JPH082543B2 - Molding method for fiber reinforced plastic moldings - Google Patents

Molding method for fiber reinforced plastic moldings

Info

Publication number
JPH082543B2
JPH082543B2 JP62322345A JP32234587A JPH082543B2 JP H082543 B2 JPH082543 B2 JP H082543B2 JP 62322345 A JP62322345 A JP 62322345A JP 32234587 A JP32234587 A JP 32234587A JP H082543 B2 JPH082543 B2 JP H082543B2
Authority
JP
Japan
Prior art keywords
resin
mold
fiber
molded product
molding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62322345A
Other languages
Japanese (ja)
Other versions
JPS63288723A (en
Inventor
清 古宮
利貞 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takeda Pharmaceutical Co Ltd
Original Assignee
Takeda Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takeda Chemical Industries Ltd filed Critical Takeda Chemical Industries Ltd
Priority to JP62322345A priority Critical patent/JPH082543B2/en
Publication of JPS63288723A publication Critical patent/JPS63288723A/en
Publication of JPH082543B2 publication Critical patent/JPH082543B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Moulding By Coating Moulds (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は繊維強化プラスチック成形品の成形法に関す
る。本発明によれば繊維補強材の含有率をあげることが
でき、得られる成形品の力学的強度をあげることができ
る。また、効率よく成形品を成形することができる。
TECHNICAL FIELD The present invention relates to a method for molding a fiber-reinforced plastic molded article. According to the present invention, the content of the fiber reinforcing material can be increased, and the mechanical strength of the obtained molded product can be increased. Moreover, a molded product can be efficiently molded.

従来の技術 レジンインジェクション成形法またはレジストランス
ファー成形法では成形型としてフラッシュ型が用いられ
ている。この成形法では、まず雄または雌型のいずれか
一方の型に繊維補強材のみを載置し、型締めする。雄,
雌型の合わせ面にはゴム状弾性体がパッキング材として
用いられる。型締め後、型の適切な位置に設けた注入孔
より樹脂を密閉された成形型中に圧入し、前もって載置
された繊維補強材を含浸させ、硬化してFRP成形品を得
るものである。
2. Description of the Related Art In a resin injection molding method or a resist transfer molding method, a flash mold is used as a molding die. In this molding method, first, only the fiber reinforcing material is placed on one of the male and female molds and the mold is clamped. Male,
A rubber-like elastic body is used as a packing material on the mating surface of the female mold. After the mold is clamped, the resin is press-fitted into the closed mold through the injection holes provided at the appropriate positions of the mold, and the fiber reinforcement placed in advance is impregnated and cured to obtain the FRP molded product. .

この成形法においてはあらかじめ繊維補強材が載置さ
れ、かつ成形品の設定された肉厚まで型締めされて密閉
状態となった成形型中に樹脂を注入するので粘度の低い
樹脂を用いても大きな注入圧力を必要とする。この注入
に要する圧力は繊維含有率が大きい繊維強化プラスチッ
ク(以下,FRPと略称する)成形品になるほど高くなる。
また、繊維含有率が大きいFRP成形品の場合は注入され
た樹脂が成形品全体に回りにくい。
In this molding method, the fiber reinforcing material is placed in advance, and the resin is injected into the molding die that has been closed to the set wall thickness of the molded product and is in a closed state. Requires large injection pressure. The pressure required for this injection increases as the fiber-reinforced plastic (hereinafter abbreviated as FRP) molded product has a higher fiber content.
Further, in the case of an FRP molded product having a high fiber content, it is difficult for the injected resin to spread to the entire molded product.

レジンインジェクション成形法の実用例によると型と
してFRP製の型を、樹脂として不飽和ポリエステル樹脂
を用い、繊維補強材としてガラス繊維チヨップストラン
ドマットを用いた場合のガラス含有率は約30重量%,ガ
ラス繊維ロービングロスとチヨップドストランドマット
を組み合わせて用いた場合のガラス含有率は40〜45重量
%程度が普通である。型として強度の大きな金型を用
い、注入圧力の大きな樹脂注入装置を用いれば繊維含有
率の高いFRP成形品の成形が可能と考えられるが、実用
化された例はない。
According to a practical example of the resin injection molding method, a mold made of FRP is used as a mold, an unsaturated polyester resin is used as a resin, and a glass content of about 30% by weight when a glass fiber chop strand mat is used as a fiber reinforcing material. When the glass fiber roving loss and the chopped strand mat are used in combination, the glass content is usually about 40 to 45% by weight. It is considered possible to mold an FRP molded product having a high fiber content by using a mold having a high strength as a mold and a resin injecting device having a high injection pressure, but there has been no practical application.

FRP成形品の力学的性質は、繊維含有率が高くなるほ
ど大きくなる。しかし従来のレジンインジェクション成
形法においてはFRPとして可能な限界まで繊維含有率を
高める技術が開発されていなかった。
The mechanical properties of FRP molded products increase as the fiber content increases. However, in the conventional resin injection molding method, a technique for increasing the fiber content to the limit possible as FRP has not been developed.

マットまたはプリフォームマッチドダイ成形法はマッ
トまたは成形品に近い形状に予備成形された繊維補強材
(以下,プリフォームと略称する)を雄または雌金型の
いずれか一方の型に載置し、樹脂をマットまたはプリフ
ォームにふり掛けたうえで型締めし、加熱加圧硬化して
FRP成形品を得る成形法である。この成形法で雄金型上
にマットまたはプリフォームを載置した後、マットまた
はプリフォームに樹脂をふり掛ける工程で樹脂の粘度が
低いと、ふり掛けた樹脂が型締めする前に型の外に流れ
出してしまう欠点がある。このような欠点を改善する等
の目的からこの成形法に用いられる樹脂は、充填材等の
添加で樹脂の粘度を高めた樹脂混合物が使用されるのが
普通である。マットまたはプリフォームマッチドダイ成
形法は、このように粘度の高い樹脂混合物を使用せざる
を得ないため、粘度の低い樹脂を用いる場合に比べて繊
維含有率の高いFRP成形品を成形しにくい欠点がある。
実用例によると樹脂として不飽和ポリエステル樹脂を用
い、繊維補強材としてガラス繊維チヨップドストランド
マットを使用した場合のガラス含有率はたかだか30重量
%程度である。
In the mat or preform matched die molding method, a fiber reinforcement material (hereinafter, abbreviated as preform) preformed in a shape close to a mat or a molded product is placed on one of the male and female molds, Sprinkle the resin on the mat or preform, tighten the mold, and heat and pressure cure it.
This is a molding method for obtaining FRP molded products. After the mat or preform is placed on the male mold by this molding method, if the resin viscosity is low in the process of sprinkling the mat or preform with resin, the sprinkled resin will be removed from the mold before clamping. There is a drawback that it flows out to. For the purpose of improving such defects, the resin used in this molding method is usually a resin mixture in which the viscosity of the resin is increased by adding a filler or the like. The matte or preform matched die molding method has to use a resin mixture with such a high viscosity, so it is difficult to mold an FRP molded product with a high fiber content compared to the case of using a resin with a low viscosity. There is.
According to a practical example, when the unsaturated polyester resin is used as the resin and the glass fiber chopped strand mat is used as the fiber reinforcing material, the glass content is about 30% by weight at most.

また、マットまたはプリフォームマッチドダイ成形法
は開放状態の型に載置されたマットまたはプルフォーム
に樹脂をふり掛けるのでレジンインジェクション成形法
の密閉された成形型中に樹脂を注入する方法に比べ、樹
脂の飛散,臭気等環境衛生上の問題点がある。
Further, in the mat or preform matched die molding method, since the resin is sprinkled on the mat or pull foam placed in the mold in the open state, compared with the method of injecting the resin into the closed molding die of the resin injection molding method, There are environmental hygiene problems such as resin scattering and odor.

前述のように従来のレジンインジェクション成形法お
よびマットまたはプリフォームマッチドダイ成形法はい
ずれも可能な限界まで繊維含有率を高めた強度の大きい
FRP成形品を効率よく成形するのに適したものではなか
った。
As described above, the conventional resin injection molding method and matte or preform matched die molding method have a high fiber content and high strength
It was not suitable for molding FRP molded products efficiently.

発明が解決しようとする問題点 本発明は繊維含有率が高く、強度の大きなFRP成形品
を効率よく成形するのに適した成形法を提供することを
目的とする。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention An object of the present invention is to provide a molding method suitable for efficiently molding an FRP molded product having a high fiber content and a high strength.

本発明者らは成形用型の食切り部の構造がポジテイブ
型と雄型と雌型を用い、従来のレジンインジェクション
成形法とマットまたはプリフォームマッチドダイ成形法
とを組み合わせることによって従来法に比べて著しく繊
維含有率を高めることができ、しかも得られたFRP成形
品の力学的強度も大きなことを知見し、これらの知見に
もとづき、本発明を完成するに至った。
The present inventors compared the conventional method by using a positive mold, a male mold, and a female mold as the structure of the cutting portion of the molding mold, and combining the conventional resin injection molding method with the mat or preform matched die molding method. Therefore, the inventors have found that the fiber content can be remarkably increased, and the mechanical strength of the obtained FRP molded product is large, and the present invention has been completed based on these findings.

問題点を解決するための手段 本発明は、成形用型の食切り部の構造がポジテイブ型
の雄または雌型のいずれか一方に繊維補強材を載置した
後、雌雄の型を接近させて食切り部から樹脂が流出しな
いように押さえ、ついで型内の適切な位置に設けられた
注入孔より樹脂を注入した後、型締め成形することを特
徴とする繊維強化プラスチック成形品の成形法に関す
る。
MEANS FOR SOLVING THE PROBLEMS The present invention is to place the fiber reinforcing material on either the male or female mold of which the structure of the cutting portion of the molding die is positive, and then bring the male and female molds close to each other. A method for molding a fiber-reinforced plastic molded product, characterized in that the resin is pressed so as not to flow out from the cut-off portion, and then the resin is injected through an injection hole provided at an appropriate position in the mold, and then the mold is clamp-molded. .

本発明では、まず成形用型の食切り部の構造がポジテ
イブ型の雄または雌型のいずれか一方に繊維補強材を載
置する。食切り部の構造をポジテイブ型とする以外は、
FRPの圧縮成形に通常用いられる型構造を用いることが
できる。食切り部のトラベルは、あらかじめ型に載置さ
れる繊維補強材のかさにより決まるが、約2〜約30mm程
度,好ましくは約3〜約10mm程度,クリアランスは約0.
05〜0.15mm程度が好ましい。
In the present invention, first, the fiber reinforcing material is placed on either the male or female mold having the positive-cutting structure of the molding die. Except that the structure of the cutting part is positive type,
A mold structure generally used for FRP compression molding can be used. The travel of the cutting portion is determined by the bulk of the fiber reinforcing material placed in the mold in advance, but is about 2 to about 30 mm, preferably about 3 to about 10 mm, and the clearance is about 0.
05-0.15 mm is preferable.

型の材質としては、たとえば金属,プラスチック等が
使用される。金属製のものを用いると成形品を量産する
ことができるので好ましい。型の形状は目的とする成形
品の形状に応じて任意に選ぶことができる。
As the material of the mold, for example, metal, plastic or the like is used. It is preferable to use a metal product because it allows mass production of molded products. The shape of the mold can be arbitrarily selected according to the shape of the target molded product.

本発明に用いられる繊維補強材としては、通常のFRP
成形品に使用される繊維補強材が使用可能である。たと
えば、ガラス繊維,炭素繊維,石英繊維,セラミックフ
ァイバー,ジルコニヤ繊維,ボロン繊維,タングステン
繊維,モリブデン繊維,鋼繊維,ベリリウム繊維,ステ
ンレス繊維等の無機繊維類,ポリアミド系繊維,ポリエ
ステル繊維等の合成繊維等を用いることができる。樹脂
との接着性を改良するために繊維表面を予め処理をおこ
なった繊維補強材を用いてもよい。これらの繊維補強材
は単独または2種以上組み合わせて用いることができ
る。上記の繊維補強材は、たとえばプリフォーム,マッ
ト状,織物状等の製品に加工された形態で使用できる。
これらは単独または2種以上組み合わせた複合形態で用
いてもよい。FRP成形品に含まれる繊維含有率は、たと
えば樹脂の粘度,繊維補強材の種類と製品形態およびFR
P成形品として望まれる特性等から任意に選ぶことがで
きるが、通常約5〜約80重量%程度,好ましくは約50〜
約70重量%程度である。
As the fiber reinforcing material used in the present invention, an ordinary FRP is used.
Fiber reinforcements used in moldings can be used. For example, glass fibers, carbon fibers, quartz fibers, ceramic fibers, zirconia fibers, boron fibers, tungsten fibers, molybdenum fibers, steel fibers, beryllium fibers, inorganic fibers such as stainless fibers, synthetic fibers such as polyamide fibers and polyester fibers. Etc. can be used. You may use the fiber reinforcement material which processed the fiber surface beforehand in order to improve the adhesiveness with resin. These fiber reinforcing materials can be used alone or in combination of two or more kinds. The above-mentioned fiber reinforcing material can be used in the form of being processed into products such as preforms, mats, and fabrics.
You may use these individually or in the composite form which combined 2 or more types. The fiber content contained in FRP molded products is, for example, the viscosity of resin, the type and product form of fiber reinforcement and the FR
Although it can be arbitrarily selected depending on the properties desired as a P molded product, it is usually about 5 to about 80% by weight, preferably about 50 to
It is about 70% by weight.

つぎに、いずれか一方に繊維補強材を載置した雌雄の
型を接近させて食切り部から樹脂が流出しないように押
さえる。
Next, the male and female molds on which the fiber reinforcing material is placed are brought close to one of them and pressed so that the resin does not flow out from the cutting portion.

本発明に用いられる雌雄の型を接近させる装置として
は、FRP成形品の圧縮成形に通常用いられる油圧式プレ
ス等を用いることができる。プレスは適切な型間隙にな
るまで雌雄の型を接近させて一旦停止し、さらに型締め
動作に移るので、位置制御機構を有したものが好まし
い。雌雄の型の接近の程度は、雌雄の型の間に繊維補強
材を挾み込み、樹脂が流出しない状態であればよく、雌
雄の型が繊維補強材を完全に食い切り、かみあった状態
でもよい。
As a device for bringing the male and female molds closer to each other used in the present invention, a hydraulic press or the like which is usually used for compression molding of FRP molded products can be used. The press preferably has a position control mechanism because the male and female dies are brought close to each other until the dies have a proper gap and then stopped, and then the die clamping operation is started. The male and female molds may approach each other as long as the fiber reinforcing material is sandwiched between the male and female molds so that the resin does not flow out, and the male and female molds may completely cut through the fiber reinforcing material and engage with each other. .

雌雄の型を接近させた後、型内の適切な位置に設けら
れた注入孔より樹脂を注入する。注入装置としては注入
圧力として数kg/cm2の能力を有した、たとえばポンプ
類,リアクション インジェクション モールディング
(Reaction Injection Molding,以下、RIMと略称する)
注入機等が使用できる。
After the male and female molds are brought close to each other, resin is injected through injection holes provided at appropriate positions in the mold. The injection device had an injection pressure of several kg / cm 2 , for example, pumps, reaction injection molding (Reaction Injection Molding, hereinafter abbreviated as RIM)
An injection machine can be used.

型内に注入する樹脂としては、通常のFRP成形品の成
形に用いられる樹脂は如何なるものでもよいが、たとえ
ば不飽和ポリエステル樹脂,ビニルエステル樹脂,エポ
キシ樹脂,ポリウレタン樹脂,ポリイミド樹脂,フェノ
ール樹脂,シリコーン樹脂,橋かけポリエステルアミド
樹脂,橋かけポリアミド樹脂,橋かけエポキシ変化ポリ
アミノアミド樹脂,橋かけポリエーテルアミド樹脂等の
熱硬化性樹脂の使用が好ましい。不飽和ポリエステル樹
脂は無水フタル酸,イソフタル酸,無水マレイン酸,フ
マル酸等の2塩基酸成分およびエチレングリコール,プ
ロピレングリコール等のグリコール成分のポリ縮合反応
によって得られる不飽和アルキドとスチレン等のビニル
モノマーから得られる樹脂で、適度な物性を持ち成形性
がよいことからFRP用マトリックスとして多く用いられ
ている。エポキシ樹脂を変性して得られるビニルエステ
ル樹脂またはエポキシ樹脂は力学的性質,硬化収縮等の
物性が不飽和ポリエステル樹脂より優れた樹脂である。
使用されるエポキシ樹脂の大部分は速硬化タイプのビス
フェノールA型エポキシ樹脂である。ポリイソシアネー
トとポリオールとの高分子反応で得られるポリウレタン
樹脂は硬化が速い特徴を持つマトリックスである。2,
2′−(1,3−フェニレン)ビス−2−オキサゾリン(以
下、1,3−PBOと略称する)と2塩基酸と触媒との反応で
得られる橋かけポリエステルアミド樹脂および1,3−PBO
とジアミノジフェニルメタン等のジアミン化合物と触媒
との反応で得られる橋かけポリアミノアミド樹脂および
1,3−PBOとジアミン化合物とエポキシ樹脂と触媒との反
応で得られる橋かけエポキシ変性ポリアミノアミド樹脂
および1,3−PBとフェノール性水酸基化合物との反応で
得られる橋かけポリエーテルアミド樹脂は、本発明によ
る成形法に適した熱硬化性樹脂である。樹脂にはそれぞ
れの要求特性に合う触媒,安定剤,内部離型剤,着色
剤,難燃剤,充填材等を添加して使用できる。
As the resin to be injected into the mold, any resin used for molding a normal FRP molded product may be used, and examples thereof include unsaturated polyester resin, vinyl ester resin, epoxy resin, polyurethane resin, polyimide resin, phenol resin, silicone. It is preferable to use thermosetting resins such as resins, crosslinked polyesteramide resins, crosslinked polyamide resins, crosslinked epoxy-modified polyaminoamide resins, crosslinked polyetheramide resins. Unsaturated polyester resin is a vinyl monomer such as styrene and unsaturated alkyd obtained by polycondensation reaction of dibasic acid components such as phthalic anhydride, isophthalic acid, maleic anhydride and fumaric acid and glycol components such as ethylene glycol and propylene glycol. It is a resin obtained from and is widely used as a matrix for FRP because it has suitable physical properties and good moldability. A vinyl ester resin or an epoxy resin obtained by modifying an epoxy resin is a resin superior in physical properties such as mechanical properties and curing shrinkage to an unsaturated polyester resin.
Most of the epoxy resins used are fast-curing bisphenol A type epoxy resins. Polyurethane resin obtained by polymer reaction of polyisocyanate and polyol is a matrix having a characteristic of rapid curing. 2,
Crosslinked polyesteramide resin and 1,3-PBO obtained by the reaction of 2 '-(1,3-phenylene) bis-2-oxazoline (hereinafter abbreviated as 1,3-PBO) with a dibasic acid and a catalyst.
And crosslinked polyaminoamide resins obtained by the reaction of diamine compounds such as diaminodiphenylmethane with a catalyst and
The crosslinked epoxy-modified polyaminoamide resin obtained by the reaction of 1,3-PBO, diamine compound, epoxy resin and catalyst and the crosslinked polyetheramide resin obtained by the reaction of 1,3-PB and phenolic hydroxyl compound are A thermosetting resin suitable for the molding method according to the present invention. The resin may be used by adding a catalyst, a stabilizer, an internal release agent, a colorant, a flame retardant, a filler, etc., which meet the respective required characteristics.

本発明による成形法は、生産性の高い成形法を狙った
ものであり硬化の速い樹脂を用いることが好ましい。主
剤系,硬化剤系の全成分を1つのタンクに混合してお
き、型内に注入する一液法または主剤系,硬化剤系の成
分を2つのタンクに別々に混合しておき、使用時に2つ
の液を混合して型内に注入する二液法または3つの液を
混合して型内に注入する三液法等それぞれの樹脂の性質
に合った方法を選ぶことが好ましい。繊維含有率の大き
いFRP成形品を得るために比較的粘度の低い、たとえば1
500cps程度以下の粘度を有した繊維補強材への含浸性の
よい樹脂を用いることが好ましい。繊維含有率が50〜80
重量%程度の非常に大きいFRP成形品を得るためには100
0cps程度以下の粘度を有する樹脂を用いることが好まし
い。さらに使用する樹脂の粘度が10〜300cps程度の非常
の低い樹脂であれば含浸性の点から最も好ましい。
The molding method according to the present invention is aimed at a molding method having high productivity, and it is preferable to use a resin which cures quickly. All components of the main agent system and the curing agent system are mixed in one tank, and the one-component method for injecting into the mold or the components of the main agent system and the curing agent system are separately mixed in two tanks, and at the time of use It is preferable to select a method suitable for the properties of each resin, such as a two-liquid method in which two liquids are mixed and injected into a mold or a three-liquid method in which three liquids are mixed and injected into a mold. Relatively low viscosity, for example 1 to obtain FRP molded parts with high fiber content
It is preferable to use a resin having a viscosity of about 500 cps or less and having a good impregnation property into the fiber reinforcing material. Fiber content is 50-80
100 to obtain a very large FRP molded product of about 10% by weight
It is preferable to use a resin having a viscosity of about 0 cps or less. Further, a resin having a very low viscosity of about 10 to 300 cps is most preferable from the viewpoint of impregnating property.

さらに同じ目的から充填材を添加しないで粘度を低く
押さえた樹脂混合物によるFRPの成形を行なっても、ク
ラックの発生しない樹脂を用いることが好ましい。
Further, for the same purpose, it is preferable to use a resin that does not cause cracks even when FRP is molded by a resin mixture whose viscosity is kept low without adding a filler.

樹脂を注入した後、型締め成形する。この操作は前述
の型締め装置によりおこなわれる。樹脂として熱可塑性
樹脂を用いた場合は特に加熱する必要はないが、熱硬化
性樹脂を用いた場合は加熱する。加熱温度は樹脂の種類
などにより一概には言えないが、通常、約100〜250℃程
度である。また、圧力は通常、約10〜50kg/cm2程度であ
る。成形に要する時間は樹脂や触媒の種類や量,繊維補
強材の含量あるいは成形品の板厚などによって変わる
が、通常、約30秒〜30分程度である。
After injecting the resin, mold clamping is performed. This operation is performed by the mold clamping device described above. When a thermoplastic resin is used as the resin, it is not particularly necessary to heat it, but when a thermosetting resin is used, it is heated. The heating temperature cannot be generally determined depending on the type of resin, but is usually about 100 to 250 ° C. The pressure is usually about 10 to 50 kg / cm 2 . The time required for molding varies depending on the type and amount of resin and catalyst, the content of fiber reinforcing material, the plate thickness of the molded product, etc., but is usually about 30 seconds to 30 minutes.

以上の操作によってFRP成形品が得られる。 An FRP molded product is obtained by the above operation.

発明の効果 本発明の成形法によれば繊維補強材があらかじめ載置
されてはいるが、空間が十分ある型内に樹脂を注入する
ので非常に小さい圧力で樹脂の注入が可能である。しか
も粘度の低い樹脂を注入しても樹脂が型外に流れ出る恐
れはない。また樹脂の飛散,臭気等の点からも従来のマ
ットまたはプリフォームマッチドダイ成形法に比べて成
形環境がよい。また注入後、直ちに型締め成形をおこな
うので繊維含有率が非常に大きい成形品は勿論のこと、
繊維含有率を任意に選ぶことが可能である。
EFFECTS OF THE INVENTION According to the molding method of the present invention, the fiber reinforcing material is placed in advance, but since the resin is injected into the mold having a sufficient space, it is possible to inject the resin with a very small pressure. Moreover, even if a resin having a low viscosity is injected, there is no possibility that the resin will flow out of the mold. Also, the molding environment is better than the conventional mat or preform matched die molding method in terms of resin scattering and odor. In addition, since mold clamping is performed immediately after injection, not to mention molded products with a very high fiber content,
The fiber content can be arbitrarily selected.

更にまた、型締めに要するプレスの加圧容量としては
低粘度の樹脂が使用できるので、シート モールディン
グ コンパウンド(Sheet Molding Compounds,以下,SMC
と略称する),バルク モールディング コンパウンド
(Bulk Molding Compounds,以下,BMCと略称する)等の
圧縮成形に用いられるプレスに比べて非常に小さい容量
のプレスが使用可能である。
Furthermore, since a low viscosity resin can be used as the pressurizing capacity of the press required for mold clamping, sheet molding compounds (Sheet Molding Compounds, hereinafter, SMC)
It is possible to use a press having a very small capacity as compared with a press used for compression molding such as a bulk molding compound (hereinafter referred to as BMC).

樹脂として硬化の速い熱硬化性樹脂を用い、必要に応
じ加熱硬化すると硬化時間が短く、生産性の非常に高い
成形法とすることが可能である。
If a thermosetting resin that cures quickly is used as the resin and the resin is heat-cured as necessary, the curing time is short, and a molding method with extremely high productivity can be obtained.

次に実施例をあげて本発明をさらに具体的に説明す
る。
Next, the present invention will be described more specifically with reference to examples.

実施例1 樹脂として橋かけポリエステルアミド樹脂,繊維補強
材としてガラス繊維,樹脂の注入装置としてRIM注入
機,型締め装置として上押式の油圧プレスおよび試験用
金型を用いてトレー状FRP成形品を成形した。
Example 1 A tray-shaped FRP molded product using a cross-linked polyesteramide resin as a resin, glass fiber as a fiber reinforcing material, a RIM injecting machine as a resin injecting device, an up-pressing hydraulic press as a mold clamping device, and a test mold. Was molded.

(樹脂および樹脂注入の準備) 2,2−(1,3−フェニレン)ビス−2−オキサゾリン
(以下1,3−PBOと略称する)8.25kg,パラオキシ安息香
酸1.11kg,サリチル酸0.64kgを計量後ドライブレンドし
てRIM注入機の約150℃に加温されたA液用タンクに、ま
た1,3−PBO2.6kg,サリチル酸1.85kg,セバシン酸5.55kg,
亜リン酸0.75kgを計量後ドライブレンドしてRIM注入機
の約150℃に加温されたB液用タンクに装入し攪拌しな
がら溶解した。溶解後A,Bそれぞれの液は、液温が140℃
になるよう温度調節した。140℃におけるA液の粘度は
約40cps(B型粘度計),B液の粘度は約50cps(B型粘度
計)であった。A液対B液の混合比が80対21.5になるよ
うにA,Bそれぞれの液の吐出量を計量した。計量後のA
液とB液を合わせた吐出量は123g/秒であった。吐出圧
力はA液側が約70kg/cm2,B液側が約140kg/cm2であっ
た。
(Preparation of resin and resin injection) After weighing 2,2- (1,3-phenylene) bis-2-oxazoline (hereinafter abbreviated as 1,3-PBO) 8.25 kg, paraoxybenzoic acid 1.11 kg, salicylic acid 0.64 kg Dry blended into the tank for liquid A heated to about 150 ° C in the RIM injection machine, 2.6 kg of 1,3-PBO, 1.85 kg of salicylic acid, 5.55 kg of sebacic acid,
0.75 kg of phosphorous acid was weighed, dry-blended, charged into a tank for liquid B heated to about 150 ° C. of a RIM injector, and dissolved while stirring. After melting, the liquid temperature of each of A and B is 140 ℃.
The temperature was adjusted so that The viscosity of liquid A at 140 ° C. was about 40 cps (B type viscometer), and the viscosity of liquid B was about 50 cps (B type viscometer). The discharge amounts of the respective liquids A and B were measured so that the mixing ratio of the liquid A to the liquid B was 80: 21.5. A after weighing
The combined discharge amount of the liquid and the liquid B was 123 g / sec. Discharge pressure of about 70 kg / cm 2 is A liquid side, B liquid side was about 140 kg / cm 2.

(金型,プレス等の準備) 成形品の概略寸法は40cm長×27cm幅×2cm深×3mm板厚
であり、第1図に成形装置の概略図を、第2図に金型の
食切り部を示した。
(Preparation of molds, presses, etc.) The approximate dimensions of the molded product are 40 cm long x 27 cm wide x 2 cm deep x 3 mm plate thickness. Fig. 1 is a schematic diagram of the molding equipment, and Fig. 2 is a die cutting tool. Parts are shown.

第1図において1は成形品,2は雌型,3は雄型を示す。
4は注入孔でRIM注入機のミキシングヘッドを取り付け
固定した。5は油圧プレスの盤面を示す。
In FIG. 1, 1 is a molded product, 2 is a female mold, and 3 is a male mold.
Reference numeral 4 is an injection hole to which a mixing head of the RIM injection machine was attached and fixed. Reference numeral 5 indicates a board surface of the hydraulic press.

第2図は金型の食切り部を示す。トラベルは5mm,クリ
アランスは0.1mmに設計した。
FIG. 2 shows the cutting portion of the mold. The travel is designed to be 5mm and the clearance is designed to be 0.1mm.

金型を上押式の油圧プレスの盤面5に取り付け、RIM
注入機のミキシングヘッドを雄型2の注入孔4の位置に
固定した後、金型に埋め込んだ電気ヒーターで金型成形
品表面の温度を200℃に温度調節した。
Attach the die to the board surface 5 of the up-pressing hydraulic press, and RIM
After fixing the mixing head of the injection machine at the position of the injection hole 4 of the male mold 2, the temperature of the surface of the molded product was adjusted to 200 ° C. by an electric heater embedded in the mold.

プレスを下降させ、金型を開放の状態にし、金型の表
面に離型剤としてワックスを塗布した。
The press was lowered to open the mold, and wax was applied to the surface of the mold as a mold release agent.

(成 形) 雄型3に約47cm長い×約34cm幅の長方形に裁断したコ
ンティニュアス ストランド マットM8609(450g/m2,
旭ファイバーグラス(株)製)8層を載置した後、プレ
スを上昇させて雌型2と雄型3の間隙Dが約2mmになっ
た時プレスの上昇を一旦停止させた(第5図)。
(Form) Continuous Strand Mat M8609 (450g / m 2 ,
After placing 8 layers of Asahi Fiber Glass Co., Ltd., the press was lifted, and when the gap D between the female mold 2 and the male mold 3 became about 2 mm, the lift of the press was once stopped (Fig. 5). ).

RIN注入機を作動させ、2.2秒間(計算吐出量 270g)
密閉型内に前記樹脂を注入した。樹脂注入後、直ちにプ
レスをゆっくり上昇させ(上昇速度 約0.5mm/秒),前
もって設置したスペーサーに当たるまで型締めした。2
分間加熱加圧した後、プレスを下降させてトレー状FRP
成形品を脱型し取り出した。成形品の板厚を調整するた
めにスペーサーを用いたが加圧力は約30kg/cm2であっ
た。成形品の平均板厚は2.84mmであった。成形品より試
験片を切り出し日本工業規格(JIS)の方法で物性を測
定した結果を別表に示す。
Operate the RIN injector for 2.2 seconds (calculated discharge rate 270g)
The resin was injected into the closed mold. Immediately after injecting the resin, the press was slowly lifted (raising speed of about 0.5 mm / sec), and the mold was clamped until it hits the spacer installed in advance. Two
After heating and pressing for 1 minute, the press is lowered and the tray-shaped FRP is
The molded product was demolded and taken out. A spacer was used to adjust the plate thickness of the molded product, but the applied pressure was about 30 kg / cm 2 . The average plate thickness of the molded product was 2.84 mm. A test piece is cut out from the molded product and the physical properties are measured by the method of Japanese Industrial Standard (JIS).

実施例2 実施例1の繊維補強材のコンティニュアス ストラン
ド マット M8609を8層用いる代わりに10層を用いる
以外は実施例1と同様におこなった。成形品より試験片
を切り出し日本工業規格(JIS)の方法で物性を測定し
た結果を別表に示す。
Example 2 Example 1 was repeated except that 10 layers were used instead of 8 layers of the continuous strand mat M8609 of the fiber reinforcing material of Example 1. A test piece is cut out from the molded product and the physical properties are measured by the method of Japanese Industrial Standard (JIS).

実施例3 実施例1の繊維補強材のコンティニュアス ストラン
ド マツト M8609を8層用いる代わりに、下記に示す
ガラス繊維構成の繊維補強材を用いる以外は実施例1と
同様におこなった。成形品より試験片を切り出し日本工
業規格(JIS)の方法で物性を測定した結果を別表に示
す。
Example 3 The same procedure as in Example 1 was carried out except that the fiber reinforcement having the glass fiber constitution shown below was used instead of using 8 layers of the continuous strand mat M8609 as the fiber reinforcement of Example 1. A test piece is cut out from the molded product and the physical properties are measured by the method of Japanese Industrial Standard (JIS).

ガラス繊維構成:表面層/中間層/表面層 表面層:一方向ロービング クロス REW650×−HMを2層 (日本硝子繊維(株)製) 中間層:コンティニュアス ストランド マット M8609(450g/m2)を3層 (旭ファバーグラス(株)製) Glass fiber composition: Surface layer / intermediate layer / surface layer Surface layer: Two layers of unidirectional roving cloth REW650 × -HM (manufactured by Nippon Glass Fiber Co., Ltd.) Intermediate layer: Continuous Strand Mat M8609 (450g / m 2 ). 3 layers (Made by Asahi Faber Glass Co., Ltd.)

【図面の簡単な説明】[Brief description of drawings]

第1図に実施例1で用いた成形装置の概略図を、第2図
に実施例1で用いた金型の食切り部の拡大図を示す。第
3図は雌型の食切り部にエッジが付いた金型の変形例
を、第4図,第5図はそれぞれ雌雄の型の接近例を示
す。 図中、1は成形品を、2は雌型を、3は雄型を、4は樹
脂の注入孔を、5はプレスの盤面を、6は繊維補強材を
示す。
FIG. 1 shows a schematic view of the molding apparatus used in Example 1, and FIG. 2 shows an enlarged view of the cut-away portion of the mold used in Example 1. FIG. 3 shows a modified example of a mold in which a female cutting edge has an edge, and FIGS. 4 and 5 show examples of approaching male and female molds, respectively. In the figure, 1 is a molded product, 2 is a female mold, 3 is a male mold, 4 is a resin injection hole, 5 is a board surface of a press, and 6 is a fiber reinforcing material.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】成形用型の食切り部の構造がポジテイブ型
の雄または雌型のいずれか一方に繊維補強材を載置した
後、雌雄の型を接近させて食切り部から樹脂が流出しな
いように押さえ、ついで型内の適切な位置に設けられた
注入孔より樹脂を注入した後、型締め成形することを特
徴とする繊維強化プラスチック成形品の成形法。
1. A structure in which the structure of the cutting portion of the molding die is a positive type male or female, and after placing the fiber reinforcing material on the mold, the male and female dies are brought close to each other so that the resin flows out from the cutting portion. A method for molding a fiber-reinforced plastic molded product, characterized in that the resin is injected from an injection hole provided at an appropriate position in the mold, and then the mold is clamped and molded.
JP62322345A 1986-12-19 1987-12-18 Molding method for fiber reinforced plastic moldings Expired - Lifetime JPH082543B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62322345A JPH082543B2 (en) 1986-12-19 1987-12-18 Molding method for fiber reinforced plastic moldings

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP30500286 1986-12-19
JP61-305002 1986-12-19
JP62322345A JPH082543B2 (en) 1986-12-19 1987-12-18 Molding method for fiber reinforced plastic moldings

Publications (2)

Publication Number Publication Date
JPS63288723A JPS63288723A (en) 1988-11-25
JPH082543B2 true JPH082543B2 (en) 1996-01-17

Family

ID=26564127

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62322345A Expired - Lifetime JPH082543B2 (en) 1986-12-19 1987-12-18 Molding method for fiber reinforced plastic moldings

Country Status (1)

Country Link
JP (1) JPH082543B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04316811A (en) * 1991-04-17 1992-11-09 Mitsubishi Motors Corp Forming method for composite material
JP4825899B2 (en) 2009-06-22 2011-11-30 トヨタ自動車株式会社 Manufacturing method of fiber reinforced resin, manufacturing apparatus of fiber reinforced resin
JP6520173B2 (en) * 2015-02-09 2019-05-29 日産自動車株式会社 Method and apparatus for forming composite material
CN107244038A (en) * 2017-07-31 2017-10-13 苏州春秋电子科技股份有限公司 Carbon fiber plate burying forming method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
小川喜代一編「プラスチック金型便覧」(株式会社誠文堂新光社,1965年9月25日)P.153−156

Also Published As

Publication number Publication date
JPS63288723A (en) 1988-11-25

Similar Documents

Publication Publication Date Title
EP0272635B1 (en) A molding process of fiber reinforced plastics
EP1171288B1 (en) Composite comprising structural and non structural fibers
EP2440390B1 (en) Method of delivering a thermoplastic and/or crosslinking resin to a composite laminate structure
CN104781302B (en) Tetramine containing polyethylene for resin transfer moulding method and the epoxy-resin systems of triethylenediamine catalyst
CN101616802A (en) Be used to prepare the method for the composite that comprises epoxy resin formulation
JPH0233514B2 (en)
AU4385097A (en) Resin transfer molding process using stable epoxy resin compositions
US20080160282A1 (en) Composite comprising structural and non structural fibers
JP2006321897A (en) Method for molding fiber-reinforced thermoplastic resin
EP0019149B1 (en) Molding process and apparatus therefor
JPH082543B2 (en) Molding method for fiber reinforced plastic moldings
JPH06210644A (en) Method and apparatus for molding fiber reinforced plastic
CN112313261A (en) Toughened epoxy compositions
KR950015119B1 (en) Method for manufacturing fibre-reinforced composites
JPH04286612A (en) Manufacture of fiber reinforced plastic molding with flange
JP2015168221A (en) Method for manufacturing fiber-reinforced plastic molding
US20050191478A1 (en) Composite
JPS63307908A (en) Preparation of resin mold
KR100796991B1 (en) Reaction injection molding device and method
JPH06285885A (en) Extraction molding method of composite body
CN117841406A (en) Bow slice forming method of basalt fiber thermosetting composite material
JPH0376731A (en) Production of fiber-reinforced foamed resin article
Eckler et al. Processing and designing parts using structural reaction injection molding
JPH1110656A (en) Manufacture of fiber-reinforced resin composite body
JPH01242214A (en) Compression molding machine and partially molded product used for the same