JPH08254365A - Double inlet type pulse pipe freezer and its operating method - Google Patents

Double inlet type pulse pipe freezer and its operating method

Info

Publication number
JPH08254365A
JPH08254365A JP8477995A JP8477995A JPH08254365A JP H08254365 A JPH08254365 A JP H08254365A JP 8477995 A JP8477995 A JP 8477995A JP 8477995 A JP8477995 A JP 8477995A JP H08254365 A JPH08254365 A JP H08254365A
Authority
JP
Japan
Prior art keywords
pulse tube
inlet type
double
type pulse
refrigerator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8477995A
Other languages
Japanese (ja)
Inventor
Toshinobu Kaneda
俊信 金田
Nobuaki Seki
関  伸彰
Junpei Yuyama
純平 湯山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP8477995A priority Critical patent/JPH08254365A/en
Publication of JPH08254365A publication Critical patent/JPH08254365A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/14Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the cycle used, e.g. Stirling cycle
    • F25B9/145Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the cycle used, e.g. Stirling cycle pulse-tube cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/14Compression machines, plants or systems characterised by the cycle used 
    • F25B2309/1408Pulse-tube cycles with pulse tube having U-turn or L-turn type geometrical arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/14Compression machines, plants or systems characterised by the cycle used 
    • F25B2309/1411Pulse-tube cycles characterised by control details, e.g. tuning, phase shifting or general control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/14Compression machines, plants or systems characterised by the cycle used 
    • F25B2309/1413Pulse-tube cycles characterised by performance, geometry or theory
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/14Compression machines, plants or systems characterised by the cycle used 
    • F25B2309/1418Pulse-tube cycles with valves in gas supply and return lines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/14Compression machines, plants or systems characterised by the cycle used 
    • F25B2309/1424Pulse tubes with basic schematic including an orifice and a reservoir
    • F25B2309/14241Pulse tubes with basic schematic including an orifice reservoir multiple inlet pulse tube

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

PURPOSE: To provide a double inlet type pulse freezer and its operating method in which a stable freezing temperature can be attained even if the freezer is operated for a long period of time. CONSTITUTION: A temperature sensor 13 for measuring a freezing temperature is fixed to a low temperature end of a pulse pipe 4 of a conventional type double inlet type pulse pipe freezer, resulting in making a double inlet type pulse pipe freezer 10 in which a pressure changing-over valve 2 is controlled by a controller 14 to which its temperature signal is inputted and an intermittent operation can be performed. The freezing temperature is kept stable for a long period of time by keeping it within a desired temperature range and by performing the intermittent operation.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はパルス管冷凍機に関する
ものであり、更に詳しくは安定な冷凍温度を与えるダブ
ルインレット型パルス管冷凍機及びその運転方法に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a pulse tube refrigerator, and more particularly to a double inlet type pulse tube refrigerator that provides a stable refrigeration temperature and a method of operating the same.

【0002】[0002]

【従来の技術及びその問題点】人工衛星に搭載する赤外
線検出器のように保守が不可能な環境で使用される装置
機器や、磁気共鳴画像処理診断装置(MRI)、SQU
ID脳(心)磁計測装置等の医療機器ないしは超電導コ
ンピュータなど長時間の連続使用を前提とする装置機器
に取り付ける冷却用冷凍機には高い信頼性が求められ
る。そして、この種の冷却用冷凍機には低温部に可動部
品を持たないパルス管冷凍機が最も適している。
2. Description of the Related Art Equipment and devices used in environments where maintenance is impossible, such as infrared detectors mounted on artificial satellites, magnetic resonance imaging diagnostic equipment (MRI), and SQU.
High reliability is required for a cooling refrigerator attached to medical equipment such as an ID brain (magnetocardiography) measuring device or equipment such as a superconducting computer which is assumed to be continuously used for a long time. A pulse tube refrigerator having no moving parts in the low temperature part is most suitable for this type of cooling refrigerator.

【0003】パルス管冷凍機には代表的なものとしてオ
リフィス型とダブルインレット型とがあり、その他ベー
シック型と称されるものもある。図2は従来例としての
ダブルインレット型パルス管冷凍機20の配管系統図で
ある。作業流体(例えばヘリウムガス)の圧縮機1は高
圧弁2a、低圧弁2bが交互に開閉される圧力切換弁2
を介して内部に金網等を充填した蓄冷器3の室温端3h
に接続され、その低温端3cは中空のパルス管4の低温
端4cと接続されている。そして、パルス管4の室温端
4hは狭い開口としてのオリフィス5を介してバッファ
容器6と接続されている。又、蓄冷器3とパルス管4と
を経由しない短絡流路11が流量調節機構12と共に設
けられている。更には、パルス管4の室温端4hに接し
て冷却水配管9が取り付けられている。なお、パルス管
4の管壁と作業流体との間の熱交換は微小とされてい
る。因みに、上記の流量調節機構12を含む短絡流路1
1を持たないものがオリフィス型パルス管冷凍機であ
り、更には上記の短絡流路11と共にオリフィス5とバ
ッファ容器6をも持たないものがベーシック型パルス管
冷凍機である。
Typical examples of the pulse tube refrigerator are an orifice type and a double inlet type, and there is also a type called a basic type. FIG. 2 is a piping system diagram of a double-inlet type pulse tube refrigerator 20 as a conventional example. The working fluid (for example, helium gas) compressor 1 includes a pressure switching valve 2 in which a high pressure valve 2a and a low pressure valve 2b are alternately opened and closed.
Room temperature end 3h of the regenerator 3 filled with wire mesh etc. via
The low temperature end 3c of the hollow pulse tube 4 is connected to the low temperature end 4c of the hollow pulse tube 4. The room temperature end 4h of the pulse tube 4 is connected to the buffer container 6 via the orifice 5 as a narrow opening. Further, a short-circuit passage 11 that does not pass through the regenerator 3 and the pulse tube 4 is provided together with the flow rate adjusting mechanism 12. Further, a cooling water pipe 9 is attached in contact with the room temperature end 4h of the pulse pipe 4. The heat exchange between the wall of the pulse tube 4 and the working fluid is minute. Incidentally, the short-circuit flow path 1 including the flow rate adjusting mechanism 12 described above.
An orifice type pulse tube refrigerator does not have 1 and further, a basic type pulse tube refrigerator has neither the orifice 5 nor the buffer container 6 together with the above-mentioned short circuit passage 11.

【0004】図2において、先ず流量調節機構12を完
全に閉とした場合(オリフィス型パルス管冷凍機に相当
する)を説明する。圧力切換弁2において高圧弁2aが
開となり低圧弁2bが閉となって高圧側へ切り換わる
と、圧縮機1で圧縮された高圧の作業流体は蓄冷器3を
その室温端3hから低温端3cへ通過することによって
温度が低下し、パルス管4の低温端4cからパルス管4
内へ流入する。この流入した作業流体に押されて、それ
より以前にパルス管4内に存在していた作業流体は圧縮
されてパルス管4の室温端4hへ向かって移動する。そ
の結果、パルス管4内の圧力はバッファ容器6内の圧力
よりも高くなり、パルス管4内の作業流体はオリフィス
5を通過してバッファ容器6内へ流入する。
Referring to FIG. 2, the case where the flow rate adjusting mechanism 12 is completely closed (corresponding to an orifice type pulse tube refrigerator) will be described. When the high pressure valve 2a is opened and the low pressure valve 2b is closed in the pressure switching valve 2 to switch to the high pressure side, the high pressure working fluid compressed in the compressor 1 causes the regenerator 3 to move from the room temperature end 3h to the low temperature end 3c. As the temperature of the pulse tube 4 decreases, the temperature of the pulse tube 4 decreases from the low temperature end 4c of the pulse tube 4
Flows in. The working fluid that has been present in the pulse tube 4 before that is pushed by the inflowing working fluid and is compressed and moves toward the room temperature end 4h of the pulse tube 4. As a result, the pressure in the pulse tube 4 becomes higher than the pressure in the buffer container 6, and the working fluid in the pulse tube 4 passes through the orifice 5 and flows into the buffer container 6.

【0005】続いて圧力切換弁2において、低圧弁2b
が開となり高圧弁2aが閉となって低圧側へ切り換わる
と、パルス管4内の作業流体は蓄冷器3をその低温端3
cから室温端3hへ通過することによって温度が上昇
し、低圧弁2bを経由し圧縮機1の吸入口に向かって流
れる。この時、パルス管4内の圧力はバッファ容器6内
の圧力より低くなるので、バッファ容器6内の作業流体
はオリフィス5を通過してパルス管4内へ流入する。
Subsequently, in the pressure switching valve 2, the low pressure valve 2b
Is opened and the high pressure valve 2a is closed and switched to the low pressure side, the working fluid in the pulse tube 4 causes the regenerator 3 to move to the low temperature end 3 thereof.
The temperature rises by passing from c to the room temperature end 3h, and flows toward the suction port of the compressor 1 via the low pressure valve 2b. At this time, the pressure in the pulse tube 4 becomes lower than the pressure in the buffer container 6, so that the working fluid in the buffer container 6 flows into the pulse tube 4 through the orifice 5.

【0006】今、仮にオリフィス5を通過する作業流体
は存在せず、作業流体とパルス管4の管壁との熱交換は
無視できる程に微小であるとすると、パルス管4内の作
業流体はただ単に断熱的な圧縮と膨張を繰り返すのみで
あり、圧力変動の位相と作業流体の変位の位相とは常に
一致する。しかし実際には、オリフィス5を通過する作
業流体が存在するので、圧力変動と作業流体の変位との
位相は一般には一致しなくなり、両者の位相差が90度
である成分が発生する。この成分のため、パルス管4内
にエンタルピ流が生じ、パルス管4の低温端4cでの作
業流体の膨張仕事はパルス管4の室温端4hに伝達され
て、オリフィス5において熱に変換され冷却水配管9の
水によってパルス管4の外へ運び出される。上述のよう
にして、パルス管4の低温端4cにおいて作業流体の膨
張に伴う冷凍が発生し、これが繰り返されることによっ
て冷凍機としての機能が維持される。すなわち、被冷却
物はパルス管4の低温端4cに熱的に接続されて冷却さ
れる。
Now, assuming that there is no working fluid passing through the orifice 5 and the heat exchange between the working fluid and the wall of the pulse tube 4 is negligible, the working fluid in the pulse tube 4 is It merely repeats adiabatic compression and expansion, and the phase of pressure fluctuation and the phase of displacement of the working fluid always match. However, in reality, since the working fluid passing through the orifice 5 exists, the phase of the pressure fluctuation and the displacement of the working fluid generally do not match, and a component having a phase difference of 90 degrees is generated. Due to this component, an enthalpy flow is generated in the pulse tube 4, and the expansion work of the working fluid at the low temperature end 4c of the pulse tube 4 is transmitted to the room temperature end 4h of the pulse tube 4 and converted into heat at the orifice 5 for cooling. The water in the water pipe 9 is carried out of the pulse pipe 4. As described above, refrigeration due to the expansion of the working fluid occurs at the low temperature end 4c of the pulse tube 4, and by repeating this, the function as the refrigerator is maintained. That is, the object to be cooled is thermally connected to the low temperature end 4c of the pulse tube 4 to be cooled.

【0007】次に、短絡流路11を作業流体が所定の流
量で流れるように流量調節機構12を開とする場合を説
明する。圧力切換弁2が高圧側に切り替わって、圧縮機
1で圧縮され、蓄冷器3を通過し冷却された作業流体が
パルス管4の低温端4cからパルス管4内へ流入すると
同時に、短絡流路11を経由して室温の作業流体がパル
ス管4の室温端4hからパルス管4内へ流入する。
Next, a case where the flow rate adjusting mechanism 12 is opened so that the working fluid flows at a predetermined flow rate through the short circuit passage 11 will be described. When the pressure switching valve 2 is switched to the high pressure side, the working fluid compressed by the compressor 1, passing through the regenerator 3 and cooled flows into the pulse tube 4 from the low temperature end 4c of the pulse tube 4, at the same time, the short-circuit passage is formed. The working fluid at room temperature flows into the pulse tube 4 from the room temperature end 4h of the pulse tube 4 via 11.

【0008】圧力切換弁2が低圧側へ切り換わると、パ
ルス管4内の作業流体は膨張し、蓄冷器3を経て圧縮器
1の吸入口へ向かって流れ、同時に一部の作業流体はパ
ルス管4の室温端4hから短絡流路11、低圧弁2bを
経由して圧縮器1へ戻る。
When the pressure switching valve 2 is switched to the low pressure side, the working fluid in the pulse tube 4 expands and flows toward the suction port of the compressor 1 via the regenerator 3, and at the same time, a part of the working fluid is pulsed. Returning from the room temperature end 4h of the pipe 4 to the compressor 1 via the short-circuit passage 11 and the low pressure valve 2b.

【0009】上述のように短絡流路11の流量調節機構
12を開としているので、パルス管4には蓄冷器3で冷
却された作業流体が低温端4cから流入すると同時に、
室温の作業流体が室温端4hから流入するが、室温の作
業流体は冷却された低温の作業流体よりも同一容積で質
量が小さいので、短絡流路11の流量調節機構12を閉
とした場合に比して、パルス管4内へ流入する作業流体
の量は少なくなる。それに応じて圧縮器1の圧縮比を大
にすることができ、冷凍機の性能を向上させることがで
きる。又、短絡流路11からパルス管4へ作業流体を流
入させているので、その分だけ蓄冷器3を経由する作業
流体のパルス管4の低温端4cにおける動き(変位)が
小さくなる。それに応じ作業流体によって室温側から低
温側へ運ばれる熱による損失(シャトル損失)も減少す
る。
Since the flow rate adjusting mechanism 12 of the short circuit passage 11 is opened as described above, the working fluid cooled in the regenerator 3 flows into the pulse tube 4 from the low temperature end 4c, and at the same time,
The working fluid at room temperature flows in from the room temperature end 4h, but since the working fluid at room temperature has the same volume and a smaller mass than the cooled working fluid at low temperature, when the flow rate adjusting mechanism 12 of the short-circuit passage 11 is closed. In comparison, the amount of working fluid flowing into the pulse tube 4 is small. Accordingly, the compression ratio of the compressor 1 can be increased and the performance of the refrigerator can be improved. Further, since the working fluid is caused to flow into the pulse tube 4 from the short-circuit flow path 11, the movement (displacement) of the working fluid passing through the regenerator 3 at the low temperature end 4c of the pulse tube 4 is reduced accordingly. Accordingly, the loss (shuttle loss) due to heat carried from the room temperature side to the low temperature side by the working fluid is also reduced.

【0010】以上のように、ダブルインレット型パルス
管冷凍機20は設けられている短絡流路11とその流量
調節機構12とによってオリフィス型パルス管冷凍機を
はじめとする他の型式のパルス管冷凍機よりも優れた冷
凍性能を有している。
As described above, the double inlet type pulse tube refrigerator 20 has another type of pulse tube refrigerator including the orifice type pulse tube refrigerator due to the short-circuit passage 11 and the flow rate adjusting mechanism 12 provided therein. It has better freezing performance than the machine.

【0011】しかし、このダブルインレット型パルス管
冷凍機20を長時間に渡って連続運転した場合に、図3
に示すように、冷凍温度が大幅に上昇し、かつ冷凍温度
が大きく変動するという特有の現象の発生することが見
出された。図3において横軸は運転時間であり、縦軸は
冷凍温度である。
However, when the double-inlet type pulse tube refrigerator 20 is continuously operated for a long time, as shown in FIG.
It was found that, as shown in, the freezing temperature rises significantly and the freezing temperature fluctuates greatly. In FIG. 3, the horizontal axis represents operating time and the vertical axis represents freezing temperature.

【0012】上述したように、ダブルインレット型パル
ス管冷凍機20はその圧力切換弁2が切り換わることに
よって、パルス管4内で作業流体が低温端4cから室温
端4hへ流れ、又室温端4hから低温端4cへ流れる振
動流を生じ、この振動流によるパルス管4の低温端4c
から室温端4hへの熱の汲み上げを冷凍原理としてい
る。
As described above, in the double-inlet type pulse tube refrigerator 20, the working fluid in the pulse tube 4 flows from the low temperature end 4c to the room temperature end 4h and the room temperature end 4h by switching the pressure switching valve 2. From the low temperature end 4c to the low temperature end 4c of the pulse tube 4
The principle of refrigeration is to pump heat from room temperature to room temperature edge 4h.

【0013】ところが、ダブルインレット型を含めてパ
ルス管冷凍機全般に共通することであるがパルス管4内
には上記振動流の他に時間によらない直流成分の存在す
ることが知られている。
However, as is common to all pulse tube refrigerators including the double inlet type, it is known that a direct current component independent of time exists in the pulse tube 4 in addition to the oscillating flow. .

【0014】ダブルインレット型パルス管冷凍機20に
おいて長時間の連続運転後に冷凍温度が大きく変動する
理由として次のようなことが考えられる。すなわち、上
記のパルス管4内での作業流体の流れの直流成分は、短
絡流路11を持たないオリフィス型やベーシック型のパ
ルス管冷凍機においてはパルス管4内に留まり、冷凍機
の性能に大きい影響を与えないに対し、短絡流路11を
有するダブルインレット型パルス管冷凍機20において
は、短絡流路11、蓄冷器3、パルス管4を流路とする
環状流路が形成されているので、作業流体の流れの直流
成分はパルス管4内に留まらずに環状流路内で循環流と
なっている。そして、この循環流を生じている駆動力は
微小であり、そのため循環流は長時間をかけて成長す
る。このようにして、ダブルインレット型パルス管冷凍
機20は長時間の連続運転後に冷凍温度が不安定化し変
動するのであろう。
The reason why the refrigerating temperature greatly changes after continuous operation for a long time in the double inlet type pulse tube refrigerator 20 is considered as follows. That is, the direct-current component of the flow of the working fluid in the pulse tube 4 remains in the pulse tube 4 in the orifice type or basic type pulse tube refrigerator without the short-circuit flow path 11 and affects the performance of the refrigerator. On the other hand, in the double-inlet type pulse tube refrigerator 20 having the short-circuit passage 11, an annular passage having the short-circuit passage 11, the regenerator 3, and the pulse tube 4 as passages is formed, while not having a great influence. Therefore, the DC component of the flow of the working fluid does not remain in the pulse tube 4 but becomes a circulating flow in the annular flow path. Then, the driving force that generates this circulating flow is very small, so that the circulating flow grows over a long period of time. In this way, the freezing temperature of the double-inlet type pulse tube refrigerator 20 may become unstable and fluctuate after a long continuous operation.

【0015】[0015]

【発明が解決しようとする問題点】本発明は上述の問題
に鑑みてなされ、長時間運転しても安定な冷凍温度を与
えるダブルインレット型冷凍機及びその運転方法を提供
することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and an object of the present invention is to provide a double inlet refrigerator having a stable refrigerating temperature even when it is operated for a long time, and an operating method thereof. .

【0016】[0016]

【問題点を解決するための手段】以上の目的は、作業流
体の圧縮機から圧力切換弁、蓄冷器、パルス管、及びオ
リフィスまたは絞り弁を経てバッファ容器に至る流路
と、前記圧力切換弁と前記蓄冷器とを結ぶ流路と前記パ
ルス管と前記オリフィス又は絞り弁とを結ぶ流路とを連
結する短絡流路及び該短絡流路に設けた流量調節機構と
からなるダブルインレット型パルス管冷凍機において、
前記パルス管の低温端における冷凍温度を検出する検出
系と、検出された冷凍温度に応じて前記ダブルインレッ
ト型パルス管冷凍機の運転の開始と停止を制御する制御
系とが設けられていることを特徴とするダブルインレッ
ト型パルス管冷凍機、によって達成される。
The above object is to provide a flow path from a working fluid compressor to a buffer container via a pressure switching valve, a regenerator, a pulse tube, and an orifice or a throttle valve, and the pressure switching valve. A double inlet type pulse tube comprising a flow path connecting the regenerator and the regenerator, a short circuit flow path connecting the pulse tube and a flow path connecting the orifice or the throttle valve, and a flow rate adjusting mechanism provided in the short circuit flow path. In the refrigerator,
A detection system for detecting the freezing temperature at the low temperature end of the pulse tube, and a control system for controlling the start and stop of the operation of the double inlet type pulse tube refrigerator according to the detected freezing temperature are provided. And a double-inlet type pulse tube refrigerator.

【0017】又、以上の目的は、作業流体の圧縮機から
圧力切換弁、蓄冷器、パルス管、及びオリフィスまたは
絞り弁を経てバッファ容器に至る流路と、前記圧力切換
弁と前記蓄冷器とを結ぶ流路と前記パルス管と前記オリ
フィス又は絞り弁とを結ぶ流路とを連結する短絡流路及
び該短絡流路に設けた流量調節機構とからなるダブルイ
ンレット型パルス管冷凍機に対し、前記パルス管の低温
端における冷凍温度を検出する検出系と、検出された冷
凍温度に応じて前記ダブルインレット型パルス管冷凍機
の運転の開始と停止を制御する制御系とが設けられたダ
ブルインレット型パルス管冷凍機において、冷凍温度が
所定の温度範囲より高温になれば前記ダブルインレット
型パルス管冷凍機の運転を開始し、冷凍温度が前記所定
の温度範囲より低温になれば前記ダブルインレット型パ
ルス管冷凍機の運転を停止させることを特徴とするダブ
ルインレット型パルス管冷凍機の運転方法、によって達
成される。
Further, the above object is to provide a flow path from a working fluid compressor to a buffer container via a pressure switching valve, a regenerator, a pulse tube, and an orifice or a throttle valve, the pressure switching valve and the regenerator. For a double inlet type pulse tube refrigerator consisting of a short-circuit flow passage connecting the flow passage connecting the pulse pipe and the orifice or throttle valve and a flow rate adjusting mechanism provided in the short-circuit flow passage, A double inlet provided with a detection system for detecting the freezing temperature at the low temperature end of the pulse tube, and a control system for controlling the start and stop of the operation of the double inlet type pulse tube refrigerator according to the detected freezing temperature. Type pulse tube refrigerator, when the freezing temperature is higher than a predetermined temperature range, the double inlet type pulse tube refrigerator is started to operate, and the freezing temperature is lower than the predetermined temperature range. How the operation of the double inlet type pulse tube refrigerator, characterized in that stops the operation of the double inlet type pulse tube refrigerator if the is accomplished by.

【0018】[0018]

【作用】請求項1のダブルインレット型パルス管冷凍機
はパルス管の低温端における冷凍温度を検出する検出系
と、検出された冷凍温度に応じて当該冷凍機の運転の開
始と停止を制御する制御系とにより、冷凍温度に応じて
間欠運転することが可能である。
In the double-inlet type pulse tube refrigerator of claim 1, a detection system for detecting the freezing temperature at the low temperature end of the pulse tube, and controlling the start and stop of the operation of the refrigerator according to the detected freezing temperature. The control system enables the intermittent operation depending on the freezing temperature.

【0019】請求項2のダブルインレット型パルス管冷
凍機の運転方法は冷凍温度が所定の温度範囲より高温な
れば当該冷凍機の運転を開始し、冷凍温度が所定の温度
範囲より低温になれば当該冷凍機の運転を停止するよう
に間欠運転するので、冷凍温度は所定の温度範囲に維持
され、かつ当該冷凍機を長時間運転しても冷凍温度に変
動を生じない。
In the method for operating the double-inlet type pulse tube refrigerator of claim 2, the operation of the refrigerator is started when the freezing temperature is higher than a predetermined temperature range, and when the freezing temperature is lower than the predetermined temperature range. Since the refrigerator is intermittently operated so as to be stopped, the refrigeration temperature is maintained within a predetermined temperature range, and the refrigerator temperature does not fluctuate even when the refrigerator is operated for a long time.

【0020】[0020]

【実施例】以下、本発明の実施例によるダブルインレッ
ト型パルス管冷凍機及びその運転方法について、図面を
参照して説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A double inlet type pulse tube refrigerator and an operating method thereof according to embodiments of the present invention will be described below with reference to the drawings.

【0021】図1は実施例のダブルインレット型パルス
管冷凍機10の配管系統図である。基本的には従来例の
ダブルインレット型パルス管冷凍機20と同様に構成さ
れているので、以降は両者の異なるところを説明し、共
通する構成要素には同一の符号を付して、それらの説明
は省略する。
FIG. 1 is a piping system diagram of a double inlet type pulse tube refrigerator 10 of the embodiment. Basically, the double-inlet type pulse tube refrigerator 20 of the conventional example is configured similarly to the conventional example. Therefore, different points between the two will be described below, and common constituent elements will be denoted by the same reference numerals, and The description is omitted.

【0022】すなわち、本実施例のダブルインレット型
パルス管冷凍機10はパルス管4の低温端4cに冷凍温
度を計測するための温度センサ13が取り付けられてお
り、温度センサ13からの信号はコントローラ14へ入
力され、コントローラ14は冷凍温度に応じて、圧力切
換弁2における高圧弁2aと低圧弁2bとの切換えを停
止させたり、開始させたりすることができるようになっ
ている。切換えの停止はパルス管4内での圧力変動を停
止させることになり、結果的にはダブルインレット型パ
ルス管冷凍機10の運転の停止となる。逆に切換えの開
始は運転の開始となる。すなわち、冷凍温度に応じてダ
ブルインレット型パルス管冷凍機10の運転の開始と停
止を制御し得るようになっている。
That is, in the double inlet type pulse tube refrigerator 10 of this embodiment, a temperature sensor 13 for measuring the refrigeration temperature is attached to the low temperature end 4c of the pulse tube 4, and the signal from the temperature sensor 13 is the controller. The controller 14 can stop or start the switching of the high pressure valve 2a and the low pressure valve 2b in the pressure switching valve 2 according to the refrigerating temperature. Stopping the switching stops the pressure fluctuation in the pulse tube 4, and consequently stops the operation of the double inlet type pulse tube refrigerator 10. Conversely, the start of switching is the start of operation. That is, the start and stop of the operation of the double inlet type pulse tube refrigerator 10 can be controlled according to the freezing temperature.

【0023】そして、このダブルインレット型パルス管
冷凍機10を用いて、温度センサ13で計測される冷凍
温度が所定の温度範囲より高温になるとコントローラ1
4によって当該冷凍機10の運転を開始し、温度センサ
13による冷凍温度が所定の温度範囲より低温になれば
コントローラ14によって当該冷凍機10の運転を停止
させて間欠運転を行なう。この間欠運転によってパルス
管4の低温端4cにおける冷凍温度は所定の温度範囲に
維持され、かつ長時間経過後も冷凍温度は安定化し、従
来のダブルインレット型パルス管冷凍機20で見られた
ような温度変動は生じない。
When the refrigerating temperature measured by the temperature sensor 13 becomes higher than a predetermined temperature range using the double inlet type pulse tube refrigerator 10, the controller 1
4, the operation of the refrigerator 10 is started, and when the freezing temperature by the temperature sensor 13 becomes lower than a predetermined temperature range, the operation of the refrigerator 10 is stopped by the controller 14 and the intermittent operation is performed. Due to this intermittent operation, the freezing temperature at the low temperature end 4c of the pulse tube 4 is maintained within a predetermined temperature range, and the freezing temperature is stabilized even after a long time has passed, as seen in the conventional double inlet type pulse tube refrigerator 20. Temperature fluctuations do not occur.

【0024】これは間欠運転させることによる本実施例
のダブルインレット型パルス管冷凍機10の運転の停止
期間において、短絡流路11、蓄冷器3、パルス管4か
らなる環状流路に作業流体の循環流を発生させる駆動力
がなくなり、かつ既に存在していた循環流は時間と共に
減衰し消滅するためと思考される。
This is because during the period in which the operation of the double-inlet type pulse tube refrigerator 10 of the present embodiment is stopped by intermittent operation, the working fluid is supplied to the annular channel consisting of the short-circuit passage 11, the regenerator 3, and the pulse tube 4. It is thought that the driving force for generating the circulating flow disappears and the existing circulating flow decays and disappears with time.

【0025】以上、本発明の実施例について説明した
が、勿論、本発明はこれに限定されることなく、本発明
の技術的思想に基いて種々の変形が可能である。
The embodiments of the present invention have been described above. Of course, the present invention is not limited to these, and various modifications can be made based on the technical idea of the present invention.

【0026】例えば、本実施例においてはダブルインレ
ット型パルス管冷凍機10の運転の開始と停止とを、コ
ントローラ14から圧力切換弁2の切換えを制御して行
なったが、コントローラ14から圧縮器1の駆動と停止
を制御するようにしてもよい。
For example, in the present embodiment, the operation of the double-inlet type pulse tube refrigerator 10 was started and stopped by controlling the switching of the pressure switching valve 2 from the controller 14. It may be configured to control the driving and stopping of the.

【0027】又、本実施例においては、パルス管4の室
温端4hに接して冷却水配管9を設ける水冷式とした
が、冷却水配管9を省略した空冷式とすることも可能で
ある。
In the present embodiment, the cooling water pipe 9 is provided in contact with the room temperature end 4h of the pulse tube 4, but the cooling water pipe 9 may be omitted.

【0028】又、本実施例においては、パルス管4とバ
ッファ容器6との間に、狭い開口としてのオリフィス5
を設けたが、これに代えて開度調節の可能な絞り弁を設
けてもよい。
Further, in this embodiment, an orifice 5 as a narrow opening is provided between the pulse tube 4 and the buffer container 6.
However, instead of this, a throttle valve whose opening degree can be adjusted may be provided.

【0029】又、本実施例においては、蓄冷器3の低温
端3cに対する高温側を室温端3hとし、パルス管4の
低温端4cに対する高温側を室温端4hとして、蓄冷器
3とパルス管4との高温側を室温の雰囲気内に置く場合
を説明したが、これらの高温側を室温より高い温度の雰
囲気内に置いてもよく、勿論、室温より低い温度の雰囲
気に置くこともあり得る。
Further, in the present embodiment, the high temperature side with respect to the low temperature end 3c of the regenerator 3 is a room temperature end 3h, and the high temperature side with respect to the low temperature end 4c of the pulse tube 4 is a room temperature end 4h. Although the case where the high temperature side is placed in an atmosphere at room temperature has been described, these high temperature sides may be placed in an atmosphere having a temperature higher than room temperature, and, of course, may be placed in an atmosphere having a temperature lower than room temperature.

【0030】[0030]

【発明の効果】以上述べたように、本発明の請求項1に
よるダブルインレット型パルス管冷凍機によれば、当該
冷凍機の間欠運転によって冷凍温度を所定の温度範囲に
維持しつつ長期間に亘って安定化させ得る。
As described above, according to the double inlet type pulse tube refrigerator according to claim 1 of the present invention, the refrigerating temperature is maintained within a predetermined temperature range by the intermittent operation of the refrigerator, and the refrigerating temperature is maintained for a long period of time. It can be stabilized over.

【0031】又、請求項2によるダブルインレット型パ
ルス管冷凍機の運転方法によれば、冷凍温度は所定の温
度範囲に維持され、かつ長時間に亘って安定化される。
そして、このことによりダブルインレット型パルス管冷
凍機の信頼性が高められ応用分野の拡大に大きく寄与す
る。
According to the method of operating the double-inlet type pulse tube refrigerator according to the second aspect, the refrigerating temperature is maintained within a predetermined temperature range and is stabilized for a long time.
Then, the reliability of the double-inlet type pulse tube refrigerator is enhanced by this, which greatly contributes to the expansion of the application field.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例のダブルインレット型パルス管冷凍機の
配管系統図である。
FIG. 1 is a piping system diagram of a double inlet type pulse tube refrigerator of an embodiment.

【図2】従来例のダブルインレット型パルス管冷凍機の
配管系統図である。
FIG. 2 is a piping system diagram of a conventional double-inlet type pulse tube refrigerator.

【図3】従来例のダブルインレット型パルス管冷凍機に
よる運転時間と冷凍温度との関係を示す図である。
FIG. 3 is a diagram showing the relationship between operating time and freezing temperature in a conventional double-inlet type pulse tube refrigerator.

【符号の説明】[Explanation of symbols]

1 圧縮機 2 切換弁 3 蓄冷器 4 パルス管 4c パルス管の低温端 5 オリフィス 6 バッファ容器 9 冷却水配管 10 実施例のダブルインレット型パルス管冷凍機 11 短絡流路 12 流量調節機構 13 温度センサ 14 コントローラ DESCRIPTION OF SYMBOLS 1 Compressor 2 Switching valve 3 Regenerator 4 Pulse tube 4c Low temperature end of pulse tube 5 Orifice 6 Buffer container 9 Cooling water piping 10 Double-inlet type pulse tube refrigerator 11 of an example 11 Short-circuit flow path 12 Flow control mechanism 13 Temperature sensor 14 controller

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 作業流体の圧縮機から圧力切換弁、蓄冷
器、パルス管、及びオリフィスまたは絞り弁を経てバッ
ファ容器に至る流路と、前記圧力切換弁と前記蓄冷器と
を結ぶ流路と前記パルス管と前記オリフィス又は絞り弁
とを結ぶ流路とを連結する短絡流路及び該短絡流路に設
けた流量調節機構とからなるダブルインレット型パルス
管冷凍機において、前記パルス管の低温端における冷凍
温度を検出する検出系と、検出された冷凍温度に応じて
前記ダブルインレット型パルス管冷凍機の運転の開始と
停止を制御する制御系とが設けられていることを特徴と
するダブルインレット型パルス管冷凍機。
1. A flow path from a compressor for working fluid to a buffer container through a pressure switching valve, a regenerator, a pulse tube, and an orifice or a throttle valve, and a flow path connecting the pressure switching valve and the regenerator. In a double-inlet type pulse tube refrigerator comprising a short-circuit passage connecting the pulse tube and a passage connecting the orifice or the throttle valve and a flow rate adjusting mechanism provided in the short-circuit passage, a low temperature end of the pulse tube And a control system for controlling the start and stop of the operation of the double-inlet type pulse tube refrigerator in accordance with the detected refrigerating temperature. Type pulse tube refrigerator.
【請求項2】 作業流体の圧縮機から圧力切換弁、蓄冷
器、パルス管、及びオリフィスまたは絞り弁を経てバッ
ファ容器に至る流路と、前記圧力切換弁と前記蓄冷器と
を結ぶ流路と前記パルス管と前記オリフィス又は絞り弁
とを結ぶ流路とを連結する短絡流路及び該短絡流路に設
けた流量調節機構とからなるダブルインレット型パルス
管冷凍機に対し、前記パルス管の低温端における冷凍温
度を検出する検出系と、検出された冷凍温度に応じて前
記ダブルインレット型パルス管冷凍機の運転の開始と停
止を制御する制御系とが設けられたダブルインレット型
パルス管冷凍機において、冷凍温度が所定の温度範囲よ
り高温になれば前記ダブルインレット型パルス管冷凍機
の運転を開始し、冷凍温度が前記所定の温度範囲より低
温になれば前記ダブルインレット型パルス管冷凍機の運
転を停止させることを特徴とするダブルインレット型パ
ルス管冷凍機の運転方法。
2. A flow path from a compressor for working fluid to a buffer container via a pressure switching valve, a regenerator, a pulse tube, and an orifice or a throttle valve, and a flow path connecting the pressure switching valve and the regenerator. For a double inlet type pulse tube refrigerator consisting of a short-circuit passage connecting the pulse tube and a passage connecting the orifice or the throttle valve and a flow rate adjusting mechanism provided in the short-circuit passage, the low temperature of the pulse tube Double inlet type pulse tube refrigerator provided with a detection system for detecting the freezing temperature at the end and a control system for controlling the start and stop of the operation of the double inlet type pulse tube refrigerator according to the detected freezing temperature In the above, when the freezing temperature becomes higher than a predetermined temperature range, the operation of the double inlet type pulse tube refrigerator is started, and when the freezing temperature becomes lower than the predetermined temperature range, the dub A method for operating a double-inlet type pulse tube refrigerator, which is characterized in that the operation of a double-inlet type pulse tube refrigerator is stopped.
JP8477995A 1995-03-15 1995-03-15 Double inlet type pulse pipe freezer and its operating method Pending JPH08254365A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8477995A JPH08254365A (en) 1995-03-15 1995-03-15 Double inlet type pulse pipe freezer and its operating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8477995A JPH08254365A (en) 1995-03-15 1995-03-15 Double inlet type pulse pipe freezer and its operating method

Publications (1)

Publication Number Publication Date
JPH08254365A true JPH08254365A (en) 1996-10-01

Family

ID=13840181

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8477995A Pending JPH08254365A (en) 1995-03-15 1995-03-15 Double inlet type pulse pipe freezer and its operating method

Country Status (1)

Country Link
JP (1) JPH08254365A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008036920A2 (en) * 2006-09-22 2008-03-27 Praxair Technology, Inc. Control method for pulse tube cryocooler
JP2009063209A (en) * 2007-09-05 2009-03-26 Aisin Seiki Co Ltd Pulse tube refrigerating machine and its control method
JP2011244516A (en) * 2010-05-14 2011-12-01 Toyota Motor Corp Superconducting motor system
CN102393096A (en) * 2011-09-29 2012-03-28 南京柯德超低温技术有限公司 Pulse tube refrigerator with device capable of automatically regulating gas flow rate and phase
CN115280081A (en) * 2020-03-23 2022-11-01 住友重机械工业株式会社 Pulse tube refrigerator

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008036920A2 (en) * 2006-09-22 2008-03-27 Praxair Technology, Inc. Control method for pulse tube cryocooler
WO2008036920A3 (en) * 2006-09-22 2008-05-22 Praxair Technology Inc Control method for pulse tube cryocooler
US7614240B2 (en) 2006-09-22 2009-11-10 Praxair Technology, Inc. Control method for pulse tube cryocooler
JP2009063209A (en) * 2007-09-05 2009-03-26 Aisin Seiki Co Ltd Pulse tube refrigerating machine and its control method
JP2011244516A (en) * 2010-05-14 2011-12-01 Toyota Motor Corp Superconducting motor system
CN102393096A (en) * 2011-09-29 2012-03-28 南京柯德超低温技术有限公司 Pulse tube refrigerator with device capable of automatically regulating gas flow rate and phase
WO2013044604A1 (en) * 2011-09-29 2013-04-04 南京柯德超低温技术有限公司 Pulse tube refrigerator with device capable of automatically adjusting gas flow rate and phase
CN115280081A (en) * 2020-03-23 2022-11-01 住友重机械工业株式会社 Pulse tube refrigerator

Similar Documents

Publication Publication Date Title
US5317878A (en) Cryogenic cooling apparatus
KR20050058363A (en) Very low temperature refrigerator
JP2583721B2 (en) Cool storage refrigerator
JPH10148410A (en) Pulse tube refrigerator
JP4445187B2 (en) Cryogenic refrigerator
JPH08254365A (en) Double inlet type pulse pipe freezer and its operating method
JP2007303815A (en) Operating method for cryogenic refrigerator
CN114279099A (en) Cryogenic refrigerator and control method for cryogenic refrigerator
Cai et al. Experimental analysis of the multi-bypass principle in pulse tube refrigerators
JPH08254366A (en) Double inlet type pulse pipe freezer and its operating method
JP2004301445A (en) Pulse pipe refrigerating machine
CN114459166A (en) Cryogenic refrigerator and method for starting cryogenic refrigerator
JP2722731B2 (en) Cryogenic refrigerator
JPH062972A (en) Cryogenic refrigerator
JP2909934B2 (en) Pulse tube refrigerator
JPH0933126A (en) Cooling system and superconduction magnet device
KR101395285B1 (en) Tandem pulse tube refrigerator to automatically reduce vibration
JP2698198B2 (en) Cryogenic refrigeration equipment
JP2690296B2 (en) Pulse tube refrigerator
JP2002061976A (en) Method for controlling pulse tube refrigerator
JPH10185340A (en) Pulse tube type refrigerating machine
Shiraishi et al. Visualization of DC gas flows in a double-inlet pulse tube refrigerator with a second orifice valve
JP2001336847A (en) Control device and control method for very low temperature freezer
JP2000035273A (en) Cooling system
JP2002286312A (en) Pulse tube refrigerating machine