JPH08255697A - High frequency discharge method, discharge device therefor, and high frequency discharge treatment device using this discharge device - Google Patents
High frequency discharge method, discharge device therefor, and high frequency discharge treatment device using this discharge deviceInfo
- Publication number
- JPH08255697A JPH08255697A JP7061192A JP6119295A JPH08255697A JP H08255697 A JPH08255697 A JP H08255697A JP 7061192 A JP7061192 A JP 7061192A JP 6119295 A JP6119295 A JP 6119295A JP H08255697 A JPH08255697 A JP H08255697A
- Authority
- JP
- Japan
- Prior art keywords
- antenna
- plasma
- discharge
- frequency
- high frequency
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Chemical Vapour Deposition (AREA)
- ing And Chemical Polishing (AREA)
- Drying Of Semiconductors (AREA)
- Plasma Technology (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】この発明は薄膜素子の製造、粒子
ビ−ム源や分析装置などのプラズマ源に用いられる高周
波放電方法とその放電装置およびその放電装置を用いた
高周波処理装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a thin film element, a high frequency discharge method used for a plasma source such as a particle beam source and an analyzer, a discharge apparatus therefor and a high frequency treatment apparatus using the discharge apparatus.
【0002】[0002]
【従来の技術】金属、半金属、半導体、酸化物、窒化
物、硼素などを構成要素とする薄膜を具備する素子は、
LSI、磁気記録素子、光記録素子などの記憶装置、半
導体レ−ザ、光電変換素子などの通信機器、平面デイス
プレイ、固体撮像素子などの表示装置、太陽電池などの
エネルギ−機器など、多種多様な装置の主要部品に応用
されており、今後、機器の小型化、高性能化を進展させ
るための必須部品として技術的発展が期待されている。2. Description of the Related Art A device having a thin film whose constituent elements are metals, semimetals, semiconductors, oxides, nitrides, boron, etc.
A wide variety of storage devices such as LSIs, magnetic recording devices, optical recording devices, communication devices such as semiconductor lasers and photoelectric conversion devices, flat-panel displays, display devices such as solid-state imaging devices, energy devices such as solar cells, etc. It has been applied to major parts of equipment and is expected to develop technically as an essential part for making devices smaller and having higher performance.
【0003】上述したような薄膜素子の構造の微細化、
高性能化が進むにつれ、その製造方法としては放電プラ
ズマを用いて様々な原料を分解したり、固体材料をスパ
ッタしたりしてCVDやエッチングを行うプラズマプロ
セスが利用されるようになっている。そのため、プラズ
マ源として、無磁場や有磁場における誘導結合型の高周
波プラズマが脚光を浴びている。Miniaturization of the structure of the thin film element as described above,
As the performance is advanced, a plasma process in which various raw materials are decomposed by using discharge plasma or a solid material is sputtered to perform CVD or etching is used as a manufacturing method thereof. Therefore, as a plasma source, inductively coupled high-frequency plasma in the presence or absence of a magnetic field is in the limelight.
【0004】通常、無磁場や有磁場における誘導結合型
高周波プラズマは、真空容器の外に置かれたル−プ状ア
ンテナによって生成される。この方式は通常、外部アン
テナ方式と呼ばれている。すなわち、この外部アンテナ
方式の場合、アンテナを流れる高周波電流がつくる磁界
を、真空容器に形成された石英やセラミックなどの誘電
体窓を通して上記真空容器内のプロセスガスに印加して
プラズマを生成するようになっている。このとき、高周
波電力は誘導電磁界を通してプラズマと結合する。Generally, the inductively coupled high frequency plasma in a magnetic field or a magnetic field is generated by a loop antenna placed outside the vacuum container. This method is usually called an external antenna method. That is, in the case of this external antenna method, a magnetic field generated by a high frequency current flowing through the antenna is applied to the process gas in the vacuum container through a dielectric window such as quartz or ceramic formed in the vacuum container to generate plasma. It has become. At this time, the high frequency power is coupled with the plasma through the induction electromagnetic field.
【0005】なお、プロセスガスとしては、CVDの場
合には原料ガスが用いられ、エッチングの場合にはエッ
チング用反応性ガスが用いられる。しかしながら、上記
アンテナの回りには強い静電界も同時に発生し、イオン
を加速して誘電体窓の損傷を引き起こす。このことは単
に誘電体窓の寿命を短くするだけでなく、上記窓がスパ
ッタされることによって生じた不純物がエッチングやC
VDなどのプロセスを劣化させることになる。As the process gas, a raw material gas is used in the case of CVD and a reactive gas for etching is used in the case of etching. However, a strong electrostatic field is also generated around the antenna, accelerating the ions and causing damage to the dielectric window. This not only shortens the life of the dielectric window, but also causes impurities such as etching and C
This will deteriorate the process such as VD.
【0006】このようなアンテナとプラズマとの静電的
な結合は、ファラデイ−シ−ルドを施すことによって防
止できるが、このシ−ルドはプラズマ生成に最も必要な
電磁的結合も弱めてしまうという欠点がある。Such electrostatic coupling between the antenna and the plasma can be prevented by applying Faraday shield, but this shield also weakens the electromagnetic coupling most necessary for plasma generation. There are drawbacks.
【0007】上述した誘電体窓を通して電磁的結合を行
う外部アンテナ方式には、窓材が金属に比べて機械的に
損傷し易いという欠点の他に、導電性材料のプロセスに
は適用しにくいということがある。The external antenna method for electromagnetically coupling through the above-mentioned dielectric window has the drawback that the window material is more easily mechanically damaged than metal, and is also difficult to apply to the process of conductive materials. Sometimes.
【0008】すなわち、前者では機械的強度を劣化させ
る要因の一つにエッチングなどのプロセスによって消耗
し、寿命が限られてしまうということがある。後者は誘
電体窓の内面に導電性薄膜が堆積し、その膜内に流れる
渦電流によってプラズマ生成に必要な電磁的結合が絶た
れるため、放電が停止してしまうことがある。That is, in the former case, one of the factors that deteriorate the mechanical strength is that it is consumed by a process such as etching and the life is limited. In the latter case, a conductive thin film is deposited on the inner surface of the dielectric window, and the electromagnetic coupling necessary for plasma generation is interrupted by the eddy current flowing in the film, so that the discharge may stop.
【0009】このような問題を解決する一つの方法とし
て、金属アンテナを真空容器内に直接配置し、これに高
周波電流を流す内部アンテナ方式を採用することが考え
られる。この場合も上記アンテナの表面に導電膜が堆積
するが、もともとアンテナは金属製であるからなんら支
障はない。As a method of solving such a problem, it is conceivable to directly arrange a metal antenna in a vacuum container and employ an internal antenna system in which a high-frequency current is passed. In this case as well, a conductive film is deposited on the surface of the antenna, but since the antenna is originally made of metal, there is no problem.
【0010】しかし、この方式ではアンテナが真空容器
内で生成されるプラズマに直接触れるため、静電気的結
合が原因で電子の損失が増え、プラズマ電位が異常に上
昇し、ア−キングが起きて放電が不安定になり、プラズ
マ密度を上げることができなくなる。However, in this method, the antenna directly contacts the plasma generated in the vacuum vessel, so that the loss of electrons increases due to electrostatic coupling, the plasma potential rises abnormally, and arcing occurs and discharge occurs. Becomes unstable and the plasma density cannot be increased.
【0011】上述したプラズマ電位の異常上昇は、金属
アンテナの表面を誘電体で覆って絶縁することで防ぐこ
とが可能である。しかしながら、誘電体で絶縁したアン
テナの場合、前述した誘電体窓のときと同じように、イ
オンがアンテナ表面の誘電体をたたくためにスパッタリ
ングが起こり、不純物の発生とアンテナの短寿命化の問
題が生じることになる。The above-mentioned abnormal increase in plasma potential can be prevented by covering the surface of the metal antenna with a dielectric to insulate it. However, in the case of an antenna insulated with a dielectric, as in the case of the above-mentioned dielectric window, sputtering occurs because ions hit the dielectric on the surface of the antenna, causing problems such as generation of impurities and shortening of the life of the antenna. Will occur.
【0012】[0012]
【発明が解決しようとする課題】このように、アンテナ
を真空容器の外部に設置した場合には窓部材の早期損傷
や不純物の発生を招くということがあり、内部に設置し
た場合にはアンテナがプラズマに直接触れるため、プラ
ズマ電位が異常に上昇してア−キングが生じ、放電が不
安定になりプラズマ密度を上げることができなくなる。As described above, when the antenna is installed outside the vacuum container, the window member may be prematurely damaged or impurities are generated. When the antenna is installed inside the vacuum container, the antenna may be damaged. Since the plasma is directly touched, the plasma potential is abnormally increased to cause arcing, the discharge becomes unstable, and the plasma density cannot be increased.
【0013】プラズマ密度を上げるために、上記アンテ
ナの表面を誘電体で被覆すると、スパッタリングによっ
て不純物の発生を招いたり、アンテナが早期に損傷する
などのことが生じる。If the surface of the antenna is coated with a dielectric material in order to increase the plasma density, the generation of impurities due to sputtering and the early damage of the antenna may occur.
【0014】請求項1に記載されたこの発明の目的は、
アンテナ導体の表面を誘電体で被覆しなくても、アンテ
ナとプラズマとの静電的結合が原因となる電子の損失を
なくし、プラズマ電位の異常上昇を防止できる高周波放
電方法を提供することにある。The object of the present invention described in claim 1 is to:
It is an object of the present invention to provide a high-frequency discharge method capable of preventing an abnormal increase in plasma potential by eliminating the loss of electrons caused by the electrostatic coupling between the antenna and the plasma without coating the surface of the antenna conductor with a dielectric. .
【0015】請求項2に記載されたこの発明の目的は、
アンテナ導体の表面を誘電体で被覆しなくとも、アンテ
ナとプラズマとの静電的結合が原因となる電子の損失を
なくし、プラズマ電位の異常上昇を防止できる高周波放
電装置を提供することにある。The object of the present invention set forth in claim 2 is:
It is an object of the present invention to provide a high-frequency discharge device capable of eliminating an electron loss caused by electrostatic coupling between an antenna and plasma and preventing an abnormal rise in plasma potential even if the surface of the antenna conductor is not covered with a dielectric.
【0016】請求項3に記載されたこの発明の目的は、
容器内に設けられるアンテナの表面を誘電体で被覆しな
くとも、アンテナとプラズマとの静電的結合が原因によ
る電子の損失をなくすことで、プラズマ電位の異常上昇
を招くことなく被加工物を処理できるようにした高周波
放電処理装置を提供することにある。The object of the present invention set forth in claim 3 is:
Even if the surface of the antenna provided in the container is not covered with a dielectric, by eliminating the loss of electrons due to the electrostatic coupling between the antenna and the plasma, the workpiece can be removed without causing an abnormal rise in the plasma potential. It is an object of the present invention to provide a high-frequency discharge treatment device capable of treating.
【0017】[0017]
【課題を解決するための手段】上記課題を解決するため
に請求項1に記載された発明は、ル−プ状アンテナ導体
に高周波電流を流して変動磁界を発生させることで放電
プラズマを生成するための高周波放電方法において、上
記アンテナ導体の周囲を磁力線で覆うことを特徴とする
高周波放電方法にある。In order to solve the above-mentioned problems, the invention described in claim 1 generates a discharge plasma by causing a high-frequency current to flow in a loop antenna conductor to generate a fluctuating magnetic field. In the high frequency discharge method, there is provided a high frequency discharge method characterized by covering the periphery of the antenna conductor with magnetic lines of force.
【0018】請求項2に記載された発明は、請求項1の
発明において、上記アンテナ導体の周囲は直流または低
周波の磁力線で覆うことを特徴とする高周波放電方法に
ある。According to a second aspect of the present invention, there is provided a high frequency discharge method according to the first aspect of the invention, in which the antenna conductor is covered with magnetic lines of direct current or low frequency.
【0019】請求項3に記載された発明は、ル−プ状ア
ンテナ導体に高周波電流を流して変動磁界を発生させる
ことで放電プラズマを生成するための高周波放電装置に
おいて、上記ル−プ状アンテナに高周波電流を流す高周
波電源と、上記ル−プ状アンテナの周囲を覆う磁力線を
発生させる磁力線発生手段とを具備したことを特徴とす
る高周波放電装置にある。According to a third aspect of the present invention, there is provided a high frequency discharge device for generating discharge plasma by causing a high frequency current to flow in a loop antenna conductor to generate a fluctuating magnetic field. A high-frequency discharge device comprising: a high-frequency power source for flowing a high-frequency current; and a magnetic force line generating means for generating magnetic force lines covering the loop antenna.
【0020】請求項4に記載された発明は、請求項3の
発明において、上記磁力線発生手段は直流電源または磁
石であることを特徴とする。請求項5に記載された発明
は、請求項3の発明において、上記ル−プ状アンテナは
巻数が複数であることを特徴とする高周波放電装置にあ
る。According to a fourth aspect of the invention, in the invention of the third aspect, the magnetic force line generating means is a DC power source or a magnet. A fifth aspect of the present invention is the high-frequency discharge device according to the third aspect, wherein the loop-shaped antenna has a plurality of turns.
【0021】請求項6に記載された発明は、被加工物を
放電プラズマによって処理する高周波放電処理装置にお
いて、内部に上記被加工物が設置されるとともにプロセ
スガスが供給される容器と、この容器内に設けられたル
−プ状アンテナと、このアンテナに高周波電流を流して
変動磁界を発生させることで上記プロセスガスを励起し
てプラズマを生成させる高周波電源と、上記アンテナの
周囲を覆う磁力線を発生させる磁力線発生手段とを具備
したことを特徴とする高周波放電処理装置にある。According to a sixth aspect of the present invention, in a high-frequency electric discharge treatment apparatus for treating a workpiece with an electric discharge plasma, a container in which the workpiece is installed and a process gas is supplied, and the container. A loop-shaped antenna provided inside, a high-frequency power source that excites the process gas to generate plasma by generating a fluctuating magnetic field by applying a high-frequency current to the antenna, and a magnetic field line that covers the periphery of the antenna. A high-frequency discharge treatment device is provided with a magnetic force line generating means for generating the magnetic force lines.
【0022】請求項7に記載された発明は、請求項6の
発明において、上記磁力線発生手段は直流電源または磁
石であることを特徴とする高周波放電処理装置にある。
請求項8に記載された発明は、請求項6の発明におい
て、上記ル−プ状アンテナは巻数が複数であることを特
徴とする高周波放処理電装置にある。According to a seventh aspect of the present invention, in the high frequency electric discharge processing apparatus according to the sixth aspect, the magnetic force line generating means is a DC power source or a magnet.
The invention described in claim 8 is the high-frequency electric discharge processing device according to the invention of claim 6, wherein the loop-shaped antenna has a plurality of turns.
【0023】[0023]
【作用】請求項1と請求項3の発明によれば、アンテン
の周囲が磁力線で覆われると、電子が上記アンテナ表面
に到達するのが阻止されるから、上記アンテナ表面を誘
電体で覆わなくとも、そのアンテナとプラズマとの静電
的結合によるプラズマ電位の異常上昇やそれにより上記
アンテナがスパッタされるのが防止される。According to the inventions of claims 1 and 3, when the magnetic field lines surround the anten, electrons are prevented from reaching the antenna surface. Therefore, the antenna surface is not covered with a dielectric. In addition, it is possible to prevent the antenna from being sputtered due to an abnormal increase in the plasma potential due to electrostatic coupling between the antenna and the plasma.
【0024】請求項2と請求項4の発明によれば、アン
テナの周囲を直流または低周波のいずれかの磁力線で確
実に覆うことができる。請求項5の発明によれば、アン
テナの巻数を複数にすることで、このアンテナによって
形成される磁界強度が増強され、イオンがアンテナ表面
に衝突する確率が低くなる。According to the second and fourth aspects of the present invention, it is possible to surely cover the periphery of the antenna with magnetic field lines of either DC or low frequency. According to the invention of claim 5, by making the number of turns of the antenna plural, the strength of the magnetic field formed by this antenna is enhanced, and the probability that the ions collide with the surface of the antenna becomes low.
【0025】請求項6の発明によれば、アンテナを容器
内に設けても、不純物の発生やアンテナの早期寿命を招
くことなく被加工物をプラズマ処理することができる。
請求項7の発明によれば、アンテナの周囲を直流または
低周波のいずれかの磁力線で確実に覆うことができる。According to the sixth aspect of the present invention, even if the antenna is provided in the container, the workpiece can be plasma-processed without causing the generation of impurities and the early life of the antenna.
According to the invention of claim 7, it is possible to surely cover the periphery of the antenna with a magnetic field line of either DC or low frequency.
【0026】請求項8の発明によれば、アンテナの巻数
を複数にすることで、このアンテナによって形成される
磁界強度が増強され、イオンがアンテナ表面に衝突する
確率が低くなる。According to the eighth aspect of the invention, by making the number of turns of the antenna plural, the strength of the magnetic field formed by this antenna is enhanced, and the probability of ions colliding with the antenna surface is reduced.
【0027】[0027]
【実施例】以下、この発明の一実施例を図面を参照して
説明する。図2はこの発明の高周波放電処理装置を示
し、同図中1はステンレス製の容器である。この容器1
の底部には中途部に排気ポンプ2を有する排気管3が接
続されている。上記排気ポンプ2が作動することで、上
記容器1内が減圧されるようになっている。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. FIG. 2 shows the high-frequency discharge treatment apparatus of the present invention, in which 1 is a stainless steel container. This container 1
An exhaust pipe 3 having an exhaust pump 2 in the middle is connected to the bottom of the exhaust pipe 3. By operating the exhaust pump 2, the inside of the container 1 is depressurized.
【0028】上記容器1の上部にはエッチング用の反応
性ガスやCVD用の原料ガスなどのプロセスガスの供給
管4が接続されている。この供給管4は図示しないプロ
セスガスの供給部に連通している。したがって、上記容
器1内にはプロセスガスが供給されるようになってい
る。上記容器1内にはテ−ブル6が設けられ、このテ−
ブル6上には後述するごとくエッチグやCVDが行われ
る被加工物7が載置されている。A supply pipe 4 for a process gas such as a reactive gas for etching or a raw material gas for CVD is connected to the upper portion of the container 1. The supply pipe 4 communicates with a process gas supply unit (not shown). Therefore, the process gas is supplied into the container 1. A table 6 is provided in the container 1 and the table 6 is provided.
A workpiece 7 to be etched or CVD is placed on the bull 6 as described later.
【0029】さらに、上記容器1内には導電性の材料に
よってル−プ状に形成されたアンテナ11が設けられて
いる。この実施例ではアンテナ11は複数の巻数、たと
えば2巻に形成されていて、その両端部は上記容器1の
周壁から外部に気密に導出されている。外部に導出され
たアンテナ11の一端はア−スされ、他端は駆動制御部
12に接続されている。Further, inside the container 1, there is provided a loop-shaped antenna 11 made of a conductive material. In this embodiment, the antenna 11 is formed with a plurality of turns, for example, two turns, and both ends thereof are led out from the peripheral wall of the container 1 to the outside in an airtight manner. One end of the antenna 11 led out is grounded, and the other end is connected to the drive controller 12.
【0030】上記駆動制御部12は図1に示すように高
周波電源13と、磁力発生手段としての直流電源14と
が上記アンテナ11の他端に並列に接続されてなる。な
お、アンテナ11の巻数はなんら限定されるものでな
く、複数でなく1巻であってもよいが、磁界を増強する
ためには複数の方がよい。As shown in FIG. 1, the drive control section 12 comprises a high frequency power source 13 and a DC power source 14 as a magnetic force generating means, which are connected in parallel to the other end of the antenna 11. Note that the number of turns of the antenna 11 is not limited at all, and may be one instead of a plurality of turns, but a plurality of turns is preferable to enhance the magnetic field.
【0031】上記高周波電源13を作動させて上記アン
テナ11の高周波電力を印加すると、その高周波電力に
よって容器1内に供給されたプロセスガスが励起され、
そのガスがプラズマ状態となる。したがって、容器1内
の被加工物7には、容器1に供給されるプロセスガスの
種類に応じてエッチングやCVDなどのプラズマ加工が
行われることになる。When the high frequency power source 13 is operated to apply the high frequency power of the antenna 11, the high frequency power excites the process gas supplied into the container 1,
The gas becomes a plasma state. Therefore, the workpiece 7 in the container 1 is subjected to plasma processing such as etching and CVD according to the type of process gas supplied to the container 1.
【0032】上記直流電源14を作動させて上記アンテ
ナ11に直流電力を印加すると、そのアンテナ11の周
囲を後述するごとく磁力線で覆うことができる。そのた
め、プラズマ中の電子は上記磁力線によって上記アンテ
ナ11の表面と絶縁されるため、アンテナ11とイオン
との静電的結合によってプラズマ電位が異常上昇するの
が防止されるばかりか、イオンによるスパッタが生じる
のも防止できる。When DC power is applied to the antenna 11 by operating the DC power supply 14, the periphery of the antenna 11 can be covered with magnetic lines of force as described later. Therefore, the electrons in the plasma are insulated from the surface of the antenna 11 by the magnetic lines of force, so that not only the plasma potential is prevented from abnormally rising due to electrostatic coupling between the antenna 11 and the ions, but also the sputtering by the ions is prevented. It can also be prevented from occurring.
【0033】図6はアンテナ11の周囲を磁力線B で
覆う場合を説明している。すなわち、プラズマP内に置
かれた半径aの直線円柱型のアンテナ11に沿って高周
波電流が流れる場合について考える。FIG. 6 illustrates a case where the periphery of the antenna 11 is covered with the magnetic field lines B 1. That is, consider a case where a high-frequency current flows along the linear-cylindrical antenna 11 with the radius a placed in the plasma P.
【0034】まず、円柱座標系(r、θ、z)を図示の
ごとくとる。このとき、導体(アンテナ11)表面には
高周波の電荷が現れ、プラズマP内の荷電粒子がr方向
に加速される。電子はイオンに比べて軽いため、より多
くの電子がアンテナ11に吸収され、その結果、プラズ
マ電位が異常に上昇してしまう。また、アンテナ11表
面は時間平均的に負に帯電し、その負電位に引かれて正
イオンがアンテナ11表面をたたき、金属スパッタリン
グを起こしてしまう。First, a cylindrical coordinate system (r, θ, z) is taken as shown in the figure. At this time, high-frequency charges appear on the surface of the conductor (antenna 11), and the charged particles in the plasma P are accelerated in the r direction. Since electrons are lighter than ions, more electrons are absorbed by the antenna 11, and as a result, the plasma potential rises abnormally. Further, the surface of the antenna 11 is negatively charged on a time average, and is attracted to the negative potential, and positive ions hit the surface of the antenna 11 to cause metal sputtering.
【0035】しかしながら、アンテナ11表面をθ方向
に磁力線B で覆うと、電子eはロ−レンツ力で矢印で
示すように曲げられるため、アンテナ11の表面に到達
しにくくなる。すなわち、電子は磁力線B が作る磁界
に絶縁されるため、電子がアンテナ11に吸収されてプ
ラズマ電位が異常に上昇するのが防止される。また、ア
ンテナ11表面が負に帯電しないから、正イオンがアン
テナ11表面をたたくスパッタリングも生じにくい。However, when the surface of the antenna 11 is covered in the θ direction by the magnetic force line B, the electron e is bent by the Lorentz force as shown by the arrow, so that it becomes difficult to reach the surface of the antenna 11. That is, since the electrons are insulated from the magnetic field generated by the magnetic force lines B 1, it is prevented that the electrons are absorbed by the antenna 11 and the plasma potential rises abnormally. Further, since the surface of the antenna 11 is not negatively charged, positive ions are less likely to hit the surface of the antenna 11 to cause sputtering.
【0036】上記磁力線B が有効に機能するための条
件は、磁力線B がアンテナ11表面と鎖交しないこと
であり、図6の場合、磁力線B はz方向であってもよ
く、あるいはアンテナ11を囲むヘリカル状であっても
よい。The condition for the magnetic force lines B 1 to function effectively is that the magnetic force lines B 1 do not interlink with the surface of the antenna 11, and in the case of FIG. It may be in a helical shape.
【0037】図1に示す実施例では高周波電流IRFに直
流電流IDCを重畳させてアンテナ11に流すようにして
いるが、図5に示すようにアンテナ11の近傍に永久磁
石や電磁石などの磁石21を配置するようにしてもよ
い。磁石21はそのものが高周波の電位で変動し、線状
のカプス磁場を伴うので、その磁力線B によって上記
アンテナ11の周囲を絶縁することが可能である。In the embodiment shown in FIG. 1, the direct current I DC is superposed on the high frequency current I RF and is fed to the antenna 11. However, as shown in FIG. 5, a permanent magnet or an electromagnet is provided near the antenna 11. You may make it arrange | position the magnet 21. Since the magnet 21 itself fluctuates with a high-frequency potential and accompanies a linear Kaps magnetic field, it is possible to insulate the surroundings of the antenna 11 by the magnetic field line B.
【0038】すなわち、アンテナ11の使用形態等に応
じて磁力線を発生させる手段を直流電源14にしたり、
磁石21にすればよい。つぎに、この発明の実験結果に
ついて説明する。アンテナ11を直径約10cmの1回巻
の銅製ル−プアンテナとしてステンレス製の容器11内
に設置し、このアンテナ11に13.56MHzの高周
波電流を流すと同時に、直流電流IDCを流した。放電用
のプロセスガスとしては水素を用い、容器1内の圧力が
0.6mTorrと、2mTorr の場合とで、それぞれ高周波電力
を40W一定に維持して直流電流IDCを変化させたとき
のプラズマ電位Vpを測定した。That is, the DC power source 14 is used as a means for generating magnetic lines of force according to the usage pattern of the antenna 11 or the like.
The magnet 21 may be used. Next, the experimental results of the present invention will be described. The antenna 11 was installed in a stainless steel container 11 as a one-turn copper loop antenna having a diameter of about 10 cm, and a high-frequency current of 13.56 MHz was passed through the antenna 11 while a direct current I DC was passed. Hydrogen was used as the process gas for discharge, and the pressure inside the container 1 was
The plasma potential Vp was measured when the direct current I DC was changed while maintaining the high frequency power constant at 40 W for both 0.6 mTorr and 2 mTorr.
【0039】その結果を図3に示す。この図の縦軸のプ
ラズマ電位Vpはアンテナ11面から3cm離れた位置で
測定した値である。直流電流IDCが100A以下で磁界が弱
いとき、プラズマ電位Vpが高く、ア−クが頻発して放
電が不安定になることが確認された。しかし、直流電流
IDCを増すにつれて図から明らかなようにプラズマ電位
Vpが低下する。それによって、プラズマ密度の上昇を
確認することができた。The results are shown in FIG. The plasma potential Vp on the vertical axis of this figure is a value measured at a position 3 cm away from the surface of the antenna 11. It was confirmed that when the DC current I DC was 100 A or less and the magnetic field was weak, the plasma potential Vp was high, arcs frequently occurred, and the discharge became unstable. However, as the DC current I DC increases, the plasma potential Vp decreases as is apparent from the figure. As a result, the increase in plasma density could be confirmed.
【0040】図4は水素のガス圧をパラメ−タとし、高
周波電力Wと直流電流IDCとの関係を測定した。この実
験からは、高周波電力Wが高くなると、放電を安定化す
るのに必要な最低の直流電流IDCが増大することが分か
った。すなわち、図3に基づいて説明したように直流電
流IDCを増すにつれてプラズマ電位Vp が低下して放電
の安定化が図れるが、図4から分かるように放電の安定
化を図るためにはガス圧力が高いほど、大きな直流電流
IDCが必要となる。このことは、電子に対する磁界の効
果が衝突によって弱められるからであると考察できる。
磁界を増強するにはアンテナ11に流す直流電流IDCを
増大したり、アンテナ11の巻数を多くすればよい。In FIG. 4, the relationship between the high frequency power W and the direct current I DC was measured using hydrogen gas pressure as a parameter. From this experiment, it was found that the higher the high frequency power W, the higher the minimum DC current I DC required to stabilize the discharge. That is, as described with reference to FIG. 3, as the direct current I DC increases, the plasma potential Vp decreases and the discharge can be stabilized. However, as can be seen from FIG. 4, in order to stabilize the discharge, the gas pressure must be reduced. The higher is, the larger the direct current I DC is required. This can be considered because the effect of the magnetic field on the electrons is weakened by the collision.
To enhance the magnetic field, the DC current I DC flowing through the antenna 11 may be increased or the number of turns of the antenna 11 may be increased.
【0041】すなわち、直流電源14によりアンテナ1
1に直流電流IDCを流すことで上記アンテナ11の周囲
に磁界を形成すれば、プラズマ電位Vpを低くすること
ができる。プラズマ電位Vpが低くなれば、アンテナ1
1に対してイオンが与える衝撃も低減されるから、上記
アンテナ11が損傷するのが防止される。That is, the DC power source 14 causes the antenna 1
The plasma potential Vp can be lowered by forming a magnetic field around the antenna 11 by passing a DC current I DC to the antenna 1. If the plasma potential Vp becomes low, the antenna 1
Since the impact of the ions on 1 is also reduced, the antenna 11 is prevented from being damaged.
【0042】しかも、直流電流IDCを流すことでプラズ
マ電位が低下すると、プラズマ密度が上昇する。そのた
め、従来のようにガス圧を上昇させずにプラズマ密度を
高くすることができるから、高周波放電の低圧化を図る
ことができ、しかもプラズマ密度を高くすることができ
れば、大口径化も可能となる。Moreover, when the plasma potential is lowered by flowing the direct current I DC , the plasma density is increased. Therefore, the plasma density can be increased without increasing the gas pressure as in the conventional case, so that the high-frequency discharge can be reduced in pressure, and if the plasma density can be increased, the diameter can be increased. Become.
【0043】[0043]
【発明の効果】以上述べたように請求項1と請求項2の
発明によれば、放電プラズマを生成するために用いられ
るアンテナの周囲を磁力線で覆うようにしたから、その
磁力線によってプラズマ中の電子が上記アンテナに対し
て絶縁される。As described above, according to the first and second aspects of the present invention, the antenna used for generating the discharge plasma is covered with magnetic lines of force, so that the lines of magnetic force in the plasma are used. The electrons are insulated from the antenna.
【0044】そのため、プラズマ電位の異常上昇が防止
されるから、イオンによりアンテナがスパッタされて早
期に損傷するのがなくなるばかりか、従来のようにアン
テナを誘電体で被覆絶縁せずにプラズマ電位の異常上昇
を防止するため、不純物の発生を招くことがない高周波
放電方法を提供できる。Therefore, the plasma potential is prevented from rising abnormally, and the antenna is prevented from being sputtered by the ions to be damaged in an early stage. Moreover, unlike the conventional case, the antenna is not covered with a dielectric to insulate and insulate the plasma potential. Since the abnormal rise is prevented, it is possible to provide a high frequency discharge method that does not cause the generation of impurities.
【0045】請求項3と請求項4の発明によれば、アン
テナの周囲を磁力線で覆うことで、上記アンテナがイオ
ンによってスパッタされて早期に損傷したり、不純物が
発生するなどのことがない高周波放電装置を提供でき
る。According to the third and fourth aspects of the present invention, by covering the periphery of the antenna with magnetic lines of force, the antenna is not sputtered by the ions and is not damaged at an early stage, and impurities are not generated. A discharge device can be provided.
【0046】請求項5の発明によれば、ル−プ状アンテ
ナの巻数を複数にすることで、磁力線よって上記アンテ
ナの周囲に形成される磁界を増強できるから、放電の安
定化を図ることができる。According to the fifth aspect of the present invention, by making the number of turns of the loop-shaped antenna plural, the magnetic field formed around the antenna by the lines of magnetic force can be enhanced, so that the discharge can be stabilized. it can.
【0047】請求項6と請求項7の発明によれば、アン
テナの早期損傷や不純物の発生を招くことなく、被加工
物を放電処理することができる高周波放電処理装置を提
供することができる。According to the sixth and seventh aspects of the present invention, it is possible to provide a high-frequency electric discharge treatment apparatus capable of performing electric discharge treatment on a workpiece without causing early damage to the antenna or generation of impurities.
【0048】請求項8の発明によれば、ル−プ状アンテ
ナの巻数を複数にすることで、磁力線よって上記アンテ
ナの周囲に形成される磁界を増強して放電の安定化を図
ることができるから、容器内の被加工物に対する放電処
理を精密に行うことが可能となる。According to the eighth aspect of the present invention, the number of turns of the loop-shaped antenna is plural, whereby the magnetic field formed around the antenna by the lines of magnetic force can be enhanced to stabilize the discharge. Therefore, it becomes possible to precisely perform the electric discharge treatment on the workpiece in the container.
【図1】この発明の高周波放電装置の概略図。FIG. 1 is a schematic view of a high frequency discharge device of the present invention.
【図2】上記高周波放電装置を用いた高周波放電処理装
置の概略図。FIG. 2 is a schematic view of a high frequency discharge treatment apparatus using the high frequency discharge apparatus.
【図3】直流電源を変化させたときのプラズマ電位との
関係を示したグラフ。FIG. 3 is a graph showing the relationship with the plasma potential when the DC power supply is changed.
【図4】ガス圧をパラメ−タとして高周波電力と直流電
流との関係を示したグラフ。FIG. 4 is a graph showing the relationship between high frequency power and DC current, with gas pressure as a parameter.
【図5】アンテナの周囲に磁石によって磁力線を発生さ
せる説明図。FIG. 5 is an explanatory diagram for generating lines of magnetic force by a magnet around an antenna.
【図6】アンテナの周囲に磁力線を発生させたときの磁
力線と電子の動きとの関係を説明した説明図。FIG. 6 is an explanatory diagram illustrating a relationship between magnetic force lines and movement of electrons when magnetic force lines are generated around the antenna.
1…容器、 7…被加工物、 11…アンテナ、 12…駆動制御部、 13…高周波電源、 14…直流電源、 21…磁石 DESCRIPTION OF SYMBOLS 1 ... Container, 7 ... Workpiece, 11 ... Antenna, 12 ... Drive control part, 13 ... High frequency power supply, 14 ... DC power supply, 21 ... Magnet
Claims (8)
変動磁界を発生させることで放電プラズマを生成するた
めの高周波放電方法において、 上記アンテナの周囲を磁力線で覆うことを特徴とする高
周波放電方法。1. A high-frequency discharge method for generating discharge plasma by flowing a high-frequency current to a loop-shaped antenna to generate a fluctuating magnetic field, wherein the antenna is covered with magnetic lines of force. Method.
の磁力線で覆うことを特徴とする請求項1記載の高周波
放電方法。2. The high frequency discharge method according to claim 1, wherein the antenna is covered with a magnetic field line of direct current or low frequency.
変動磁界を発生させることで放電プラズマを生成するた
めの高周波放電装置において、 上記ル−プ状アンテナに高周波電流を流す高周波電源
と、 上記ル−プ状アンテナの周囲を覆う磁力線を発生させる
磁力線発生手段とを具備したことを特徴とする高周波放
電装置。3. A high-frequency discharge device for generating a discharge plasma by causing a high-frequency current to flow in a loop-shaped antenna to generate a fluctuating magnetic field, and a high-frequency power source for supplying a high-frequency current to the loop-shaped antenna, A high frequency electric discharge device comprising: a magnetic force line generating means for generating a magnetic force line that covers the periphery of the loop-shaped antenna.
石であることを特徴とする請求項3記載の高周波放電装
置。4. The high frequency discharge device according to claim 3, wherein the magnetic force line generating means is a DC power source or a magnet.
ることを特徴とする請求項3記載の高周波放電装置。5. The high frequency discharge device according to claim 3, wherein the loop-shaped antenna has a plurality of turns.
る高周波放電処理装置において、 内部に上記被加工物が設置されるとともにプロセスガス
が供給される容器と、 この容器内に設けられたル−プ状アンテナと、 このアンテナに高周波電流を流して変動磁界を発生させ
ることで上記プロセスガスを励起してプラズマを生成さ
せる高周波電源と、 上記アンテナの周囲を覆う磁力線を発生させる磁力線発
生手段とを具備したことを特徴とする高周波放電処理装
置。6. A high-frequency electric discharge treatment apparatus for treating a workpiece with an electric discharge plasma, a container in which the workpiece is installed and a process gas is supplied, and a loop provided in the container. -Shaped antenna, a high-frequency power source that excites the process gas to generate plasma by generating a fluctuating magnetic field by flowing a high-frequency current through the antenna, and a magnetic force line generation unit that generates magnetic force lines covering the antenna. A high-frequency discharge treatment device characterized in that
石であることを特徴とする請求項6記載の高周波放電処
理装置。7. The high frequency electric discharge processing apparatus according to claim 6, wherein the magnetic force line generating means is a DC power source or a magnet.
ることを特徴とする請求項6記載の高周波放電処理装
置。8. The high frequency electric discharge processing apparatus according to claim 6, wherein the loop-shaped antenna has a plurality of turns.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP06119295A JP3805808B2 (en) | 1995-03-20 | 1995-03-20 | High frequency discharge treatment equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP06119295A JP3805808B2 (en) | 1995-03-20 | 1995-03-20 | High frequency discharge treatment equipment |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH08255697A true JPH08255697A (en) | 1996-10-01 |
JP3805808B2 JP3805808B2 (en) | 2006-08-09 |
Family
ID=13164067
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP06119295A Expired - Lifetime JP3805808B2 (en) | 1995-03-20 | 1995-03-20 | High frequency discharge treatment equipment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3805808B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0860855A1 (en) * | 1997-02-10 | 1998-08-26 | Applied Materials, Inc. | Antenna for generating a plasma and HDP-CVD processing chamber having such antenna |
JP2005505130A (en) * | 2001-09-28 | 2005-02-17 | ユナキス・バルツェルス・アクチェンゲゼルシャフト | Procedure and apparatus for generating plasma |
US7849814B2 (en) | 2004-03-26 | 2010-12-14 | Nissin Electric Co., Ltd. | Plasma generating device |
-
1995
- 1995-03-20 JP JP06119295A patent/JP3805808B2/en not_active Expired - Lifetime
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0860855A1 (en) * | 1997-02-10 | 1998-08-26 | Applied Materials, Inc. | Antenna for generating a plasma and HDP-CVD processing chamber having such antenna |
US5944902A (en) * | 1997-02-10 | 1999-08-31 | Applied Materials, Inc. | Plasma source for HDP-CVD chamber |
JP2005505130A (en) * | 2001-09-28 | 2005-02-17 | ユナキス・バルツェルス・アクチェンゲゼルシャフト | Procedure and apparatus for generating plasma |
US7849814B2 (en) | 2004-03-26 | 2010-12-14 | Nissin Electric Co., Ltd. | Plasma generating device |
Also Published As
Publication number | Publication date |
---|---|
JP3805808B2 (en) | 2006-08-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5622635A (en) | Method for enhanced inductive coupling to plasmas with reduced sputter contamination | |
TWI391518B (en) | Ion source and plasma processing device | |
US6418874B1 (en) | Toroidal plasma source for plasma processing | |
JP3653524B2 (en) | Plasma generation method and plasma generation apparatus including inductively coupled plasma generation source | |
US20060254519A1 (en) | Locally-efficient inductive plasma coupling for plasma processing system | |
EP0148504A2 (en) | Method and apparatus for sputtering | |
WO2001045134A9 (en) | Method and apparatus for producing uniform process rates | |
JPH1055983A (en) | Inductively coupled plasma reactor having faraday sputter shield | |
JPS58151028A (en) | Magnetically strengthened plasma treating method and device | |
JP5970268B2 (en) | Plasma processing apparatus and processing method | |
JP4945566B2 (en) | Capacitively coupled magnetic neutral plasma sputtering system | |
JP2001053060A (en) | Plasma processing method and apparatus | |
WO2003012821A2 (en) | Method and apparatus for producing uniform process rates | |
US5147465A (en) | Method of cleaning a surface | |
JP5701050B2 (en) | Plasma processing equipment | |
KR100455350B1 (en) | Device for prducing inductively coupled plasma and method | |
JP4527432B2 (en) | Plasma processing method and plasma processing apparatus | |
CN110770880B (en) | Plasma processing apparatus | |
JPH08255697A (en) | High frequency discharge method, discharge device therefor, and high frequency discharge treatment device using this discharge device | |
JP3417328B2 (en) | Plasma processing method and apparatus | |
JP2005079416A (en) | Plasma processing device | |
KR100772452B1 (en) | Inductively coupled plasma reactor having multi rf antenna | |
Lieberman et al. | Plasma generation for materials processing | |
JPH0252855B2 (en) | ||
KR20230036183A (en) | Plasma generator using ferrite shield for focused inductive coupled plasma |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20040706 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040906 |
|
A911 | Transfer of reconsideration by examiner before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20041116 |
|
A912 | Removal of reconsideration by examiner before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A912 Effective date: 20050107 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060220 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060331 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20060511 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090519 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100519 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110519 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110519 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120519 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120519 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130519 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130519 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140519 Year of fee payment: 8 |
|
EXPY | Cancellation because of completion of term |