JPH08256768A - Activation of reaction by glucide hydrolyzing enzyme - Google Patents

Activation of reaction by glucide hydrolyzing enzyme

Info

Publication number
JPH08256768A
JPH08256768A JP6399295A JP6399295A JPH08256768A JP H08256768 A JPH08256768 A JP H08256768A JP 6399295 A JP6399295 A JP 6399295A JP 6399295 A JP6399295 A JP 6399295A JP H08256768 A JPH08256768 A JP H08256768A
Authority
JP
Japan
Prior art keywords
reaction
glycolytic enzyme
enzyme
alkyl
activating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6399295A
Other languages
Japanese (ja)
Other versions
JP3513249B6 (en
JP3513249B2 (en
Inventor
Atsushi Tanaka
篤史 田中
Eiichi Hoshino
栄一 星野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP1995063992A priority Critical patent/JP3513249B6/en
Priority claimed from JP1995063992A external-priority patent/JP3513249B6/en
Publication of JPH08256768A publication Critical patent/JPH08256768A/en
Application granted granted Critical
Publication of JP3513249B2 publication Critical patent/JP3513249B2/en
Publication of JP3513249B6 publication Critical patent/JP3513249B6/en
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Enzymes And Modification Thereof (AREA)

Abstract

PURPOSE: To improve a reaction rate by carrying out a glucide hydrolyzing enzyme reaction in the presence of an alkyl sulfate and/or an alkyl sulfonate. CONSTITUTION: A reaction by any of various glucide hydrolyzing enzymes is carried out in the presence of an alkyl sulfate having 1-5 alkyl chain length and/or an alkyl sulfonate having 1-5 alkyl chain length. α-Amylase derived from Bacillus amyloliquefaciens and cellulase derived from Bacillus sp. KSM-635 are preferable as the glucide hydrolyzing enzymes.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、セルラーゼ、アミラー
ゼ等の糖質分解酵素の反応活性化法に関する。
TECHNICAL FIELD The present invention relates to a method for activating a glycolytic enzyme such as cellulase or amylase.

【0002】[0002]

【従来の技術】糖質分解酵素には、澱粉のα−1,4 結合
からなる主鎖を切断するα−アミラーゼ、β−アミラー
ゼ、α−1,6 結合及びその近傍を切断するプルラナー
ゼ、イソアミラーゼ、イソプルラナーゼ、ネオプルラナ
ーゼ等の澱粉枝切り酵素、グルコースを生成するグルコ
アミラーゼ、β−1,4 結合からなるセルロースを分解す
るエキソ及びエンドグルカナーゼ、セロビオヒドラーゼ
等のセルラーゼ、その他にはβ−グルゴシダーゼ、キシ
ラナーゼ、ペクチナーゼ、リゾチーム等が知られてい
る。
BACKGROUND OF THE INVENTION Glycolytic enzymes include α-amylase, β-amylase, which cleaves the main chain consisting of α-1,4 bonds in starch, pullulanase, which cleaves α-1,6 bonds and their vicinity, isoforms. Starch debranching enzymes such as amylases, isopullulanases, and neopullulanases, glucoamylases that produce glucose, exo and endoglucanases that decompose cellulose composed of β-1,4 bonds, cellulases such as cellobiohydrase, and other β -Glucosidase, xylanase, pectinase, lysozyme and the like are known.

【0003】これら糖質分解酵素は昔から醸造産業、繊
維産業、医薬品産業、及び食料品産業等で広く利用され
てきた。また、懸かる糖質分解酵素のうち、セルラー
ゼ、アミラーゼを衣料用及び食器用洗浄剤や漂白剤に配
合することにより、主に皮脂汚れや澱粉汚れに対して洗
浄力が飛躍的に向上することが見出されている。
These glycolytic enzymes have been widely used for many years in the brewing industry, the textile industry, the pharmaceutical industry, the food industry and the like. In addition, among the hanging sugar degrading enzymes, by adding cellulase and amylase to clothes and dishwashing detergents and bleaching agents, the detergency can be dramatically improved mainly against sebum stains and starch stains. Have been found.

【0004】しかしながら、自然界において従来見出さ
れている糖質分解酵素の殆どは、産業上利用可能な酵素
量を提供し得る量に至るまでの酵素生産性が十分ではな
く、酵素反応性を十分に利用することが困難である。ま
た酵素生産性が十分であっても、反応にかかる酵素の必
要量が多く使用するためには高い費用が要求され、事実
上利用が困難になる場合がある。また酵素利用時におけ
る問題点としては、酵素の熱安定性等の問題により反応
を長時間実行すると酵素が失活し、産業上利用が困難に
なることなどが挙げられる。
However, most of the glycolytic enzymes conventionally found in the natural world do not have sufficient enzyme productivity up to an amount that can provide an industrially usable amount of enzyme, and thus have sufficient enzyme reactivity. Difficult to use. Even if the enzyme productivity is sufficient, the use of a large amount of the enzyme required for the reaction requires a high cost, which may make it practically difficult to use. Further, as a problem when using the enzyme, there is a problem that the enzyme is inactivated when the reaction is carried out for a long time due to a problem such as thermal stability of the enzyme, which makes industrial use difficult.

【0005】[0005]

【発明が解決しようとする課題】このような問題点を解
決するための手段として、酵素生産性向上や保存安定性
の向上等の他に、酵素反応系において酵素の反応速度を
向上させる方法、即ち酵素反応の活性化法についても従
来から検討されてきた。
As means for solving such a problem, a method for improving the reaction rate of an enzyme in an enzyme reaction system, in addition to improving enzyme productivity and storage stability, That is, a method for activating an enzymatic reaction has also been conventionally studied.

【0006】糖質分解酵素反応の活性化法としては、セ
ルラーゼに対するβ−グルコシダーゼの併用、α−アミ
ラーゼ及びβ−アミラーゼに対するグルコアミラーゼや
澱粉枝切り酵素の併用等に代表されるような各種酵素の
相乗効果を利用したもの、プロテインエンジニアリング
技術を利用し、特異的にアミノ酸残基を置換することに
よる酵素反応速度の向上を利用したもの、酵素固定化
法、酵素反応系に特定のイオンや両親媒性物質等の酵素
反応活性化剤を利用した方法がこれまでに報告されてい
る。なかでも酵素反応活性化剤を利用する方法は非常に
簡便でかつ剤によっては安価になる可能性が期待され
る。このような活性化剤に関しては、これまでに特定の
ノニオン活性剤、ポリオキシエチレンリン酸エステル及
びカルボキシベタイン型両性活性剤をセルラーゼ反応系
に加えることによって得られるもの(特開昭60−210984
号)や、エンドグルカナーゼやα−アミラーゼ又はプル
ラナーゼ反応系に特定の水溶性ポリマーを添加すること
によって得られるもの(特表平5−507615号)、特定の
セルラーゼにアクチンを加えることで得られるもの〔FE
BS Letter, 187, 101-104(1985) 〕、特定のアミラーゼ
に対して塩素イオンを加えることで得られるもの〔Cli
n. Biochem.,16, 224-228(1983)〕、n−ヘキサンにTwe
en20 (ポリオキシエチレンソルビタンモノラウレー
ト、アトラス・パウダー社)を添加して得られる逆相ミ
セル系を利用してアミラーゼ及びセルラーゼの酵素活性
を高めること〔Biotechnol. Bioeng.,29, 901-902(198
7) 〕などが報告されている。しかしながら、これらの
活性化法は酵素の反応速度をある程度高めることはでき
るものの、未だその活性化力が十分でない等の問題があ
った。
As the method for activating the glycolytic enzyme reaction, various enzymes such as those used in combination with β-glucosidase for cellulase, glucoamylase with α-amylase and β-amylase, and starch debranching enzyme are used. Those that utilize synergistic effects, those that utilize protein engineering technology to improve the enzymatic reaction rate by specifically substituting amino acid residues, enzyme immobilization methods, specific ions or amphiphiles for enzyme reaction systems. A method utilizing an enzymatic reaction activator such as a volatile substance has been reported so far. Among them, the method using an enzyme reaction activator is expected to be very simple and cheap depending on the agent. Regarding such activators, those obtained by adding a specific nonionic activator, polyoxyethylene phosphate and carboxybetaine type amphoteric activator to the cellulase reaction system have been hitherto disclosed (Japanese Patent Laid-Open No. 60-210984).
No.), an endoglucanase, an α-amylase, or a pullulanase reaction system, which is obtained by adding a specific water-soluble polymer (JP-T 5-507615), or one which is obtained by adding actin to a specific cellulase. (FE
BS Letter, 187, 101-104 (1985)], obtained by adding chloride ion to a specific amylase [Cli
n. Biochem., 16, 224-228 (1983)], n-hexane in Twe
Enzyme activity of amylase and cellulase is enhanced by using a reverse-phase micelle system obtained by adding en20 (polyoxyethylene sorbitan monolaurate, Atlas Powder Co.) [Biotechnol. Bioeng., 29, 901-902 ( 198
7)] etc. have been reported. However, although these activation methods can increase the reaction rate of the enzyme to some extent, they still have problems such as insufficient activation power.

【0007】従って、本発明の目的は糖質分解酵素の反
応速度を十分に活性化させる剤を提供することにある。
Therefore, it is an object of the present invention to provide an agent which fully activates the reaction rate of a glycolytic enzyme.

【0008】[0008]

【課題を解決するための手段】そこで本発明者らは、糖
質分解酵素の反応活性化剤について鋭意探索を続けてき
たところ、セルラーゼ、アミラーゼ等の糖質分解酵素の
反応系に対して、低級アルキル硫酸塩及び低級アルキル
スルホン酸塩を添加することによって酵素活性が著しく
活性化されることを見いだし、本発明を完成させるに至
った。
Therefore, the inventors of the present invention have conducted an intensive search for a reaction activator of a glycolytic enzyme, and found that the reaction system of a glycolytic enzyme such as cellulase and amylase It was found that the enzyme activity was remarkably activated by adding the lower alkyl sulfate and the lower alkyl sulfonate, and the present invention was completed.

【0009】即ち、本発明は、糖質分解酵素の反応を、
アルキル鎖長が1〜5のアルキル硫酸塩及びアルキル鎖
長が1〜5のアルキルスルホン酸塩からなる群から選ば
れる1種または2種以上の塩の存在下に行なうことを特
徴とする糖質分解酵素の反応活性化法を提供するもので
ある。換言すれば本発明の方法は、糖質分解酵素の基質
(糖質)分解活性を、アルキル鎖長が1〜5のアルキル
硫酸塩及びアルキル鎖長が1〜5のアルキルスルホン酸
塩からなる群から選ばれる1種または2種以上の塩によ
り向上させるものである。
That is, the present invention relates to the reaction of glycolytic enzyme
Carbohydrate characterized by being carried out in the presence of one or more salts selected from the group consisting of alkyl sulfates having an alkyl chain length of 1 to 5 and alkyl sulfonates having an alkyl chain length of 1 to 5. The present invention provides a method for activating a reaction of a degrading enzyme. In other words, the method of the present invention provides a substrate (sugar) degrading activity of a carbohydrate degrading enzyme which is composed of an alkyl sulfate having an alkyl chain length of 1 to 5 and an alkyl sulfonate having an alkyl chain length of 1 to 5. It is improved by one or more salts selected from

【0010】本発明のアルキル硫酸塩及びアルキルスル
ホン酸塩としては、いずれもアルキル基の炭素数が1か
ら5のものが使用され、対イオン種としてはナトリウ
ム、カリウム、リチウム等のアルカリ金属塩、アンモニ
ウムイオン等の1価の陽イオンが挙げられるが、好まし
くは炭素数1から2のアルキル硫酸塩及びアルキルスル
ホン酸塩、さらに好ましくはメチル硫酸ナトリウム及び
メチル硫酸カリウムが挙げられる。アルキル基の炭素数
が多くなると、高濃度添加することによってアニオン性
のミセルを形成しやすくなり、逆に反応が抑制されやす
くなるため好ましくない。
As the alkyl sulfate and the alkyl sulfonate of the present invention, those in which the alkyl group has 1 to 5 carbon atoms are used, and the counter ion species are alkali metal salts such as sodium, potassium and lithium. Examples thereof include monovalent cations such as ammonium ions, preferably alkyl sulfates and alkyl sulfonates having 1 to 2 carbon atoms, and more preferably sodium methyl sulfate and potassium methyl sulfate. When the alkyl group has a large number of carbon atoms, an anionic micelle is likely to be formed by adding it at a high concentration, and conversely the reaction is easily suppressed, which is not preferable.

【0011】本発明の対象とする糖質分解酵素として
は、糖質を分解する酵素であれば特に限定されないが、
例えばα−アミラーゼ、β−アミラーゼ、グルコアミラ
ーゼ、プルラナーゼ、イソアミラーゼ、イソプルラナー
ゼ、ネオプルラナーゼ等のアミラーゼ、及びエキソ及び
エンドグルカナーゼ、セロビオヒドロラーゼ等のセルラ
ーゼ、その他にはβ−グルゴシダーゼ、キシラナーゼ、
ペクチナーゼ、リグニナーゼ、リゾチーム等が挙げられ
る。なかでもα−アミラーゼのアミロペクチンや可溶性
澱粉に対する分解速度や、エンドグルカナーゼのカルボ
キシメチルセルロース(CMC)に対する分解活性が著
しく向上する。そのなかでも特にバチルス・アミロリキ
ファシエンス(Bacillus amyloliquefaciens)由来のα−
アミラーゼ及びバチルス・エスピー(Bacillus sp.) KSM
-635株由来のセルラーゼが好ましい。なおKSM-635 はFE
RM BP-1485として菌寄託されており、菌株に関しては特
開昭63−10977 号に、また詳しい製造方法に関しては特
開昭63−264699号の実施例に記載されている。
The carbohydrate-degrading enzyme to which the present invention is applied is not particularly limited as long as it is an enzyme capable of degrading carbohydrates.
For example, α-amylase, β-amylase, glucoamylase, pullulanase, isoamylase, isopullulanase, amylase such as neopullulanase, and exo and endoglucanase, cellulase such as cellobiohydrolase, and other β-glugosidase, xylanase,
Examples include pectinase, ligninase and lysozyme. Above all, the decomposition rate of α-amylase with respect to amylopectin and soluble starch and the decomposition activity of endoglucanase with respect to carboxymethyl cellulose (CMC) are remarkably improved. Among them, especially α- from Bacillus amyloliquefaciens
Amylase and Bacillus sp. KSM
Cellulase from the -635 strain is preferred. KSM-635 is FE
The strain has been deposited as RM BP-1485, the strain is described in JP-A-63-10977, and the detailed production method is described in Examples of JP-A-63-264699.

【0012】その他、α−アミラーゼとしては、バチル
ス・ズブチルス・マルバーグ(Bacillus subtilis Marbu
rg) 、バチルス・ズブチルス・ナット(Bacillus subtil
is natto) 、バチルス・リケニホルミス(Bacillus lich
eniformis)、バチルス・セレウス(Bacillus cereus) 、
バチルス・サークランス(Bacillus circulans)、バチル
ス・マセランス(Bacillus macerans) 、シュードモナス
・スヅリ(Pseudomonasstutzeri)、クレブシエラ・アエ
ロゲネス(Klebusiella aerogenes) 等の細菌、ストレプ
トマイセス・グリセウス(Streptomyces griseus)等の放
線菌、アスペルギルス・オリゼ(Aspergillus oryzae)、
アスペルギルス・ニガー(Aspergillus niger) 等のカビ
類、イネ科及びまめ科植物の種子、ヒト及びブタなどの
動物の消化腺など多くの生物から得られているものを使
用できる。また、セルラーゼは、フミコーラ・ラニュギ
ノーサ(Fumicola lanuginosa) 、トリコデルマ・ビリデ
(Trichoderma viride)、トリコデルマ・レーセ(Trichod
erma reesei)、トリコデルマ・コニンジ(Trichoderma k
oningii)等に由来することができる。
Other α-amylases include Bacillus subtilis Marbu
rg), Bacillus subtilus nut
is natto), Bacillus licheniformis (Bacillus lich)
eniformis), Bacillus cereus,
Bacteria such as Bacillus circulans, Bacillus macerans, Pseudomonass tutzeri, Klebusiella aerogenes, Streptomyces griseus, Streptomyces griseus, etc. Orize (Aspergillus oryzae),
Molds obtained from many organisms such as molds such as Aspergillus niger, seeds of grasses and legumes, digestive glands of animals such as humans and pigs can be used. In addition, cellulase is Fumicola lanuginosa, Trichoderma viridae.
(Trichoderma viride), Trichoderma race
erma reesei), Trichoderma koniji (Trichoderma k)
oningii) and the like.

【0013】本発明の反応活性化法は、通常の糖質分解
酵素−基質反応に適用でき、反応前の酵素溶液、基質溶
液或いは緩衝溶液等、適当な時期に、アルキル鎖長が1
〜5のアルキル硫酸塩及びアルキル鎖長が1〜5のアル
キルスルホン酸塩からなる群から選ばれる1種または2
種以上の塩を添加して、これらを反応系に1〜1000mM存
在させればよく、より好ましくは、アルキル硫酸塩及び
アルキルスルホン酸塩を反応系中の濃度が1〜500mM 、
より好ましくは1〜100mM となるように添加する。
The reaction activation method of the present invention can be applied to a usual saccharide-degrading enzyme-substrate reaction, and the alkyl chain length is 1 at an appropriate time such as an enzyme solution, a substrate solution or a buffer solution before the reaction.
1 to 2 selected from the group consisting of alkylsulfates of 5 to 5 and alkylsulfonates having an alkyl chain length of 1 to 5
It suffices to add one or more kinds of salts so that they are present in the reaction system in an amount of 1 to 1000 mM, and more preferably, the concentration of the alkyl sulfate and the alkyl sulfonate in the reaction system is 1 to 500 mM,
More preferably, it is added so as to be 1 to 100 mM.

【0014】[0014]

【発明の効果】本発明による糖質分解酵素の反応活性化
は、各種糖質分解酵素の反応を、アルキル基の炭素数が
1〜5のアルキル硫酸塩及び/又はアルキル基の炭素数
が1〜5のアルキルスルホン酸塩の存在下に行なうこと
によって得られるものであり、工業的に極めて大きな意
義を有するものである。
The reaction activation of the glycolytic enzyme according to the present invention is carried out by reacting various glycolytic enzymes with an alkylsulfate having an alkyl group having 1 to 5 carbon atoms and / or an alkyl group having 1 carbon atom. It is obtained by carrying out in the presence of an alkyl sulfonate of 5 to 5, and has an extremely great industrial significance.

【0015】[0015]

【実施例】次に実施例をあげて本発明を詳細に説明する
が、本発明はこれら実施例になんら限定されるものでは
ない。
EXAMPLES The present invention will now be described in detail with reference to examples, but the present invention is not limited to these examples.

【0016】実施例1〜8及び比較例1〜4 特開昭63−264699号の実施例に記載のバチルス・エスピ
ー(Bacillus sp.) KSM-635株(FERM BP-1485)を培養、精
製して得られたセルラーゼ成分を適当量イオン交換水に
溶解させたものを酵素液とした。20mM Glycine緩衝溶液
(pH10.0) 中にCMC(反応系における最終濃度は 1.0
%)及び表1に示すアルキル硫酸塩(添加剤)を溶解さ
せた反応液0.9 mLに酵素液0.1 mLを加え、40℃で、5分
毎に反応時間を設定し最大25分間反応させた。各反応時
間ごとに 3,5−ジニトロ−サリチル酸(DNS)法にて
還元糖の定量を行った。即ち、反応液 1.0mLにDNS試
薬1.0mLを加え、5分間、 100℃で加熱発色させ、冷却
後、4.0mL のイオン交換水を加えて希釈し、波長535nm
で比色定量した。酵素の反応速度は、反応開始時より生
成物である還元糖量が時間と共に直線的に増加する範囲
における生成物増加速度(d〔還元糖〕/d〔時間〕)
として算出し、相対反応速度としては、アルキル硫酸塩
非存在系に対するアルキル硫酸塩存在系の反応速度を百
分率で示した。以上の方法で測定したセルラーゼ反応速
度に対するアルキル硫酸塩の添加効果についての結果を
表1に示す。表1中、濃度は反応系中での濃度を意味す
る(以下同様)。
Examples 1 to 8 and Comparative Examples 1 to 4 Bacillus sp. KSM-635 strain (FERM BP-1485) described in Examples of JP-A-63-264699 was cultured and purified. An enzyme solution was prepared by dissolving an appropriate amount of the cellulase component thus obtained in ion-exchanged water. CMC in a 20 mM Glycine buffer solution (pH 10.0) (final concentration in the reaction system is 1.0
%) And an alkylsulfate (additive) shown in Table 1 were added to 0.9 mL of the reaction solution, and 0.1 mL of the enzyme solution was added, and the reaction was allowed to proceed at 40 ° C. for 5 minutes at a maximum of 25 minutes. The reducing sugars were quantified by the 3,5-dinitro-salicylic acid (DNS) method at each reaction time. That is, 1.0 mL of the DNS reagent was added to 1.0 mL of the reaction solution, the color was developed by heating at 100 ° C for 5 minutes, and after cooling, 4.0 mL of ion-exchanged water was added to dilute the mixture to a wavelength of 535 nm.
Colorimetrically determined by. The reaction rate of the enzyme is the rate of product increase (d [reducing sugar] / d [time]) in the range in which the amount of reducing sugar as a product increases linearly with time from the start of the reaction.
As the relative reaction rate, the reaction rate of the alkylsulfate-present system with respect to the alkylsulfate-free system is shown in percentage. Table 1 shows the results of the effect of addition of the alkyl sulfate on the cellulase reaction rate measured by the above method. In Table 1, the concentration means the concentration in the reaction system (hereinafter the same).

【0017】表1より、メチル硫酸ナトリウム添加系で
最高80%、エチル硫酸ナトリウム添加系で最高20%程度
の酵素反応の活性化が見出された。
From Table 1, it was found that the activation of the enzyme reaction was up to 80% in the sodium methylsulfate addition system and up to 20% in the sodium ethylsulfate addition system.

【0018】また、上記の方法に従って測定したアルキ
ルスルホン酸ナトリウムの添加効果についての結果を表
1に併せて示した。表1より、エチルスルホン酸ナトリ
ウム添加系で最高100 %、プロピルスルホン酸ナトリウ
ム添加系で最高70%、ブチルスルホン酸ナトリウム添加
系で最高50%の酵素反応の活性化が見出された。
Table 1 also shows the results of the effect of addition of sodium alkyl sulfonate measured according to the above method. From Table 1, it was found that up to 100% of the enzyme reaction was activated in the system containing sodium ethylsulfonate, up to 70% in the system containing sodium propylsulfonate, and up to 50% in the system containing sodium butylsulfonate.

【0019】[0019]

【表1】 [Table 1]

【0020】実施例9〜16及び比較例5〜9 バチルス・アミロリキファシエンス(Bacillus amyloliq
uefaciens)由来のα−アミラーゼ(生化学工業)をイオ
ン交換水に適当量溶解させたものを酵素液とした。25mM
Tris-acetate 緩衝溶液 (pH7.0)中にポテト由来アミロ
ペクチン(Sigma)(反応系における最終濃度は 0.5%) 及
び表2に示すアルキル硫酸塩(添加剤)を溶解させた反
応液 0.9mLに酵素液 0.1mLを加え、40℃で、5分毎に反
応時間を設定し最大25分間反応させた。各反応時間ごと
に3,5 −ジニトロ−サリチル酸(DNS)法にて還元糖
の定量を行った。即ち、反応液1.0mL にDNS試薬 1.0
mLを加え、5分間、100 ℃で加熱発色させ、冷却後、4.
0mL のイオン交換水を加えて希釈し、波長535nm で比色
定量した。酵素の反応速度は、反応開始時より生成物で
ある還元糖量が時間と共に直線的に増加する範囲におけ
る生成物増加速度として算出し、相対反応速度として
は、アルキル硫酸塩非存在系に対するアルキル硫酸塩存
在系の反応速度を百分率で示した。以上の方法で測定し
たアミラーゼ反応速度に対するアルキル硫酸塩の添加効
果についての結果を表2に示す。表2より、メチル硫酸
ナトリウム添加系で最高40%、エチル硫酸ナトリウム添
加系で最高10%程度の酵素反応の活性化が見いだされ
た。
Examples 9 to 16 and Comparative Examples 5 to 9 Bacillus amyloliq
u-faciens) -derived α-amylase (Seikagaku Corporation) was dissolved in deionized water in an appropriate amount to give an enzyme solution. 25 mM
The enzyme was added to 0.9 mL of the reaction solution containing potato-derived amylopectin (Sigma) (final concentration in the reaction system was 0.5%) and the alkyl sulfate (additive) shown in Table 2 dissolved in Tris-acetate buffer solution (pH 7.0). The solution (0.1 mL) was added, and the reaction was allowed to proceed at a maximum of 25 minutes at 40 ° C. by setting the reaction time every 5 minutes. The reducing sugars were quantified by the 3,5-dinitro-salicylic acid (DNS) method at each reaction time. That is, 1.0 mL of DNS reagent was added
Add mL, heat at 100 ° C for 5 minutes to develop color, cool, and then 4.
It was diluted by adding 0 mL of ion-exchanged water, and colorimetrically determined at a wavelength of 535 nm. The reaction rate of the enzyme was calculated as the rate of product increase in the range in which the amount of reducing sugar as a product linearly increases with time from the start of the reaction. The reaction rate of the salt presence system is shown in percentage. Table 2 shows the results of the effect of addition of the alkyl sulfate on the amylase reaction rate measured by the above method. From Table 2, activation of the enzyme reaction was found to be up to 40% in the sodium methylsulfate addition system and up to about 10% in the sodium ethylsulfate addition system.

【0021】[0021]

【表2】 [Table 2]

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C12R 1:07) ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI technical display area C12R 1:07)

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 糖質分解酵素の反応を、アルキル鎖長が
1〜5のアルキル硫酸塩及びアルキル鎖長が1〜5のア
ルキルスルホン酸塩からなる群から選ばれる1種または
2種以上の塩の存在下に行なうことを特徴とする糖質分
解酵素の反応活性化法。
1. The reaction of the glycolytic enzyme is carried out by one or more kinds selected from the group consisting of an alkyl sulfate having an alkyl chain length of 1 to 5 and an alkyl sulfonate having an alkyl chain length of 1 to 5. A method for activating a glycolytic enzyme reaction, which is carried out in the presence of salt.
【請求項2】 アルキル硫酸塩及び/又はアルキルスル
ホン酸塩の反応系中の濃度が1〜1000mMである請求項1
記載の糖質分解酵素活性化法。
2. The concentration of the alkyl sulfate and / or the alkyl sulfonate in the reaction system is 1 to 1000 mM.
The method for activating a glycolytic enzyme as described.
【請求項3】 アルキル硫酸塩が、メチル硫酸ナトリウ
ムである請求項1又は2記載の糖質分解酵素の反応活性
化法。
3. The method for activating a glycolytic enzyme according to claim 1, wherein the alkyl sulfate is sodium methyl sulfate.
【請求項4】 糖質分解酵素が、アミラーゼ又はセルラ
ーゼである請求項1〜3の何れか1項記載の糖質分解酵
素の反応活性化法。
4. The method for activating a glycolytic enzyme according to claim 1, wherein the glycolytic enzyme is amylase or cellulase.
【請求項5】 糖質分解酵素が、バチルス(Bacillus)属
の細菌から産生されるα−アミラーゼである請求項1〜
3の何れか1項記載の糖質分解酵素の反応活性化法。
5. The glycolytic enzyme is α-amylase produced by a bacterium of the genus Bacillus.
4. The method for activating the reaction of the glycolytic enzyme according to any one of 3 above.
【請求項6】 糖質分解酵素が、バチルス・アミロリキ
ファシエンス(Bacillus amyloliquefaciens)から産生さ
れるα−アミラーゼである請求項1〜3の何れか1項記
載の糖質分解酵素の反応活性化法。
6. The reaction activation of the glycolytic enzyme according to claim 1, wherein the glycolytic enzyme is α-amylase produced from Bacillus amyloliquefaciens. Law.
【請求項7】 糖質分解酵素が、バチルス(Bacillus)属
の細菌から産生されるセルラーゼである請求項1〜3の
何れか1項記載の糖質分解酵素の反応活性化法。
7. The method for activating a glycolytic enzyme according to any one of claims 1 to 3, wherein the glycolytic enzyme is a cellulase produced by a bacterium of the genus Bacillus.
【請求項8】 糖質分解酵素が、バチルス・エスピー(B
acillus sp.)KSM-635 株の細菌から産生されるセルラー
ゼである請求項7記載の糖質分解酵素の反応活性化法。
8. The glycolytic enzyme is Bacillus sp.
The method for activating a glycolytic enzyme according to claim 7, which is a cellulase produced from a bacterium of acillus sp.) KSM-635 strain.
JP1995063992A 1995-03-23 Method for activating glycolytic enzymes Expired - Fee Related JP3513249B6 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1995063992A JP3513249B6 (en) 1995-03-23 Method for activating glycolytic enzymes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1995063992A JP3513249B6 (en) 1995-03-23 Method for activating glycolytic enzymes

Publications (3)

Publication Number Publication Date
JPH08256768A true JPH08256768A (en) 1996-10-08
JP3513249B2 JP3513249B2 (en) 2004-03-31
JP3513249B6 JP3513249B6 (en) 2004-07-07

Family

ID=

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1669442A2 (en) 2004-12-09 2006-06-14 Kao Corporation Method of activating alpha-amylase
JP2012075378A (en) * 2010-09-30 2012-04-19 San Nopco Ltd Enzymatic saccharification method for woody biomass and production method for fermentation ethanol

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1669442A2 (en) 2004-12-09 2006-06-14 Kao Corporation Method of activating alpha-amylase
US7863235B2 (en) 2004-12-09 2011-01-04 Kao Corporation Method of activating α-amylase with oxidizing agents
JP2012075378A (en) * 2010-09-30 2012-04-19 San Nopco Ltd Enzymatic saccharification method for woody biomass and production method for fermentation ethanol

Also Published As

Publication number Publication date
JP3513249B2 (en) 2004-03-31

Similar Documents

Publication Publication Date Title
Felix et al. The cellulosome: the exocellular organelle of Clostridium
Singh et al. Covalent immobilization and thermodynamic characterization of pullulanase for the hydrolysis of pullulan in batch system
Akiba et al. Purification and characterization of a protease-resistant cellulase from Aspergillus niger
CORAL et al. Some properties of crude carboxymethyl cellulase of Aspergillus niger Z10 wild-type strain
David et al. Coproduction of protease and mannanase from Bacillus nealsonii PN-11 in solid state fermentation and their combined application as detergent additives
Kim Characterization and substrate specificity of an endo-beta-1, 4-D-glucanase I (Avicelase I) from an extracellular multienzyme complex of Bacillus circulans
Szijártó et al. Hydrolysis of amorphous and crystalline cellulose by heterologously produced cellulases of Melanocarpus albomyces
Aygan et al. A new halo-alkaliphilic, thermostable endoglucanase from moderately halophilic Bacillus sp. C14 isolated from Van soda lake
Xiong et al. Characterization of the xylanase produced by submerged cultivation of Thermomyces lanuginosus DSM 10635
Okada et al. Enzymatic studies on a cellulase system of Trichoderma viride: III. Transglycosylation properties of two cellulase components of random type
Christakopoulos et al. Purification and Mode of Action of an Alkali-Resistant Endo-1, 4-β-glucanase fromBacillus pumilus
JPH0639597B2 (en) Deterioration resistance detergent composition
Davis et al. Chitosanases: occurrence, production and immobilization
Kim et al. Substrate specificity and detailed characterization of a bifunctional amylase‐pullulanase enzyme from Bacillus circulans F‐2 having two different active sites on one polypeptide
Romaniec et al. Purification and characterization of a new endoglucanase from Clostridium thermocellum
Schlochtermeier et al. Biochemical and electron microscopic studies of the Streptomyces reticuli cellulase (Avicelase) in its mycelium-associated and extracellular forms
Gupta et al. Biovalorizing agro-waste ‘de-oiled rice bran’for thermostable, alkalophilic and detergent stable α-amylase production with its application as laundry detergent additive and textile desizer
MacKenzie et al. Studies on cellulose hydrolysis by Acetivibrio cellulolyticus
AU2016200189B2 (en) Care enzyme system
JP3513249B2 (en) Method for activating glycolytic enzymes
Gohel et al. Thermalstabilization of chitinolytic enzymes of Pantoea dispersa
EP0576424B1 (en) Activation of polysaccharide hydrolase
JP3513249B6 (en) Method for activating glycolytic enzymes
Hashem et al. Immobilization of Leuconostoc-paramesenteroides dextransucrase enzyme and characterization of its enzyme properties
Tanaka et al. Study on the substrate specificity of α-amylases that contribute to soil removal in detergents

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040109

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090116

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090116

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100116

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110116

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110116

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120116

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120116

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130116

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130116

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140116

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees