JPH08255707A - Magnetic body and magnetic recording medium - Google Patents

Magnetic body and magnetic recording medium

Info

Publication number
JPH08255707A
JPH08255707A JP7058403A JP5840395A JPH08255707A JP H08255707 A JPH08255707 A JP H08255707A JP 7058403 A JP7058403 A JP 7058403A JP 5840395 A JP5840395 A JP 5840395A JP H08255707 A JPH08255707 A JP H08255707A
Authority
JP
Japan
Prior art keywords
magnetic
recording medium
layer
film
electric field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7058403A
Other languages
Japanese (ja)
Inventor
Shin Fukushima
伸 福島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP7058403A priority Critical patent/JPH08255707A/en
Publication of JPH08255707A publication Critical patent/JPH08255707A/en
Pending legal-status Critical Current

Links

Landscapes

  • Hard Magnetic Materials (AREA)
  • Hall/Mr Elements (AREA)

Abstract

PURPOSE: To provide a new magnetic body indicating diamagnetic-ferromagnetic change due to the irradiation with light and a magnetic recording medium using it. CONSTITUTION: A magnetic body is expressed by a general expression, Bi2-x Pbx Sr2-y REy MnO6+b (0.8<=x<=1.2, RE: at least one type of rare earth elements La, Nd. Eu, Ce, Sm, and Pr, 0<=y<=0.2, d: excessive oxygen) and develops ferromagnetism by irradiation with light or electric field and a magnetic recording medium uses the magnetic body.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は磁性体およびこれを用い
た磁気記録媒体に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic material and a magnetic recording medium using the magnetic material.

【0002】[0002]

【従来の技術】近年、磁気記録は、記録媒体の性能向上
等により、飛躍的にその記録密度向上が達成されてい
る。この高密度記録情報を再生するための磁気抵抗効果
素子として各種の方式が検討されている。そのうち、磁
気抵抗効果を利用したヘッドは高い記録密度に対応し、
高SNの再生信号を得られるものとして期待されてい
る。特に磁性金属/非磁性金属の積層による金属超格子
で見いだされた巨大磁気抵抗効果はこの分野で画期的な
性能向上をもたらす新技術として注目を集めるものであ
る。
2. Description of the Related Art In recent years, magnetic recording has dramatically improved its recording density due to improvements in the performance of recording media. Various systems have been studied as a magnetoresistive effect element for reproducing this high-density recorded information. Among them, the head using the magnetoresistive effect corresponds to high recording density,
It is expected that a reproduced signal with high SN can be obtained. In particular, the giant magnetoresistive effect found in a metal superlattice formed by stacking magnetic metal / nonmagnetic metal is attracting attention as a new technology that brings breakthrough performance improvement in this field.

【0003】さらに最近、磁性金属と半導体の積層膜に
よる超格子で、光照射により半導体層に電子正孔対を励
起することにより磁性金属層間の磁気結合を変化させ、
反強磁性−強磁性の変化が生じることが見いだされた。
この現象は従来の光磁気記録が光照射による温度上昇を
利用して書き込みを行うのに対し、照射光の光子エネル
ギーを直接利用できることから、より高速、高密度な記
録方式を提供し得るもの、また新たな各種センサーとし
て利用できるものとして期待されている。
More recently, in a superlattice composed of a laminated film of a magnetic metal and a semiconductor, the magnetic coupling between the magnetic metal layers is changed by exciting electron-hole pairs in the semiconductor layer by light irradiation,
It was found that an antiferromagnetic-ferromagnetic change occurs.
This phenomenon is that while conventional magneto-optical recording is performed by utilizing the temperature rise due to light irradiation, the photon energy of the irradiation light can be directly used, so that a higher speed and higher density recording method can be provided. It is also expected to be used as various new sensors.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上述の
ような、光照射によって反強磁性−強磁性の変化を示す
磁性金属/半導体の超格子は、その製造条件が複雑で大
規模な生産には困難があり、さらには光励起にともなう
磁化の変化も微少であり、これを直接、磁気記録等に応
用するのは困難であった。
However, the above-mentioned magnetic metal / semiconductor superlattice which exhibits antiferromagnetic-ferromagnetic change by light irradiation has complicated manufacturing conditions and is not suitable for large-scale production. However, it is difficult to directly apply this to magnetic recording and the like because the change in magnetization due to photoexcitation is also small.

【0005】これに加えて、磁性金属/半導体の超格子
を作成するには限られた組み合わせしかなく、設計の自
由度は低いものであった。本発明は上記のような問題を
考慮してなされたものであって、光照射などによる反強
磁性−強磁性の変化を示す新規な磁性体、およびこれを
用いた磁気記録媒体を提供することを目的とする。
In addition to this, there are only limited combinations for producing a magnetic metal / semiconductor superlattice, and the degree of freedom in design has been low. The present invention has been made in consideration of the above problems, and provides a novel magnetic substance exhibiting a change in antiferromagnetic-ferromagnetic property due to light irradiation and the like, and a magnetic recording medium using the same. With the goal.

【0006】[0006]

【課題を解決する手段および作用】本発明に係る請求項
1の磁性体は、層状酸化物Bi2 Sr2 MnO6+d のB
iの一部をPbで置換し、さらにSrの一部を希土類元
素で置換した、一般式Bi2-x Pbx Sr2-y REy
nO6+d (0.8≦x≦1.2、REは希土類元素L
a、Nd、Eu、Ce、Sm、Prの少なくとも1種、
0≦y≦0.2、dは過剰酸素)で表わされ、光照射ま
たは電界印加により強磁性を発現することを特徴とする
ものである。
Means and Action for Solving the Problems The magnetic substance according to claim 1 of the present invention is a layered oxide of B 2 Sr 2 MnO 6 + d .
A general formula Bi 2-x Pb x Sr 2-y RE y M in which a part of i is replaced with Pb and a part of Sr is replaced with a rare earth element
nO 6 + d (0.8 ≦ x ≦ 1.2, RE is a rare earth element L
at least one of a, Nd, Eu, Ce, Sm and Pr,
0 ≦ y ≦ 0.2, d is excess oxygen), and is characterized by exhibiting ferromagnetism by light irradiation or application of an electric field.

【0007】また請求項2の磁性体は、酸化物LaMn
3 のLaの一部をSrで置換した一般式、La1-x
x MnO3 (0≦x≦0.2)で表わされ、光照射ま
たは電界印加により強磁性を発現することを特徴とする
ものである。
The magnetic substance according to claim 2 is the oxide LaMn.
A general formula in which a part of La of O 3 is replaced with Sr, La 1-x S
It is represented by r x MnO 3 (0 ≦ x ≦ 0.2) and is characterized by exhibiting ferromagnetism by light irradiation or application of an electric field.

【0008】そして本発明はこれらの磁性体を用いた請
求項3の発明として、請求項1または2記載の、光照射
により強磁性を発現する磁性体を含む層と記録保持層と
を積層したことを特徴とする磁気記録媒体を提供する。
The present invention uses these magnetic materials as the invention according to claim 3, wherein a layer containing a magnetic material which exhibits ferromagnetism by light irradiation and a recording holding layer are laminated. A magnetic recording medium characterized by the above.

【0009】さらに請求項4の発明として、請求項1ま
たは2記載の、電界印加により強磁性を発現する磁性体
を含む層と誘電体層とを積層したことを特徴とする磁気
記録媒体を提供する。
Further, as a fourth aspect of the present invention, there is provided a magnetic recording medium characterized in that a layer containing a magnetic body exhibiting ferromagnetism by applying an electric field and a dielectric layer are laminated. To do.

【0010】層状構造を有する酸化物Bi2 Sr2 Mn
6+d のBiの一部をPbで置換すると抵抗値が下がる
ことは、例えばPhysicaC167(1990)2
0−34に示されている。
Oxide having a layered structure Bi 2 Sr 2 Mn
Replacing part of Bi in O 6 + d with Pb lowers the resistance value, for example, Physica C167 (1990) 2
0-34.

【0011】本発明者は、この酸化物のSrの一部を希
土類元素で置換することによって低濃度の熱平衡キャリ
アーをドーピングした状態で、これに光照射を行うこと
により、励起された電子・正孔を媒介とする、反強磁性
状態から強磁性状態への転移が起こり、この際の転移温
度が室温以上に達することを見いだした。また、この強
磁性状態の発現が、Sr/希土類元素置換を行なわずに
光照射を行なっても起こることも見いだした。
The inventor of the present invention, by substituting a part of Sr of this oxide with a rare earth element, is doped with a low-concentration thermal equilibrium carrier, and then is irradiated with light to excite the excited electrons and positive electrons. It was found that the transition from the antiferromagnetic state to the ferromagnetic state occurs via holes, and the transition temperature at this time reaches room temperature or higher. It was also found that the manifestation of this ferromagnetic state occurs even when light irradiation is performed without performing Sr / rare earth element substitution.

【0012】さらには上記物質をBaTiO3のような
強誘電体あるいはSrTiO3のような高誘電率物質と
積層した薄膜においては、この積層膜に電界を印加して
生じる誘電分極によって磁性体にチャージ注入が起こり
磁気特性が変化することをも見いだした。
Further, in a thin film in which the above substance is laminated with a ferroelectric substance such as BaTiO3 or a high dielectric constant substance such as SrTiO3, charge injection into a magnetic substance is caused by dielectric polarization generated by applying an electric field to this laminated film. It was also found that the magnetic properties occurred and the magnetic properties changed.

【0013】本発明に係る磁性体の1つは、銅酸化物高
温超伝導体としてよく知られているBi−Cu酸化物B
2 Sr2 CuO6 と同一の結晶構造を有し、その銅サ
イトがMnで完全に置き換わったものを母体としてい
る。この物質は転移温度(ネール点)130Kの反強磁
性体であり、このBiの50%をPbで置換した組成
も、150Kのネール点を持つ反強磁性体である。
One of the magnetic materials according to the present invention is Bi-Cu oxide B, which is well known as a copper oxide high temperature superconductor.
It has the same crystal structure as i 2 Sr 2 CuO 6 and its copper site is completely replaced by Mn as a matrix. This substance is an antiferromagnetic material having a transition temperature (Neil point) of 130K, and the composition obtained by substituting 50% of Bi with Pb is also an antiferromagnetic material having a Neel point of 150K.

【0014】上述のように本発明者は、この物質でBi
の一部をPbで置換した場合には、さらにSrの一部を
ある種の希土類元素(La,Nd,Eu,Ce,Sm,
Prから選ばれた少なくとも一種)で置換して、いわゆ
る熱平衡キャリアードーピングを行なうことができ、こ
の系において置換量が少ない場合、あるいはSr/希土
類元素置換による熱平衡キャリアードーピングを行わな
い状態、すなわち、系が完全な強磁性特性を示すより低
レベルのキャリア濃度にある場合には、これに充分なエ
ネルギーを持つ励起光を照射して、光励起キャリアーを
発生させると、強磁性特性が発現することを見いだし
た。これは、励起光のフォトンエネルギーが直接磁気特
性を変化させたことに相当し、いわゆる、光誘起強磁性
という新しい現象であると考えられる。この現象は励起
光を照射している間持続し、新しい概念の光磁気記録
(従来のいわゆる光磁気ではその書き込みは光による昇
温により行うのに対し、この場合はフォトンモードにな
る)媒体や磁気ヘッドへの工業的応用が可能になる新材
料を提供するものである。
As mentioned above, the present inventors
When a part of Sr is replaced with Pb, a part of Sr is further added to a certain rare earth element (La, Nd, Eu, Ce, Sm,
It is possible to carry out so-called thermal equilibrium carrier doping by substituting at least one selected from Pr), and in the case where the substitution amount is small in this system, or the thermal equilibrium carrier doping by Sr / rare earth element substitution is not carried out, that is, the system When the carrier concentration is lower than that which shows perfect ferromagnetism, it is found that ferromagnetism develops when photoexcited carriers are generated by irradiating it with excitation light having sufficient energy. It was This corresponds to the fact that the photon energy of the excitation light directly changes the magnetic characteristics, and is considered to be a so-called new phenomenon called photoinduced ferromagnetism. This phenomenon continues during irradiation of the excitation light, and a new concept of magneto-optical recording (in the conventional so-called magneto-optical writing is performed by the temperature rise by light, in this case, the photon mode is used) It provides a new material that can be industrially applied to a magnetic head.

【0015】また、強磁性状態への転移温度の高さはこ
の種の酸化物磁性体においては希にみるものであり、産
業上、極めて有益である。ここで、この光誘起強磁性の
発現機構について簡単に説明する。
Also, the high transition temperature to the ferromagnetic state is rare in this kind of oxide magnetic material, and is extremely useful industrially. Here, the mechanism of manifestation of this photoinduced ferromagnetism will be briefly described.

【0016】通常の構成、すなわち、磁性金属(MM)
−非磁性金属(NM)−磁性金属(MM)の積層からな
る磁性金属超格子においては、熱平衡的に存在する伝導
キャリアーがMM層間の磁気的結合を担っている。
Normal configuration, ie magnetic metal (MM)
In a magnetic metal superlattice formed by stacking a nonmagnetic metal (NM) and a magnetic metal (MM), conduction carriers existing in thermal equilibrium are responsible for magnetic coupling between MM layers.

【0017】これに対し、Z.Phys.B92、13
7(1993)、Phys.Rev.Lett.、7
1、185(1993)などで示されているように、磁
性金属(MM)−非磁性半導体(SC)−磁性金属(M
M)の積層からなる超格子で最近報告された光誘起強磁
性は、光照射によってSCに生じたフォトキャリアーが
MM間の磁気結合を担っているものと考えられている。
本発明に係るBi−Mn酸化物の光誘起強磁性の詳しい
発現機構は、今までのところ明確になっている訳ではな
いが、このMM−SC−MM超格子と同様に、光励起に
よる熱的非平衡伝導キャリアーによってMnイオンのモ
ーメントが結合しているものと考えられている。
On the other hand, Z. Phys. B92, 13
7 (1993), Phys. Rev. Lett. , 7
1, 185 (1993), magnetic metal (MM) -nonmagnetic semiconductor (SC) -magnetic metal (M).
The photo-induced ferromagnetism recently reported in the superlattice formed by stacking M) is considered to be that the photocarriers generated in the SC by light irradiation are responsible for the magnetic coupling between the MMs.
The detailed mechanism of the photo-induced ferromagnetism of the Bi—Mn oxide according to the present invention has not been clarified so far, but like the MM-SC-MM superlattice, it is thermally excited by photoexcitation. It is believed that the momentum of Mn ions is bound by nonequilibrium conduction carriers.

【0018】ここで行うBi/Pb置換は本発明に係る
磁性体の電子状態を変化させ、光誘起強磁性の発現にき
わめて効果的である。光励起によって生じたキャリアー
を媒介とするダブルイクスチェンジによる強磁性結合発
現には、これらのキャリアーの有効質量m*が充分に小
さく、ある程度の遍歴性を有していることが必要であ
る。このため、本発明に用いる材料の伝導帯ならびに荷
電子帯のバンド幅は充分に大きいことが必要となる。
The Bi / Pb substitution carried out here changes the electronic state of the magnetic material according to the present invention and is extremely effective for the expression of photoinduced ferromagnetism. In order to exhibit ferromagnetic coupling by double exchange mediated by carriers generated by photoexcitation, it is necessary that the effective mass m * of these carriers be sufficiently small and have some itinerary. Therefore, the band width of the conduction band and the valence band of the material used in the present invention needs to be sufficiently large.

【0019】本発明者は、Bi/Pb置換はこの物質の
結晶構造を変化させ、Mnと酸素が形成する電気伝導面
をフラットにすることによりバンド幅を拡大し、系の電
子状態を遍歴的にするために有効であることを見いだし
た。またこれらのバンドのバンド幅の拡大は、バンドギ
ャップの減少ももたらし、より低エネルギーの励起光を
用いても充分なキャリアーを励起して光励起強磁性を発
現させる効果もある。
The inventor of the present invention has found that Bi / Pb substitution changes the crystal structure of this substance, flattens the electric conduction surface formed by Mn and oxygen, thereby expanding the band width, and iterating the electronic state of the system. Found to be effective for. In addition, the expansion of the band width of these bands also brings about a decrease in the band gap, and has the effect of exhibiting photoexcited ferromagnetism by exciting sufficient carriers even by using excitation light of lower energy.

【0020】この物質を光誘起磁性体として用いる場合
には、0.8≦x≦1.2の範囲が望ましい。0.8よ
り小さいと光照射を行なった場合の強磁性状態の発現が
十分でなく、1.2より大きいと不純物異相成分の析出
を招いてしまう。
When this substance is used as a photoinduced magnetic material, the range of 0.8 ≦ x ≦ 1.2 is desirable. When it is less than 0.8, the manifestation of the ferromagnetic state is insufficient when light irradiation is performed, and when it is more than 1.2, precipitation of impurity heterophase components is caused.

【0021】このようにBi/Pb置換はバンド幅を増
大させ、系の電子状態を光誘起強磁性発現に好ましいも
のとするのに有効であるが、このときに熱平衡キャリア
ー濃度の変化が起こらないため、系の熱平衡キャリアー
濃度はSrを希土類で置換することにより独立に変化さ
せることができる。すなわち、この系では系のバンド幅
やバンドギャップと熱平衡キャリアー濃度の調整を独立
に行うことができ、光誘起磁性体としての応用を希土類
の含有量を変化させることで自由に選択できることが大
きな特徴となっている。この希土類量の変更は結晶構造
や格子パラメターには影響を及ぼさないことから、後述
する強磁性層や誘電体層と光誘起磁性体層の積層膜を作
成する際にも、格子不整合の問題を容易に回避すること
が可能となっている。
Thus, the Bi / Pb substitution is effective in increasing the band width and making the electronic state of the system favorable for the photoinduced ferromagnetism manifestation, but at this time, the thermal equilibrium carrier concentration does not change. Therefore, the thermal equilibrium carrier concentration of the system can be independently changed by substituting rare earth for Sr. That is, in this system, the bandwidth and band gap of the system and the thermal equilibrium carrier concentration can be adjusted independently, and the application as a photoinduced magnetic material can be freely selected by changing the content of rare earth. Has become. This change in the amount of rare earth does not affect the crystal structure or the lattice parameter. Therefore, when creating a laminated film of a ferromagnetic layer or a dielectric layer and a photoinduced magnetic layer, which will be described later, there is a problem of lattice mismatch. Can be easily avoided.

【0022】この置換する希土類量は、過剰な熱平衡キ
ャリアーの存在は有害であるため、0≦y≦0.2の範
囲にあることが望ましい。このように本発明に係る層状
Bi−Mn酸化物は、バンド幅ないしはバンドギャップ
と、熱平衡キャリアー濃度を独立に変化させることがで
きる特徴を有し、光誘起磁性体としての応用に適した物
質である。
The amount of the rare earth element to be replaced is preferably in the range of 0≤y≤0.2, since the presence of excess heat equilibrium carrier is harmful. As described above, the layered Bi-Mn oxide according to the present invention has a feature that the band width or band gap and the thermal equilibrium carrier concentration can be changed independently, and is a substance suitable for application as a photoinduced magnetic substance. is there.

【0023】一方、非層状のペロブスカイト構造を持つ
Mn酸化物LaMnO3 は元素置換をすると、注入した
伝導キャリアーを媒介とする強磁性結合(ダブルイクス
チェンジ)による反強磁性体から強磁性金属への変化が
起こることが従来から知られている。この酸化物はLa
の一部をSrで置換することによるキャリアーの注入
で、バンドギャップの減少と熱平衡キャリアー濃度の増
加が同時に起こる。
On the other hand, when Mn oxide LaMnO 3 having a non-layered perovskite structure is replaced with an element, an antiferromagnetic material is changed to a ferromagnetic metal by ferromagnetic coupling (double exchange) mediated by injected conduction carriers. It is conventionally known that changes occur. This oxide is La
Injecting carriers by substituting a part of Sr with Sr simultaneously decreases the band gap and increases the thermal equilibrium carrier concentration.

【0024】本発明者は、この物質においても、Sr置
換量が少ない時、すなわち、熱平衡キャリアーが少数
で、強磁性特性が弱い場合には、光照射によって磁気特
性が変化することを見いだし、これを光誘起磁性体とし
て応用することが可能であることを見いだした。この場
合には、バンドギャップを独立に制御することができな
いことが欠点となるが、励起光のエネルギを適当に選択
することにより、実用的な光誘起酸化物磁性体として用
いることができる。
The present inventor has found that even in this substance, when the Sr substitution amount is small, that is, when the number of thermal equilibrium carriers is small and the ferromagnetic property is weak, the magnetic property is changed by light irradiation. It was found that can be applied as a photo-induced magnetic material. In this case, the disadvantage is that the bandgap cannot be controlled independently, but it can be used as a practical photoinduced oxide magnetic material by appropriately selecting the energy of the excitation light.

【0025】また層状のBi−Mn酸化物の場合と同様
に、BaTiO3 のような強誘電体あるいはSrTiO
3 のような高誘電率物質と積層した薄膜においては、こ
の積層膜に電界を印加して生じる誘電分極によって磁性
体にチャージ注入が起こり磁気特性が変化することをも
見いだした。
As in the case of the layered Bi-Mn oxide, a ferroelectric such as BaTiO 3 or SrTiO 3 is used.
It was also found that in a thin film laminated with a high-dielectric constant material such as 3 above, charge injection into a magnetic substance occurs due to dielectric polarization generated by applying an electric field to this laminated film, and the magnetic characteristics change.

【0026】さて、上述のような、本発明に係る光誘起
磁性体は、これを光励起による記録媒体として用いる際
には、光照射を停止するとその磁化が消失してしまうと
いう欠点がある。
By the way, the above-described photoinduced magnetic material according to the present invention has a drawback that when it is used as a recording medium by photoexcitation, its magnetization disappears when the light irradiation is stopped.

【0027】本発明者は、この問題点を解決するため、
鋭意検討を重ねた結果、記録保持層として、適当な保磁
力を有する磁性体膜を、この光誘起磁性体膜と積層する
ことによって、光照射によって生じた磁化を照射停止後
も保持できることを見いだした。
In order to solve this problem, the present inventor has
As a result of extensive studies, it was found that by laminating a magnetic film having an appropriate coercive force as a recording holding layer with this photoinduced magnetic film, the magnetization generated by light irradiation can be retained even after irradiation is stopped. It was

【0028】この記録保持層に用いる磁性体は、各種の
物質を用いることができるが、本発明に係る光誘起磁性
体との整合性の点から、酸化物磁性体を用いることが望
ましい。さらに、光誘起磁性体として層状のBi−Mn
酸化物、LaMn酸化物を用いる場合、それぞれ記録保
持層に、Bi2-x Pbx Sr2-y REy MnO6+d
(0.6≦x≦1.2、0.2≦y≦0.5)、La
1-x Mnx3 (0.25≦x<0.6)を用いること
は、層間の整合性の観点からいって、最も望ましいもの
となる。
Various materials can be used for the magnetic material used for the recording holding layer, but it is preferable to use an oxide magnetic material from the viewpoint of compatibility with the photoinduced magnetic material according to the present invention. Further, as a photo-induced magnetic material, a layered Bi-Mn
When oxides or LaMn oxides are used, Bi 2-x Pb x Sr 2-y RE y MnO 6 + d is used as the recording holding layer.
(0.6 ≦ x ≦ 1.2, 0.2 ≦ y ≦ 0.5), La
The use of 1-x Mn x O 3 (0.25 ≦ x <0.6) is the most desirable from the viewpoint of the consistency between layers.

【0029】この際、光誘起磁性体層や記録保持層の厚
さは任意に設定することができるが、それぞれの膜厚が
薄すぎる場合には十分な光誘起磁性や保磁力が得られ
ず、また膜厚が厚すぎる場合には、励起光の吸収によ
り、膜全体にわたる十分な光誘起磁性が利用できなくな
る。従ってこれらの層の膜厚は10nmから1000n
mの範囲にあることが望ましい。
At this time, the thickness of the photoinduced magnetic layer and the recording holding layer can be set arbitrarily, but if the respective film thicknesses are too thin, sufficient photoinduced magnetism and coercive force cannot be obtained. If the film thickness is too large, the absorption of the excitation light makes it impossible to utilize sufficient photoinduced magnetism over the entire film. Therefore, the film thickness of these layers is 10 nm to 1000 n.
It is desirable to be in the range of m.

【0030】記録の再生方法については、各種方式を用
いることができるが、記録保持層に大きな磁気光学効果
を持つ物質を使った光磁気方式、あるいは記録層の磁化
を利用した磁気抵抗効果を用いることが、記録密度の点
から望ましい。
Various methods can be used for the recording / reproducing method, but a magneto-optical method using a substance having a large magneto-optical effect in the recording holding layer or a magnetoresistive effect utilizing the magnetization of the recording layer is used. Is preferable from the viewpoint of recording density.

【0031】また上記の光誘起磁性体は光励起キャリア
ーによる強磁性状態の発現の他に、例えば誘電体との積
層膜において、電界を印加したときの誘電分極によるチ
ャージ注入により強磁性特性を発現する。このとき、用
いる誘電体にBaTiO3のような強誘電体を用いる
と、この誘電体に抗電界以上の電界を印加することによ
って生じる残留分極によって、発現した強磁性特性が保
持されるため、電圧印加により情報の書き込みを行い、
磁気抵抗や光磁気効果等の変化により情報の読みだしを
行う記憶装置を作成することもできる。
The photo-induced magnetic material exhibits a ferromagnetic state by photoexcited carriers, and also exhibits a ferromagnetic characteristic by charge injection by dielectric polarization when an electric field is applied, for example, in a laminated film with a dielectric. . At this time, if a ferroelectric material such as BaTiO3 is used as the dielectric material to be used, the remanent polarization generated by applying an electric field higher than the coercive electric field to the dielectric material holds the developed ferromagnetic characteristics, so that the voltage application is performed. Write information by
It is also possible to create a storage device that reads information by changing the magnetic resistance or the magneto-optical effect.

【0032】この際にも磁性体層や誘電体層の膜厚は任
意に設定できるが、誘電分極によるチャ−ジ注入は誘電
体・磁性体の界面付近で発生する現象であり、磁性体の
膜厚が厚すぎる場合には、膜全体の磁化や磁気抵抗に対
する、分極による特性の変化分、すなわち見かけ上の誘
電分極の効果が小さくなってしまう。またこれらの膜厚
が薄すぎる場合には膜の結晶性が低下し、本来の磁気特
性や誘電特性が得られなくなってしまう。従ってこれら
の層の膜厚は10nmから1000nmの範囲にあるこ
とが望ましい。
Also in this case, the film thickness of the magnetic layer or the dielectric layer can be set arbitrarily, but the charge injection due to the dielectric polarization is a phenomenon that occurs near the interface between the dielectric and the magnetic body. If the film thickness is too large, the change in the characteristics due to polarization, that is, the effect of the apparent dielectric polarization, on the magnetization and the magnetic resistance of the entire film becomes small. Further, if these film thicknesses are too thin, the crystallinity of the film deteriorates, and the original magnetic characteristics and dielectric characteristics cannot be obtained. Therefore, the film thickness of these layers is preferably in the range of 10 nm to 1000 nm.

【0033】本発明に係る磁性体は、超格子/積層膜の
ような複雑な構造を持たず、容易に作成できること、ま
た光照射時の磁気特性の変化が大きいことから、新規な
光応用高密度磁気記録の媒体や磁気ヘッド等各種センサ
ーに応用が可能である。また層状のBi−Mn酸化物の
場合は磁気転移温度が高いため、工業上の応用が容易で
ある。
The magnetic material according to the present invention does not have a complicated structure such as a superlattice / multilayered film, can be easily prepared, and has a large change in magnetic characteristics upon irradiation with light. It can be applied to various sensors such as density magnetic recording media and magnetic heads. Further, in the case of a layered Bi-Mn oxide, the magnetic transition temperature is high, and therefore industrial application is easy.

【0034】[0034]

【実施例】以下、本発明の実施例を説明する。 (実施例1)実施例1としてBi2-x Pbx Sr2-y
y MnO6+d (x=1.0、y=0.05)なる組成
を持つ光誘起磁性体の薄膜をSTO基板上にRFマグネ
トロンスパッターで500nm成膜し、これをQuan
tum Design社製の光ファイバー付きサンプル
ホルダーに挿入してQuantum Design社製
SQUID磁化率計に装着した。
Embodiments of the present invention will be described below. Bi 2-x As (Example 1) Example 1 Pb x Sr 2-y L
A thin film of a photo-induced magnetic material having a composition of a y MnO 6 + d (x = 1.0, y = 0.05) was formed on an STO substrate by RF magnetron sputtering to a thickness of 500 nm, and the quan was formed.
The sample was inserted into a sample holder with an optical fiber manufactured by tum Design Co., Ltd. and attached to a SQUID magnetic susceptometer manufactured by Quantum Design Co., Ltd.

【0035】このとき、波長60nmのレーザー光(出
力100mW)の励起光を照射した場合と照射しない場
合の磁化を室温で−5T〜+5Tの磁場にわたって測定
した結果を図1に示す。図中、1で示す点が光を照射し
た場合、2で示す実線が照射しない場合である。
At this time, the results of measuring the magnetization with and without irradiation of the excitation light of the laser light of wavelength 60 nm (output 100 mW) at room temperature over a magnetic field of -5T to + 5T are shown in FIG. In the figure, the point 1 indicates that light is emitted, and the solid line 2 indicates that light is not emitted.

【0036】図に示すように、光照射しない場合には常
磁性的な小さな磁化を示すのに対し、光照射した場合に
は、磁化は±4emu/g程度で、大きなヒステリシス
を持つ強磁性的振る舞いを示す。
As shown in the figure, when light is not irradiated, it exhibits a small paramagnetic magnetization, whereas when it is irradiated with light, the magnetization is about ± 4 emu / g, which is a ferromagnetic material having a large hysteresis. Show the behavior.

【0037】この膜の磁気抵抗の光応答を0.01Tの
磁場中で測定したところ、光照射により膜の抵抗値は1
/100に変化し、光センサーや光スイッチとして用い
ることができることが分かった。 (実施例2)実施例2として、実施例1に係る光誘起磁
性体を用いて磁気記録媒体を作成した。その断面図を図
2に示す。
When the photoresponse of magnetoresistance of this film was measured in a magnetic field of 0.01 T, the resistance value of the film was 1 by light irradiation.
It changed to / 100 and was found to be usable as an optical sensor or an optical switch. (Example 2) As Example 2, a magnetic recording medium was prepared using the photoinduced magnetic material according to Example 1. FIG. 2 shows a cross-sectional view thereof.

【0038】STO基板3上に光誘起磁性体層4として
実施例1の組成の磁性体の薄膜をRFマグネトロンスパ
ッターで成膜し、さらに、記録保持層5としてBi2-x
Pbx Sr2-y Lay MnO6+d (x=1.0、y=
0.2)なる組成を持つ酸化物磁性体を、それぞれ20
0nmの膜厚で成膜し、この積層シークエンスを30回
繰り返して、記録保持層5を有する磁気記録媒体6を作
成した。この磁気記録媒体6の光誘起磁性体層4・記録
保持層5をSiO2 からなる保護層7で覆った。
On the STO substrate 3, a thin film of the magnetic material having the composition of Example 1 was formed as the photoinduced magnetic material layer 4 by RF magnetron sputtering, and further, as the recording holding layer 5, Bi 2-x.
Pb x Sr 2-y La y MnO 6 + d (x = 1.0, y =
The oxide magnetic material having the composition
A film was formed with a film thickness of 0 nm, and this lamination sequence was repeated 30 times to prepare a magnetic recording medium 6 having a recording holding layer 5. The photo-induced magnetic layer 4 and the recording holding layer 5 of this magnetic recording medium 6 were covered with a protective layer 7 made of SiO 2 .

【0039】これを室温環境のもと、100ガウスの磁
界中で、波長60nmのレーザー光で励起したスポット
上の記録部分を作成し、磁気光学効果を用いて記録部分
の再生を行った。この結果、記録スポットは、光励起を
停止した後も保持され、この積層膜が磁気記録媒体とし
て適当な性質を有することがわかった。 (実施例3)実施例3としてLa1-x Srx MnO3
(x=0.1)なる組成を持つ光誘起磁性体層の薄膜を
STO基板上にRFマグネトロンスパッターで500n
m成膜し、これをQuantum Design社製の
光ファイバー付きサンプルホルダーに挿入してQuan
tum Design社製SQUID磁化率計に装着し
た。このとき、波長60nmのレーザー光(出力100
mW)の励起光を照射した場合と照射しない場合の磁化
を室温で−5T〜+5Tの磁場にわたって測定した。結
果は図1と同様になり、光照射しない場合には常磁性的
な小さな磁化を示すのに対し、光照射した場合には、磁
化は大きなヒステリシスを持つ強磁性的振る舞いを示し
た。 (実施例4)実施例4として、実施例3に係る光誘起磁
性体を用いて磁気記録媒体を作成した。断面図は図4と
同様な構造である。
Under a room temperature environment, a recording portion on a spot excited by a laser beam having a wavelength of 60 nm was prepared in a magnetic field of 100 gauss, and the recording portion was reproduced by using a magneto-optical effect. As a result, it was found that the recording spot was retained even after the photoexcitation was stopped, and this laminated film had suitable properties as a magnetic recording medium. (Example 3) As Example 3, La 1-x Sr x MnO 3
A thin film of a photo-induced magnetic layer having a composition (x = 0.1) is deposited on an STO substrate by RF magnetron sputtering to 500n.
m film is formed, and this is inserted into the sample holder with optical fiber manufactured by Quantum Design Co.
It was attached to a SQUID susceptibility meter manufactured by tum Design. At this time, laser light with a wavelength of 60 nm (output 100
The magnetization with and without irradiation with (mW) excitation light was measured at room temperature over a magnetic field of −5T to + 5T. The results are similar to those shown in FIG. 1, and show a paramagnetic small magnetization when not irradiated with light, but exhibit a ferromagnetic behavior with large hysteresis when irradiated with light. (Example 4) As Example 4, a magnetic recording medium was prepared using the photoinduced magnetic material according to Example 3. The sectional view has the same structure as that in FIG.

【0040】STO基板3上に光誘起強磁性体層4とし
て実施例3の組成を持つ磁性体の薄膜をRFマグネトロ
ンスパッターで成膜し、さらに、記録保持層5としてL
1-x Srx MnO3 (x=0.4)なる組成を持つ酸
化物磁性体を、それぞれ200nmの膜厚で成膜し、こ
の積層シークエンスを30回繰り返して、記録保持層5
を有する磁気記録媒体を作成した。この磁気記録媒体6
の光誘起磁性体層4・記録保持層5をSiO2 からなる
保護層7で覆った。
A thin film of a magnetic material having the composition of Example 3 was formed on the STO substrate 3 as the photo-induced ferromagnetic material layer 4 by RF magnetron sputtering, and the recording holding layer 5 was formed of L.
An oxide magnetic material having a composition of a 1-x Sr x MnO 3 (x = 0.4) was formed into a film with a film thickness of 200 nm, and the lamination sequence was repeated 30 times, and the recording holding layer 5 was formed.
A magnetic recording medium having This magnetic recording medium 6
The photo-induced magnetic layer 4 and the recording holding layer 5 were covered with a protective layer 7 made of SiO 2 .

【0041】これを室温環境のもと、100ガウスの磁
界中で、波長60nmのレーザー光で励起したスポット
上の記録部分を作成し、磁気光学効果を用いて記録部分
の再生を行った。この結果、記録スポットは、光励起を
停止した後も保持され、この積層膜が磁気記録媒体とし
て適当な性質を有することがわかった。 (実施例5)実施例5として、実施例2、4とは異なる
磁気記録媒体を作成した。その断面図を図3に示す。
Under a room temperature environment, a recording portion on a spot excited by a laser beam having a wavelength of 60 nm was created in a magnetic field of 100 gauss, and the recording portion was reproduced by using a magneto-optical effect. As a result, it was found that the recording spot was retained even after the photoexcitation was stopped, and this laminated film had suitable properties as a magnetic recording medium. (Example 5) As Example 5, a magnetic recording medium different from those of Examples 2 and 4 was prepared. The sectional view is shown in FIG.

【0042】STO:Nb基板8上に電界誘起磁性体層
9としてBi2-x Pbx Sr2-y Lay MnO6+d (x
=1.0、y=0.05)なる組成を持つ薄膜をRFマ
グネトロンスパッターで成膜し、さらに、誘電体層10
としてBa0.5 Sr0.5 TiO3 なる組成を持つ酸化物
磁性体を、それぞれ1000Aの膜厚で成膜し、このシ
ークエンスを10回くりかえして磁気記録媒体11を作
成した。この際、各層はエピタキシャル成長しているこ
とをX線回折等を用いて確認した。
STO: Bi 2-x Pb x Sr 2-y La y MnO 6 + d (x
= 1.0, y = 0.05), a thin film is formed by RF magnetron sputtering, and the dielectric layer 10
As a magnetic recording medium 11, an oxide magnetic material having a composition of Ba 0.5 Sr 0.5 TiO 3 was formed to a film thickness of 1000 A, and the sequence was repeated 10 times. At this time, it was confirmed by X-ray diffraction and the like that each layer was epitaxially grown.

【0043】この場合、誘電体層10のBa0.5 Sr
0.5 TiO3 は、格子歪によって室温で強誘電体となっ
ており、電界を印加して形成される分極が電界を除去し
ても保存されている。
In this case, Ba 0.5 Sr of the dielectric layer 10 is
0.5 TiO 3 is a ferroelectric substance at room temperature due to lattice distortion, and the polarization formed by applying an electric field is preserved even if the electric field is removed.

【0044】この磁気記録媒体11の最上部の誘電体層
10のうえに上部電極12として例えばAlなどの金属
膜、電界誘起磁性体層9・誘電体層10の側面に抵抗検
出用端子13をそれぞれ形成し、さらに上部電極12と
抵抗検出用端子13との間を埋めるようにSiO2 から
なる保護膜14を形成した。これにより上部電極11と
STO:Nb基板8との間に電圧を掛けることで記録動
作をおこなう記憶装置を作成した。
On the uppermost dielectric layer 10 of the magnetic recording medium 11, a metal film such as Al is formed as the upper electrode 12, and a resistance detection terminal 13 is formed on the side surface of the electric field induction magnetic layer 9 / dielectric layer 10. Then, a protective film 14 made of SiO 2 was formed so as to fill the space between the upper electrode 12 and the resistance detection terminal 13. As a result, a memory device was created in which a recording operation was performed by applying a voltage between the upper electrode 11 and the STO: Nb substrate 8.

【0045】電界印加により誘起された分極電荷に起因
するチャージ注入が電界誘起磁性体層9のBi2-x Pb
x Sr2-y Lay MnO6+d (x=1.0、y=0.0
5)で発生し、この層は強磁性特性を示す。このときの
変化を膜の磁気特性変化にともなう磁気抵抗の変化で読
み出しをおこなう。誘電体を分極させないときのこの膜
の電気抵抗は103 Ωcmであるのにたいし、誘電体を
分極させた状態での電気抵抗は101 Ωcmと大きな変
化があり、メモリ動作を確認した。
Charge injection resulting from polarization charges induced by application of an electric field is caused by Bi 2-x Pb in the electric field induced magnetic layer 9.
x Sr 2-y La y MnO 6 + d (x = 1.0, y = 0.0
5), this layer exhibits ferromagnetic properties. The change at this time is read by the change in the magnetic resistance accompanying the change in the magnetic characteristics of the film. The electric resistance of this film when the dielectric was not polarized was 10 3 Ωcm, whereas the electric resistance when the dielectric was polarized showed a large change of 10 1 Ωcm, confirming the memory operation.

【0046】さらにこの膜の分極の有無による磁化の変
化を測定したところ、誘電体が分極していない状態では
低い帯磁率を示すのに対し、誘電体が分極した状態では
大きな磁化率を示すことがわかり、磁気読みだし方式の
記録媒体として用いることができることも分かった。 (実施例6)実施例6として実施例5と同様な構造の磁
気記録媒体を作成した。
Further, when the change in magnetization depending on the presence or absence of polarization of this film was measured, it was found that the magnetic susceptibility was low when the dielectric was not polarized, whereas the magnetic susceptibility was large when the dielectric was polarized. It was also found that it can be used as a magnetic read type recording medium. (Example 6) As Example 6, a magnetic recording medium having the same structure as that of Example 5 was prepared.

【0047】STO:Nb基板8上に電界誘起磁性体層
9としてLa1-x Srx MnO3 (x=0.1)なる組
成を持つ薄膜をRFマグネトロンスパッターで成膜し、
さらに、誘電体層10としてBa0.5 Sr0.5 TiO3
なる組成を持つ酸化物磁性体を、それぞれ100nmの
膜厚で成膜し、このシークエンスを10回くりかえして
磁気記録媒体11を作成した。この際、各層はエピタキ
シャル成長していることをX線回折等を用いて確認し
た。
On the STO: Nb substrate 8, a thin film having a composition of La 1-x Sr x MnO 3 (x = 0.1) was formed as an electric field induction magnetic layer 9 by RF magnetron sputtering.
Further, as the dielectric layer 10, Ba 0.5 Sr 0.5 TiO 3 is used.
An oxide magnetic material having the following composition was formed into a film having a film thickness of 100 nm, and this sequence was repeated 10 times to prepare a magnetic recording medium 11. At this time, it was confirmed by X-ray diffraction and the like that each layer was epitaxially grown.

【0048】この場合、誘電体層Ba0.5 Sr0.5 Ti
3 は、格子歪によって室温で強誘電体となっており、
電界を印加して形成される分極が電界を除去しても保存
されている。
In this case, the dielectric layer Ba 0.5 Sr 0.5 Ti
O 3 is a ferroelectric substance at room temperature due to lattice distortion,
The polarization formed by applying an electric field is preserved even if the electric field is removed.

【0049】この磁気記録媒体11の最上部の誘電体層
10のうえに上部電極12として例えばAlなどの金属
膜、電界誘起磁性体層9・誘電体層10の側面に抵抗検
出用端子13をそれぞれ形成し、さらに上部電極12と
抵抗検出用端子13との間を埋めるようにSiO2 から
なる保護膜14を形成した。これにより上部電極11と
STO:Nb基板8との間に電圧を掛けることで記録動
作をおこなう記憶装置を作成した。
On the uppermost dielectric layer 10 of the magnetic recording medium 11, a metal film such as Al is formed as the upper electrode 12, and a resistance detection terminal 13 is formed on the side surface of the electric field induction magnetic layer 9 / dielectric layer 10. Then, a protective film 14 made of SiO 2 was formed so as to fill the space between the upper electrode 12 and the resistance detection terminal 13. As a result, a memory device was created in which a recording operation was performed by applying a voltage between the upper electrode 11 and the STO: Nb substrate 8.

【0050】電界印加により誘起された分極電荷に起因
するチャージ注入が電界誘起磁性体層9のLa1-x Sr
x MnO3 (x=0.1)で発生し、この層は強磁性特
性を示す。このときの変化を膜の磁気特性変化にともな
う磁気抵抗の変化で読み出しをおこなう。誘電体を分極
させないときのこの膜の電気抵抗は102 Ωcmである
のにたいし、誘電体を分極させた状態での電気抵抗は1
Ωcmと大きな変化があり、メモリ動作を確認した。
The charge injection resulting from the polarization charge induced by the application of the electric field is caused by the La 1 -x Sr of the electric field induced magnetic layer 9.
generated in x MnO 3 (x = 0.1) , this layer exhibits a ferromagnetic properties. The change at this time is read by the change in the magnetic resistance accompanying the change in the magnetic characteristics of the film. The electric resistance of this film when the dielectric is not polarized is 10 2 Ωcm, while the electric resistance when the dielectric is polarized is 1
There was a large change of Ωcm, and the memory operation was confirmed.

【0051】さらにこの膜の分極の有無による磁化の変
化を測定したところ、誘電体が分極していない状態では
低い帯磁率を示すのに対し、誘電体が分極した状態では
大きな磁化率を示すことがわかり、磁気読みだし方式の
記録媒体として用いることができることも分かった。
Further, when the change in the magnetization of this film depending on the presence or absence of polarization was measured, it was found that the magnetic susceptibility was low when the dielectric was not polarized, whereas the magnetic susceptibility was large when the dielectric was polarized. It was also found that it can be used as a magnetic read type recording medium.

【0052】[0052]

【発明の効果】以上述べたように本発明によれば、光照
射などによる反強磁性−強磁性の変化を示す新規な磁性
体、およびこれを用いた磁気記録媒体を提供することが
できる。
As described above, according to the present invention, it is possible to provide a novel magnetic substance exhibiting an antiferromagnetic-ferromagnetic change due to light irradiation and the like, and a magnetic recording medium using the same.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の実施例1に係る磁性体の磁場依存性
を示す特性図。
FIG. 1 is a characteristic diagram showing a magnetic field dependence of a magnetic body according to a first embodiment of the invention.

【図2】 本発明の実施例2、4に係る磁気記録媒体の
断面図。
FIG. 2 is a sectional view of a magnetic recording medium according to Examples 2 and 4 of the invention.

【図3】 本発明の実施例5、6に係る磁気記録媒体の
断面図。
FIG. 3 is a sectional view of a magnetic recording medium according to Examples 5 and 6 of the present invention.

【符号の説明】[Explanation of symbols]

3、8…基板;4…光誘起磁性体層;5…記録保持層;
6、11…磁気記録媒体;9…電界誘起磁性体層;10
…誘電体層
3, 8 ... Substrate; 4 ... Photoinduced magnetic layer; 5 ... Recording holding layer;
6, 11 ... Magnetic recording medium; 9 ... Electric field induced magnetic material layer; 10
... Dielectric layer

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 層状酸化物Bi2 Sr2 MnO6+d のB
iの一部をPbで置換し、さらにSrの一部を希土類元
素で置換した、一般式Bi2-x Pbx Sr2-y REy
nO6+d (0.8≦x≦1.2、REは希土類元素L
a、Nd、Eu、Ce、Sm、Prの少なくとも1種、
0≦y≦0.2、dは過剰酸素)で表わされ、光照射ま
たは電界印加により強磁性を発現することを特徴とする
磁性体。
1. A B of a layered oxide Bi 2 Sr 2 MnO 6 + d .
A general formula Bi 2-x Pb x Sr 2-y RE y M in which a part of i is replaced with Pb and a part of Sr is replaced with a rare earth element
nO 6 + d (0.8 ≦ x ≦ 1.2, RE is a rare earth element L
at least one of a, Nd, Eu, Ce, Sm and Pr,
0 ≦ y ≦ 0.2, d is excess oxygen), and exhibits ferromagnetism by light irradiation or application of an electric field.
【請求項2】 酸化物LaMnO3 のLaの一部をSr
で置換した一般式、La1-x Srx MnO3 (0≦x≦
0.2)で表わされ、光照射または電界印加により強磁
性を発現することを特徴とする磁性体。
2. A part of La of the oxide LaMnO 3 is added to Sr.
With the general formula La 1-x Sr x MnO 3 (0 ≦ x ≦
0.2), which exhibits ferromagnetism by light irradiation or application of an electric field.
【請求項3】 請求項1または2記載の、光照射により
強磁性を発現する磁性体を含む層と記録保持層とを積層
したことを特徴とする磁気記録媒体。
3. A magnetic recording medium according to claim 1 or 2, wherein a layer containing a magnetic material that exhibits ferromagnetism by irradiation with light and a recording holding layer are laminated.
【請求項4】 請求項1または2記載の、電界印加によ
り強磁性を発現する磁性体を含む層と誘電体層とを積層
したことを特徴とする磁気記録媒体。
4. A magnetic recording medium according to claim 1, wherein a layer containing a magnetic body that exhibits ferromagnetism by applying an electric field and a dielectric layer are laminated.
JP7058403A 1995-03-17 1995-03-17 Magnetic body and magnetic recording medium Pending JPH08255707A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7058403A JPH08255707A (en) 1995-03-17 1995-03-17 Magnetic body and magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7058403A JPH08255707A (en) 1995-03-17 1995-03-17 Magnetic body and magnetic recording medium

Publications (1)

Publication Number Publication Date
JPH08255707A true JPH08255707A (en) 1996-10-01

Family

ID=13083404

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7058403A Pending JPH08255707A (en) 1995-03-17 1995-03-17 Magnetic body and magnetic recording medium

Country Status (1)

Country Link
JP (1) JPH08255707A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000014732A3 (en) * 1998-09-09 2000-04-20 Forschungszentrum Juelich Gmbh Electric field for magnetic reversal of a thin film
US7436613B2 (en) 2006-03-28 2008-10-14 Hitachi, Ltd. Magnetic recording device
WO2013073371A1 (en) * 2011-11-18 2013-05-23 国立大学法人秋田大学 Electric field write-type magnetic recording device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000014732A3 (en) * 1998-09-09 2000-04-20 Forschungszentrum Juelich Gmbh Electric field for magnetic reversal of a thin film
US7436613B2 (en) 2006-03-28 2008-10-14 Hitachi, Ltd. Magnetic recording device
US7508625B2 (en) 2006-03-28 2009-03-24 Hitachi, Ltd. Magnetic recording device
WO2013073371A1 (en) * 2011-11-18 2013-05-23 国立大学法人秋田大学 Electric field write-type magnetic recording device
JP2013109798A (en) * 2011-11-18 2013-06-06 Akita Univ Electric field write-type magnetic recording device
US8891190B1 (en) 2011-11-18 2014-11-18 Akita University Electric field writing magnetic storage device

Similar Documents

Publication Publication Date Title
US6650513B2 (en) Magnetic devices with a ferromagnetic layer having perpendicular magnetic anisotropy and an antiferromagnetic layer for perpendicularly exchange biasing the ferromagnetic layer
US6878979B2 (en) Spin switch and magnetic storage element using it
CN101840993B (en) Multilayer film structure having exchange bias effect and manufacturing method thereof
US6625058B2 (en) Method for magnetic characteristics modulation and magnetically functioning apparatus
WO2004059745A1 (en) Magnetic switching device and magnetic memory
US6594120B2 (en) Magnetoresistive element and magnetic memory element and magnetic head using the same
JP2002111094A (en) Magnetoresistive element, and magnetic sensor and memory comprising the magnetoresistive element
US6621732B2 (en) Magnetic element, memory device and write head
JP3578721B2 (en) Magnetic control element, magnetic component and memory device using the same
US6590268B2 (en) Magnetic control device, and magnetic component and memory apparatus using the same
JP2956299B2 (en) Magnetic detecting element, energy detecting element, and energy detecting method
JPH08255707A (en) Magnetic body and magnetic recording medium
WO2005086250A1 (en) Tunnel junction device
JP2003318462A (en) Magnetoresistance effect element and magnetic head and magnetic memory using the element
JPH1186236A (en) Magnetic element, magnetic memory and magneto-optic element
JP2000357828A (en) Ferromagnetic oxide and magnetoresistance element wherein the same is used
JP3345072B2 (en) Magnetoresistive element and magnetic recording / reproducing device
JP3795346B2 (en) Magnetoresistive element, magnetic memory element and magnetic head using the same
JP3688559B2 (en) (La, Ba) MnO3-based room temperature super giant magnetoresistive material
JP2797982B2 (en) MR head and method of manufacturing the same
WO2005024968A1 (en) Tunnel junction element
US6330135B1 (en) Magneto-resistance effect element based on a ferromagnetic oxide thin film on a stepped layer oxide
JP2723082B2 (en) Oxide magnetic body and magnetic sensing element using the same
JP3969833B2 (en) Ferromagnetic ferroelectric thin film and manufacturing method thereof
JP2000174359A (en) Reluctance element