JPH0825808B2 - Fireproof coating material with hydrogen carbonate compound - Google Patents

Fireproof coating material with hydrogen carbonate compound

Info

Publication number
JPH0825808B2
JPH0825808B2 JP4189721A JP18972192A JPH0825808B2 JP H0825808 B2 JPH0825808 B2 JP H0825808B2 JP 4189721 A JP4189721 A JP 4189721A JP 18972192 A JP18972192 A JP 18972192A JP H0825808 B2 JPH0825808 B2 JP H0825808B2
Authority
JP
Japan
Prior art keywords
weight
parts
coating material
fire
carbonate compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP4189721A
Other languages
Japanese (ja)
Other versions
JPH0632667A (en
Inventor
正 左海
Original Assignee
スチライト工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by スチライト工業株式会社 filed Critical スチライト工業株式会社
Priority to JP4189721A priority Critical patent/JPH0825808B2/en
Publication of JPH0632667A publication Critical patent/JPH0632667A/en
Publication of JPH0825808B2 publication Critical patent/JPH0825808B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00482Coating or impregnation materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/20Resistance against chemical, physical or biological attack
    • C04B2111/28Fire resistance, i.e. materials resistant to accidental fires or high temperatures
    • C04B2111/285Intumescent materials

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Building Environments (AREA)
  • Thermal Insulation (AREA)
  • Ceramic Products (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Fireproofing Substances (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、耐火性能を向上させた
FIELD OF THE INVENTION The present invention has improved fire resistance.

【産業上の利用分野】本発明は、耐火性能を向上させた
耐火被覆材に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fireproof coating material having improved fireproof performance.

【0002】[0002]

【従来の技術】従来、吹き付け工法による耐火被覆材は
石綿、岩綿系耐火被覆材が大半を占めていたが、近年に
なりアスベスト公害などの社会問題により非石綿、非岩
綿系の耐火被覆材が開発されている。
2. Description of the Related Art Conventionally, asbestos and rock wool-based fire-resistant coating materials have dominated most of the fire-resistant coating materials produced by the spraying method. Wood is being developed.

【0003】[0003]

【発明が解決しようとする課題】建設省告示第2999
号、JIS A1304 により、鉄骨建築物に用いる
耐火被覆材は梁、柱において耐火構造となり得る耐火性
能基準が定められている。その基準は、梁部、柱部に対
して通常1時間耐火試験、2時間耐火試験、及び3時間
耐火試験を行うもので、1000℃程に加熱した炉内に
おける耐火被覆材を施工した梁、柱の内部鉄骨温度が、
所定時間に平均温度350℃を越えてはならないという
ものである。
[Problems to be Solved by the Invention] Ministry of Construction Notification No. 2999
No., JIS A1304 stipulates a fire resistance performance standard for a fire resistant coating material used for a steel frame building in which beams and columns can have a fire resistant structure. The standard is to perform a 1-hour fire resistance test, a 2-hour fire resistance test, and a 3-hour fire resistance test on the beam portion and the column portion, and a beam that has been subjected to a fireproof coating material in a furnace heated to about 1000 ° C. The internal steel frame temperature of the pillar is
This means that the average temperature should not exceed 350 ° C in a predetermined time.

【0004】現在の非石綿、非岩綿系の耐火被覆材の一
般的な性能は、柱部における1時間耐火試験で耐火被覆
材の厚みは20mm、2時間耐火試験では30mm、3
時間耐火試験では40mm程である。すなわち3時間耐
火試験を満たす厚みは40mm程となり、この厚みでは
一度に所定厚みまで吹き付けることが出来ず、2回吹き
しなくてはならないため吹き付け工事における作業効
率、非岩綿系の耐火被覆材の耐火原理は、炭酸塩化合物
と水酸化化合物の複合作用による加熱時の吸熱作用と、
炭酸ガスと水蒸気ガスの耐火被覆材表面における不燃性
ガス層の形成による熱伝導の遅れを利用したものであ
る。しかし、耐火原理の主成分である水酸化化合物と炭
酸塩化合物は、それらの種類、割合にもよるが、水酸化
化合物が分解吸熱反応を起こしてから炭酸塩化合物が分
解吸熱反応を起こすまでの温度差が開きすぎているため
に吸熱作用の効果があまり得られないという欠点を持
つ。
The general performance of the current non-asbestos and non-rock wool type fireproof coating materials is that the fireproof coating material has a thickness of 20 mm in the 1-hour fireproof test in the column portion and 30 mm in the 2-hour fireproof test.
The time fire resistance test is about 40 mm. That is, the thickness that satisfies the 3-hour fire resistance test is about 40 mm. With this thickness, it is not possible to spray to a predetermined thickness at one time, and since it has to be sprayed twice, work efficiency in spraying work, non-rock wool type fireproof coating material The refractory principle of is the endothermic action at the time of heating by the combined action of carbonate compound and hydroxide compound,
It utilizes the delay of heat conduction due to the formation of a nonflammable gas layer on the surface of the fireproof coating material of carbon dioxide gas and water vapor gas. However, the hydroxide compounds and carbonate compounds, which are the main components of the fire-resistant principle, depend on their types and proportions, but the time from when the hydroxide compound undergoes the decomposition endothermic reaction until when the carbonate compound undergoes the decomposition endothermic reaction. It has a drawback that the effect of endothermic action is not obtained because the temperature difference is too wide.

【0006】一般に用いられる水酸化化合物と炭酸塩化
合物として水酸化アルミニウムと炭酸カルシウムを例に
挙げると、水酸化アルミニウムは250℃程で分解吸熱
反応を起こすが、炭酸カルシウムは800℃程まで分解
吸熱反応を起こさないために500℃〜800℃程の温
度に対して耐火原理上好ましくない。更に炭酸ガス、水
蒸気ガスという単体不燃性ガスは、それらの混合不燃性
ガスより耐火効果が低いという試験結果が出ているが、
水酸化アルミニウムと炭酸カルシウムにおいては反応温
度に開きがあるため炭酸ガス、水蒸気ガスの混合不燃性
ガスが生成されにくく、有効な耐火性能が得られにくい
ものである。
When aluminum hydroxide and calcium carbonate are given as examples of commonly used hydroxide compounds and carbonate compounds, aluminum hydroxide undergoes an endothermic decomposition reaction at about 250 ° C., but calcium carbonate decomposes and endotherms up to about 800 ° C. Since it does not cause a reaction, it is unfavorable on the principle of fire resistance at a temperature of about 500 ° C to 800 ° C. Further, although the simple noncombustible gas such as carbon dioxide gas and steam gas has the test result that the fireproof effect is lower than the mixed noncombustible gas,
Since there is a difference in reaction temperature between aluminum hydroxide and calcium carbonate, a non-combustible gas mixed with carbon dioxide gas and water vapor gas is hard to be generated, and effective fire resistance performance is hard to be obtained.

【0007】[0007]

【課題を解決するための手段】本発明における耐火被覆
材は、炭酸水素化合物を加えることによって、現在の非
石綿、非岩綿系の耐火被覆材の欠点であった炭酸塩化合
物と水酸化化合物の分解吸熱反応を起こす温度差の為に
発生しにくかった炭酸ガスと水蒸気ガスの混合不燃性ガ
スを効率よく確実に発生し、より高い耐火性能を実現す
るものである。それは、水硬性セメント、及び/または
水ガラスよりなるバインダー100重量部に対し、70
0℃以内に分解する炭酸水素化合物5〜600重量部、
無機質軽量骨材5〜400重量部である組成をもつこと
をその要旨とする。さらに、1000℃以内に分解する
炭酸塩化合物を20〜800重量部及び/または800
℃以内に分解する水酸化化合物を20〜800重量部含
むことが望ましい。また更に再乳化合成樹脂粉末を1〜
200重量部含むこと、更にまた無機質繊維を2〜50
重量部含むことが望ましい。
The refractory coating material of the present invention contains a carbonate compound and a hydroxide compound, which are disadvantages of the present non-asbestos and non-rock wool type refractory coating materials by adding a hydrogen carbonate compound. The non-combustible gas mixture of carbon dioxide gas and steam gas, which was difficult to generate due to the temperature difference that causes the decomposition endothermic reaction, is efficiently and reliably generated, and higher fire resistance performance is realized. It is 70% by weight for 100 parts by weight of binder made of hydraulic cement and / or water glass.
5 to 600 parts by weight of a hydrogen carbonate compound which decomposes within 0 ° C.,
The gist is to have a composition of 5 to 400 parts by weight of inorganic lightweight aggregate. Furthermore, 20 to 800 parts by weight and / or 800 parts by weight of a carbonate compound that decomposes within 1000 ° C.
It is desirable to contain 20 to 800 parts by weight of a hydroxide compound that decomposes within a temperature of 0 ° C. Furthermore, 1 to 1 of the re-emulsified synthetic resin powder
Including 200 parts by weight, 2 to 50 inorganic fibers
It is desirable to include parts by weight.

【0008】(具体的な構成の説明)本発明においてバ
インダーとして水硬性セメント及び水ガラスの内いずれ
か一または両方を用いるものであるが、望ましくはその
両方を用い、その配合率は水硬性セメント100重量部
に対して、水ガラス5〜200重量部である。
(Description of Specific Structure) In the present invention, either or both of hydraulic cement and water glass are used as a binder, but preferably both are used, and the compounding ratio thereof is hydraulic cement. The amount of water glass is 5 to 200 parts by weight with respect to 100 parts by weight.

【0009】水硬性セメントは、具体例としてポルトラ
ンドセメント、アルミナセメント、シリカセメント、高
炉セメント、フライアッシュセメント、耐硫酸セメント
等が挙げられる。水硬性セメントは高温状態時における
耐火被覆材の鉄骨ヘの接着強度の向上と、耐火被覆材の
機械的強度の向上を目的として使用するものである。水
ガラスは、具体例としてメタけい酸ナトリウム1種、2
種に属し粉末または顆粒状であるものなどが挙げられ
る。水ガラスは、水硬性セメントと同様に高温状態時に
おける耐火被覆材の鉄骨ヘの接着強度の向上と、耐火被
覆材の機械的強度の向上、更に耐火被覆材の表面強度の
向上に有効に作用するものである。
Specific examples of the hydraulic cement include Portland cement, alumina cement, silica cement, blast furnace cement, fly ash cement and sulfuric acid resistant cement. The hydraulic cement is used for the purpose of improving the adhesive strength of the fire-resistant coating material to the steel frame under high temperature conditions and improving the mechanical strength of the fire-resistant coating material. Examples of water glass include sodium metasilicate 1 and 2 as specific examples.
Those which belong to the species and are in the form of powder or granules can be mentioned. Water glass, like hydraulic cement, effectively acts to improve the adhesion strength of the fire-resistant coating material to the steel frame at high temperatures, the mechanical strength of the fire-resistant coating material, and the surface strength of the fire-resistant coating material. To do.

【0010】本発明の特徴的な構成要素であるところの
700℃以内に分解する炭酸水素化合物とは、具体例と
して炭酸水素ナトリウム(NaHCO3 )、炭酸水素カ
ルシウム((Ca(HCO3 2 ))等があげられる。
これは耐火時の加熱により炭酸水素化合物が分解する時
の吸熱作用と水蒸気ガス、炭酸ガス層の形成による熱伝
導の遅れの作用、及び耐火被覆材の表面強度の向上効果
を達成するものである。またその配合率は、バインダー
100重量部に対して、5〜600重量部であるが、望
ましくは50〜300重量部である。炭酸水素化合物の
配合率が下限値以下であると耐火時の加熱による分解吸
熱作用、水蒸気ガス、炭酸ガス層の形成による熱伝導の
遅れの作用が期待できず、また上限値以上であると耐火
時の加熱による分解吸熱作用、水蒸気ガス、炭酸ガス層
の形成による熱伝導の遅れの作用のそれ以上の効果は得
られない。
The hydrogen carbonate compound that decomposes within 700 ° C., which is a characteristic component of the present invention, is, for example, sodium hydrogen carbonate (NaHCO 3 ) or calcium hydrogen carbonate ((Ca (HCO 3 ) 2 ). ) Etc.
This achieves the endothermic effect when the hydrogen carbonate compound is decomposed by heating during refractory and the effect of delaying the heat conduction due to the formation of the steam gas and carbon dioxide layer, and the effect of improving the surface strength of the refractory coating material. . The blending ratio is 5 to 600 parts by weight, preferably 50 to 300 parts by weight, based on 100 parts by weight of the binder. If the blending ratio of the hydrogen carbonate compound is below the lower limit, decomposition endothermic action due to heating at the time of fire resistance and the effect of delaying heat conduction due to formation of water vapor gas and carbon dioxide layer cannot be expected, and above the upper limit the fire resistance Further effects of decomposition endothermic action due to heating at the time and delay of heat conduction due to formation of steam gas and carbon dioxide layer cannot be obtained.

【0011】次に無機質軽量骨材とは、具体例として黒
曜石パーライト、真珠岩パーライト、更に特殊な例とし
ては未焼性のバーミュライトなどが挙げられる。未焼性
バーミキュライトを用いる場合は耐火時の加熱により耐
火被覆材が膨張するため脱落、剥離を防止する目的で無
機質繊維も合わせ用いることが望ましい。無機質軽量骨
材は本発明における耐火被覆材の軽量化、熱伝導率の低
減を目的として使用するものである。またその配合率
は、バインダー100重量部に対して、5〜400重量
部であるが、望ましくは30〜150重量部である。無
機質軽量骨材の配合率が下限値以下であると耐火被覆材
の軽量化、熱伝導率の低減は期待できず、また上限値以
上であると耐火被覆材の機械的強度が低下してしまうこ
とになる。
The inorganic lightweight aggregates include obsidian perlite and pearlite perlite as specific examples, and unburned vermiculite as a more specific example. When unburned vermiculite is used, it is desirable to also use inorganic fibers for the purpose of preventing the refractory coating material from falling off and peeling because the refractory coating material expands due to heating during fireproofing. The inorganic lightweight aggregate is used for the purpose of reducing the weight and reducing the thermal conductivity of the fireproof coating material of the present invention. The blending ratio is 5 to 400 parts by weight, preferably 30 to 150 parts by weight, based on 100 parts by weight of the binder. If the compounding ratio of the inorganic lightweight aggregate is less than the lower limit value, the weight reduction of the fire resistant coating material and reduction of thermal conductivity cannot be expected, and if it is more than the upper limit value, the mechanical strength of the fire resistant coating material decreases. It will be.

【0012】1000℃以内に分解する炭酸塩化合物と
は、具体例として炭酸カルシウム(CaCO3 )、炭酸
マグネシウム(MgCO3 )等が挙げられる。炭酸塩化
合物は耐火時の加熱により分解することによる吸熱作用
と炭酸ガス層の形成による熱伝導の遅れの作用が期待で
きる。またその配合率は、バインダー100重量部に対
して、20〜800重量部であるが、望ましくは100
〜400重量部である。
Specific examples of the carbonate compound which decomposes within 1000 ° C. include calcium carbonate (CaCO 3 ) and magnesium carbonate (MgCO 3 ). The carbonate compound can be expected to have an endothermic action by decomposing by heating during refractory and an action of delaying heat conduction due to formation of a carbon dioxide layer. The compounding ratio is 20 to 800 parts by weight with respect to 100 parts by weight of the binder, and preferably 100 parts by weight.
~ 400 parts by weight.

【0013】800℃以内に分解する水酸化化合物と
は、具体例として水酸化アルミニウム((Al(OH)
3 ))、ギブサイト等が挙げられる。水酸化化合物は耐
火時の加熱により分解することによる吸熱作用と水蒸気
ガス層の形成による熱伝導の遅れの作用が期待できる。
またその配合率は、バインダー100重量部に対して、
20〜800重量部であるが、望ましくは100〜40
0重量部である。
A hydroxide compound which decomposes within 800 ° C. is, for example, aluminum hydroxide ((Al (OH)
3 )), gibbsite, etc. The hydroxide compound can be expected to have an endothermic effect by decomposing by heating during fireproofing and an effect of delaying heat conduction due to formation of a water vapor gas layer.
In addition, the mixing ratio is 100 parts by weight of the binder,
20 to 800 parts by weight, preferably 100 to 40
0 parts by weight.

【0014】更に再乳化合成樹脂粉末とは、好適な具体
例として酢酸ビニル共重合系再乳化合成樹脂粉末が挙げ
られる。再乳化合成樹脂粉末は常温時における耐火被覆
材の鉄骨への接着強度の向上と耐火被覆材の表面強度の
向上が期待できる。再乳化合成樹脂粉末を添加する場合
その配合率は、バインダー100重量部に対して、1〜
100重量部であるが、望ましくは5〜20重量部であ
る。再乳化合成樹脂粉末の配合率が下限値以下であると
耐火被覆材の鉄骨への接着強度の向上は期待できなく、
上限値以上であると耐火被覆材の鉄骨への接着強度の向
上と耐火被覆材の表面強度のそれ以上の向上はなくなっ
てしまう。
Further, as the re-emulsified synthetic resin powder, a preferred specific example is vinyl acetate copolymer-based re-emulsified synthetic resin powder. The re-emulsified synthetic resin powder can be expected to improve the adhesive strength of the refractory coating to the steel frame at room temperature and the surface strength of the refractory coating. When the re-emulsified synthetic resin powder is added, the mixing ratio is 1 to 100 parts by weight of the binder.
The amount is 100 parts by weight, preferably 5 to 20 parts by weight. If the blending ratio of the re-emulsified synthetic resin powder is less than or equal to the lower limit value, improvement in the adhesive strength of the fire-resistant coating material to the steel frame cannot be expected,
When it is at least the upper limit, the adhesive strength of the fire-resistant coating material to the steel frame will not be improved and the surface strength of the fire-resistant coating material will not be further improved.

【0015】また無機質繊維とは、具体例として耐アル
カリガラス繊維、セラミックファイバー等が挙げられ
る。無機質繊維は本発明における耐火被覆材の耐火時の
脱落、剥離を防止することを目的とし使用するものであ
る。無機質繊維を添加する場合その配合率は、バインダ
ー100重量部に対して、2〜50重量部であるが、望
ましくは3〜10重量部である。配合率が下限値以下で
あると耐火被覆材の耐火時の脱落、剥離を防止すること
が期待できず、また上限値以上になるとそれ以上の脱
落、剥離の防止効果は得られないものである。
Specific examples of the inorganic fibers include alkali resistant glass fibers and ceramic fibers. The inorganic fiber is used for the purpose of preventing the fireproof coating material of the present invention from falling off or peeling off during fireproofing. When the inorganic fiber is added, its compounding ratio is 2 to 50 parts by weight, preferably 3 to 10 parts by weight, based on 100 parts by weight of the binder. If the blending ratio is less than the lower limit, it cannot be expected to prevent the fire-resistant coating material from falling off or peeling off during fire, and if it is more than the upper limit, the effect of preventing further dropping or peeling cannot be obtained. .

【0016】[0016]

【作用】本発明の耐火被覆材の組成における高い耐火性
能は、炭酸水素化合物、炭酸塩化合物及び水酸化化合物
による加熱時の分解吸熱作用、またこれらの化合物より
発生する炭酸ガスと水蒸気ガスによる不燃性ガス層の形
成による熱伝導率の遅れの作用より得られるものと考え
られる。特に炭酸水素化合物を加えることによって、現
在の非石綿、非岩綿系の耐火被覆材の欠点であった炭酸
塩化合物と水酸化化合物の分解吸熱反応を起こす温度差
の為に発生しにくかった炭酸ガスと水蒸気ガスの混合不
燃性ガスを効率よく確実に発生し、より高い耐火性能の
実現に大いに寄与しているものと考えられる。
The high fire resistance in the composition of the fire-resistant coating material of the present invention is due to the decomposition and endothermic action of the hydrogen carbonate compound, the carbonate compound and the hydroxide compound during heating, and the incombustibility due to the carbon dioxide gas and the steam gas generated from these compounds. It is considered to be obtained by the action of delaying the thermal conductivity due to the formation of the volatile gas layer. In particular, by adding a hydrogen carbonate compound, it was difficult to generate carbon dioxide due to the temperature difference that caused the decomposition endothermic reaction between the carbonate compound and the hydroxide compound, which was a drawback of the current non-asbestos and non-rock wool type fireproof coating materials. It is considered that the non-combustible gas, which is a mixture of gas and steam gas, is efficiently and reliably generated, and that it contributes greatly to the realization of higher fire resistance performance.

【0017】以下本発明の耐火被覆材のうち、炭酸塩化
合物及び水酸化化合物の添加された耐火被覆材における
耐火機構を耐火試験温度に準ずる形で記述すれば次のと
おりである。
Of the fireproof coating materials of the present invention, the fireproof mechanism of the fireproof coating materials containing a carbonate compound and a hydroxide compound will be described below in a form conforming to the fireproof test temperature.

【0018】火災時においては、初めに水酸化化合物が
250℃程度で徐々に分解吸熱反応を起こし、大半の水
蒸気ガスは耐火被覆材の表層に進行し、不燃性ガス層を
形成する。しかし、ある程度の水蒸気ガスは耐火被覆材
内部に進行していくことになる。これは鉄骨面と耐火被
覆材との層間に溜っていき鉄骨の温度上昇を妨げること
になる。
In the event of a fire, the hydroxide compound first undergoes a decomposition and endothermic reaction at about 250 ° C., and most of the steam gas proceeds to the surface layer of the fire-resistant coating material, forming a nonflammable gas layer. However, a certain amount of steam gas will proceed inside the refractory coating material. This accumulates between the layers of the steel frame surface and the refractory coating material and hinders the temperature rise of the steel frame.

【0019】耐火被覆材の表面温度が350℃程度にな
ると炭酸水素化合物が徐々に分解吸熱反応を起こし炭酸
ガスと水蒸気ガスを発生する。これは混合不燃性ガスで
あるが、この大半の不燃性ガスは耐火被覆材を抜けるか
たちで耐火被覆材の加熱表面に不燃性ガス層を形成す
る。しかしある程度の不燃性ガス中の水蒸気ガスは水酸
化化合物による水蒸気ガスと同様に耐火被覆材内部に進
行していき鉄骨面と耐火被覆材との層間に溜って鉄骨の
温度上昇を妨げることになる。
When the surface temperature of the refractory coating material reaches about 350 ° C., the hydrogen carbonate compound gradually decomposes and undergoes an endothermic reaction to generate carbon dioxide gas and water vapor gas. Although this is a mixed non-combustible gas, most of the non-combustible gas forms a non-combustible gas layer on the heated surface of the refractory coating as it exits the refractory coating. However, the steam gas in the non-combustible gas to some extent progresses inside the refractory coating material like the steam gas due to the hydroxide compound and accumulates between the steel surface and the refractory coating material to prevent the temperature rise of the steel frame. .

【0020】耐火被覆材の表面温度が800℃程度にな
ると炭酸塩化合物が徐々に分解吸熱反応を起こし炭酸ガ
スを形成する。この炭酸ガスは耐火被覆材を抜けるかた
ちで耐火被覆材の加熱表面に不燃性ガス層を形成し耐火
被覆材の熱伝導を遅らせ鉄骨の温度上昇を妨げることに
なる。
When the surface temperature of the refractory coating material reaches about 800 ° C., the carbonate compound gradually decomposes and undergoes an endothermic reaction to form carbon dioxide gas. This carbon dioxide gas forms a non-combustible gas layer on the heated surface of the refractory coating as it passes through the refractory coating, delays the heat conduction of the refractory coating and prevents the temperature rise of the steel frame.

【0021】以上の現象が時間経過と共に耐火被覆材の
加熱表面から内部に向かって進行するものと推測され
る。
It is speculated that the above phenomenon progresses from the heated surface of the refractory coating material toward the inside with the passage of time.

【0022】[0022]

【実施例】以下、実施例、比較例を挙げて本発明を詳細
に説明する。なお、実施例及び比較例において、水硬性
セメントとしては白色セメント、水ガラスとしてはメタ
けい酸ナトリウム1種、炭酸水素化合物としては炭酸水
素ナトリウム、水酸化化合物としては水酸化アルミニウ
ム、炭酸塩化合物としては炭酸カルシウム、無機質軽量
骨材としては黒曜石パーライト、再乳化合成樹脂粉末と
しては再乳化エマルジョン、無機質繊維としては耐アル
カリガラス繊維を用いた。これらの配合率を各実施例、
及び各比較例毎に変え、これら材料を加水混練し得られ
た混合物を、鉄骨を想定した100×100×1.5m
mの鉄板に15mm厚に塗布し、これを1000℃に加
熱された炉に曝し、内部鉄骨の平均温度が350℃に達
するまでの時間を求めた。
EXAMPLES The present invention will be described in detail below with reference to examples and comparative examples. In Examples and Comparative Examples, white cement is used as the hydraulic cement, sodium metasilicate is used as water glass, sodium hydrogen carbonate is used as the hydrogen carbonate compound, aluminum hydroxide is used as the hydroxide compound, and carbonate compound is used as the carbonate compound. Was calcium carbonate, obsidian perlite was used as the inorganic lightweight aggregate, re-emulsified emulsion was used as the re-emulsified synthetic resin powder, and alkali-resistant glass fiber was used as the inorganic fiber. The blending ratio of each of the examples,
And, for each comparative example, a mixture obtained by hydro-kneading these materials was used, and a mixture of 100 × 100 × 1.5 m assuming a steel frame was used.
A 15 mm thick iron plate was applied to the m steel plate and exposed to a furnace heated to 1000 ° C., and the time until the average temperature of the internal steel frame reached 350 ° C. was obtained.

【0023】実施例 1〜3 表1に示すように、白色セメント、水ガラス、黒曜石パ
ーライト、耐アルカリガラス繊維、再乳化エマルジョン
の配合率を一定とし、炭酸水素ナトリウムの配合率をそ
の下限値より上限値まで変化させ、各実施例毎に適当な
だけの水酸化アルミニウム、炭酸カルシウムを添加した
ものである。実施例1〜3全てにおいて、15mm厚耐
火時間は60分を上回っており、従来の60分耐火時間
を達成するに必要とされた20mmを大きく下回る厚み
で、十分な耐火性能が得られることが分かる。また更に
実施例3においては、水酸化アルミニウム、炭酸カルシ
ウムを添加せず、炭酸水素ナトリウムが単独で用いられ
る場合であるが、この時も十分高い耐火性能を有するこ
とが分かる。
Examples 1 to 3 As shown in Table 1, the blending ratio of white cement, water glass, obsidian perlite, alkali resistant glass fiber, and re-emulsified emulsion was kept constant, and the blending ratio of sodium hydrogen carbonate was lower than the lower limit value. The amount is changed to the upper limit, and appropriate amounts of aluminum hydroxide and calcium carbonate are added for each example. In all of Examples 1 to 3, the 15 mm thick fire resistance time is longer than 60 minutes, and it is possible to obtain sufficient fire resistance performance at a thickness much lower than 20 mm required to achieve the conventional 60 minutes fire resistance time. I understand. Further, in Example 3, sodium hydrogencarbonate is used alone without adding aluminum hydroxide and calcium carbonate, and it can be seen that even at this time, sufficiently high fire resistance performance is obtained.

【0024】[0024]

【表1】 実施例 4、5、6、7 表2に示すように、実施例4、5は、各添加要素をそれ
ぞれその最適値と思われる配合率で構成したものであ
る。炭酸水素ナトリウム、水酸化アルミニウム、炭酸カ
ルシウムの配合量の合計は、実施例3より少ないにもか
かわらず、15mm厚耐火時間はこれを上回っておりそ
れぞれの要素の相乗作用があることが分かる。また、実
施例6、7は、水酸化アルミニウム、炭酸カルシウム、
耐アルカリガラス繊維及び再乳化合成樹脂粉末を添加し
ないものであるが、この場合でも60分を上まわる耐火
性能が得られる。
[Table 1] Examples 4, 5, 6 and 7 As shown in Table 2, Examples 4 and 5 are configured such that each additive element has a compounding ratio considered to be its optimum value. Although the total content of sodium hydrogen carbonate, aluminum hydroxide and calcium carbonate was smaller than that in Example 3, the 15 mm thick fire resistance time exceeded this and it can be seen that there is a synergistic action of each element. Further, Examples 6 and 7 are aluminum hydroxide, calcium carbonate,
Although the alkali resistant glass fiber and the re-emulsified synthetic resin powder are not added, the fire resistance performance of more than 60 minutes can be obtained even in this case.

【0025】[0025]

【表2】 実施例 8〜12 実施例8、9は、表3に示すように、バインダーが白色
セメントのみのもの、及び水ガラスのみのものである場
合である。これらの場合15mm厚耐火時間は60分を
大幅に上回っており、他の成分は適量添加されていれ
ば、バインダーとして、白色セメントのみ、または、水
ガラスのみのものであっても十分な耐火性能を得られる
ことが分かる。更にまた、実施例10〜12は、表3に
示すように、白色セメント、水ガラス、炭酸水素ナトリ
ウム、黒曜石パーライト、耐アルカリガラス繊維、再乳
化エマルジョンの配合率を一定とし、水酸化アルミニウ
ム、炭酸カルシウムの配合率を合わせて200重量部と
なる範囲内で変化させたものである。実施例8〜12全
てにおいて、15mm厚耐火時間は60分を上回ってお
り、十分な耐火性能を有するものであることが分かる。
[Table 2] Examples 8 to 12 In Examples 8 and 9, as shown in Table 3, the binder is only white cement and only water glass. In these cases, the fire resistance time of 15 mm thickness is significantly longer than 60 minutes, and if the other components are added in appropriate amounts, even if only white cement or only water glass is used as the binder, sufficient fire resistance performance is obtained. You can get Furthermore, in Examples 10 to 12, as shown in Table 3, white cement, water glass, sodium hydrogen carbonate, obsidian perlite, alkali resistant glass fiber, and re-emulsified emulsion were mixed at a constant compounding ratio, and aluminum hydroxide and carbonate were used. The calcium content was changed within the range of 200 parts by weight in total. In all of Examples 8 to 12, the 15 mm-thick fire resistance time was longer than 60 minutes, and it can be seen that the fire resistance performance is sufficient.

【0026】[0026]

【表3】 比較例 1、2 表4に示すように、炭酸水素ナトリウムを添加しないも
の、及び下限値以下に添加したものである。水酸化アル
ミニウム、炭酸カルシウムは添加されているにもかかわ
らず、15mm厚耐火時間は共に60分に達しないもの
であった。
[Table 3] Comparative Examples 1 and 2 As shown in Table 4, sodium hydrogencarbonate was not added, and those below the lower limit were added. Despite the addition of aluminum hydroxide and calcium carbonate, the 15 mm thick fire resistance time did not reach 60 minutes.

【0027】[0027]

【表4】 また上記実施例より得られた耐火被覆材は、表面強度に
対してモルタルコンクリートに近いものであり、施工後
の飛散、剥離、脱落の恐れは全くないものであった。ま
た化粧性においては耐久性、耐候性に優れた白色系の耐
火被覆材が得られ、着色などを行う化粧作業にも適して
いるものであった。
[Table 4] Further, the fire-resistant coating materials obtained from the above-mentioned examples were close to mortar concrete in terms of surface strength, and there was absolutely no risk of scattering, peeling or dropping after the construction. In addition, a white fireproof coating material having excellent durability and weather resistance was obtained, and it was suitable for makeup work such as coloring.

【0028】[0028]

【発明の効果】本発明において特筆すべき点は、炭酸水
素化合物を加えることによって、現在の非石綿、非岩綿
系の耐火被覆材の欠点であった、炭酸塩化合物と水酸化
化合物の分解吸熱反応を起こす温度差の為に発生しにく
かった炭酸ガスと水蒸気ガスの混合不燃性ガスを効率よ
く確実に発生し、より高い耐火性能を実現することであ
る。
The remarkable point of the present invention is that by adding a hydrogen carbonate compound, decomposition of the carbonate compound and the hydroxide compound, which is a drawback of the present non-asbestos and non-rock wool type fireproof coating materials, is caused. It is to efficiently and reliably generate a non-combustible gas of a mixture of carbon dioxide gas and water vapor gas, which is difficult to generate due to a temperature difference causing an endothermic reaction, and realize higher fire resistance performance.

【0029】更に、炭酸塩化合物及び水酸化化合物の添
加された耐火被覆材においては、これらの分解吸熱反応
を起こす温度差の中間において炭酸水素化合物が反応す
るため、分解級熱反応、及び不燃性ガス層の形成が、幅
広い温度帯で起こり、さらに高い耐火性能を実現できる
ものである。
Further, in the fireproof coating material to which the carbonate compound and the hydroxide compound are added, the hydrogen carbonate compound reacts in the middle of the temperature difference causing the decomposition and endothermic reaction, so that the decomposition grade thermal reaction and nonflammability The formation of the gas layer occurs in a wide temperature range, and higher fire resistance performance can be realized.

【0030】従って耐火被覆材の施工厚みをより薄くす
ることが可能となり、従来二回吹きをしなければならな
かった吹き付け工事が、一回で済み、工期の短縮、作業
効率の向上、作業工程の簡略化、作業労働の軽減が可能
となるものである。
Therefore, the construction thickness of the fire-resistant coating material can be made thinner, and the spraying work, which conventionally required to be sprayed twice, can be completed only once, shortening the construction period, improving the work efficiency, and the work process. It is possible to simplify the work and reduce the work labor.

【0031】また水ガラス、再乳化合成樹脂粉末、水硬
性セメントを添加した場合はこれらの作用により表面強
度に対してモルタルコンクリートに近いものが出来るた
め、施工後の飛散、剥離、脱落の恐れは全くなく、柱部
において仕上げ作業にはセメント系フィラー等により表
面強度を補強する必要がない。このためセメント系フィ
ラーなどによる左官作業工程が省けるため、さらなる工
期の短縮、作業効率の向上、作業工程の簡略化、作業労
働の軽減が可能となる。また化粧性においては耐久性、
耐候性に優れた白色系の耐火被覆材であるため着色など
を行う化粧作業にも適しているものである。
Further, when water glass, re-emulsified synthetic resin powder, and hydraulic cement are added, these effects produce a surface strength close to that of mortar concrete, so there is no risk of scattering, peeling, or falling off after construction. At all, there is no need to reinforce the surface strength with a cement filler or the like in the finishing work in the pillar portion. For this reason, the plastering work process such as the cement filler can be omitted, so that the work period can be further shortened, the work efficiency can be improved, the work process can be simplified, and the work labor can be reduced. Also, in terms of makeup, durability,
Since it is a white fireproof coating material with excellent weather resistance, it is also suitable for makeup work such as coloring.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】700℃以内に分解する炭酸水素化合物、 無機質軽量骨材、 水硬性セメント及び/または水ガラスからなるバインダ
ーを有効成分とし、 その配合率が、上記バインダー100重量部に対し、 炭酸水素化合物5〜600重量部、 無機質軽量骨材5〜400重量部、 の組成を有することを特徴とする耐火被覆材。
1. A binder composed of a hydrogen carbonate compound which decomposes within 700 ° C., an inorganic lightweight aggregate, hydraulic cement and / or water glass as an active ingredient, and the compounding ratio thereof is 100% by weight of the binder. A fire resistant coating material having a composition of 5 to 600 parts by weight of a hydrogen compound and 5 to 400 parts by weight of an inorganic lightweight aggregate.
【請求項2】バインダー100重量部に対し、1000
℃以内に分解する炭酸塩化合物を20〜800重量部、
及び/または800℃以内に分解する水酸化化合物を2
0〜800重量部含むことを特徴とする請求項1記載の
耐火被覆材。
2. 1000 parts by weight per 100 parts by weight of binder
20 to 800 parts by weight of a carbonate compound that decomposes within ℃,
And / or 2 hydroxyl compounds that decompose within 800 ° C.
The fire resistant coating material according to claim 1, wherein the fire resistant coating material contains 0 to 800 parts by weight.
【請求項3】バインダー100重量部に対し、再乳化合
成樹脂粉末を1〜100重量部含むことを特徴とする請
求項1または2に記載の耐火被覆材。
3. The fire-resistant coating material according to claim 1, which contains 1 to 100 parts by weight of the re-emulsified synthetic resin powder with respect to 100 parts by weight of the binder.
【請求項4】バインダー100重量部に対し、無機質繊
維を2〜50重量部含むことを特徴とする請求項1ない
し3のうちいずれか1に記載の耐火被覆材。
4. The fire-resistant coating material according to claim 1, wherein the inorganic fiber is contained in an amount of 2 to 50 parts by weight with respect to 100 parts by weight of the binder.
JP4189721A 1992-07-16 1992-07-16 Fireproof coating material with hydrogen carbonate compound Expired - Lifetime JPH0825808B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4189721A JPH0825808B2 (en) 1992-07-16 1992-07-16 Fireproof coating material with hydrogen carbonate compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4189721A JPH0825808B2 (en) 1992-07-16 1992-07-16 Fireproof coating material with hydrogen carbonate compound

Publications (2)

Publication Number Publication Date
JPH0632667A JPH0632667A (en) 1994-02-08
JPH0825808B2 true JPH0825808B2 (en) 1996-03-13

Family

ID=16246082

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4189721A Expired - Lifetime JPH0825808B2 (en) 1992-07-16 1992-07-16 Fireproof coating material with hydrogen carbonate compound

Country Status (1)

Country Link
JP (1) JPH0825808B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07127512A (en) * 1993-11-05 1995-05-16 Honda Motor Co Ltd Fuel injection control device for diesel engine
JP4298629B2 (en) * 2003-12-26 2009-07-22 キヤノン株式会社 Inkjet recording device
CN1315959C (en) * 2005-04-26 2007-05-16 四川大学 New expansion type facing fire retardant coating in environmental protection
KR101142170B1 (en) * 2010-03-05 2012-05-03 주식회사 경동세라텍 Heat insulation using expanded perlite of closed cell
KR101202503B1 (en) 2010-03-09 2012-11-16 (주)엘지하우시스 Core material for vacuum insulation pannel and method for fabricating the same
JP6189268B2 (en) * 2014-09-02 2017-08-30 日本特殊炉材株式会社 Silica castable refractories
JP6772079B2 (en) * 2016-02-18 2020-10-21 黒崎播磨株式会社 Fireproof mortar

Also Published As

Publication number Publication date
JPH0632667A (en) 1994-02-08

Similar Documents

Publication Publication Date Title
US20190375685A1 (en) Fire retardant construction materials
JPH0242785B2 (en)
KR100326614B1 (en) Fire-resistant insulation materials
KR20040067166A (en) Incombustible panel composite used lightweight aggregate
KR960001432B1 (en) Refractories with insulation function
KR101668631B1 (en) Lightweight and fireproof mortar using processed dry bottom ash lightweight aggregate
JPH0825808B2 (en) Fireproof coating material with hydrogen carbonate compound
KR950006071B1 (en) Expandable nonorganic composition
JP3181152B2 (en) Composition for fireproof coating
KR100365866B1 (en) Sprayable fireproofing composition
JPH0632665A (en) Refractory coating material with bentonite and hydroxylated compound
GB1564611A (en) Refractory compostions
JPH0825807B2 (en) Fireproof coating with unfired vermiculite
JPH0825810B2 (en) Water glass and fire resistant coating material with hydroxide compound
CN111393884A (en) Fireproof coating based on recycling of foam extinguishing agent
KR100348601B1 (en) Light weight fire resistive covering materials and method for manufacturing the same
JPH09314726A (en) Refractory board for building
KR900001727B1 (en) Composition of heat - insulating material
JPH07330403A (en) Refractory coating composition
JPS6223024B2 (en)
KR101559346B1 (en) Fireproof coating material using slag, powder type fireproof coating material and method for using the same
JP2000355988A (en) Insulation material for spraying and work method therefor
JPH07247146A (en) High-refractory blowing material
SU1135732A1 (en) Raw mix for making fireproof coating
JPH07138079A (en) Refractory coating material