ試験用試験片を切
り出した。
This sintered body was placed in an atmospheric furnace and set at 1500 ° C.
After heating for 1 hour and allowing to cool, the weight increase was measured.
As a result, the increase in weight was as small as 0.12%. Two specimens divided into 1/4 and one specimen divided into 1/2 were prepared from this sintered body, the former was subjected to a corrosion resistance test, and a test piece for bending test of 3 mm x 4 mm x 40 mm was cut out from the latter. It was

【0048】耐食試験片の一方に一辺5mmの立方体の
13Cr鋼(Cr:13.0重量%、C:0.20重量
%、Si:0.8重量%を含む鋼)を、もう一方に直径
5mm高さ5mmのタブレット状の粉末成形体(SiO
2 35.2wt%、Al23 4.1wt%、CaO2
7.5wt%)を載せてアルゴン雰囲気で1550℃ま
で加熱し、1550℃で2時間保持後放冷した。そし
て、凝固後の13Cr鋼の接触角およびタブレット状の
粉末成形体から生成されたスラグの接触角を測定した。
その結果、13Cr鋼の接触角が110度、スラグの接
触角が96度であり、このBN含有材料は溶鋼にも溶融
スラグにも濡れにくく、接触界面に反応は見られなかっ
た。また、スパン長30mmの3点曲げ試験の結果は8
0MPaであり、鋳造用耐火物として使用可能なレベル
にあることが確認された。
A cubic 13Cr steel (steel containing Cr: 13.0% by weight, C: 0.20% by weight, Si: 0.8% by weight) having a side of 5 mm was provided on one side of the corrosion resistance test piece, and the other had a diameter of 10 mm. 5 mm tablet-like powder compact with a height of 5 mm (SiO
2 35.2 wt%, Al 2 O 3 4.1 wt%, CaO 2
(7.5 wt%) was placed thereon, and the mixture was heated to 1550 ° C. in an argon atmosphere, kept at 1550 ° C. for 2 hours, and then allowed to cool. Then, the contact angle of the 13Cr steel after solidification and the contact angle of the slag generated from the tablet-shaped powder compact were measured.
As a result, the contact angle of the 13Cr steel was 110 degrees and the contact angle of the slag was 96 degrees, and this BN-containing material was difficult to wet with molten steel and molten slag, and no reaction was observed at the contact interface. The result of the 3-point bending test with a span length of 30 mm is 8
It was 0 MPa, and it was confirmed that it was at a level usable as a refractory for casting.

【0049】(実施例2)325メッシュパスの粒径
(粒径44μm以下)を有するB4 C、200メッシュ
パスの粒径(粒径74μm以下)を有するAl、325
メッシュパスの粒径(粒径44μm以下)を有するS
i、粒径10μm以下のAl23 をそれぞれ22.8
wt%、44.6wt%、11.6wt%、21.0w
t%の割合で混合し、直径60mm、高さ50mmのキ
ャビティを持つ黒鉛容器に100g充填し、直径60m
m、厚さ5mmの黒鉛板を介して面圧10MPaをかけ
て圧密した。このようにして密度1.62g/cm3
成形体が得られた。これを黒鉛ヒーター炉に配設し、真
空ポンプで排気後、窒素ガスを導入し、窒素圧力0.1
4MPa(絶対圧)とし、昇温速度15℃/min で70
0℃まで加熱し3時間保持後、再び昇温速度15℃/mi
n で1500℃まで加熱し3時間保持後放冷した。
(Example 2) B 4 C having a particle size of 325 mesh pass (particle size of 44 μm or less), Al having a particle size of 200 mesh pass (particle size of 74 μm or less), 325
S with a mesh pass particle size (particle size 44 μm or less)
i, Al 2 O 3 having a particle size of 10 μm or less is 22.8
wt%, 44.6 wt%, 11.6 wt%, 21.0w
Mix at a ratio of t%, and fill 100 g of a graphite container having a cavity with a diameter of 60 mm and a height of 50 mm, and a diameter of 60 m.
A sheet pressure of 10 MPa was applied through a graphite plate of m and a thickness of 5 mm to perform consolidation. Thus, a molded product having a density of 1.62 g / cm 3 was obtained. This was placed in a graphite heater furnace, and after evacuation with a vacuum pump, nitrogen gas was introduced and the nitrogen pressure was adjusted to 0.1.
4 MPa (absolute pressure), 70 at a heating rate of 15 ° C / min
After heating to 0 ℃ and holding for 3 hours, the heating rate is 15 ℃ / mi again.
The mixture was heated to 1500 ° C. with n, held for 3 hours, and then allowed to cool.

【0050】このようにして得られた焼結体の重量は1
46g、嵩密度は2.37g/cm3 であった。X線回
折により、BN、AlN、SiC、Al23 が同定さ
れた。計算による推定組成は、BN:28.0wt%、
AlN:46.3wt%、SiC:11.3wt%、A
23 :14.4wt%であった。
The weight of the sintered body thus obtained is 1
It was 46 g and the bulk density was 2.37 g / cm 3 . BN, AlN, SiC, and Al 2 O 3 were identified by X-ray diffraction. The composition estimated by calculation is BN: 28.0 wt%,
AlN: 46.3 wt%, SiC: 11.3 wt%, A
l 2 O 3: it was 14.4wt%.

【0051】この焼結体を大気炉に設置し、1500℃
に加熱して1時間保持後放冷し、重量増加を測定した。
その結果、重量増加は0.05%とわずかであった。こ
の焼結体から1/4に分割した試料2個と、1/2分割
した試料1個を用意し、前者を耐食性試験に供し、後者
から3mm×4mm×40mmの曲げ試験用試験片を切
り出した。
This sintered body was placed in an atmospheric furnace and kept at 1500 ° C.
After heating for 1 hour and allowing to cool, the weight increase was measured.
As a result, the weight increase was as small as 0.05%. Two specimens divided into 1/4 and one specimen divided into 1/2 were prepared from this sintered body, the former was subjected to a corrosion resistance test, and a test piece for bending test of 3 mm x 4 mm x 40 mm was cut out from the latter. It was

【0052】耐食試験片の一方に一辺5mmの立方体の
13Cr鋼(Cr:13.0重量%、C:0.20重量
%、Si:0.8重量%を含む鋼)を、もう一方に直径
5mm高さ5mmのタブレット状の粉末成形体(SiO
2 35.2wt%、Al23 4.1wt%、CaO2
7.5wt%)を載せてアルゴン雰囲気で1550℃ま
で加熱し、1550℃で2時間保持後放冷した。そし
て、凝固後の13Cr鋼の接触角およびタブレット状の
粉末成形体から生成されたスラグの接触角を測定した。
その結果、13Cr鋼の接触角が110度、スラグの接
触角が92度であり、このBN含有材料は溶鋼にも溶融
スラグにも濡れにくく、接触界面に反応は見られなかっ
た。また、スパン長30mmの3点曲げ試験の結果は1
10MPaであり、鋳造用耐火物として使用可能なレベ
ルにあることが確認された。
One of the corrosion-resistant test pieces was a cubic 13Cr steel (a steel containing Cr: 13.0% by weight, C: 0.20% by weight, Si: 0.8% by weight) having a side of 5 mm, and the other had a diameter. 5 mm tablet-like powder compact with a height of 5 mm (SiO
2 35.2 wt%, Al 2 O 3 4.1 wt%, CaO 2
(7.5 wt%) was placed thereon, and the mixture was heated to 1550 ° C. in an argon atmosphere, kept at 1550 ° C. for 2 hours, and then allowed to cool. Then, the contact angle of the 13Cr steel after solidification and the contact angle of the slag generated from the tablet-shaped powder compact were measured.
As a result, the contact angle of the 13Cr steel was 110 degrees and the contact angle of the slag was 92 degrees, and this BN-containing material was difficult to be wet with molten steel and molten slag, and no reaction was observed at the contact interface. The result of the 3-point bending test with a span length of 30 mm is 1
It was 10 MPa, and it was confirmed that it was at a level usable as a refractory for casting.

【0053】(実施例3)325メッシュパスの粒径
(粒径44μm以下)を有するB4 C、200メッシュ
パスの粒径(粒径74μm以下)を有するAl、325
メッシュパスの粒径(粒径44μm以下)を有するS
i、粒径10μm以下のAl23 をそれぞれ22.8
wt%、44.6wt%、11.6wt%、21.0w
t%の割合で混合し、直径60mm、高さ50mmのキ
ャビティを持つ黒鉛容器に100g充填し、直径60m
m、厚さ5mmの黒鉛板を介して面圧10MPaをかけ
て圧密した。このようにして密度1.62g/cm3
成形体が得られた。これを黒鉛ヒーター炉に配設し、真
空ポンプで排気後、窒素ガスを導入し、窒素圧力0.1
4MPa(絶対圧)とし、昇温速度15℃/min で70
0℃まで加熱し3時間保持後、再び昇温速度15℃/mi
n で1900℃まで加熱し6時間保持後放冷した。
Example 3 B 4 C having a particle size of 325 mesh pass (particle size of 44 μm or less), Al having a particle size of 200 mesh pass (particle size of 74 μm or less), 325
S with a mesh pass particle size (particle size 44 μm or less)
i, Al 2 O 3 having a particle size of 10 μm or less is 22.8
wt%, 44.6 wt%, 11.6 wt%, 21.0w
Mix at a ratio of t%, and fill 100 g of a graphite container having a cavity with a diameter of 60 mm and a height of 50 mm, and a diameter of 60 m.
A sheet pressure of 10 MPa was applied through a graphite plate of m and a thickness of 5 mm to perform consolidation. Thus, a molded product having a density of 1.62 g / cm 3 was obtained. This was placed in a graphite heater furnace, and after evacuation with a vacuum pump, nitrogen gas was introduced and the nitrogen pressure was adjusted to 0.1.
4 MPa (absolute pressure), 70 at a heating rate of 15 ° C / min
After heating to 0 ℃ and holding for 3 hours, the heating rate is 15 ℃ / mi again.
It was heated to 1900 ° C. with n, held for 6 hours, and then left to cool.

【0054】このようにして得られた焼結体の重量は1
45g、嵩密度は2.37g/cm3 であった。X線回
折により、BN、AlN、AlON、SiC、Al2
3 が同定された。
The weight of the sintered body thus obtained is 1
It was 45 g and the bulk density was 2.37 g / cm 3 . BN, AlN, AlON, SiC, Al 2 O by X-ray diffraction
3 were identified.

【0055】この焼結体を大気炉に設置し、1500℃
に加熱して1時間保持後放冷し、重量増加を測定した。
その結果、重量増加は0.03%とわずかであった。こ
の焼結体から1/4に分割した試料2個と、1/2分割
した試料1個を用意し、前者を耐食性試験に供し、後者
から3mm×4mm×40mmの曲げ試験用試験片を切
り出した。
This sintered body was placed in an atmospheric furnace and set at 1500 ° C.
After heating for 1 hour and allowing to cool, the weight increase was measured.
As a result, the weight increase was as small as 0.03%. Two specimens divided into 1/4 and one specimen divided into 1/2 were prepared from this sintered body, the former was subjected to a corrosion resistance test, and a test piece for bending test of 3 mm x 4 mm x 40 mm was cut out from the latter. It was

【0056】耐食試験片の一方に一辺5mmの立方体の
13Cr鋼(Cr:13.0重量%、C:0.20重量
%、Si:0.8重量%を含む鋼)を、もう一方に直径
5mm高さ5mmのタブレット状の粉末成形体(SiO
2 35.2wt%、Al23 4.1wt%、CaO2
7.5wt%)を載せてアルゴン雰囲気で1550℃ま
で加熱し、1550℃で2時間保持後放冷した。そし
て、凝固後の13Cr鋼の接触角およびタブレット状の
粉末成形体から生成されたスラグの接触角を測定した。
その結果、13Cr鋼の接触角が110度、スラグの接
触角が95度であり、このBN含有材料は溶鋼にも溶融
スラグにも濡れにくく、接触界面に反応は見られなかっ
た。また、スパン長30mmの3点曲げ試験の結果は1
20MPaであり、鋳造用耐火物として使用可能なレベ
ルにあることが確認された。
A cubic 13Cr steel (a steel containing Cr: 13.0 wt%, C: 0.20 wt%, Si: 0.8 wt%) having a side of 5 mm was provided on one side of the corrosion resistance test piece, and the other was of a diameter. 5 mm tablet-like powder compact with a height of 5 mm (SiO
2 35.2 wt%, Al 2 O 3 4.1 wt%, CaO 2
(7.5 wt%) was placed thereon, and the mixture was heated to 1550 ° C. in an argon atmosphere, kept at 1550 ° C. for 2 hours, and then allowed to cool. Then, the contact angle of the 13Cr steel after solidification and the contact angle of the slag generated from the tablet-shaped powder compact were measured.
As a result, the contact angle of the 13Cr steel was 110 ° and the contact angle of the slag was 95 °, and this BN-containing material was difficult to be wet with molten steel and molten slag, and no reaction was observed at the contact interface. The result of the 3-point bending test with a span length of 30 mm is 1
It was 20 MPa, and it was confirmed that it was at a level usable as a refractory for casting.

【0057】(実施例4)325メッシュパスの粒径
(粒径44μm以下)を有するB4 C、200メッシュ
パスの粒径(粒径74μm以下)を有するAl、325
メッシュパスの粒径(粒径44μm以下)を有するS
i、粒径10μm以下のAl23 をそれぞれ22.8
wt%、44.6wt%、11.6wt%、21.0w
t%の割合で混合し、直径60mm、高さ50mmのキ
ャビティを持つ黒鉛容器に100g充填し、直径60m
m、厚さ5mmの黒鉛板を介して面圧10MPaをかけ
て圧密した。このようにして密度1.62g/cm3
成形体が得られた。これを黒鉛ヒーター炉に配設し、真
空ポンプで排気後、窒素ガスを導入し、窒素圧力0.1
4MPa(絶対圧)とし、昇温速度15℃/min で70
0℃まで加熱し3時間保持後、再び昇温速度15℃/mi
n で2200℃まで加熱し5時間保持後放冷した。
(Example 4) B 4 C having a particle size of 325 mesh pass (particle size of 44 μm or less), Al having a particle size of 200 mesh pass (particle size of 74 μm or less), 325
S with a mesh pass particle size (particle size 44 μm or less)
i, Al 2 O 3 having a particle size of 10 μm or less is 22.8
wt%, 44.6 wt%, 11.6 wt%, 21.0w
Mix at a ratio of t%, and fill 100 g of a graphite container having a cavity with a diameter of 60 mm and a height of 50 mm, and a diameter of 60 m.
A sheet pressure of 10 MPa was applied through a graphite plate of m and a thickness of 5 mm to perform consolidation. Thus, a molded product having a density of 1.62 g / cm 3 was obtained. This was placed in a graphite heater furnace, and after evacuation with a vacuum pump, nitrogen gas was introduced and the nitrogen pressure was adjusted to 0.1.
4 MPa (absolute pressure), 70 at a heating rate of 15 ° C / min
After heating to 0 ℃ and holding for 3 hours, the heating rate is 15 ℃ / mi again.
The mixture was heated to 2200 ° C. with n, held for 5 hours and then allowed to cool.

【0058】このようにして得られた焼結体の重量は1
42g、嵩密度は2.41g/cm3 であった。X線回
折により、BN、AlON、SiCが同定された。計算
による推定組成は、BN:28.0wt%、AlON:
60.7wt%、SiC:11.3wt%であった。
The weight of the sintered body thus obtained is 1
42 g, and the bulk density was 2.41 g / cm 3 . BN, AlON, and SiC were identified by X-ray diffraction. The composition estimated by calculation is BN: 28.0 wt%, AlON:
It was 60.7 wt% and SiC: 11.3 wt%.

【0059】この焼結体を大気炉に設置し、1500℃
に加熱して1時間保持後放冷し、重量増加を測定した。
その結果、重量増加は0.03%とわずかであった。こ
の焼結体から1/4に分割した試料2個と、1/2分割
した試料1個を用意し、前者を耐食性試験に供し、後者
から3mm×4mm×40mmの曲げ試験用試験片を切
り出した。
This sintered body was placed in an atmospheric furnace and set at 1500 ° C.
After heating for 1 hour and allowing to cool, the weight increase was measured.
As a result, the weight increase was as small as 0.03%. Two specimens divided into 1/4 and one specimen divided into 1/2 were prepared from this sintered body, the former was subjected to a corrosion resistance test, and a test piece for bending test of 3 mm x 4 mm x 40 mm was cut out from the latter. It was

【0060】耐食試験片の一方に一辺5mmの立方体の
13Cr鋼(Cr:13.0重量%、C:0.20重量
%、Si:0.8重量%を含む鋼)を、もう一方に直径
5mm高さ5mmのタブレット状の粉末成形体(SiO
2 35.2wt%、Al23 4.1wt%、CaO2
7.5wt%)を載せてアルゴン雰囲気で1550℃ま
で加熱し、1550℃で2時間保持後放冷した。そし
て、凝固後の13Cr鋼の接触角およびタブレット状の
粉末成形体から生成されたスラグの接触角を測定した。
その結果、13Cr鋼の接触角が110度、スラグの接
触角が92度であり、このBN含有材料は溶鋼にも溶融
スラグにも濡れにくく、接触界面に反応は見られなかっ
た。また、スパン長30mmの3点曲げ試験の結果は1
70MPaであり、鋳造用耐火物として使用可能なレベ
ルにあることが確認された。
A cubic 13Cr steel (a steel containing Cr: 13.0% by weight, C: 0.20% by weight, Si: 0.8% by weight) having a side of 5 mm was provided on one side of the corrosion resistance test piece, and the other had a diameter of 10 mm. 5 mm tablet-like powder compact with a height of 5 mm (SiO
2 35.2 wt%, Al 2 O 3 4.1 wt%, CaO 2
(7.5 wt%) was placed thereon, and the mixture was heated to 1550 ° C. in an argon atmosphere, kept at 1550 ° C. for 2 hours, and then allowed to cool. Then, the contact angle of the 13Cr steel after solidification and the contact angle of the slag generated from the tablet-shaped powder compact were measured.
As a result, the contact angle of the 13Cr steel was 110 degrees and the contact angle of the slag was 92 degrees, and this BN-containing material was difficult to be wet with molten steel and molten slag, and no reaction was observed at the contact interface. The result of the 3-point bending test with a span length of 30 mm is 1
It was 70 MPa, and it was confirmed that it was at a level usable as a refractory for casting.

【0061】(実施例5)325メッシュパスの粒径
(粒径44μm以下)を有するB4 C、200メッシュ
パスの粒径(粒径74μm以下)を有するAl、平均粒
径5μmのSiO2をそれぞれ23.8wt%、50.
3wt%、25.9wt%の割合で混合し、直径60m
m、高さ50mmのキャビティを持つ黒鉛容器に100
g充填し、直径60mm、厚さ5mmの黒鉛板を介して
面圧10MPaをかけて圧密した。このようにして密度
1.46g/cm3 の成形体が得られた。これを黒鉛ヒ
ーター炉に配設し、真空ポンプで排気後、窒素ガスを導
入し、窒素圧力0.14MPa(絶対圧)とし、昇温速
度15℃/min で700℃まで加熱し3時間保持後、再
び昇温速度15℃/min で1500℃まで加熱し3時間
保持後放冷した。
Example 5 B 4 C having a particle size of 325 mesh pass (particle size of 44 μm or less), Al having a particle size of 200 mesh pass (particle size of 74 μm or less), and SiO 2 having an average particle size of 5 μm were used. 23.8 wt% and 50.
Mixed at a ratio of 3 wt% and 25.9 wt% and a diameter of 60 m
m in a graphite container with a cavity of 50 mm in height and 100 in
g, and a surface pressure of 10 MPa was applied through a graphite plate having a diameter of 60 mm and a thickness of 5 mm for consolidation. Thus, a molded product having a density of 1.46 g / cm 3 was obtained. This was placed in a graphite heater furnace, exhausted with a vacuum pump, nitrogen gas was introduced, the nitrogen pressure was 0.14 MPa (absolute pressure), the temperature was raised to 700 ° C. at a heating rate of 15 ° C./min, and after holding for 3 hours The sample was again heated to 1500 ° C. at a temperature rising rate of 15 ° C./min, kept for 3 hours and then left to cool.

【0062】このようにして得られた焼結体の重量は1
42g、嵩密度は2.08g/cm3 であった。X線回
折により、BN、AlN、SiC、Al23 が同定さ
れた。計算による推定組成は、BN:30.1wt%、
AlN:37.2wt%、SiC:12.1wt%、A
23 :20.6wt%であった。
The weight of the sintered body thus obtained is 1
42 g, and the bulk density was 2.08 g / cm 3 . BN, AlN, SiC, and Al 2 O 3 were identified by X-ray diffraction. The composition estimated by calculation is BN: 30.1 wt%,
AlN: 37.2 wt%, SiC: 12.1 wt%, A
I 2 O 3 : It was 20.6 wt%.

【0063】この焼結体を大気炉に設置し、1500℃
に加熱して1時間保持後放冷し、重量増加を測定した。
その結果、重量増加は0.17%とわずかであった。こ
の焼結体から1/4に分割した試料2個と、1/2分割
した試料1個を用意し、前者を耐食性試験に供し、後者
から3mm×4mm×40mmの曲げ試験用試験片を切
り出した。
This sintered body was placed in an atmospheric furnace and set at 1500 ° C.
After heating for 1 hour and allowing to cool, the weight increase was measured.
As a result, the weight increase was as small as 0.17%. Two specimens divided into 1/4 and one specimen divided into 1/2 were prepared from this sintered body, the former was subjected to a corrosion resistance test, and a test piece for bending test of 3 mm x 4 mm x 40 mm was cut out from the latter. It was

【0064】耐食試験片の一方に一辺5mmの立方体の
13Cr鋼(Cr:13.0重量%、C:0.20重量
%、Si:0.8重量%を含む鋼)を、もう一方に直径
5mm高さ5mmのタブレット状の粉末成形体(SiO
2 35.2wt%、Al23 4.1wt%、CaO2
7.5wt%)を載せてアルゴン雰囲気で1550℃ま
で加熱し、1550℃で2時間保持後放冷した。そし
て、凝固後の13Cr鋼の接触角およびタブレット状の
粉末成形体から生成されたスラグの接触角を測定した。
その結果、13Cr鋼の接触角が110度、スラグの接
触角が95度であり、このBN含有材料は溶鋼にも溶融
スラグにも濡れにくく、接触界面に反応は見られなかっ
た。また、スパン長30mmの3点曲げ試験の結果は7
2MPaであり、鋳造用耐火物として使用可能なレベル
にあることが確認された。
A cubic 13Cr steel (a steel containing Cr: 13.0% by weight, C: 0.20% by weight, Si: 0.8% by weight) having a side of 5 mm was used for one side of the corrosion resistance test piece, and the other side had a diameter of 10 mm. 5 mm tablet-like powder compact with a height of 5 mm (SiO
2 35.2 wt%, Al 2 O 3 4.1 wt%, CaO 2
(7.5 wt%) was placed thereon, and the mixture was heated to 1550 ° C. in an argon atmosphere, kept at 1550 ° C. for 2 hours, and then allowed to cool. Then, the contact angle of the 13Cr steel after solidification and the contact angle of the slag generated from the tablet-shaped powder compact were measured.
As a result, the contact angle of the 13Cr steel was 110 ° and the contact angle of the slag was 95 °, and this BN-containing material was difficult to be wet with molten steel and molten slag, and no reaction was observed at the contact interface. The result of the 3-point bending test with a span length of 30 mm is 7
It was 2 MPa, and it was confirmed that it was at a level usable as a refractory for casting.

【0065】(実施例6)325メッシュパスの粒径
(粒径44μm以下)を有するB4 C、200メッシュ
パスの粒径(粒径74μm以下)を有するAl、平均粒
径5μmのSiO2をそれぞれ23.8wt%、50.
3wt%、25.9wt%の割合で混合し、直径60m
m、高さ50mmのキャビティを持つ黒鉛容器に100
g充填し、直径60mm、厚さ5mmの黒鉛板を介して
面圧10MPaをかけて圧密した。このようにして密度
1.46g/cm3 の成形体が得られた。これを黒鉛ヒ
ーター炉に配設し、真空ポンプで排気後、窒素ガスを導
入し、窒素圧力0.14MPa(絶対圧)とし、昇温速
度15℃/min で700℃まで加熱し3時間保持後、再
び昇温速度15℃/min で1900℃まで加熱し6時間
保持後放冷した。
Example 6 B 4 C having a particle size of 325 mesh pass (particle size of 44 μm or less), Al having a particle size of 200 mesh pass (particle size of 74 μm or less), and SiO 2 having an average particle size of 5 μm were used. 23.8 wt% and 50.
Mixed at a ratio of 3 wt% and 25.9 wt% and a diameter of 60 m
m in a graphite container with a cavity of 50 mm in height and 100 in
g, and a surface pressure of 10 MPa was applied through a graphite plate having a diameter of 60 mm and a thickness of 5 mm for consolidation. Thus, a molded product having a density of 1.46 g / cm 3 was obtained. This was placed in a graphite heater furnace, exhausted with a vacuum pump, nitrogen gas was introduced, the nitrogen pressure was 0.14 MPa (absolute pressure), the temperature was raised to 700 ° C. at a heating rate of 15 ° C./min, and after holding for 3 hours The sample was again heated to 1900 ° C. at a temperature rising rate of 15 ° C./min, held for 6 hours and then left to cool.

【0066】このようにして得られた焼結体の重量は1
40g、嵩密度は2.18g/cm3 であった。X線回
折により、BN、AlN、AlON、SiC、Al2
3 が同定された。
The weight of the sintered body thus obtained is 1
It was 40 g and the bulk density was 2.18 g / cm 3 . BN, AlN, AlON, SiC, Al 2 O by X-ray diffraction
3 were identified.

【0067】この焼結体を大気炉に設置し、1500℃
に加熱して1時間保持後放冷し、重量増加を測定した。
その結果、重量増加は0.05%とわずかであった。こ
の焼結体から1/4に分割した試料2個と、1/2分割
した試料1個を用意し、前者を耐食性試験に供し、後者
から3mm×4mm×40mmの曲げ試験用試験片を切
り出した。
This sintered body was placed in an atmospheric furnace and set at 1500 ° C.
After heating for 1 hour and allowing to cool, the weight increase was measured.
As a result, the weight increase was as small as 0.05%. Two specimens divided into 1/4 and one specimen divided into 1/2 were prepared from this sintered body, the former was subjected to a corrosion resistance test, and a test piece for bending test of 3 mm x 4 mm x 40 mm was cut out from the latter. It was

【0068】耐食試験片の一方に一辺5mmの立方体の
13Cr鋼(Cr:13.0重量%、C:0.20重量
%、Si:0.8重量%を含む鋼)を、もう一方に直径
5mm高さ5mmのタブレット状の粉末成形体(SiO
2 35.2wt%、Al23 4.1wt%、CaO2
7.5wt%)を載せてアルゴン雰囲気で1550℃ま
で加熱し、1550℃で2時間保持後放冷した。そし
て、凝固後の13Cr鋼の接触角およびタブレット状の
粉末成形体から生成されたスラグの接触角を測定した。
その結果、13Cr鋼の接触角が110度、スラグの接
触角が95度であり、このBN含有材料は溶鋼にも溶融
スラグにも濡れにくく、接触界面に反応は見られなかっ
た。また、スパン長30mmの3点曲げ試験の結果は1
00MPaであり、鋳造用耐火物として使用可能なレベ
ルにあることが確認された。
A cubic 13Cr steel (steel containing 13.0% by weight of Cr, 0.20% by weight of C, 0.8% by weight of Si) having a side of 5 mm was provided on one side of the corrosion resistance test piece, and a diameter of the other was set on the other side. 5 mm tablet-like powder compact with a height of 5 mm (SiO
2 35.2 wt%, Al 2 O 3 4.1 wt%, CaO 2
(7.5 wt%) was placed thereon, and the mixture was heated to 1550 ° C. in an argon atmosphere, kept at 1550 ° C. for 2 hours, and then allowed to cool. Then, the contact angle of the 13Cr steel after solidification and the contact angle of the slag generated from the tablet-shaped powder compact were measured.
As a result, the contact angle of the 13Cr steel was 110 ° and the contact angle of the slag was 95 °, and this BN-containing material was difficult to be wet with molten steel and molten slag, and no reaction was observed at the contact interface. The result of the 3-point bending test with a span length of 30 mm is 1
It was confirmed to be 00 MPa, which is a level that can be used as a refractory for casting.

【0069】(実施例7)325メッシュパスの粒径
(粒径44μm以下)を有するB4 C、200メッシュ
パスの粒径(粒径74μm以下)を有するAl、平均粒
径5μmのSiO2をそれぞれ23.8wt%、50.
3wt%、25.9wt%の割合で混合し、直径60m
m、高さ50mmのキャビティを持つ黒鉛容器に100
g充填し、直径60mm、厚さ5mmの黒鉛板を介して
面圧10MPaをかけて圧密した。このようにして密度
1.46g/cm3 の成形体が得られた。これを黒鉛ヒ
ーター炉に配設し、真空ポンプで排気後、窒素ガスを導
入し、窒素圧力0.14MPa(絶対圧)とし、昇温速
度15℃/min で700℃まで加熱し3時間保持後、再
び昇温速度15℃/min で2200℃まで加熱し5時間
保持後放冷した。
Example 7 B 4 C having a particle size of 325 mesh pass (particle size of 44 μm or less), Al having a particle size of 200 mesh pass (particle size of 74 μm or less), and SiO 2 having an average particle size of 5 μm were used. 23.8 wt% and 50.
Mixed at a ratio of 3 wt% and 25.9 wt% and a diameter of 60 m
m in a graphite container with a cavity of 50 mm in height and 100 in
g, and a surface pressure of 10 MPa was applied through a graphite plate having a diameter of 60 mm and a thickness of 5 mm for consolidation. Thus, a molded product having a density of 1.46 g / cm 3 was obtained. This was placed in a graphite heater furnace, exhausted with a vacuum pump, nitrogen gas was introduced, the nitrogen pressure was 0.14 MPa (absolute pressure), the temperature was raised to 700 ° C. at a heating rate of 15 ° C./min, and after holding for 3 hours The sample was again heated to 2200 ° C. at a temperature rising rate of 15 ° C./min, kept for 5 hours and then left to cool.

【0070】このようにして得られた焼結体の重量は1
39g、嵩密度は2.21g/cm3 であった。X線回
折により、BN、AlON、SiCが同定された。計算
による推定組成はBN:30.1wt%、AlON:5
7.8wt%、SiC:12.1wt%であった。
The weight of the sintered body thus obtained is 1
It was 39 g and the bulk density was 2.21 g / cm 3 . BN, AlON, and SiC were identified by X-ray diffraction. Estimated composition by calculation is BN: 30.1 wt%, AlON: 5
It was 7.8 wt% and SiC: 12.1 wt%.

【0071】この焼結体を大気炉に設置し、1500℃
に加熱して1時間保持後放冷し、重量増加を測定した。
その結果、重量増加は0.03%とわずかであった。こ
の焼結体から1/4に分割した試料2個と、1/2分割
した試料1個を用意し、前者を耐食性試験に供し、後者
から3mm×4mm×40mmの曲げ試験用試験片を切
り出した。
This sintered body was placed in an atmospheric furnace, and 1500 ° C.
After heating for 1 hour and allowing to cool, the weight increase was measured.
As a result, the weight increase was as small as 0.03%. Two specimens divided into 1/4 and one specimen divided into 1/2 were prepared from this sintered body, the former was subjected to a corrosion resistance test, and a test piece for bending test of 3 mm x 4 mm x 40 mm was cut out from the latter. It was

【0072】耐食試験片の一方に一辺5mmの立方体の
13Cr鋼(Cr:13.0重量%、C:0.20重量
%、Si:0.8重量%を含む鋼)を、もう一方に直径
5mm高さ5mmのタブレット状の粉末成形体(SiO
2 35.2wt%、Al23 4.1wt%、CaO2
7.5wt%)を載せてアルゴン雰囲気で1550℃ま
で加熱し、1550℃で2時間保持後放冷した。そし
て、凝固後の13Cr鋼の接触角およびタブレット状の
粉末成形体から生成されたスラグの接触角を測定した。
その結果、13Cr鋼の接触角が110度、スラグの接
触角が98度であり、このBN含有材料は溶鋼にも溶融
スラグにも濡れにくく、接触界面に反応は見られなかっ
た。また、スパン長30mmの3点曲げ試験の結果は1
90MPaであり、鋳造用耐火物として使用可能なレベ
ルにあることが確認された。
One side of a corrosion-resistant test piece was a cubic 13Cr steel (a steel containing Cr: 13.0% by weight, C: 0.20% by weight, Si: 0.8% by weight) having a side of 5 mm, and the other side had a diameter. 5 mm tablet-like powder compact with a height of 5 mm (SiO
2 35.2 wt%, Al 2 O 3 4.1 wt%, CaO 2
(7.5 wt%) was placed thereon, and the mixture was heated to 1550 ° C. in an argon atmosphere, kept at 1550 ° C. for 2 hours, and then allowed to cool. Then, the contact angle of the 13Cr steel after solidification and the contact angle of the slag generated from the tablet-shaped powder compact were measured.
As a result, the contact angle of the 13Cr steel was 110 degrees and the contact angle of the slag was 98 degrees, and this BN-containing material was difficult to wet with molten steel and molten slag, and no reaction was observed at the contact interface. The result of the 3-point bending test with a span length of 30 mm is 1
It was 90 MPa, and it was confirmed that it was at a level usable as a refractory for casting.

【0073】(実施例8)325メッシュパスの粒径
(粒径44μm以下)を有するB4 C、200メッシュ
パスの粒径(粒径74μm以下)を有するAl、平均粒
径5μmのSiO2、平均粒径3.5μmのZrO2
それぞれ22.8wt%、44.6wt%、11.6w
t%、21.0wt%の割合で混合し、直径60mm、
高さ50mmのキャビティを持つ黒鉛容器に100g充
填し、直径60mm、厚さ5mmの黒鉛板を介して面圧
10MPaをかけて圧密した。このようにして密度1.
71g/cm3 の成形体が得られた。これを黒鉛ヒータ
ー炉に配設し、真空ポンプで排気後、窒素ガスを導入
し、窒素圧力0.14MPa(絶対圧)とし、昇温速度
15℃/min で700℃まで加熱し3時間保持後、再び
昇温速度15℃/min 1500℃まで加熱し3時間保持
後放冷した。
Example 8 B 4 C having a particle size of 325 mesh pass (particle size of 44 μm or less), Al having a particle size of 200 mesh pass (particle size of 74 μm or less), SiO 2 having an average particle size of 5 μm, ZrO 2 having an average particle diameter of 3.5 μm was added to 22.8 wt%, 44.6 wt% and 11.6 w, respectively.
t%, 21.0 wt% and mixed with a diameter of 60 mm,
A graphite container having a cavity with a height of 50 mm was filled with 100 g, and a surface pressure of 10 MPa was applied through a graphite plate having a diameter of 60 mm and a thickness of 5 mm for consolidation. In this way, the density 1.
A molded body of 71 g / cm 3 was obtained. This was placed in a graphite heater furnace, exhausted with a vacuum pump, nitrogen gas was introduced, the nitrogen pressure was 0.14 MPa (absolute pressure), the temperature was raised to 700 ° C. at a heating rate of 15 ° C./min, and after holding for 3 hours The temperature was raised again to 15 ° C./min to 1500 ° C., kept for 3 hours, and then allowed to cool.

【0074】このようにして得られた焼結体の重量は1
45g、嵩密度は2.51g/cm3 であった。X線回
折により、BN、AlN、SiC、ZrO2 、ZrNが
同定された。
The weight of the sintered body thus obtained is 1
It was 45 g and had a bulk density of 2.51 g / cm 3 . BN, AlN, SiC, ZrO 2 and ZrN were identified by X-ray diffraction.

【0075】この焼結体を大気炉に設置し、1500℃
に加熱して1時間保持後放冷し、重量増加を測定した。
その結果、重量増加は0.29%とわずかであった。こ
の焼結体から1/4に分割した試料2個と、1/2分割
した試料1個を用意し、前者を耐食性試験に供し、後者
から3mm×4mm×40mmの曲げ試験用試験片を切
り出した。
This sintered body was placed in an atmospheric furnace and set at 1500 ° C.
After heating for 1 hour and allowing to cool, the weight increase was measured.
As a result, the weight increase was as small as 0.29%. Two specimens divided into 1/4 and one specimen divided into 1/2 were prepared from this sintered body, the former was subjected to a corrosion resistance test, and a test piece for bending test of 3 mm x 4 mm x 40 mm was cut out from the latter. It was

【0076】耐食試験片の一方に一辺5mmの立方体の
13Cr鋼(Cr:13.0重量%、C:0.20重量
%、Si:0.8重量%を含む鋼)を、もう一方に直径
5mm高さ5mmのタブレット状の粉末成形体(SiO
2 35.2wt%、Al23 4.1wt%、CaO2
7.5wt%)を載せてアルゴン雰囲気で1550℃ま
で加熱し、1550℃で2時間保持後放冷した。そし
て、凝固後の13Cr鋼の接触角およびタブレット状の
粉末成形体から生成されたスラグの接触角を測定した。
その結果、13Cr鋼の接触角が110度、スラグの接
触角が105度であり、このBN含有材料は溶鋼にも溶
融スラグにも濡れにくく、接触界面に反応は見られなか
った。また、スパン長30mmの3点曲げ試験の結果は
65MPaであり、鋳造用耐火物として使用可能なレベ
ルにあることが確認された。
One side of a corrosion-resistant test piece was a cubic 13Cr steel (steel containing Cr: 13.0% by weight, C: 0.20% by weight, Si: 0.8% by weight) having a side of 5 mm, and the other side had a diameter. 5 mm tablet-like powder compact with a height of 5 mm (SiO
2 35.2 wt%, Al 2 O 3 4.1 wt%, CaO 2
(7.5 wt%) was placed thereon, and the mixture was heated to 1550 ° C. in an argon atmosphere, kept at 1550 ° C. for 2 hours, and then allowed to cool. Then, the contact angle of the 13Cr steel after solidification and the contact angle of the slag generated from the tablet-shaped powder compact were measured.
As a result, the contact angle of the 13Cr steel was 110 degrees and the contact angle of the slag was 105 degrees, and this BN-containing material was difficult to wet with molten steel and molten slag, and no reaction was observed at the contact interface. The result of the 3-point bending test with a span length of 30 mm was 65 MPa, which was confirmed to be at a level that can be used as a refractory for casting.

【0077】(実施例9)325メッシュの篩目通過
(粒径44μm以下)のB4 C、200メッシュの篩目
通過(粒径74μm以下)のAl、325メッシュの篩
目通過(粒径44μm以下)のSiをそれぞれ28.9
wt%、56.4wt%、14.7wt%の割合で混合
し、ウレタンゴム製容器に充填して封入し、50MPa
の水圧をかけて圧密した。このようにして密度1.63
g/cm3 の3本の成形体が得られた。これらより30
mm×30mm×90mmの直方体試料を3本切り出し
た。これらを黒鉛ヒーター炉に配設し、真空ポンプで排
気後、窒素ガスを導入し、窒素圧力0.14MPa(絶
対圧)とし、昇温速度15℃/min で700℃まで加熱
し3時間保持後、再び昇温速度15℃/min で1500
℃まで加熱し3時間保持後放冷した。このようにして3
本の焼結体を得た。
(Example 9) B 4 C passing through a mesh of 325 mesh (particle size 44 μm or less), Al passing through a mesh of 200 mesh (particle size 74 μm or less), passing through a mesh of 325 mesh (particle size 44 μm) The following) Si is 28.9
wt%, 56.4 wt%, and 14.7 wt% are mixed, filled in a urethane rubber container and sealed, and 50 MPa.
It was consolidated by applying water pressure. Thus a density of 1.63
Three compacts with g / cm 3 were obtained. 30 from these
Three rectangular parallelepiped samples of mm × 30 mm × 90 mm were cut out. These were placed in a graphite heater furnace, exhausted with a vacuum pump, nitrogen gas was introduced, the nitrogen pressure was 0.14 MPa (absolute pressure), and the temperature was raised to 700 ° C. at a heating rate of 15 ° C./min and held for 3 hours. , 1500 again at a heating rate of 15 ° C / min
The mixture was heated to ℃, kept for 3 hours and then left to cool. In this way 3
A sintered body of a book was obtained.

【0078】3本の焼結体のうち1本の一端を回転軸に
固定してアルミナるつぼに上部より挿入し、周囲に13
Cr鋼チップを充填した。このるつぼをArガスでシー
ルし、1550℃まで加熱後、回転数60rpmで試料
を回転させながら1550℃に20時間保持し、その後
放冷した。その後るつぼごと切断して浸漬先端より10
mm上の位置の試料断面の対角線距離を求めた。その結
果0.2mmの減少が認められ、変化が僅少であること
が確認された。
One end of one of the three sintered bodies was fixed to the rotary shaft and inserted into the alumina crucible from the upper side, and 13
Filled with Cr steel chips. The crucible was sealed with Ar gas, heated to 1550 ° C., held at 1550 ° C. for 20 hours while rotating the sample at a rotation speed of 60 rpm, and then left to cool. After that, cut the crucible together with 10 from the dipping tip.
The diagonal distance of the cross section of the sample at the position on mm was determined. As a result, a decrease of 0.2 mm was recognized, and it was confirmed that the change was slight.

【0079】次に、2本目の焼結体試料を回転軸に固定
して黒鉛るつぼに上部より挿入し、周囲にスラグ粉末
(SiO2 35.2wt%、Al23 4.1wt%、
CaO27.5wt%)を充填した。このるつぼをAr
ガスでシールし、1550℃まで加熱後、回転数60r
pmで試料を回転させながら1550℃に20時間保持
し、その後放冷した。その後るつぼごと切断して浸漬先
端より10mm上の位置の試料断面の対角線距離を求め
た。その結果0.4mmの減少が認められ、変化が僅少
であることが確認された。
Next, the second sintered body sample was fixed to the rotating shaft and inserted into the graphite crucible from above, and slag powder (SiO 2 35.2 wt%, Al 2 O 3 4.1 wt%,
CaO 27.5 wt%) was filled. Ar this crucible
After sealing with gas and heating to 1550 ° C, the rotation speed is 60r
The sample was kept at 1550 ° C. for 20 hours while rotating at pm, and then left to cool. Then, the crucible was cut, and the diagonal distance of the cross section of the sample at a position 10 mm above the immersion tip was obtained. As a result, a decrease of 0.4 mm was recognized, and it was confirmed that the change was slight.

【0080】さらに、3本目の試料をその一端より10
mmの位置で切断し、表面から2mmまでの範囲と表面
から10mmより内部の2箇所から電動ドリルで粉末を
削り出してX線回折に供した。その結果、BN、Al
N、SiCが同定された。計算による推定平均組成はB
N32.7wt%、AlN54.1wt%、SiC1
3.2wt%であるが、AlNとBNのX線回折強度比
は表面と内部とで差が認められた。X線回折の最大ピー
ク比AlN/BNの値で比較すると、表面ではこの値が
7.8であったのに対し内部では4.0であり、両者の
比は1.95であった。ちなみに電動ドリルの触診によ
り、表面から8mm内側で急激に硬度が減少することが
確認された。
Furthermore, the third sample was taken 10
The powder was cut at a position of mm, and the powder was cut out with an electric drill from the range from the surface to 2 mm and from two points within 10 mm from the surface and subjected to X-ray diffraction. As a result, BN, Al
N, SiC were identified. Estimated average composition by calculation is B
N32.7wt%, AlN54.1wt%, SiC1
Although it was 3.2 wt%, a difference was observed in the X-ray diffraction intensity ratio of AlN and BN between the surface and the inside. When the maximum peak ratio AlN / BN value of X-ray diffraction was compared, this value was 7.8 on the surface, while it was 4.0 inside, and the ratio of both was 1.95. By touching with an electric drill, it was confirmed that the hardness rapidly decreased 8 mm inside from the surface.

【0081】比較のため、上記試料と同一の原料を用
い、同一条件で成形を行って3本の成形体を得、これら
を切り出すことなく上記条件と同一条件で焼結を行って
3本の焼結体を作製した後、これらの表面を10〜13
mmの厚さで削って30mm×30mm×90mmの3
本の直方体試料を得た。
For comparison, using the same raw material as the above sample, molding was performed under the same conditions to obtain three compacts, which were sintered without being cut out under the same conditions as the above. After producing a sintered body, these surfaces are
30mm x 30mm x 90mm by shaving with a thickness of 3mm
A rectangular parallelepiped sample of a book was obtained.

【0082】これらのうち2本について上記試料と同一
条件で、それぞれ13Cr鋼チップおよびスラグ粉末
(SiO2 35.2wt%、Al23 4.1wt%、
CaO27.5wt%)を用いて同様の試験を行い、浸
漬先端より10mm上の位置の試料断面の対角線距離の
変化を求めた。その結果、それぞれ2.4mmおよび
2.9mmの減少が認められ、上記試料よりも摩耗量が
大きかった。
Under these conditions, two of these 13Cr steel chips and slag powder (SiO 2 35.2 wt%, Al 2 O 3 4.1 wt%,
The same test was performed using CaO 27.5 wt%) to determine the change in the diagonal distance of the sample cross section at a position 10 mm above the immersion tip. As a result, reductions of 2.4 mm and 2.9 mm were recognized, respectively, and the wear amount was larger than that of the above sample.

【0083】さらに、3本目の試料について同様にX線
回折を行った結果、BN、AlN、SiCが同定された
が、表面と内部とで最大ピーク比AlN/BNの値に有
意な差は認められなかった。ちなみに電動ドリルによる
触診によっても、表面と内部とで硬度に差が認められな
かった。
Further, as a result of X-ray diffraction similarly performed on the third sample, BN, AlN, and SiC were identified, but a significant difference in the value of the maximum peak ratio AlN / BN between the surface and the inside was recognized. I couldn't do it. By the way, even by palpation with an electric drill, no difference in hardness was observed between the surface and the inside.

【0084】(実施例10)325メッシュの篩目通過
(粒径44μm以下)のB4 C、200メッシュの篩目
通過(粒径74μm以下)のAl、平均粒径5μmのS
iO2 をそれぞれ23.8wt%、50.3wt%、2
5.9wt%の割合で混合し、ウレタンゴム製容器に充
填して封入し、50MPaの水圧をかけて圧密した。こ
のようにして密度1.66g/cm3 の3本の成形体が
得られた。これらより30mm×30mm×90mmの
直方体試料を3本切り出した。これらを黒鉛ヒーター炉
に配設し、真空ポンプで排気後、窒素ガスを導入し、窒
素圧力0.14MPa(絶対圧)とし、昇温速度15℃
/min で700℃まで加熱し3時間保持後、再び昇温速
度15℃/min で1500℃まで加熱し3時間保持後放
冷した。このようにして3本の焼結体を得た。
(Example 10) B 4 C passing through a mesh of 325 mesh (particle diameter of 44 μm or less), Al passing through a mesh of 200 mesh (particle diameter of 74 μm or less), S having an average particle diameter of 5 μm
iO 2 is 23.8 wt%, 50.3 wt% and 2 respectively
The mixture was mixed at a ratio of 5.9 wt%, filled into a urethane rubber container and sealed, and a water pressure of 50 MPa was applied for consolidation. Thus, three molded bodies having a density of 1.66 g / cm 3 were obtained. From these, three rectangular parallelepiped samples of 30 mm × 30 mm × 90 mm were cut out. These were placed in a graphite heater furnace, exhausted with a vacuum pump, nitrogen gas was introduced, and the nitrogen pressure was 0.14 MPa (absolute pressure).
After heating to 700 ° C. at a heating rate of 1 min / min and holding for 3 hours, the temperature was raised again to 1500 ° C. at a heating rate of 15 ° C./min, and after holding for 3 hours, it was allowed to cool. In this way, three sintered bodies were obtained.

【0085】3本の焼結体のうち1本の一端を回転軸に
固定してアルミナるつぼに上部より挿入し、周囲に13
Cr鋼チップを充填した。このるつぼをArガスでシー
ルし、1550℃まで加熱後、回転数60rpmで試料
を回転させながら1550℃に20時間保持し、その後
放冷した。その後るつぼごと切断して浸漬先端より10
mm上の位置の試料断面の対角線距離を求めた。その結
果0.3mmの減少が認められ、変化が僅少であること
が確認された。
One end of one of the three sintered bodies was fixed to the rotating shaft and inserted into the alumina crucible from the upper side, and 13
Filled with Cr steel chips. The crucible was sealed with Ar gas, heated to 1550 ° C., held at 1550 ° C. for 20 hours while rotating the sample at a rotation speed of 60 rpm, and then left to cool. After that, cut the crucible together with 10 from the dipping tip.
The diagonal distance of the cross section of the sample at the position on mm was determined. As a result, a decrease of 0.3 mm was recognized, and it was confirmed that the change was slight.

【0086】次に、2本目の焼結体試料を回転軸に固定
して黒鉛るつぼに上部より挿入し、周囲にスラグ粉末
(SiO2 35.2wt%、Al23 4.1wt%、
CaO27.5wt%)を充填した。このるつぼをAr
ガスでシールし、1550℃まで加熱後、回転数60r
pmで試料を回転させながら1550℃に20時間保持
し、その後放冷した。その後るつぼごと切断して浸漬先
端より10mm上の位置の試料断面の対角線距離を求め
た。その結果0.4mmの減少が認められ、変化が僅少
であることが確認された。
Next, the second sintered body sample was fixed to the rotating shaft and inserted into the graphite crucible from above, and slag powder (SiO 2 35.2 wt%, Al 2 O 3 4.1 wt%,
CaO 27.5 wt%) was filled. Ar this crucible
After sealing with gas and heating to 1550 ° C, the rotation speed is 60r
The sample was kept at 1550 ° C. for 20 hours while rotating at pm, and then left to cool. Then, the crucible was cut, and the diagonal distance of the cross section of the sample at a position 10 mm above the immersion tip was obtained. As a result, a decrease of 0.4 mm was recognized, and it was confirmed that the change was slight.

【0087】さらに、3本目の試料をその一端より10
mmの位置で切断し、表面から2mmまでの範囲と表面
から10mmより内部の2箇所から電動ドリルで粉末を
削り出してX線回折に供した。その結果、BN、Al
N、SiCが同定された。計算による推定平均組成はB
N30.1wt%、AlN37.2wt%、SiC1
2.1wt%、Al23 20.6wt%であるが、A
lNとBNのX線回折強度比は表面と内部とで差が認め
られた。X線回折の最大ピーク比AlN/BNの値で比
較すると、表面ではこの値が8.0であったのに対し内
部では4.7であり、両者の比は1.70であった。ち
なみに電動ドリルの触診により、表面から7mm内側で
急激に硬度が減少することが確認された。
Furthermore, the third sample was taken 10
The powder was cut at a position of mm, and the powder was cut out with an electric drill from the range from the surface to 2 mm and from two points within 10 mm from the surface and subjected to X-ray diffraction. As a result, BN, Al
N, SiC were identified. Estimated average composition by calculation is B
N30.1wt%, AlN37.2wt%, SiC1
2.1 wt% and Al 2 O 3 20.6 wt%, but A
As for the X-ray diffraction intensity ratio of 1N and BN, a difference was recognized between the surface and the inside. When the maximum peak ratio AlN / BN value of X-ray diffraction was compared, this value was 8.0 on the surface, whereas it was 4.7 inside, and the ratio of both was 1.70. By the way, it was confirmed by touching with an electric drill that the hardness rapidly decreased 7 mm inside from the surface.

【0088】比較のため、上記試料と同一の原料を用
い、同一条件で成形を行って3本の成形体を得、これら
を切り出すことなく上記条件と同一条件で焼結を行って
3本の焼結体を作製した後、これらの表面を10〜13
mmの厚さで削って30mm×30mm×90mmの3
本の直方体試料を得た。
For comparison, using the same raw material as the above sample, molding was performed under the same conditions to obtain three compacts, which were sintered without being cut out under the same conditions as the above. After producing a sintered body, these surfaces are
30mm x 30mm x 90mm by shaving with a thickness of 3mm
A rectangular parallelepiped sample of a book was obtained.

【0089】これらのうち2本について上記試料と同一
条件で、それぞれ13Cr鋼チップおよびスラグ粉末
(SiO2 35.2wt%、Al23 4.1wt%、
CaO27.5wt%)を用いて同様の試験を行い、浸
漬先端より10mm上の位置の試料断面の対角線距離の
変化を求めた。その結果、それぞれ3.2mmおよび
3.9mmの減少が認められ、上記試料よりも摩耗量が
大きかった。
Under these same conditions as the above sample, two of these 13Cr steel chips and slag powder (SiO 2 35.2 wt%, Al 2 O 3 4.1 wt%,
The same test was performed using CaO 27.5 wt%) to determine the change in the diagonal distance of the sample cross section at a position 10 mm above the immersion tip. As a result, reductions of 3.2 mm and 3.9 mm were recognized, respectively, and the amount of wear was larger than that of the above sample.

【0090】さらに、3本目の試料について同様にX線
回折を行った結果、BN、AlN、SiC、Al23
が同定されたが、表面と内部とで最大ピーク比AlN/
BNの値に有意な差は認められなかった。ちなみに電動
ドリルによる触診によっても、表面と内部とで硬度に差
が認められなかった。
Further, as a result of X-ray diffraction performed similarly on the third sample, BN, AlN, SiC and Al 2 O 3 were obtained.
Was identified, but the maximum peak ratio AlN /
No significant difference was found in the BN value. By the way, even by palpation with an electric drill, no difference in hardness was observed between the surface and the inside.

【0091】(実施例11)325メッシュの篩目通過
(粒径44μm以下)のB4 C、200メッシュの篩目
通過(粒径74μm以下)のAl、平均粒径5μmのS
iO2 をそれぞれ23.8wt%、50.3wt%、2
5.9wt%の割合で混合し、ウレタンゴム製容器に充
填して封入し、50MPaの水圧をかけて圧密した。こ
のようにして密度1.66g/cm3 の3本の成形体が
得られた。これらより30mm×30mm×90mmの
直方体試料を3本切り出した。これらを黒鉛ヒーター炉
に配設し、真空ポンプで排気後、窒素ガスを導入し、窒
素圧力0.14MPa(絶対圧)とし、昇温速度15℃
/min で700℃まで加熱し3時間保持後、再び昇温速
度15℃/min で1900℃まで加熱し6時間保持後放
冷した。このようにして3本の焼結体を得た。
(Example 11) B 4 C passing through a 325-mesh sieve mesh (particle size: 44 μm or less), Al passing through a 200-mesh sieve mesh (particle size: 74 μm or less), S having an average particle diameter of 5 μm
iO 2 is 23.8 wt%, 50.3 wt% and 2 respectively
The mixture was mixed at a ratio of 5.9 wt%, filled into a urethane rubber container and sealed, and a water pressure of 50 MPa was applied for consolidation. Thus, three molded bodies having a density of 1.66 g / cm 3 were obtained. From these, three rectangular parallelepiped samples of 30 mm × 30 mm × 90 mm were cut out. These were placed in a graphite heater furnace, exhausted with a vacuum pump, nitrogen gas was introduced, and the nitrogen pressure was 0.14 MPa (absolute pressure).
After heating to 700 ° C. at a heating rate of 1 min / min and holding for 3 hours, the temperature was raised again to 1900 ° C. at a temperature rising rate of 15 ° C./min, holding for 6 hours, and then allowed to cool. In this way, three sintered bodies were obtained.

【0092】3本の焼結体のうち1本の一端を回転軸に
固定してアルミナるつぼに上部より挿入し、周囲に13
Cr鋼チップを充填した。このるつぼをArガスでシー
ルし、1550℃まで加熱後、回転数60rpmで試料
を回転させながら1550℃に20時間保持し、その後
放冷した。その後るつぼごと切断して浸漬先端より10
mm上の位置の試料断面の対角線距離を求めた。その結
果0.2mmの減少が認められ、変化が僅少であること
が確認された。
One end of one of the three sintered bodies was fixed to the rotating shaft and inserted into the alumina crucible from the upper side, and 13
Filled with Cr steel chips. The crucible was sealed with Ar gas, heated to 1550 ° C., held at 1550 ° C. for 20 hours while rotating the sample at a rotation speed of 60 rpm, and then left to cool. After that, cut the crucible together with 10 from the dipping tip.
The diagonal distance of the cross section of the sample at the position on mm was determined. As a result, a decrease of 0.2 mm was recognized, and it was confirmed that the change was slight.

【0093】次に、2本目の焼結体試料を回転軸に固定
して黒鉛るつぼに上部より挿入し、周囲にスラグ粉末
(SiO2 35.2wt%、Al23 4.1wt%、
CaO27.5wt%)を充填した。このるつぼをAr
ガスでシールし、1550℃まで加熱後、回転数60r
pmで試料を回転させながら1550℃に20時間保持
し、その後放冷した。その後るつぼごと切断して浸漬先
端より10mm上の位置の試料断面の対角線距離を求め
た。その結果0.5mmの減少が認められ、変化が僅少
であることが確認された。
Next, the second sintered body sample was fixed to the rotary shaft and inserted into the graphite crucible from above, and slag powder (SiO 2 35.2 wt%, Al 2 O 3 4.1 wt%,
CaO 27.5 wt%) was filled. Ar this crucible
After sealing with gas and heating to 1550 ° C, the rotation speed is 60r
The sample was kept at 1550 ° C. for 20 hours while rotating at pm, and then left to cool. Then, the crucible was cut, and the diagonal distance of the cross section of the sample at a position 10 mm above the immersion tip was obtained. As a result, a decrease of 0.5 mm was recognized, and it was confirmed that the change was slight.

【0094】さらに、3本目の試料をその一端より10
mmの位置で切断し、表面から2mmまでの範囲と表面
から10mmより内部の2箇所から電動ドリルで粉末を
削り出してX線回折に供した。その結果、BN、Al
N、SiAl727 、SiC、Al23 が同定さ
れた。AlNおよびAlON(ここではSiAl72
7 )とBNのX線回折強度比は表面と内部とで差が認
められた。X線回折の最大ピーク比(AlN+AlO
N)/BNの値で比較すると、表面ではこの値が7.0
であったのに対し内部では3.7であり、両者の比は
1.89であった。
Further, the third sample was taken 10
The powder was cut at a position of mm, and the powder was cut out with an electric drill from the range from the surface to 2 mm and from two points within 10 mm from the surface and subjected to X-ray diffraction. As a result, BN, Al
N, SiAl 7 O 2 N 7 , SiC, Al 2 O 3 were identified. AlN and AlON (here, SiAl 7 O 2
As for the X-ray diffraction intensity ratio of N 7 ) and BN, a difference was recognized between the surface and the inside. Maximum peak ratio of X-ray diffraction (AlN + AlO
When compared with the value of N) / BN, this value is 7.0 on the surface.
However, the internal ratio was 3.7, and the ratio of the both was 1.89.

【0095】比較のため、上記試料と同一の原料を用
い、同一条件で成形を行って3本の成形体を得、これら
を切り出すことなく上記条件と同一条件で焼結を行って
3本の焼結体を作製した後、これらの表面を10〜13
mmの厚さで削って30mm×30mm×90mmの3
本の直方体試料を得た。
For comparison, using the same raw material as the above sample, molding was performed under the same conditions to obtain three compacts, which were sintered without being cut out under the same conditions as the above. After producing a sintered body, these surfaces are
30mm x 30mm x 90mm by shaving with a thickness of 3mm
A rectangular parallelepiped sample of a book was obtained.

【0096】これらのうち2本について上記試料と同一
条件で、それぞれ13Cr鋼チップおよびスラグ粉末
(SiO2 35.2wt%、Al23 4.1wt%、
CaO27.5wt%)を用いて同様の試験を行い、浸
漬先端より10mm上の位置の試料断面の対角線距離の
変化を求めた。その結果、それぞれ3.7mmおよび
4.4mmの減少が認められ、上記試料よりも摩耗量が
大きかった。
Under these same conditions as the above sample, two of these 13Cr steel chips and slag powder (SiO 2 35.2 wt%, Al 2 O 3 4.1 wt%,
The same test was performed using CaO 27.5 wt%) to determine the change in the diagonal distance of the sample cross section at a position 10 mm above the immersion tip. As a result, reductions of 3.7 mm and 4.4 mm, respectively, were recognized, and the abrasion amount was larger than that of the above sample.

【0097】さらに、3本目の試料について同様にX線
回折を行った結果、BN、AlN、SiAl72
7 、SiC、Al23 が同定されたが、表面と内部と
で最大ピーク比(AlN+AlON)/BNの値に有意
な差は認められなかった。なお、上記実施例1〜11ま
でのデータをまとめて表1、表2、表3に示す。
Further, as a result of X-ray diffraction performed similarly on the third sample, BN, AlN, SiAl 7 O 2 N
7 , SiC, and Al 2 O 3 were identified, but no significant difference in the maximum peak ratio (AlN + AlON) / BN value was observed between the surface and the inside. The data of Examples 1 to 11 are collectively shown in Tables 1, 2 and 3.

【0098】[0098]

【表1】 [Table 1]

【0099】[0099]

【表2】 [Table 2]

【0100】[0100]

【表3】 [Table 3]

【0101】[0101]

【発明の効果】以上のように、本発明によれば、高価な
BNおよびAlN粉末を使用することなく安価なB4
C、Alを出発原料として、溶融金属、溶融スラグに対
する耐食性に極めて優れた窒化ホウ素含有材料およびそ
の製造方法が提供される。また、本発明に従って表面に
AlNおよび/またはAlONの濃縮層を形成すること
により、さらに溶融金属、溶融スラグに対する耐摩耗性
に優れた窒化ホウ素含有材料およびその製造方法が提供
される。本発明の材料は、溶融金属、溶融スラグに対す
る耐食性および耐摩耗性に極めて優れており、しかも安
価に製造することができるので極めて適用範囲が広い。
As described above, according to the present invention, inexpensive B 4 is used without using expensive BN and AlN powders.
A boron nitride-containing material having excellent corrosion resistance to molten metal and molten slag, using C and Al as starting materials, and a method for producing the same are provided. Further, by forming a concentrated layer of AlN and / or AlON on the surface according to the present invention, a boron nitride-containing material further excellent in wear resistance against molten metal and molten slag, and a method for producing the same are provided. The material of the present invention has extremely excellent corrosion resistance and wear resistance to molten metal and molten slag, and since it can be manufactured at low cost, its application range is extremely wide.

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】 10〜70wt%のB4 C、30〜90
wt%のAl、10〜60wt%のSiを含む混合粉末
を窒化性雰囲気中で1300〜2300℃にまで加熱し
て得られる材料であって、22〜90wt%のBN、4
〜48wt%のAlN、6〜30wt%のSiCを含む
ことを特徴とする窒化ホウ素含有材料
1. A B 4 C content of 10-70 wt%, 30-90.
A material obtained by heating a mixed powder containing Al of 10 wt% and Si of 10 to 60 wt% to 1300 to 2300 ° C. in a nitriding atmosphere.
˜48 wt% AlN, 6-30 wt% SiC
【請求項2】 10〜70wt%のB4 C、30〜90
wt%のAl、10〜60wt%のSiを含む混合粉末
を窒化性雰囲気中で1300〜2300℃にまで加熱
し、22〜90wt%のBN、4〜48wt%のAl
N、6〜30wt%のSiCを含む窒化ホウ素含有材料
を得ることを特徴とする窒化ホウ素含有材料の製造方
法。
2. 10 to 70 wt% B 4 C, 30 to 90
A mixed powder containing wt% Al and 10 to 60 wt% Si was heated to 1300 to 2300 ° C. in a nitriding atmosphere to obtain 22 to 90 wt% BN and 4 to 48 wt% Al.
A method for producing a boron nitride-containing material, comprising obtaining a boron nitride-containing material containing N and 6 to 30 wt% SiC.
【請求項3】 22〜90wt%のBN、4〜48wt
%のAlNおよび/またはAlON、6〜30wt%の
SiC、4〜30wt%のAl23 を含むことを特徴
とする窒化ホウ素含有材料。
3. 22-90 wt% BN, 4-48 wt
% Of AlN and / or AlON, 6~30wt% of SiC, boron nitride containing material characterized by containing Al 2 O 3 of 4~30Wt%.
【請求項4】 10〜70wt%のB4 C、30〜90
wt%のAl、10〜60wt%のSiO2 を含む混合
粉末を窒化性雰囲気中で1300〜2300℃にまで加
熱して得られる材料であって、22〜90wt%のB
N、4〜48wt%のAlNおよび/またはAlON、
6〜30wt%のSiC、4〜30wt%のAl23
を含むことを特徴とする窒化ホウ素含有材料。
4. 10 to 70 wt% B 4 C, 30 to 90
A material obtained by heating a mixed powder containing Al of 10 wt% and SiO 2 of 10 to 60 wt% to 1300 to 2300 ° C. in a nitriding atmosphere, and 22 to 90 wt% of B
N, 4-48 wt% AlN and / or AlON,
6-30 wt% SiC, 4-30 wt% Al 2 O 3
A boron-nitride-containing material comprising:
【請求項5】 10〜70wt%のB4 C、30〜90
wt%のAl、10〜60wt%のSiO2 を含む混合
粉末を窒化性雰囲気中で1300〜2300℃にまで加
熱し、22〜90wt%のBN、4〜48wt%のAl
Nおよび/またはAlON、6〜30wt%のSiC、
4〜30wt%のAl23 を含む窒化ホウ素含有材料
を得ることを特徴とする窒化ホウ素含有材料の製造方
法。
5. 10 to 70 wt% B 4 C, 30 to 90
A mixed powder containing wt% Al and 10 to 60 wt% SiO 2 was heated to 1300 to 2300 ° C. in a nitriding atmosphere to obtain 22 to 90 wt% BN and 4 to 48 wt% Al.
N and / or AlON, 6-30 wt% SiC,
A method for producing a boron nitride-containing material, comprising obtaining a boron nitride-containing material containing 4 to 30 wt% of Al 2 O 3 .
【請求項6】 22〜90wt%のBN、4〜48wt
%のAlON、6〜30wt%のSiCを含むことを特
徴とする窒化ホウ素含有材料。
6. BN of 22-90 wt%, 4-48 wt
% AlON, 6-30 wt% SiC, boron nitride containing material.
【請求項7】 10〜70wt%のB4 C、30〜90
wt%のAl、10〜60wt%のSiO2 を含む混合
粉末を窒化性雰囲気中で1700〜2300℃にまで加
熱して得られる材料であって、22〜90wt%のB
N、4〜48wt%のAlON、6〜30wt%のSi
Cを含むことを特徴とする窒化ホウ素含有材料。
7. 10 to 70 wt% B 4 C, 30 to 90
A material obtained by heating a mixed powder containing Al at 10 wt% and SiO 2 at 10 to 60 wt% to 1700 to 2300 ° C. in a nitriding atmosphere, and 22 to 90 wt% B.
N, 4-48 wt% AlON, 6-30 wt% Si
A boron nitride-containing material comprising C.
【請求項8】 10〜70wt%のB4 C、30〜90
wt%のAl、10〜60wt%のSiO2 を含む混合
粉末を窒化性雰囲気中で1700〜2300℃にまで加
熱し、22〜90wt%のBN、4〜48wt%のAl
ON、6〜30wt%のSiCを含む窒化ホウ素含有材
料を得ることを特徴とする窒化ホウ素含有材料の製造方
法。
8. 10 to 70 wt% B 4 C, 30 to 90
A mixed powder containing wt% Al and 10 to 60 wt% SiO 2 was heated to 1700 to 2300 ° C. in a nitriding atmosphere to obtain 22 to 90 wt% BN and 4 to 48 wt% Al.
A method for producing a boron nitride-containing material, comprising obtaining a boron nitride-containing material containing ON and 6 to 30 wt% SiC.
【請求項9】 22〜90wt%のBN、4〜48wt
%のAlNおよび/またはAlON、6〜30wt%の
SiCを含む材料であって、表面に厚さ2〜10mmの
AlNおよび/またはAlONの濃縮層を有することを
特徴とする窒化ホウ素含有材料。
9. 22-90 wt% BN, 4-48 wt
% AlN and / or AlON, 6-30 wt% SiC, having a surface with a concentrated layer of AlN and / or AlON having a thickness of 2-10 mm.
【請求項10】 表面から2mmまでの範囲のBNのX
線回折の最大ピークの回折強度に対するAlNとAlO
NのX線回折の最大ピークの回折強度の和の比(AlN
+AlON)/BNの値と、表面から10mm以上内部
の(AlN+AlON)/BNの値との比が1.3以上
であることを特徴とする請求項9に記載の窒化ホウ素含
有材料。
10. BN X in the range of up to 2 mm from the surface
AlN and AlO with respect to the diffraction intensity of the maximum peak of line diffraction
Ratio of sum of diffraction intensities of maximum peaks of X-ray diffraction of N (AlN
10. The boron nitride-containing material according to claim 9, wherein the ratio of the value of (+ AlON) / BN and the value of (AlN + AlON) / BN within 10 mm or more from the surface is 1.3 or more.
【請求項11】 10〜70wt%のB4 C、30〜9
0wt%のAl、10〜60wt%のSiまたはSiO
2 を含む混合粉末を窒化性雰囲気中で1300〜230
0℃にまで加熱して得られる材料であって、22〜90
wt%のBN、4〜48wt%のAlNおよび/または
AlON、6〜30wt%のSiCを含み、表面に厚さ
2〜10mmのAlNおよび/またはAlONの濃縮層
を有することを特徴とする窒化ホウ素含有材料。
11. 10 to 70 wt% B 4 C, 30 to 9
0 wt% Al, 10-60 wt% Si or SiO
The mixed powder containing 2 is 1300 to 230 in a nitriding atmosphere.
A material obtained by heating to 0 ° C., which is 22 to 90
Boron nitride containing wt% BN, 4 to 48 wt% AlN and / or AlON, 6 to 30 wt% SiC, and having a concentrated layer of AlN and / or AlON having a thickness of 2 to 10 mm on the surface. Contained material.
【請求項12】 10〜70wt%のB4 C、30〜9
0wt%のAl、10〜60wt%のSiまたはSiO
2 を含む混合粉末を窒化性雰囲気中で1300〜230
0℃にまで加熱し、22〜90wt%のBN、4〜48
wt%のAlNおよび/またはAlON、6〜30wt
%のSiCを含み、表面に厚さ2〜10mmのAlNお
よび/またはAlONの濃縮層を有する窒化ホウ素含有
材料を得ることを特徴とする窒化ホウ素含有材料の製造
方法。
12. 10 to 70 wt% B 4 C, 30 to 9
0 wt% Al, 10-60 wt% Si or SiO
The mixed powder containing 2 is 1300 to 230 in a nitriding atmosphere.
Heated to 0 ° C., 22-90 wt% BN, 4-48
wt% AlN and / or AlON, 6-30 wt
% Of SiC and a boron nitride-containing material having a concentrated layer of AlN and / or AlON having a thickness of 2 to 10 mm on the surface thereof is obtained.
JP05933795A 1995-03-17 1995-03-17 Boron nitride-containing material and method for producing the same Expired - Fee Related JP3194344B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05933795A JP3194344B2 (en) 1995-03-17 1995-03-17 Boron nitride-containing material and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05933795A JP3194344B2 (en) 1995-03-17 1995-03-17 Boron nitride-containing material and method for producing the same

Publications (2)

Publication Number Publication Date
JPH08259330A true JPH08259330A (en) 1996-10-08
JP3194344B2 JP3194344B2 (en) 2001-07-30

Family

ID=13110415

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05933795A Expired - Fee Related JP3194344B2 (en) 1995-03-17 1995-03-17 Boron nitride-containing material and method for producing the same

Country Status (1)

Country Link
JP (1) JP3194344B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100972567B1 (en) * 2008-05-15 2010-07-28 인하대학교 산학협력단 Plasma resistant part and manufacturing method the same
JP2011184507A (en) * 2010-03-05 2011-09-22 Denki Kagaku Kogyo Kk High thermal conductivity filler
CN106626099A (en) * 2016-11-30 2017-05-10 陈清 Cutting device suitable for pipe fittings with different diameters

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100972567B1 (en) * 2008-05-15 2010-07-28 인하대학교 산학협력단 Plasma resistant part and manufacturing method the same
JP2011184507A (en) * 2010-03-05 2011-09-22 Denki Kagaku Kogyo Kk High thermal conductivity filler
CN106626099A (en) * 2016-11-30 2017-05-10 陈清 Cutting device suitable for pipe fittings with different diameters

Also Published As

Publication number Publication date
JP3194344B2 (en) 2001-07-30

Similar Documents

Publication Publication Date Title
JP3175483B2 (en) Boron nitride-containing material and method for producing the same
JP2000034172A (en) Highly thermoconductive silicon nitride sintered compact and its production
EP0155958A4 (en) Boride-alumina composite.
EP0170889A2 (en) ZrB2 Composite sintered material
JPH0777986B2 (en) Manufacturing method of silicon carbide sintered body
JP3194344B2 (en) Boron nitride-containing material and method for producing the same
KR101047911B1 (en) Silicon nitride ceramic composite material for temperature sensor protection tube for temperature measurement of molten steel and protection tube for temperature sensor using the same
JPH0354159A (en) Production of sintered body of ceramics
JPS629548B2 (en)
JPS6210954B2 (en)
JPH085720B2 (en) Whisker-reinforced composite sintered body
JP2927149B2 (en) Method for producing boron nitride-containing inorganic material
JP2519076B2 (en) Method for manufacturing silicon carbide whisker-reinforced ceramics
JPH07315937A (en) Normal pressure sintered compact of boron nitride and its production
JPH0912371A (en) Boron nitride-containing material and its production
JPH09175866A (en) Material containing boron nitride
JP2759084B2 (en) High hardness and high strength ceramics sintered body and method for producing the same
JPS5934676B2 (en) Method for producing a reaction fired product containing β′-Sialon as the main component
JPH0780708B2 (en) High strength aluminum oxide based sintered body and method for producing the same
JPH0463030B2 (en)
JP3449450B2 (en) Protection tube for measuring molten metal temperature
JP2794121B2 (en) Fiber reinforced ceramics
JP3358040B2 (en) Nozzle for continuous casting
JPS6337074B2 (en)
JPH06234571A (en) Silicon nitride sintered compact and its production

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees